200950855 九、發明說明: 【發明所屬之技術領域】 面與系統,且特別是 統0 本發明是有關於一種人機互動介_ 有關於一種可產生回饋輸出之互動系 【先前技術】 人機互動系統是一種可提供你田土占 促供使用者虛擬實境的感受的200950855 IX. Description of the invention: [Technical field of invention] Surface and system, and especially system 0 The present invention relates to a human-computer interaction interface _ related to an interaction system capable of generating feedback output [Prior Art] Human-computer interaction The system is a way to provide you with the experience of promoting the virtual reality of the user.
Ο 裝置’透過影像、聲音、力讀或味道等各種刺激,提供 使用者視覺、聽覺、觸覺和嗅覺等各方面的感受,讓使用 者有身歷其境的感受。其中’力回饋裝置是用來提供使用 者觸覺回饋(haptic feedback)’其作用是藉由產生力量以 傳達到使用者的皮膚,而讓使用者感受到力量。 目前’很多電動玩具的操作台皆連接於電視或電腦勞 幕,使用者能透過電視或電腦勞幕獲得遊戲中所產生的影 音效果。遊戲機的力回饋裝置裝設於滑鼠、搖桿、遊戲板 或方向盤等物品中,提供使用者觸覺刺激,搭配上視覺和 聽覺的感受,讓使用者與遊戲互動更為真實,更有身歷其 境的感受°最近由Nintendo所推出的遊戲機Wii即為—種 應用力回饋裝置的實例。 近年來’力回饋裝置應用逐漸普及,常見於家庭娱樂、 工程應用、遠端機械控制等虚擬實境的使用中。力回饋裝 置具有廣大的市場需求與應用,為目前產業積極發展之技 【發明内容】 5 200950855 本發明一方面在於提供一種力回饋裝置,用以提供使 用者觸覺感受。力回饋裝置中有一連桿。一握把固定於連 桿上,以供使用者握舉。連桿之兩端分別固定有一對致動 器。每一個致動器用以產生正交於連桿之轴方向之力作用 於連桿上,並傳導至握把。 其中,每一個致動器均具有一個固定於連桿上的定子 和一個可相對於定子旋轉的轉子。定子根據使用者的命令 ❹ 訊號產生磁場變化,進而驅動轉子相對於定子旋轉《當定 子驅動轉子旋轉時,因反作用原理,會產生力作用在定子 上’且透過連桿傳送至握把。 連桿兩端的致動器所輸出的力的大小不同,導致握把 上兩力的合力方向與大小不同,因此可提供使用者不同方 向和強度的觸覺感受。 本發明的另一方面在於提供一種力回饋裝置,用以提 供使用者多個維度的觸覺感受。力回饋裝置具有數個互相 不平行排列的連桿、數對致動器和一握把。每一對致動器 刀别固疋於個連桿之兩端,用以產生一力作用於其所固 定之連桿。其中,力的方向與連桿之延伸方向正交。 握把與每個連桿互相固定,以接收作用於每一連桿上 的力。由於各個連桿均不平行,故作用於其上的力的方向 也均不相同,故使用村感受到多個方向上的力4。另外, 連桿也可分別設置於三維方向,例如直角座標系中的χ 軸、γ軸和ζ軸方向,進而提供使用者三維度的力的感受。 本發明另一方面在於提供一種互動系統,讓使用者得 以獲得觸覺刺激。互動系統至少包含一個主機和一個力回 200950855 並且根據指令產 回饋裝置接收命令 提供使用者觸覺上 饋裝置。±機可用以接收制者之指令 生命令訊號,以傳送到力回饋裝置。力 訊號後,會根據命令訊號產生一 的感受。 力回饋裝置中有一個供使用者握舉的握把。第一對致 動器固定於握把上,排列於第-方向上,用以產生第—力 作用於握把上’其中第一力之方向正交於第—方向。第二Ο The device provides users with visual, auditory, tactile and olfactory feelings through various stimuli such as video, sound, force reading or taste, giving the user an experience of immersion. Where the 'force feedback device is used to provide the user with haptic feedback', the effect is to let the user feel the power by generating force to convey to the user's skin. At present, many of the consoles for electric toys are connected to televisions or computer screens, and users can obtain the sound effects produced in the game through television or computer screens. The power feedback device of the game machine is installed in a mouse, a joystick, a game board or a steering wheel to provide a user with tactile stimulation, and a visual and auditory feeling, so that the user interacts with the game more realistically and has a physical experience. The feeling of the environment ° The game machine Wii recently launched by Nintendo is an example of a force feedback device. In recent years, the application of force feedback devices has become popular, and it is commonly used in virtual reality such as home entertainment, engineering applications, and remote mechanical control. The force feedback device has a large market demand and application, and is an active development technology of the current industry. [Invention] 5 200950855 One aspect of the present invention provides a force feedback device for providing a user with a tactile sensation. There is a connecting rod in the force feedback device. A grip is attached to the link for the user to hold. A pair of actuators are respectively fixed at both ends of the connecting rod. Each actuator acts to generate a force orthogonal to the axis of the link acting on the link and conducting it to the grip. Each of the actuators has a stator fixed to the connecting rod and a rotor rotatable relative to the stator. The stator generates a magnetic field change according to the user's command ❹ signal, thereby driving the rotor to rotate relative to the stator. When the stator drives the rotor to rotate, a force acts on the stator due to the reaction principle and is transmitted to the grip through the connecting rod. The magnitude of the force output by the actuators at both ends of the link causes the resultant force of the two forces on the grip to be different in direction and size, thereby providing a tactile sensation of the user in different directions and intensities. Another aspect of the present invention is to provide a force feedback device for providing a user with a plurality of dimensions of tactile sensation. The force feedback device has a plurality of links that are not parallel to each other, a pair of actuators, and a grip. Each pair of actuators is fixed to the ends of the links to create a force acting on the links to which they are attached. Wherein, the direction of the force is orthogonal to the direction in which the connecting rod extends. The grip is fixed to each of the links to receive a force acting on each of the links. Since the respective links are not parallel, the directions of the forces acting thereon are also different, so the force 4 in a plurality of directions is felt by the use village. In addition, the links may be respectively disposed in a three-dimensional direction, such as a χ axis, a γ axis, and a ζ axis direction in a rectangular coordinate system, thereby providing a user's three-dimensional force feeling. Another aspect of the present invention is to provide an interactive system that allows a user to obtain a tactile stimulus. The interactive system includes at least one host and one force back to 200950855 and provides a user tactile feedback device based on the command feedback device receiving commands. The ± machine can be used to receive the command signal from the manufacturer for transmission to the force feedback device. After the signal, it will generate a feeling based on the command signal. The force feedback device has a grip for the user to hold. The first pair of actuators are fixed to the grip and arranged in the first direction for generating a first force acting on the grip wherein the direction of the first force is orthogonal to the first direction. second
對致動盗㈣定於握把上’且排列於不同於第_方向 二方向上’用以產生第二力作用於握把上,其中第二力 方向正交於第二方向。 、 — 兩對致動器分別位於不同方向上,其所產生的力的方 向也不相同,故可提供使用者多個方向上的觸覺感受,增 加虛擬實境的真實感。 a 【實施方式】 冑參考第1圖。第1騎示根據本發明之—實施例的 ❹-種力回饋裝置100。力回饋裝置1〇〇是一種利用機械作動 而產生如直線力、震動或轉動等的回饋力,以提供使用者 觸覺感受。 在本實施例中,力回饋裝置100中設有連桿11〇、握把 120和一對致動器130。握把12〇固定於連桿11〇上以供 使用者握舉。致動器130分別固定在連桿no之兩端,用 以產生正交於連桿110之力作用於連桿11〇上,並傳導至 握把120,以提供使用者觸覺感受。 清同時參考第1圖和第2圖,第2圖缯·示力回饋裝置 200950855 100中的致動器130。每一個致動器130均具有一個定子和 一個轉子,定子固定於連桿110上,用以根據使用者的命 令訊號產生磁場變化^轉子根據磁場變化而相對於定子旋 轉。當轉子旋轉時,因反作用而在定子上產生力,且透過 連桿110傳送至該握把120〇具體而言,轉子為一個磁鐵 134,定子具有一個殼體132和數個線圈136 ,殼體132固 定於連桿110上,線圏136分隔設置在殼體132的内壁上。 ❹ ❹ 磁鐵134容置於殼體丨32之内,且為線圈136所環繞9當 力回饋裝置1〇〇收到使用者的命令訊號時,線圈136根據 命令訊號產生磁場變化,進而驅動磁鐵134,使得磁鐵134 以其中心為轉軸,繞著轉軸相對於殼體132旋轉。 同時,當線圈130驅動磁鐵134而旋轉時,因為作用 力與反作用的關係’會有反作用力作用在線圈136上。由 牛頓第三運動定律可知,作用力與反作用力為—對大小相 同、方向相反且作用在不同物體上的力。當磁鐵134順著 逆時=方向10旋轉時,表示線圈136應受到反作用力作用 著順時針方向旋轉。然而,由於線圈固定於殼體 2上’而殼體132與連桿11〇固定故反作用力將透過殼 32:送至連桿11〇,且反作用力的方向為沿著方向⑴ S父於連h UG之轴方向。其中,連桿11(3的轴方向 疋才曰通過連桿110的兩端的方向。 生直t U〇 一端的致動器130作動而在連桿110 -端產 連桿no雨對握把120而言則會有力矩的作用。因此,當 才干丨1〇兩端的致動器130 — 到合力矩的作用…之,广動時’握把120則會受 、° 力回饋裝置100可透過致動器 200950855 130的作用而供給握把12〇 一合力矩,進而使得使用者有扭 轉的感受。連桿110兩端的致動器13〇所輸出的力的大小 不同,導致握把120上兩力的合力與合力矩的方向與大小 不同,因此可提供使用者不同方向和強度的觸覺感受。另 外,連桿110兩端的致動器13〇也可輪流交替地作動,使 得連桿110兩端的力依時序輪流交替產生。當兩力交替的 頻率高時’使用者將感受到近似於直線力的刺激。 連榉110可以利用剛性材料或非剛性材料構成。在本 實施例中,連桿110是以可撓性材料所組成。當致動器13〇 作用時’可撓性材料所組成的連桿HO的一端受到致動器 130產生的力作用而產生形變,例如彎曲,使得致動器13〇 的空間位置相對於握把120與連桿11〇連接的位置略微改 變。另外,連桿110和致動器13〇之間也可透過彈性結構 而連接’例如彈片或彈簧。 力回饋裝置100尚包含一個阻尼器140,用以減緩磁鐵 134的轉速’避免磁鐵134 一直維持在高速運轉的狀態,而 ® 不易再繼續加速以產生回饋力。如前所述,本實施例中連 桿110係由可撓性材質所組成,而致動器130作動時會產 生位移。因此,阻尼器140是一種用來阻止造成致動器130 位移的加速度的裝置。在本實施例中,阻尼器140為數個 環繞磁鐵134的感應線圈》當磁鐵134旋轉時,空間中的 磁場會產生變化,進而使得感應線圈感應生電而產生感應 電動勢。根據能量守恆的原則,感應線圈所產生之電能係 來自於磁鐵134的動能。換句話說,磁鐵134的轉速將因 感應線圈之電磁感應而減速。而感應線圈所產生之電能也 9 200950855 月b透過回饋電路(未繪示)的設置而再回收利用。具體而 。回饋電路電性連接線圈136和感應線圈,將回收的感 應電動勢供應給線圈使用。 另外,也可以利用流體阻尼來完成阻尼器140。具體而 言’將具有高黏滯係數的流體,例如油,填充於殼體132 之中’再將磁鐵134浸置於流體之中。熟悉本技術領域者 均知*磁鐵134尚速旋轉時,流體所產生的阻力會與速 度或速度的平方成正比,故可有效地將轉速下降。 另方面,阻尼器140也可以是一種用來阻止或減少 致動器130和連桿11〇相對運動的裝置。如前所述,可挽 性材料所組成的連桿11〇受到致動器13〇作用而彎曲時, 致動器130相對於連桿11〇位置略微改變,即致動器 和連桿no會產生位移。而阻尼器14〇可連接致動器13〇 與連桿11G之間’用以當致動器no作用冑,減少致動器 130與連桿11〇之間的相對位移。具體而言,阻尼器wo 可裝設在連桿11〇可彎曲的部位。 請參考第3圖,其繪示根據本發明另一實施例的一種 力回饋裝置100。如前所述,當致動器13〇作動時,致動器 130會對連桿11〇產生正交於連桿11〇的力沿著方向 其中,致動器130為馬達,其種類可以為電磁馬達、壓電 馬達或超音波馬達。 另一方面,也可以利用直線式的致動器13〇來作為力 的產生源。請同時參考第4圖和第5圖,第4圖係繪示根 據本發明之另一實施例的力回饋裝置1〇〇,第5圖繪示其致 動器130的剖面圖。致動器130的殼體132固定於連捍11〇 200950855 上。線圈136設置在殼體132的内壁上且為環繞内壁。當 力回饋裝置1〇〇收到使用者的命令訊號時,線圈136根據 命令訊號產生磁場變化,進而驅動磁鐵134沿著方向16移 動即為相對於威體132垂直移動,進而產生作用於殼體 132上的一作用力,並透過殼體132傳送至其所固定之連桿 之一端。 請參考第6圖,其繪示根據本發明另一實施例的力回 φ 饋裝置100。在本實施例中,力回饋裝置1〇〇具有數個互相 不平行排列的連桿110、數對致動器130和一握把120。如 前所述,每對致動器130固定於連桿110之兩端,並產生 一力作用於其所固定之連桿110,且力的方向與連桿 之轴方向正交。由於各個連桿110均不平行,故作用於其 上的力的方向也均不相同’故使用者可感受到多個方向上 的力量。 具體而言,連桿110可分別設置於三維方向例如連 • 桿110a設置於直角座標系中的χ轴方向,連桿Η叽設置 於γ軸方向和連桿110c設置於ζ軸方向。位於連桿ii〇a 兩端的致動胃130a所產生力為沿著方肖18#力,例如沿 著z,方向。位於連桿11〇b兩端的致動器所產生力 為著方向20的力,例如沿著X抽方向。位於連桿丨丨〇c :端的致動器noc所產生力為沿著方向22的力,例如沿 著γ軸方向。由此可知,藉由多組致動器13〇和連桿 的配置,可到提供使用者三維度的力的感受。 明參考第6圖’其綠示根據本發明另-實施例的力回 饋裝置100。本實施例之力回饋裝置1〇〇係透過三組直線式 200950855 致動器130的配置,達到三維的力輸出。 «月參考第8圖,其緣示根據本發明另一實施例的互動 系統800的方塊圖。互動系統8〇〇包含主機81〇和力回饋 裝置100。主機810泛指各種可以用來處理觸覺訊號的電子 裝置’例如電腦或電動遊戲機台等。主機81〇中有一處理 器820,用來演算各種接收或輸出的訊號,並將演算後的結 果傳道各種輸出裝置上。舉例來說,透過影像輸出模組83〇 _ 將視覺訊號傳送到電視機或電腦的螢幕860。或者,藉由聲 音輸出模組840將聲音訊號傳送到音響87〇。在本發明之實 施例中’處理器820可將觸覺訊號傳送到觸覺輸出模組“ο 處理’並再產生一命令訊號透過發射器852傳送到力回饋 裝置100中。 當力回饋裝置100的接收器150接收到命令訊號後, 傳送到其處理器160中以進行演算’以便控制各個致動器 UO。具體而言,處理器16〇會根據命令訊號來控制各致動 器130的速度,以決定各對致動器13〇應輸出的合力與合 ❹力矩的方向和大小。 如前所述’力回饋裝置1〇〇中設置有一阻尼器140和 回饋電路172。本實施例中,阻尼器14〇為感應線圈,用來 感應致動器130中的磁場變化,以達到減緩致動器13〇的 運轉速度’同時獲得感應電動勢。阻尼器140電性連接回 饋電路172’以將感應電動勢傳送到回饋電路172,並儲存 於其中。回饋電路172可直接電性連接致動器130或透過 電源供應器170電性連接致動器130,以將回收的感應電動 勢供電給致動器130使用。 12 200950855 力回饋裝置100可提供使用者多個維度上的觸覺刺 激,再搭配上螢幕860和音響870所呈現的影音效果,可 提供使用者更貼近於真實的感受。 雖然本發明已以多個實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準β 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖是繪示依照本發明一實施例的一種力回饋裝置 的立體圖。 第2圖係繪示依照第1圖所繪示之致動器的俯瞰圖。 φ 第3圖係繪示依照本發明另一實施例的一種力回饋裝 置的立體圖。 第4圖是繪示依照本發明另一實施例的一種力回饋裝 置的立體圖。 第5圖是繪示依照第4圖所繪示之致動器的剖面圖。 第6圖是繪示依照本發明另一實施例的一種力回饋裝 置的立體圖。 第7圖是繪示依照本發明另一實施例的一種力回饋襞 置的立體圖。 13 200950855 第8圖是繪示依照本發明另一實施例的一種互動系統 的方塊圖。 【主要元件符號說明】 10〜22 :方向 100 :力回饋裝置 110 : 連桿 120 :握把 130 : 致動器 132 :殼體 134 : 磁鐵 136 :線圈 140 : 阻尼器 150 :接收器 160 : 處理器 170 :電源供應 172 : 回饋電路 800 :互動系統 810 : 主機 820 :處理器 830 : 影像輸出模組 840 :聲音輸出模組 850 : 觸覺輸出模組 852 :發射器 860 :螢幕 870 :音響The actuating thief (four) is positioned on the grip and arranged in a direction different from the _ direction of the second direction to generate a second force acting on the grip, wherein the second force direction is orthogonal to the second direction. , — The two pairs of actuators are located in different directions, and the direction of the generated force is different. Therefore, the user can provide tactile sensations in multiple directions and increase the realism of the virtual reality. a [Embodiment] 胄 Refer to Figure 1. The first ride shows the ❹-type force feedback device 100 according to the embodiment of the present invention. The force feedback device 1 is a kind of feedback force generated by mechanical action such as linear force, vibration or rotation to provide a user's tactile sensation. In the present embodiment, the force feedback device 100 is provided with a link 11A, a grip 120 and a pair of actuators 130. The grip 12 is fixed to the connecting rod 11 以 for the user to grip. Actuators 130 are respectively fixed at the ends of the link no, and are used to generate a force orthogonal to the link 110 to act on the link 11 and conduct to the grip 120 to provide a tactile sensation to the user. At the same time, reference is made to Figs. 1 and 2, and Fig. 2 is an actuator 130 of the force feedback device 200950855 100. Each of the actuators 130 has a stator and a rotor fixed to the connecting rod 110 for generating a magnetic field change according to a user's command signal. The rotor rotates relative to the stator according to a change in the magnetic field. When the rotor rotates, a force is generated on the stator due to the reaction, and is transmitted to the grip 120 through the connecting rod 110. Specifically, the rotor is a magnet 134 having a housing 132 and a plurality of coils 136, the housing 132 is fixed to the connecting rod 110, and the turns 136 are disposed on the inner wall of the casing 132. The magnet 134 is accommodated in the casing 32 and is surrounded by the coil 136. When the force feedback device 1 receives the command signal from the user, the coil 136 generates a magnetic field change according to the command signal, thereby driving the magnet 134. The magnet 134 is rotated about the rotation axis about the housing 132 with its center as a rotation axis. At the same time, when the coil 130 is driven to rotate by the magnet 134, a reaction force acts on the coil 136 because of the relationship between the force and the reaction. According to Newton's third law of motion, the force and the reaction force are the forces that are the same size, opposite directions, and acting on different objects. When the magnet 134 is rotated in the reverse direction = direction 10, it indicates that the coil 136 should be rotated by a reaction force in a clockwise direction. However, since the coil is fixed to the casing 2 and the casing 132 is fixed to the connecting rod 11 , the reaction force will pass through the casing 32: to the connecting rod 11〇, and the direction of the reaction force is along the direction (1) S h UG axis direction. Wherein, the axial direction of the connecting rod 11 (3) passes through the direction of both ends of the connecting rod 110. The actuator 130 at one end of the straight t U〇 acts to produce the connecting rod no rain to the grip at the end of the connecting rod 110 In the case of 120, there will be a moment. Therefore, when the actuator 130 at both ends of the —1 is engaged to the action of the resultant torque, the grip 120 will be permeable to the force feedback device 100 during the wide movement. The action of the actuator 200950855 130 supplies the grip 12 to a moment of twisting, thereby giving the user a feeling of twisting. The magnitude of the force output by the actuator 13〇 at both ends of the link 110 is different, resulting in two grips 120 The resultant force and the combined torque are different in direction and size, so that the user can provide tactile sensations in different directions and strengths. In addition, the actuators 13 at both ends of the connecting rod 110 can also alternately act in turn, so that the ends of the connecting rod 110 The force is alternately generated according to the sequence. When the frequency of the alternating of the two forces is high, the user will feel the stimulation similar to the linear force. The flail 110 can be constructed of a rigid material or a non-rigid material. In the present embodiment, the link 110 Made of a flexible material. When the actuator 13 is actuated, 'the end of the link HO composed of the flexible material is deformed by the force generated by the actuator 130, for example, bent, so that the spatial position of the actuator 13 is relative to the grip 120. The position of the connection with the connecting rod 11 略 is slightly changed. In addition, the connecting rod 110 and the actuator 13 也 can also be connected through an elastic structure such as a spring piece or a spring. The force feedback device 100 further includes a damper 140 for Slowing down the rotation speed of the magnet 134 'avoids that the magnet 134 is always maintained at a high speed operation, and the ® is not easy to continue to accelerate to generate the feedback force. As described above, in the present embodiment, the link 110 is composed of a flexible material, and Displacement occurs when the actuator 130 is actuated. Therefore, the damper 140 is a device for preventing acceleration that causes displacement of the actuator 130. In the present embodiment, the damper 140 is a plurality of induction coils surrounding the magnet 134. When the magnet 134 rotates, the magnetic field in the space changes, and the induction coil induces electricity generation to generate an induced electromotive force. According to the principle of conservation of energy, the electric energy generated by the induction coil is The kinetic energy of the magnet 134. In other words, the rotation speed of the magnet 134 will be decelerated by the electromagnetic induction of the induction coil, and the electric energy generated by the induction coil is also recovered by the setting of the feedback circuit (not shown). Specifically, the feedback circuit electrically connects the coil 136 and the induction coil to supply the recovered induced electromotive force to the coil. Alternatively, the damper 140 may be completed by using fluid damping. Specifically, 'will have a high viscous coefficient. A fluid, such as oil, is filled in the housing 132 and the magnet 134 is immersed in the fluid. It is well known to those skilled in the art that when the magnet 134 is still rotating, the resistance generated by the fluid will be related to speed or speed. The square is proportional, so the speed can be effectively reduced. Alternatively, the damper 140 can be a device for preventing or reducing the relative movement of the actuator 130 and the link 11 。. As described above, when the link 11 组成 composed of the slidable material is bent by the action of the actuator 13 ,, the position of the actuator 130 with respect to the link 11 略 slightly changes, that is, the actuator and the link no will Produce displacement. The damper 14A can be coupled between the actuator 13A and the link 11G for reducing the relative displacement between the actuator 130 and the link 11A when the actuator no acts. Specifically, the damper wo can be installed at a position where the link 11 is bendable. Please refer to FIG. 3, which illustrates a force feedback device 100 in accordance with another embodiment of the present invention. As described above, when the actuator 13 is actuated, the actuator 130 generates a force orthogonal to the connecting rod 11 会对 in the direction of the connecting rod 11 , wherein the actuator 130 is a motor, and the type thereof may be Electromagnetic motor, piezoelectric motor or ultrasonic motor. On the other hand, a linear actuator 13 也 can also be utilized as a source of force generation. Referring to Figures 4 and 5, FIG. 4 is a view showing a force feedback device 1 according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view showing the actuator 130 thereof. The housing 132 of the actuator 130 is fixed to the port 11 200950855. The coil 136 is disposed on the inner wall of the housing 132 and surrounds the inner wall. When the force feedback device 1 receives the command signal of the user, the coil 136 generates a magnetic field change according to the command signal, and then the driving magnet 134 moves along the direction 16 to move vertically relative to the core 132, thereby generating a function on the housing. A force on 132 is transmitted through housing 132 to one of the ends of the fixed rod. Please refer to Fig. 6, which illustrates a force return φ feed device 100 in accordance with another embodiment of the present invention. In the present embodiment, the force feedback device 1 has a plurality of links 110, a pair of actuators 130, and a grip 120 which are not arranged in parallel with each other. As described above, each pair of actuators 130 is fixed to both ends of the link 110 and generates a force acting on the link 110 to which it is fixed, and the direction of the force is orthogonal to the axial direction of the link. Since the respective links 110 are not parallel, the directions of the forces acting thereon are also different. Thus, the user can feel the force in a plurality of directions. Specifically, the link 110 may be respectively disposed in a three-dimensional direction such that the link 110a is disposed in the x-axis direction in the Cartesian coordinate system, the link Η叽 is disposed in the γ-axis direction, and the link 110c is disposed in the ζ-axis direction. The force generated by the actuation stomach 130a at the ends of the link ii〇a is along the square 18# force, for example along the z, direction. The actuators located at the ends of the links 11〇b generate a force in the direction 20, for example along the X-pull direction. The force generated by the actuator noc at the end of the link 丨丨〇c: is the force along the direction 22, for example, along the γ-axis direction. From this, it can be seen that by the arrangement of the plurality of sets of actuators 13 and the links, it is possible to provide a feeling of the three-dimensional force of the user. Referring to Fig. 6 'green', the force feedback device 100 according to another embodiment of the present invention is shown. The force feedback device 1 of the present embodiment transmits the three-dimensional force output through the configuration of the three sets of linear 200950855 actuators 130. «Monthly reference to Fig. 8, which is a block diagram of an interactive system 800 in accordance with another embodiment of the present invention. The interactive system 8 includes a host 81 and a force feedback device 100. The host 810 generally refers to various electronic devices such as computers or video game consoles that can be used to process haptic signals. A host 820 has a processor 820 for calculating various received or output signals, and the calculated results are transmitted to various output devices. For example, the visual output signal is transmitted to the screen 860 of the television or computer through the image output module 83 〇 _. Alternatively, the sound signal is transmitted to the sound 87 by the sound output module 840. In the embodiment of the present invention, the processor 820 can transmit the haptic signal to the haptic output module "ο processing" and generate a command signal to be transmitted to the force feedback device 100 through the transmitter 852. When the force feedback device 100 receives After receiving the command signal, the device 150 transmits to the processor 160 for calculation to control the respective actuators UO. Specifically, the processor 16 controls the speed of each actuator 130 according to the command signal. The direction and magnitude of the resultant force and the combined torque of each pair of actuators 13 are determined. As described above, the force feedback device 1 is provided with a damper 140 and a feedback circuit 172. In this embodiment, the damper 14〇 is an induction coil for sensing a change in the magnetic field in the actuator 130 to slow down the operating speed of the actuator 13' while obtaining an induced electromotive force. The damper 140 is electrically connected to the feedback circuit 172' to transmit the induced electromotive force. The feedback circuit 172 can be directly connected to the actuator 130 or electrically connected to the actuator 130 through the power supply 170 to recover the induced electromotive force. The power is supplied to the actuator 130. 12 200950855 The force feedback device 100 can provide the user with tactile stimuli in multiple dimensions, and the audio and video effects presented by the screen 860 and the audio 870 can provide the user with a closer feeling to the real feeling. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and it is to be understood that those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. The above and other objects, features, advantages and embodiments of the present invention will become more apparent. The detailed description is as follows: Fig. 1 is a perspective view showing a force feedback device according to an embodiment of the present invention. Fig. 2 is a plan view showing an actuator according to Fig. 1. φ Fig. 3 A perspective view of a force feedback device according to another embodiment of the present invention is shown in Fig. 4. Fig. 4 is a perspective view of a force feedback device according to another embodiment of the present invention. FIG. 6 is a perspective view of a force feedback device according to another embodiment of the present invention. FIG. 7 is a perspective view of a force feedback device according to another embodiment of the present invention. A perspective view of a force feedback device. 13 200950855 Figure 8 is a block diagram showing an interactive system according to another embodiment of the present invention. [Description of Main Components] 10-22: Direction 100: Force Feedback Device 110: Connect Rod 120: Grip 130: Actuator 132: Housing 134: Magnet 136: Coil 140: Damper 150: Receiver 160: Processor 170: Power Supply 172: Feedback Circuit 800: Interactive System 810: Host 820: Processing 830: Image output module 840: Sound output module 850: Haptic output module 852: Transmitter 860: Screen 870: Acoustic