TW200950748A - Portable record and analysis system of exercise track and a track building method - Google Patents

Portable record and analysis system of exercise track and a track building method Download PDF

Info

Publication number
TW200950748A
TW200950748A TW97120834A TW97120834A TW200950748A TW 200950748 A TW200950748 A TW 200950748A TW 97120834 A TW97120834 A TW 97120834A TW 97120834 A TW97120834 A TW 97120834A TW 200950748 A TW200950748 A TW 200950748A
Authority
TW
Taiwan
Prior art keywords
motion
data
acceleration
user
track
Prior art date
Application number
TW97120834A
Other languages
Chinese (zh)
Inventor
Chih-Feng Huang
Original Assignee
Univ Cheng Shiu
Chih-Feng Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Cheng Shiu, Chih-Feng Huang filed Critical Univ Cheng Shiu
Priority to TW97120834A priority Critical patent/TW200950748A/en
Publication of TW200950748A publication Critical patent/TW200950748A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A portable record and analysis system of exercise track and a building track method therefore are provided. The system includes a storing instrument and an analyzing device. The storing instrument is provided for a user to carry. An accelerometer and an electronic compass are built in the storing instrument and used to measure a plurality of three dimensional acceleration data and direction data during exercise of the user. Then, a processor of the storing instrument periodically retrieves the data and combines the data with a measuring time to be a motion data. Finally the motion data is saved in a memory of the storing instrument. Afterward the storing instrument can transmit the motion data to the analyzing device by a transmission interface. A built-in track construction module of the analyzing device constructs an exercise track of the user by examining with the motion data. By the system, it may distinguish whether the track motion and calorie consumption of the user is proper and offer the objective information about sports to the user.

Description

200950748 九、發明說明: 【發明所屬之技術領域】 一種運動軌跡分析系統及方法,特別是指一種利用隨 _ 身攜帶的量測儀器長時間記錄使用者的運動數據,透過分 析裝置建構使用者的運動軌跡,以提供客觀參考數據的可 攜式運動轨跡記錄與分析系統及運動軌跡建構方法。 【先前技術】 ❹ 先刖技術已有很多方法可計算運動軌跡的裝置與方 法,如影像辨識方法、模擬人眼等方法,於人體上配置複 數個小型攝影器,以拍攝人體作動時其對應鏡頭的影像變 化,藉由影像的辨識技術來解析使用者的運動軌跡。而上 述方法可利用全球衛星定位系統(G1〇bal p〇siti〇ning System ’ GPS)來協助偵測運動執跡。 其-欠,先前技術也揭露出分析使用者的運動強度與運 ❹動能量的方法。如使用計走器(Pedometer)偵測走路的走 數,或使用加速度感測器(acceler〇me1:er) ’量測身體各部 分運動加速度與方向,以藉由步數或使用者運動產生的加 速度來換算運動能量與運動強度。再與計算運動軌跡的技 術相結合,計算出使用者完整、客觀的運動 用者是否運動量過大、不足、或是進行不適當的運動。 然先前技術具有無法避免之缺失: 其―:影像辨識方法、模擬人眼之方法所需影像資料 里大,辨識複雜度相對較高,需要十分精密的計算儀器及 200950748 龐大儲存空間的記憶裝置,僅適用於短時間與小場地監控 運動軌跡。而且,GPS在屋内或在大樓林立的訊號收發強 度不佳,故量測運動軌跡的環境有所受限。 其二,計走器僅能計算偵測走路的走數,無法辨識出 使用者運動種類及其運動強度,故換算出的運動能量準確 度有所限制。加速度感測器雖能量測身體各部分運動加速 度與方向以判斷使用者的運動類型與運動強度。但量測身 體各部分運動加速度與方向所產生的資料量較少,需長時 Ο 間監控才能用以分析相關的運動能量。而且,加速度感測 器本身無法用以建構運動執跡,需配合影像辨識方法協同 計算,使用上相當的不方便。 【發明内容】 有鑑於此,本發明所欲解決之問題係在於提供一種可 長時間量測使用者的運動數據,再藉由運動數據建構出使 用者的運動執跡,以應用、計算使用者各種客觀的運動能 〇 量資料的運動軌跡分析系統及運動執跡建構方法。 為解決上述裝置問題,本發明所提供之技術手段係揭 露一種可攜式運動軌跡記錄與分析系統,其包含一數據量 測器與一分析裝置。 數據量測器内建有一記憶單元、一三維加速度感測 器、一電子羅盤、一處理器與一資料傳輸介面,分析裝置 則内建有一軌跡建構模組。 數據量測器配置於使用者欲活動的部位,三維加速度 200950748 感測器係量測使用者運動之部位所產生的加速度資料,電 子羅盤則量測使用者運動之部位的至少一運動方向。處理 器係週期性擷取加速度資料與運動方向,並整合擷取時間 ^ 形成運動數據以儲存於記憶單元。之後,利用資料傳輸介 面連接分析裝置,令其取得運動數據,再透過軌跡建構模 組分析運動數據以建構使用者的運動執跡。 為解決上述裝置問題,本發明所提供之技術手段係揭 露另一種可攜式運動軌跡記錄與分析系統,其包含數據量 Ο 測器與分析裝置。數據量測器包含一三維加速度感測器、 一電子羅盤及一第一無線模組。分析裝置係包含一記憶單 元、一第二無線模組、一處理器與一執跡建構模組。 數據量測器配置於使用者身上,三維加速度感測器與 電子羅盤量測使用者之運動部位的加速度資料及運動方 向,並透過第一無線模組週期性輸出至第二無線模組。處 理器根據加速度資料、運動方向及第二無線模組取得資料 〇 的擷取時間整合為一運動數據,儲存於記憶單元,供執跡 建構模組建構出使用者的運動軌跡。 為解決上述方法問題,本發明所提供之技術手段係揭 露一種運動執跡建構方法,係根據前述裝置所產生的運動 數據以進行執跡建構,其方法包含:提供一多維度座標轴, 並設定一基準座標、一基準角度與一距離單位,距離單位 為多維度座標軸之座標間距對應實際距離之比例值;從運 動數據取得尚未計算且最優先之一擷取時間及其對應之複 200950748 數個㈣之加逮度轉與—運動方向 算出一行進靼離,Μ ,根據加速度資料計 相比對判斷出運=向對應之行進角度與基準角度 當前行進方向與距離單 ^^距離、基準座標、 跡座標;以及判斷運動數二=韻取時間對應之一執 跡座標之儲存頻序整合形成:運動::成:決定依照執 為基準座棹,以垃# & 跡,或將執跡座標作 ο 本發明4=取運動數據來分析執跡座標。 一有先則技術無法達成之功效: ^ 7田下二維加速度量測器、電子羅盤、處理器等 =子=牛白可微型化’可將數據量測器設計如腕帶狀、腰 帶狀、臂環狀、或隨身碟等可隨身攜帶的量測儀器。 ❹ 其一,現下§己憶體技術已十分成熟且可微型化,如快 門α己體其儲存谷1已達到十億位元組(^ i抑by k)或 死位儿組(Tera byte),可儲存大量的資料量。三維加速 度量測器、電子羅盤每次量測的資料量十分微小,就數據 追蹤而言’可達到長時間記錄且隨身攜帶的功效。 其三’現下的無線通訊技術十分成熟,傳輸距離而逐 漸延伸,如 WiMax (Worldwide Interoperability for Microwave Access,全球互通微波存取)技術之資料傳送 距離高達50公里。不論室内運動或室外運動,皆不會有無 法傳輸運動數據的問題,故任何環境皆能量測使用者的運 動數據,進而提升整個系統於各種情形的適用性。 其四,透過運動執跡的建構,可間接性計算出使用者 200950748 於量測時間的運動能量消粍,進而根據使用者的身高、體 重、生理狀態等相關資訊以列斷使用者是否進行不適當的 運動行為,或是運動過量。此有助於醫護人員、訓練師、 . 教練等相關人員調整使用奢的逢動、復健計劃。 【實施方式】 為使對本發明之目的、構造特徵及其功能有進 一步之 了解,茲配合相關實施例及圖式詳細說明如下: 〇 請參照圖1,其為本發明第一實施例之系統架構示意 圖’請同時參考圖2A、圖2B與圖3以利於了解。如圖1, 可攜式運動軌跡建構模組210包含兩元件,一為數據量測 器100a,一為分析裝置200a。 如圖1,數據量測器100a内建有一三維加逮度感測器 一L、、,—電子羅盤120、一記憶單元140、一處理器130與 一貪料傳輸介面150。數據量測器趣主要配置於使用者 ❹=、或肢料活動雜,當❹者活動時,三維加速度 感測:110係量測出配置數據量測器驗部位的加速度之 振幅資訊,以形成複數個加速度資料。電子羅盤12〇 ^貞 測使用者運動時整體運動方向,或是配置數據量測器議a ^部位運動時所朝向的運動方向。處理器13G係週期性從 三維加速度感測器110與電子羅盤12〇掘取加速度資料與 運動方向,將此等資料與擷取時間整合形成運動數據,最 後儲存於記憶單元14〇中。 三維加速度感測器110主要將運動部位於三維空間的 200950748 加速度,轉換成三個轴向加速度的振幅資訊,轉換方法說 明如下: 首先假設運動部位的瞬時加速度的向量大小為吨),^ 間中三個加速度的向量大小為似(0、吵⑺和您(〇,200950748 IX. Description of the invention: [Technical field of invention] A motion trajectory analysis system and method, in particular, a method for recording user's motion data for a long time by using a measuring instrument carried with the body, and constructing the user through the analyzing device Motion trajectory, a portable motion trajectory recording and analysis system and motion trajectory construction method that provides objective reference data. [Prior Art] ❹ There are many methods and methods for calculating motion trajectory, such as image recognition methods and human eyes, and a plurality of small cameras are arranged on the human body to capture the corresponding lens when the human body is activated. The image change is analyzed by the image recognition technology to analyze the user's motion trajectory. The above method can utilize the Global Positioning System (G1〇bal p〇siti〇ning System ’ GPS) to assist in detecting motion obstruction. The owed, prior art also reveals methods for analyzing the user's exercise intensity and turbulent energy. If using a Pedometer to detect the number of walking walks, or using an acceleration sensor (acceler〇me1:er) to measure the acceleration and direction of motion of various parts of the body, by the number of steps or user motion Acceleration to convert motion energy and exercise intensity. Combined with the technique of calculating the motion trajectory, it is calculated whether the user's complete and objective exercise user is excessively active, insufficient, or performs inappropriate exercise. However, the prior art has an inevitable deficiency: its: image recognition method, the method of simulating the human eye requires large image data, and the recognition complexity is relatively high, requiring very sophisticated computing instruments and a memory device with a huge storage space of 200950748. Only suitable for short-term and small-site monitoring of motion trajectories. Moreover, the GPS signal transmission intensity in the house or in the building is not good, so the environment for measuring the motion track is limited. Second, the meter can only calculate the number of walks that are detected to walk, and cannot identify the type of motion of the user and the intensity of the exercise, so the accuracy of the converted exercise energy is limited. The acceleration sensor measures the acceleration and direction of motion of various parts of the body to determine the type of motion and intensity of the user. However, the amount of data generated by measuring the acceleration and direction of each part of the body is small, and long-term monitoring is required to analyze the relevant exercise energy. Moreover, the acceleration sensor itself cannot be used to construct a motion trace, and it is required to cooperate with the image recognition method for calculation, which is quite inconvenient to use. SUMMARY OF THE INVENTION In view of the above, the problem to be solved by the present invention is to provide a motion data that can measure a user for a long time, and then construct a motion trace of a user by using motion data to apply and calculate a user. Various objective movements can measure the trajectory analysis system of data and the method of constructing the movement. In order to solve the above-mentioned device problems, the technical means provided by the present invention discloses a portable motion track recording and analyzing system comprising a data meter and an analyzing device. The data measuring device has a memory unit, a three-dimensional acceleration sensor, an electronic compass, a processor and a data transmission interface, and the analysis device has a built-in track construction module. The data measuring device is arranged at the part where the user wants to move, the three-dimensional acceleration 200950748. The sensor measures the acceleration data generated by the part of the user's motion, and the electronic compass measures at least one direction of motion of the part of the user's motion. The processor periodically captures the acceleration data and the direction of motion, and integrates the acquisition time ^ to form motion data for storage in the memory unit. Then, the data transmission interface is used to connect the analysis device to obtain the motion data, and then the motion data is analyzed through the trajectory construction model to construct the user's motion performance. In order to solve the above-mentioned device problems, the technical means provided by the present invention discloses another portable motion track recording and analyzing system, which comprises a data amount detector and an analyzing device. The data measuring device comprises a three-dimensional acceleration sensor, an electronic compass and a first wireless module. The analysis device comprises a memory unit, a second wireless module, a processor and a track construction module. The data measuring device is disposed on the user, and the three-dimensional acceleration sensor and the electronic compass measure the acceleration data and the moving direction of the moving part of the user, and are periodically outputted to the second wireless module through the first wireless module. The processor integrates the acquisition time of the data according to the acceleration data, the movement direction and the second wireless module into a motion data, and stores it in the memory unit for constructing the user's motion track. In order to solve the above method problem, the technical means provided by the present invention discloses a motion destruction construction method, which is constructed according to the motion data generated by the foregoing apparatus, and the method comprises: providing a multi-dimensional coordinate axis, and setting a reference coordinate, a reference angle and a distance unit, the distance unit is a ratio of the coordinate distance of the multi-dimensional coordinate axis corresponding to the actual distance; the motion data is obtained from the motion data and the highest priority one of the acquisition time and its corresponding multiple 200950748 (4) Adding the catching degree to - the direction of motion is calculated as a travel deviation, Μ, according to the acceleration data, the judgment of the shipment = the corresponding travel angle and the reference angle, the current travel direction and the distance, the distance, the reference coordinate, Trace coordinates; and judge the number of motions = rhyme time corresponding to one of the storage coordinates of the trace coordinates integrated formation: motion:: into: decide to follow the benchmark as the base, to the ########################################### OB 4: The motion data is used to analyze the trajectory coordinates. First, the technology can not achieve the effect: ^ 7 field two-dimensional acceleration measuring instrument, electronic compass, processor, etc. = sub = cattle white can be miniaturized' can be designed as a wrist strap, belt A measuring instrument that can be carried around, such as a shape, an arm ring, or a flash drive. ❹ First, the current § memory technology is very mature and can be miniaturized, such as the shutter α itself, its storage valley 1 has reached one billion bytes (^ i or by k) or the dead group (Tera byte) , can store a large amount of data. The amount of data measured by the three-dimensional accelerometer and the electronic compass is very small, and in terms of data tracking, it can achieve long-term recording and carry-on effects. Its current wireless communication technology is very mature, and its transmission distance is gradually extended. For example, the data transmission distance of WiMax (Worldwide Interoperability for Microwave Access) technology is up to 50 kilometers. No matter whether it is indoor or outdoor, there is no problem in transmitting motion data. Therefore, any environment can measure the user's motion data, thereby improving the applicability of the entire system in various situations. Fourthly, through the construction of the sports obstruction, the user can calculate the exercise energy consumption of the measurement time in 200950748 indirectly, and then according to the user's height, weight, physiological state and other related information, whether the user does not perform the Proper exercise, or excessive exercise. This will help medical staff, trainers, coaches and other relevant personnel to adjust the use of extravagant and rehabilitation programs. [Embodiment] In order to further understand the object, structural features and functions of the present invention, the related embodiments and the drawings are described in detail below. Please refer to FIG. 1, which is a system architecture of the first embodiment of the present invention. Schematic 'Please refer to FIG. 2A, FIG. 2B and FIG. 3 at the same time for the understanding. As shown in FIG. 1, the portable motion track construction module 210 includes two components, one is a data meter 100a, and the other is an analysis device 200a. As shown in FIG. 1, the data measuring device 100a has a three-dimensional acceleration sensor L,, - an electronic compass 120, a memory unit 140, a processor 130 and a grazing transmission interface 150. The data measurer is mainly configured in the user ❹=, or the limb activity is mixed. When the squatter is active, the three-dimensional acceleration sensing: the 110 system measures the amplitude information of the acceleration of the configuration data measuring device to form the amplitude information. Multiple acceleration data. The electronic compass 12〇 ^贞 measures the overall direction of motion of the user during movement, or configures the direction of motion of the data gauge when the a^ part moves. The processor 13G periodically extracts acceleration data and motion direction from the three-dimensional acceleration sensor 110 and the electronic compass 12, integrates the data with the acquisition time to form motion data, and finally stores it in the memory unit 14A. The three-dimensional acceleration sensor 110 mainly converts the acceleration of the 200950748 movement in the three-dimensional space into amplitude information of three axial accelerations. The conversion method is as follows: First, the vector magnitude of the instantaneous acceleration of the moving part is assumed to be ton) The vector size of the three accelerations is like (0, noisy (7) and you (〇,

貝|J y 5(〇 = 〇^)『+印(〇_7 +您(/)蒼—<?(以,其中『為又軸向量、j. ^ ❹贝|J y 5(〇 = 〇^)『+印(〇_7 +你(/)苍—<?(以, where "for axis vector, j. ^ ❹

轴向量、at為z軸向量。三維加速度感測器11〇係測量得 二個相異且垂直之轴向的αχ(ί)、吵⑺和⑺加逮度的振 幅,藉此計算出瞬時加速度α(〇,而此瞬時加速度可利用钟 算式(邱)-抑))重建瞬時加速度。當瞬時加速度的振幅不等 於重力加速度f(〇時,即是運動部位所產生的加速度。因運 動部位無加速度時’利用三維加速度感測器11()所得到瞬 時加速度的向量為重力加速度的向量,可知增加的加速度 的向量即是身體所產生的加速度’減去重力加速度的向量 即可計舁出運動部位之運動加速度。之後需將類比性質的 運動加速度的振幅資訊數據化形成加速度資料,作法有兩 種,一是利用數位類型的三維加速度感測器U〇,其本身 具有類比數位轉換器(Analog-to-Digital Converter ; ADC)。一為利用内建有類比數位轉換器的處理器〖go,在 掏取加速度資料時將運動加速度的振幅資訊量化再儲存於 記憶單元140中。電子羅盤120則内建磁阻感測器來感測 地磁,以得到運動部位的運動方向。 其次’為了能正確將加速度資料與運動方向無失真地 儲存,處理器130係以20赫茲(Hz)以上的特定頻率對加 11 200950748 速度資料與運動方向作操取取樣,如20赫茲、3〇赫兹、 40赫兹、50赫兹或60赫兹。而記憶單元14〇彳為快閃記 憶體(Flash Memory)、或讀卡機與記憶卡之组人。 . Μ運較,錢者可彻㈣料介面⑽而與分 析裝置200a進打連接。分析裝^嶋係透過處理器⑽ 以取得記憶單元14〇儲存的運 組m建再運動軌跡。動數據’再藉由執跡建構模 ◎序,==21°係為執行於分析震置_的應用程 ' 運動數據包含的加速度資料與運 等資料’展現使用者配置數據量測請二= 條件,將所有擷^ 變化情形,並以操取時間作為 : 、 °時間對應的加速度資料進行時間積八 鼻’以得到使用者的複數個運動速度,再對各 ❹ 方向、擷取時間的複數個行進距離。最後根據運動 運動軌跡。4丁進距離作座標轉換來重建出使用者的The axis vector and at are the z-axis vector. The three-dimensional acceleration sensor 11 measures the amplitudes of the α χ (ί), noisy (7), and (7) accelerations of two distinct and vertical axes, thereby calculating the instantaneous acceleration α (〇, and this instantaneous acceleration can be Use the clock formula (Qiu) - suppress) to reconstruct the instantaneous acceleration. When the amplitude of the instantaneous acceleration is not equal to the gravitational acceleration f (〇, that is, the acceleration generated by the moving part. When there is no acceleration in the moving part, the vector obtained by the three-dimensional acceleration sensor 11() is the vector of the gravitational acceleration. It can be seen that the vector of the increased acceleration is the acceleration generated by the body' minus the vector of the gravitational acceleration, and the motion acceleration of the moving part can be calculated. Then the amplitude information of the analogous motion acceleration is data-formed to form the acceleration data. There are two types. One is to use a digital type of three-dimensional accelerometer U〇, which itself has an analog-to-digital converter (ADC). One is to use a processor with an analog-like digital converter built in. Go, the amplitude information of the motion acceleration is quantized and stored in the memory unit 140 when the acceleration data is captured. The electronic compass 120 has a built-in magnetoresistive sensor to sense the geomagnetism to obtain the moving direction of the moving part. The acceleration data and the direction of motion can be correctly stored without distortion, and the processor 130 is 20 Hz ( The specific frequency above Hz) is used to sample the speed data and motion direction, such as 20 Hz, 3 Hz, 40 Hz, 50 Hz or 60 Hz. The memory unit 14 is flash memory (Flash). Memory), or a group of card readers and memory cards. For the sake of transportation, the money can be connected to the analysis device 200a through the (4) material interface (10). The analysis device is passed through the processor (10) to obtain the memory unit 14 〇The stored transport group m builds the re-motion trajectory. The dynamic data 'is also constructed by the executor model, and the ==21° is the application for the analysis of the oscillating _ the acceleration data and the data contained in the motion data. 'Show the user configuration data measurement 2 = condition, change all 撷^, and use the operation time as: Acceleration data corresponding to ° time to perform time product eight noses to get the user's multiple movement speeds, Then, for each direction, the multiple travel distances of the time are taken. Finally, according to the motion motion track, the 4 Ding distance is used as a coordinate conversion to reconstruct the user's

_月少圖8其為本發明之軌跡建構流程示意圖,古主 ^參照圖1、圖6_ 7以利於了解。J 提供夕維度座襟轴,並設定一基準座標、一基 度”距離單位,矩離單位為多維度座標軸之座標間距對 應實際距離之比例值(㈣⑽)。一般而言,運動分為 兩#運動$平面的2D(Dimension)運動例如跑步、^ 12 200950748 步、打球等,另一為立體的3D運動例如爬山、上下樓梯等。 如圖6所示,首先以平面運動軌跡(χ/〇,:^(〇)進行說明,平面 的運動執跡只需要用到X軸與Υ軸的加速度和運動轉彎角 度,X軸與Υ軸的加速度除可使用本發明之三維加速度感 測器110外,同樣可用二維加速度感測器偵測而得。本實 施例中’先將原點設為基準座標、基準角度為%.。 從運動數據取得尚未計算且最優先之一擷取時間及其 對應之複數個軸向之加速度資料與一行進方向(步驟 〇 S120)。運動執跡之建構乃是根據每一擷取時間對應的加速 度資料(包含X韩向與Υ軸向的加速度)與行進方向轉換 成座標形成以達成,故需將所有加速度資料變化與行進方 向根據擷取時間的順序逐一分析。 根據加速度資料計算出一行進距離,將行進方向對應 之行進角度與基準角度相比對以判斷出一當前行進方向 (步驟 S130)。 ® 當運動時,使用者運動的加速度根據轉彎與否而有所 改變,故需計算運動中的運動轉彎角度。令運動轉彎角度 為即),計算由下列步驟達成: 首先紀錄起始運動時,電子羅盤120量測的基準角度 外。當直線運動時電子羅盤120所得到的行進角度印〇仍然 是%,但運動轉彎時電子羅盤120得到的行進角度就不是 %。假設電子羅盤120得到的行進角度叫〇可計算運動轉彎 角度外0 =咐〇-代。 13 200950748 根據行進距離、基準座標、當前行進方向與距離單位 d算並5己錄掏取時間對應之—執跡座標(步驟。運 動軌跡與對應之行進距離在直線運動時只要使用χ袖與γ -轴的加速度W(0、吵⑺進行向量積分即可得到(〇x(〇為擷取 -時間於χ軸之加速度,神)為擷取時間於Υ軸之加速度)。 但虽運動轉彎時,就要用電子羅盤120量測到的角度_來 仏正* Α行進方向與行進距離(因加速度而改變),以判斷 ❹出當T擷取時間所對應的執跡座標(X禽⑹。_月少图8 is a schematic diagram of the trajectory construction process of the present invention, and the ancient master ^ refers to Fig. 1, Fig. 6-7 to facilitate understanding. J provides the imaginary dimension 襟 axis, and sets a reference coordinate, a base degree "distance unit, the moment is the ratio of the coordinate distance of the coordinate interval of the multi-dimensional coordinate axis to the actual distance ((4) (10)). Generally speaking, the motion is divided into two # Movement 2 plane 2D (Dimension) movement such as running, ^ 12 200950748 steps, playing, etc., another stereoscopic 3D movement such as climbing, going up and down stairs, etc. As shown in Figure 6, first with a plane motion trajectory (χ / 〇, :^(〇) Explain that the motion of the plane only needs the acceleration and the motion turning angle of the X-axis and the Υ-axis. The acceleration of the X-axis and the Υ-axis can be used in addition to the three-dimensional acceleration sensor 110 of the present invention. The same can be detected by the two-dimensional acceleration sensor. In the present embodiment, the origin is set as the reference coordinate and the reference angle is %. The motion data is obtained from the motion data and the highest priority is taken. The plurality of axial acceleration data and a traveling direction (step 120S120). The construction of the motion trajectory is based on the acceleration data corresponding to each extraction time (including the acceleration of the X Han direction and the Υ axis) and the line The forward direction is converted into a coordinate formation to be achieved, so all acceleration data changes and the traveling direction need to be analyzed one by one according to the order of the acquisition time. According to the acceleration data, a travel distance is calculated, and the travel angle corresponding to the travel direction is compared with the reference angle. To determine a current traveling direction (step S130). ® When the motion, the acceleration of the user's motion changes according to the turn or not, so it is necessary to calculate the motion turning angle during the motion. It is achieved by the following steps: First, when the initial motion is recorded, the electronic compass 120 measures the reference angle. When the linear motion is performed, the traveling angle of the electronic compass 120 is still %, but the electronic compass 120 is traveled when the motion turns. The angle is not %. It is assumed that the angle of travel obtained by the electronic compass 120 is 〇 〇 can calculate the angle of the motion turning 0 = 咐〇 - generation. 13 200950748 According to the travel distance, the reference coordinates, the current direction of travel and the distance unit d and 5 recorded Take the time corresponding to the - the coordinates of the trace (step. The motion track and the corresponding travel distance in a straight line As long as you use the acceleration of the sleeve and the γ-axis, W (0, noisy (7), vector integration can be obtained (〇x (〇 is the extraction - time acceleration on the χ axis, God) is the time of the Υ axis Acceleration). But when the motion is turning, the angle measured by the electronic compass 120 is used to determine the direction of travel and the distance traveled (by acceleration) to determine the corresponding time when the T is taken. Persecution coordinates (X avian (6).

Ik著時間增加’軌跡座標w⑺心⑹須加上前一擷取時間 戶斤到的執跡座標’假設修正後的軌跡座標為 (\(0,_yp(〇),各種不同運動係數為M,則此二執跡座標形成的 轨跡即為,、 句 Ρ() = Μ (αχ⑴*eos(叫))-矽和 从)从(αχ⑷*s”吵(〇*咖(晴)+以卜U,即可計算出目 前計算的操取時間所對應的執跡座標與形成的軌跡。 〇 θ判斷運動數據是否讀取完成(步驟S150),若判斷為 疋代表之刚所判讀的運動數據為使用者全程運動的數據 兒錄且全數分析完畢,即依照軌跡座標之儲存順序整合形 成運動軌跡(步驟S151 ),所以運動執跡公式可寫為 χΛ〇 = Σ Μ * (αχ (Ο * cos( 0(ί)) _ α>; (〇 * sin( ^(〇)) 和 MO = ^ 从 * (αχ ⑴ * sin(叫))+ 吵(〇 * c〇s(印)))。 若判斷為否,代表所有擷取時間對應的加逮度資料與 運動方向尚未分析完成,即將執跡座標作為基準座標(步 200950748 驟S152),返回讀取運動數據取出尚未計算且最優先之一 擷取時間及其對應之複數個軸向之加速度資料與一行進方 向,周而復始將運動數據分析完成,再建構運動執跡。 而如圖7所示,多維度座標軸為三維座標軸,對於立 — 體的3D運動執跡(xp(〇,a(〇,zp(〇)須加上Z軸運動的執跡,其 中5(0與的公式和平面運動執跡一樣,所需增加的公式 為&(〇,因對於Ζ軸運動上升或下降運動,需考慮重力加速 Λ 度g的影響。 ❻ 首先,紀錄起始運動時,電子羅盤120量測基準角度 包含基準側向角度與一基準升降角度&,且設行進角度包 含一行進側向角度0,⑺與一行進升降角度,運動轉彎角 度包含轉角叩)與升降角抑),與擷取時間之執跡座標為 (5(0,Λ(〇,\(〇)。假設運動上升或下降角度由電子羅盤120得 到的行進升降角度ΜΟ可計算升降角州)= 4(0-么,同時利用 叩)=邮)-Α計算出轉角θ(〇,由抑)=仙)-么計算出升降角沖), 根據轉角叩)與升降角州)判斷出當前行進方向。 隨著時間增加運動Ζ軸執跡&(〇須加上前一擷取時間 點所到的位置ζ,-ι),假設修正後的運動Ζ軸執跡座標為 zp{t), 各種不同運動係數為 Μ 則 ⑴=Μ * (αζ⑴+ g * cos( 4⑴))+ Ό -1),其中αζ(〇為榻取時間於Ζ 軸之加速度,此二執跡座標之間的執跡即為 xp{t) = Μ * (ax(r) * cos(^(/)) - ay{t) * sin(^(〇)) + xp(t - 1) 、 yp(t) = M * (ox(/) * sin(6^(/)) + ay{t) * cos(6^(/))) + yp(t- 1) 與 15 200950748 5(〇 =从*«〇 + 8*娜(抑)))+ 5(卜1)。所以2轴運動軌跡八弋可 寫為ζρ(ί) = χ μ * (αζ(〇 + g * cos㈠⑴))’之後整合 ( 沁),\(ί)和 5(0的公式就可重建出立體的3])運動軌跡,即 ' χρ(〇 = Σ ^ (0 * cos( ^(0) - ay (r) * sin( θ(ί))) - > •^ρ(〇 = Σ Μ * {〇x{t)*sm{e{t)) + 〇y(t)* zos{e{t))) 與 2p(〇 = Y, Μ * (az (t) + g * c〇s( φ(ί))) 〇 ❹ 分析裝置20〇a更包含一輸入模組220以取得使用者的 體重值,軌跡建構模組210可結合體重值與運動軌跡 出使用者的運動能量消耗值。其中,透過運動軌跡包= 加速度振幅與速度的計算可看出運動強度,故計算出的能 量消耗值是相當準確的。再藉由運動能量消乾值判斷出^ 用者是否不當運動或超出適當運動量,以提醒使用者 來避免運動傷害。 ~ /如圖2A與圖2B所示’為兼顧使用者方便與舒適性, 係將所有元件皆微小化設計,使數據量測器丨〇〇&整體小型 化,易於使用者攜帶。而數據量測器1〇〇a外觀可 帶狀、臂環狀、腰帶狀、腿帶狀、或是如同隨身碟般利用 扣夾固定於使用者欲活動的身軀或肢體部位。 如圖3所示,前述資料傳輸介面150可為通用序列傳 輸匯流排(Universal Serial Bus ; USB)、或是腿1394 規格的連接埠(圖未示),數據量測器跡騎過相關規 格的傳輸、線ι51傳送運動數據。而分析裝置2〇()a可為電腦 16 200950748 (Personal Computer ) 202 或手持設備(p〇rtable Apparatus) 201,而手持設備201可為個人數位助理 (Personal Digital Assistant ; PDA)或具有嵌入式作業 系統的智慧型手機(Smart Phone )。若分析裝置2〇〇a為手 - 持設備201,使用者可將其隨身攜帶’利於運動後立即建 構運動執跡。 請參照圖4,其為本發明第二實施例之系統架構示意 ❹圖,請同時參考圖5以利於了解。與第一實施例不同處在 於,數據量測器100b雖配置於使用者欲活動的部位上,但 與分析裝置200b為無線連接。 數據量測器100b具有三維加速度感測器11〇、電子羅 盤120與第一無線模組160。分析裝置200b則具有一第二 無線模組230、一處理器130、一記憶單元24〇與一軌跡建 構模組210。 、三維加速度感測ii 110與電子羅盤120同樣_使用 者運動夺@己置數據量測器l〇〇b之部位的加速度資料與運 動方向,並透過第一無線模組160週斯性的傳送至第二無 線模組咖。處理器130則根據第二無線模組230取㈣ 加速度資料、運動方向及對應的擷取時間(此處為第二無 線模組230取得資料的時間)整合為—運動數據,並儲存 於^憶單元240。使用者完成量測運動數據之後’軌跡建 21〇根據圮憶單元240的運動數據以建構對應使用 的運動執跡。分析裝置2_同樣包含-輸入模組220以 17 200950748 取得使用者的體重值’供軌跡建構模組210結合體重值與 運動軌跡計算出使用者的運動能量消耗值。 〃 本貫施例中,s己憶單元240可為快閃記憶體(ρ 1妨匕 Memory )、記憶卡與讀卡機之組合或硬碟;分析裝置2〇〇匕 ' 可為手持没備2〇1或電腦202 ;而第一無線模組“ο與第 -一無線模組230皆為藍牙(Bluetooth)通訊模组或是全球 互通微波存取(Worldwide Interoperability forIk time to increase 'trajectory coordinates w (7) heart (6) must add the previous coordinate time to the stalk coordinates 'assuming the corrected trajectory coordinates are (\ (0, _ yp (〇), various different motion coefficients are M, then The trajectory formed by the two sculpt coordinates is:, Ρ() = Μ (αχ(1)*eos(叫))-矽 and from) (αχ(4)*s" noisy (〇*咖(晴)+以卜U The trajectory corresponding to the currently calculated operation time and the formed trajectory can be calculated. 〇 θ judges whether the motion data is read or not (step S150), and if it is determined that the 运动 represents the motion data that is just read is used. The data of the whole motion is recorded and fully analyzed, that is, the motion trajectory is integrated according to the storage order of the trajectory coordinates (step S151), so the motion falsification formula can be written as χΛ〇= Σ Μ * (αχ (Ο * cos( 0 (ί)) _ α>; (〇* sin( ^(〇)) and MO = ^ from * (αχ (1) * sin(叫)) + noisy (〇* c〇s(印))). No, the capture data and the direction of movement corresponding to all the acquisition time have not been analyzed, and the coordinates of the execution will be used as the reference coordinates (step 200950748) Step S152), returning to read the motion data, taking out the unpredicted one of the highest priority and the corresponding plurality of axial acceleration data and a traveling direction, and repeating the analysis of the motion data to complete the motion obstruction. As shown in Figure 7, the multi-dimensional coordinate axis is a three-dimensional coordinate axis, for the stereo-body 3D motion trace (xp (〇, a(〇, zp(〇) must be added to the Z-axis motion, 5 (0 The formula is the same as the plane motion, and the formula to be added is & (〇, because of the increase or decrease in the movement of the Ζ axis, the effect of the gravitational acceleration gg is considered. ❻ First, when the initial movement is recorded, the electronic compass The 120 gauge reference angle includes a reference lateral angle and a reference lift angle & and the travel angle includes a travel lateral angle 0, (7) and a travel lift angle, the motion turn angle includes a corner 叩) and a lift angle), The obstruction coordinate with the extraction time is (5 (0, Λ (〇, \(〇). Assuming that the movement rise or fall angle is obtained by the electronic compass 120, the lifting angle can be calculated as the elevation angle state) = 4 (0- What, at the same time, use 叩)=mail)-Α Calculate the rotation angle θ(〇,由 suppression)=仙)- (calculate the elevation angle rush), and judge the current travel direction according to the rotation angle 叩) and the elevation angle state. The movement axis revolves & The position to which the previous extraction time point is ζ, -ι) must be added, assuming that the corrected motion axis coordinates are zp{t), and the various motion coefficients are Μ (1) = Μ * (αζ(1)+ g * Cos( 4(1)))+ Ό -1), where αζ(〇 is the acceleration of the 时间 axis, the trace between the two trajectories is xp{t) = Μ * (ax(r) * Cos(^(/)) - ay{t) * sin(^(〇)) + xp(t - 1) , yp(t) = M * (ox(/) * sin(6^(/)) + Ay{t) * cos(6^(/))) + yp(t- 1) with 15 200950748 5(〇=from *«〇+ 8*娜(依)))) + 5(卜1). Therefore, the 2-axis motion trajectory can be written as ζρ(ί) = χ μ * (αζ(〇+ g * cos(一)(1)))' after integration ( 沁), \(ί) and 5 (0 formula can reconstruct the stereo 3]) Motion trajectory, ie ' χρ(〇= Σ ^ (0 * cos( ^(0) - ay (r) * sin( θ(ί))) - > •^ρ(〇= Σ Μ * {〇x{t)*sm{e{t)) + 〇y(t)* zos{e{t))) with 2p(〇= Y, Μ * (az (t) + g * c〇s( Φ(ί))) 〇❹ The analysis device 20A further includes an input module 220 to obtain the user's weight value, and the trajectory construction module 210 can combine the weight value and the motion trajectory to output the user's exercise energy consumption value. Through the calculation of the motion trajectory package = acceleration amplitude and velocity, the exercise intensity can be seen, so the calculated energy consumption value is quite accurate. Then, by the kinetic energy drying value, it is judged whether the user is improperly exercising or exceeds the appropriate amount of exercise. To remind the user to avoid sports injuries. ~ / As shown in Figure 2A and Figure 2B, in order to balance the convenience and comfort of the user, all components are miniaturized to make the data measuring device & Miniaturized and easy for users to carry. The data measuring device 1〇〇a can be belt-shaped, arm-shaped, belt-shaped, leg-belt-shaped, or used as a flash drive to fix the body or limb part of the user's movement with a clip. The data transmission interface 150 can be a universal serial transmission bus (USB), or a connection 埠 of the leg 1394 specification (not shown), and the data measuring device rides the transmission of the relevant specification, line ι51. The motion data is transmitted. The analysis device 2()a may be a computer 16 200950748 (Personal Computer) 202 or a handheld device (P〇rtable Apparatus) 201, and the handheld device 201 may be a Personal Digital Assistant (PDA) or A smart phone with an embedded operating system. If the analyzing device 2〇〇a is a hand-holding device 201, the user can carry it with him to facilitate the construction of the sports track immediately after the exercise. Please refer to FIG. It is a schematic diagram of the system architecture of the second embodiment of the present invention, please refer to FIG. 5 for easy understanding. The difference from the first embodiment is that the data measuring device 100b is disposed in the user's active part. The data measuring device 100b has a three-dimensional acceleration sensor 11b, an electronic compass 120 and a first wireless module 160. The analyzing device 200b has a second wireless module 230 and a The processor 130, a memory unit 24, and a track construction module 210. The three-dimensional acceleration sensing ii 110 is the same as the electronic compass 120. The acceleration data and the moving direction of the part of the user's data measuring device l〇〇b are transmitted through the first wireless module 160. To the second wireless module coffee. The processor 130 integrates the (four) acceleration data, the motion direction, and the corresponding acquisition time (here, the time when the second wireless module 230 acquires the data) into the motion data according to the second wireless module 230, and stores the data in the memory. Unit 240. After the user completes the measurement of the motion data, the trajectory is constructed according to the motion data of the memory unit 240 to construct a motion trace corresponding to the use. The analysis device 2_ also includes an input module 220 to obtain the user's weight value by 17 200950748. The trajectory construction module 210 calculates the user's exercise energy consumption value in combination with the weight value and the motion trajectory. 〃 In this embodiment, the suffix unit 240 can be a flash memory (ρ 1 匕 Memory), a combination of a memory card and a card reader, or a hard disk; the analysis device 2 〇〇匕 ' can be hand-held 2〇1 or computer 202; and the first wireless module “ο and the first wireless module 230 are both Bluetooth communication modules or Worldwide Interoperability for

Microwave Access ; Wimax)模組;而第一無線模組16〇以 ® 20赫茲(Hz)以上之一特定頻率傳送加速度資料與運動方 向,此特定頻率為20赫兹(Hz)、30赫兹、40赫兹、50 赫茲或60赫茲。而加速度資料、運動方向、行進距離及運 動軌跡等量測、計算建構方式係如同第一實施例所述,在 此即不贅述。 雖然本發明以前述之較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習相像技藝者,在不脫離本發明 ❹ 之精神和範圍内,所作更動與潤飾之等效替換,仍為本發 明之專利保護範圍内。 【圖式簡單說明】 圖1係本發明第一實施例之系統架構示意圖; 圖2A係本發明第一實施例之數據量測器配置示意圖; 圖2B係本發明第一實施例之數據量測器配置示意圖; 圖3係本發明第一實施例之系統裝置連接示意圖; 圖4係本發明第二實施例之系統架構示意圖; 18 200950748 圖5 係本發明第二實施例之系統裝置連接示意圖; 圖6 係本發明二維運動執跡計算示意圖; 圖7 係本發明三維運動執跡計算示意圖;以及 圖8 係本發明運動執跡建構流程示意圖。 - 【主要元件符號說明】 100a、100b 數據量測器 110 三維加速度感測器 120 電子羅盤 ® 130 處理器 140、240 記憶單元 150 資料傳輸介面Microwave Access; Wimax) module; and the first wireless module 16 transmits acceleration data and motion direction at a specific frequency above ® 20 Hertz (Hz), which is 20 Hertz (Hz), 30 Hz, 40 Hz , 50 Hz or 60 Hz. The measurement and calculation construction methods such as acceleration data, motion direction, travel distance, and motion trajectory are as described in the first embodiment, and will not be described here. Although the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the present invention, and it is still possible for those skilled in the art to make equivalent substitutions of the modifiers and retouchings without departing from the spirit and scope of the invention. It is within the scope of patent protection of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a system architecture of a first embodiment of the present invention; FIG. 2A is a schematic diagram of a configuration of a data measuring device according to a first embodiment of the present invention; FIG. 2B is a data measurement of a first embodiment of the present invention. FIG. 3 is a schematic diagram of a system arrangement of a first embodiment of the present invention; FIG. 4 is a schematic diagram of a system architecture of a second embodiment of the present invention; 6 is a schematic diagram of the calculation of the two-dimensional motion trace of the present invention; FIG. 7 is a schematic diagram of the calculation of the three-dimensional motion trace of the present invention; and FIG. 8 is a schematic diagram of the construction process of the motion trace of the present invention. - [Main component symbol description] 100a, 100b data measuring device 110 3D acceleration sensor 120 Electronic compass ® 130 processor 140, 240 memory unit 150 data transmission interface

151 傳輸線 160 第一無線模組 200a 、 200b 分析裝置 201 手持設備 202 電腦 210 軌跡建構模組 220 輸入模組 230 第二無線模組 19151 transmission line 160 first wireless module 200a, 200b analysis device 201 handheld device 202 computer 210 track construction module 220 input module 230 second wireless module 19

Claims (1)

200950748 十、申請專利範圍: 1. 一種可攜式運動軌跡記錄與分析系統,其包含: 一數據量測器,配置於使用者之一部位並包含: . 一記憶單元; ‘ 一三維加速度感測器,係量測該使用者之該部 位運動所產生之複數個加速度資料; 一電子羅盤,係量測該使用者之該部位運動時 _ 該部位朝向之至少一運動方向; 〇 一處理器,係週期性擷取該等加速度資料與該 運動方向,並將該等加速度資料、該運動方向與對 應之擷取時間整合成一運動數據以儲存於該記憶單 元;及 一資料傳輸介面,係供該處理器傳送該記憶單 元記錄之該加速度資料與該運動方向;以及 一分析裝置,係内建一執跡建構模組並透過該資料 ® 傳輸介面連接該運動數據記錄器,以取得該記憶單元儲 存之該運動數據,該執跡建構模組根據該運動數據之該 等加速度資料、該運動方向與該等擷取時間計算出該使 用者之一運動執跡。 2. 如申請專利範圍第1項所述可攜式運動執跡記錄與分析 系統,其中該執跡建構模組係根據該等擷取時間為條 件,將對應該等擷取時間之該等加速度資料進行時間積 分,計算出複數個運動速度,再對該等運動速度作時間 20 200950748 積分,計算出複數個行進距離。 3. 如申請專利範圍第2項所述可攜式運動軌跡記錄與分析 系統,其中該執跡建構模組係根據該運動方向、該等擷 取時間與該等行進距離進行座標轉換,建立該使用者之 - 該運動軌跡。 4. 如申請專利範圍第1項所述可攜式運動軌跡記錄與分析 系統,其中該三維加速度感測器感應該使用者之該部位 運動時,相異且相互垂直之三軸向之複數個加速度,根 〇 據該等加速度計算出一瞬時加速度,並將該瞬時加速度 減去一重力加速度以計算出一加速度資料。 5. 如申請專利範圍第1項所述可攜式運動執跡記錄與分析 系統,其中該分析裝置更包含一輸入模組以取得該使用 者之體重值,該軌跡建構模組根據該運動執跡判斷該使 用者於相異時間之複數個運動強度,並結合該體重值計 算該使用者之運動能量消耗值。 ❹ 6.如申請專利範圍第1項所述可攜式運動執跡記錄與分析 系統,其中該記憶單元係為一快閃記憶體(Flash Memory)〇 7. 如申請專利範圍第1項所述可攜式運動執跡記錄與分析 系統,其中該資料傳輸介面係為通用序列匯流排 (Universal Serial Bus; USB)。 8. 如申請專利範圍第1項所述可攜式運動執跡記錄與分析 系統,其中該資料傳輸介面之規格係為IEEE1394規格之 21 200950748 連接埠。 9. 如申請專利範圍第1項所述可攜式運動軌跡記錄與分析 系統,其中該處理器係以一頻率持續擷取該等加速度資 料與該運動方向,該頻率係為20赫茲(Hz)、30赫茲、 ‘ 40赫茲、50赫茲或60赫茲。 10. 如申請專利範圍第1項所述可攜式運動執跡記錄與分 析系統,其中該分析裝置係為手持設備或電腦。 11. 一種可攜式運動軌跡記錄與分析系統,其包含: ® —數據量測器,其配置於使用者之一部位並包含: 一三維加速度感測器,量測該使用者之該部位 運動所產生之複數個加速度資料; 一電子羅盤,量測該使用者之該部位運動時, 該部位朝向之至少一運動方向;及 一第一無線模組,週期性輸出該等加速度資料 與該運動方向;以及 © —分析裝置,包含: 一記憶單元; 一第二無線模組,係取得該第一無線模組傳送 之該等加速度資料與該運動方向; 一處理器,其根據該第二無線模組取得之該等 加速度資料、該運動方向及對應之擷取時間整合為 一運動數據以儲存於該記憶單元;及 一執跡建構模組,係根據該記憶單元之該運動 22 200950748 數據建構該使用者之運動執跡。 12. 如申請專利範圍第11項所述可攜式運動軌跡記錄與分 析系統,其中該執跡建構模組係根據該等擷取時間為條 件,將對應該等擷取時間之該等加速度資料進行時間積 '分,計算出複數個運動速度,再對該等運動速度作時間 積分,以計算出複數個行進距離。 13. 如申請專利範圍第12項所述可攜式運動軌跡記錄與分 析系統,其中該執跡建構模組係根據該運動方向、該等 擷取時間與該等行進距離進行座標轉換,建立該使用者 之該運動執跡。 14. 如申請專利範圍第11項所述可攜式運動軌跡記錄與分 析系統,其中該三維加速度感測器感應該使用者運動 時,相異且相互垂直之三軸向之複數個加速度,根據該 等加速度計算出一瞬時加速度,並將該瞬時加速度去除 一重力加速度以計算出一加速度資料。 ❹ 15.如申請專利範圍第11項所述可攜式運動執跡記錄與分 析系統,其中該分析裝置更包含一輸入模組以取得該使 用者之體重值,該轨跡建構模組根據該運動執跡判斷該 使用者於相異時間之複數個運動強度,並結合該體重值 計算該使用者之運動能量消耗值。 16.如申請專利範圍第11項所述可攜式運動執跡記錄與分 析系統,其中該記憶單元係為一快閃記憶體(Flash Memory)或一硬碟。 23 200950748 17. 如申請專利範圍第11項所述可攜式運動執跡記錄與分 析系統,其中該第一無線模組與該第二無線模組皆為藍 牙通訊模組。 18. 如申請專利範圍第11項所述可攜式運動軌跡記錄與分 “ 析系統,其中該第一無線模組與該第二無線模組皆為全 球互通微波存取模組。 19. 如申請專利範圍第11項所述可攜式運動軌跡記錄與分 析系統,其中該分析裝置係為手持設備或電腦。 〇 20. 如申請專利範圍第11項所述可攜式運動軌跡記錄與分 析系統,其中該第一無線模組傳送該等加速度資料與該 運動方向之頻率為20赫茲(Hz)、30赫茲、40赫茲、 50赫兹或60赫兹。 21. —種運動軌跡建構方法,係透過一運動數據進行軌跡建 '構,該運動數據儲存有複數個擷取時間,每一擷取時間 對應複數個加速度資料與至少一運動方向,該建構方法 〇 包含: 提供一多維度座標轴,並設定一基準座標、一基準 角度與一距離單饵,該距離單位為該多維度座標軸之座 標間距對應實際距離之比例值; 從該運動數據取得尚未計算且最優先之一擷取時 間及其對應之複數個軸向之加速度資料與一運動方向; 根據該等加速度資料計算出一行進距離,將該運動 方向對應之行進角度與該基準角度相比對判斷出一當 24 200950748 前行進方向; 根據該行進距離、該基準座標、該當前行進方向與 該距離單位計算並記錄該擷取時間對應之一執跡座 標;以及 ‘· 判斷該運動數據是否讀取完成’若判斷為是,即依 照該等軌跡座標之儲存順序整合形成一運動軌跡,若判 斷為否,即將該執跡座標作為該基準座標,返回該讀取 ❹ 該運動數據取出尚未計算且最優先之一擷取時間及其 對應之複數個韩向之加速度資料與一運動方向步驟。 22.如申請專利範圍第21項所述運動軌跡建構方法,其中 該夕維度座標轴為一 一維座標轴’每一該擁取時間對應 之該等加速度資料包含αχ(〇與吵(〇,t為該擷取時間, 似⑺為該線取時間於X轴之加速度,為該擷取時間 於Y軸之加速度,該基準角度為6>。、該行進角度為βι(ί), 利用冲)=01(〇_0。計算出一運動轉彎角度⑽,根據該運動 ^ 轉彎角度即)判斷出該當前行進方向,令該擷取時間之 執跡座標為(&(〇,&(〇),前一擷取時間對應之執跡座標為 (5(卜1),>^-1)),此二該等軌跡座標之間的軌跡即為 xP(t) = Μ * (ax(t) * cos( 0{t)) ~ ay (t)* sin(^(/))) +xp(t~ 1) 與 〜(,)=Λ/*(〇x(,)*如(外))+ 吵(〇*cos(外,)))+ 1) ’ 其中 M 代表 運動係數,整合所有該等軌跡座標之間的軌跡以形成該 運 動軌跡 , 其 公式為 χΜ * (αχ (t) * c〇s( ^(0) - ay (〇 * sin( ^(0)) 與 t 25 200950748 〜⑴=Ζ κ * (似(Ο * sin( θ(〇) + 吵(ί) * cos( 0⑴° t 23.如申請專利範圍第21項所述運動執跡建構方法,其中 該多維度座標軸為一三維座標軸,每一該擷取時間對應 之該等加速度資料包含〇χ(0與吵⑺,t為該掏取時間了 αχ⑺為該裸取時間於X軸之加速度’ π(ί)為該擷取時門 於Υ軸之加速度,瓜(0為該擷取時間於Ζ軸之加速户 該基準角度包含一基準側向角度Α與一基準升降角声 Ο Ο & ’該行進角度包含一行進侧向角度q⑺與一行進升降角 度灿),該運動轉彎角度包含轉角叩)與升降角抑),利$ 峨= 0ιΟ)-θ。計异出轉角’由抑)=色計算出該升降角 州),根據該轉角_與該升降角州)判斷出該當前行進方 向’令該擷取時間之軌跡座標為,前—梅 取時間對應之執跡座標為,此二兮等 軌跡座標之 間 的 軌跡即 xp(t) = Μ * (αχ(〇* cos(^(/)) - ay(ί)* sin(^(0)) + xp{t -1) 與 yp(t) = M * (ax(t)* sin(0(t)) + ay(t)* cos(0(t))) + yp(t -l) 為 %〇)=从*(瓜(〇 +忌*(;08(州))) + Zp〇-l),其中M代表運動係 數’整合所有該等轨跡座標之間的轨跡以形成該運動軌 跡 , 其公式 x P(〇 ~ ^ Μ * (αχ (/) * cos( 0(t)) - ay (t) * sin( Θ (t))) 與 yP(〇 - 'Σ, ^ * (ax{t)* sin( 6{t)) + ay (t) * cos( 9(t))) t ^(’)= Σ M * (似⑴ + g * cos( / (0))。 26200950748 X. Patent application scope: 1. A portable motion track recording and analysis system, comprising: a data measuring device arranged in one part of a user and comprising: a memory unit; 'a three-dimensional acceleration sensing And measuring a plurality of acceleration data generated by the movement of the part of the user; an electronic compass measuring the movement of the part of the user _ the direction of the movement toward the at least one direction; Periodically capturing the acceleration data and the direction of motion, and integrating the acceleration data, the motion direction and the corresponding acquisition time into a motion data for storage in the memory unit; and a data transmission interface for the The processor transmits the acceleration data recorded by the memory unit and the direction of motion; and an analysis device includes a built-in construction module and connects the motion data recorder through the data interface to obtain the memory unit The motion data, the track construction module according to the acceleration data of the motion data, the motion party Such capture time and calculated by using one of the movement execution trace. 2. The portable motion record recording and analysis system according to item 1 of the patent application scope, wherein the track construction module is based on the time of the acquisition, and the acceleration corresponding to the time of the acquisition is equal The data is time-integrated, and a plurality of motion speeds are calculated, and then the motion speeds are timed 20 200950748, and a plurality of travel distances are calculated. 3. The portable motion track recording and analysis system according to claim 2, wherein the track construction module performs coordinate conversion according to the moving direction, the capturing time and the traveling distance, and establishes the User's - the trajectory of the movement. 4. The portable motion track recording and analysis system according to claim 1, wherein the three-dimensional acceleration sensor senses a plurality of three axial directions that are different from each other when the part of the user moves. The acceleration calculates an instantaneous acceleration according to the accelerations, and subtracts a gravitational acceleration from the instantaneous acceleration to calculate an acceleration data. 5. The portable motion record recording and analysis system according to claim 1, wherein the analysis device further comprises an input module for obtaining a weight value of the user, and the trajectory construction module is configured according to the exercise The track determines a plurality of exercise intensities of the user at different times, and calculates the exercise energy consumption value of the user in combination with the weight value. ❹ 6. The portable motion record recording and analysis system according to claim 1, wherein the memory unit is a flash memory 〇 7. as described in claim 1 Portable motion record recording and analysis system, wherein the data transmission interface is a universal serial bus (USB). 8. The portable motion record recording and analysis system according to item 1 of the patent application scope, wherein the specification of the data transmission interface is the IEEE 1394 specification 21 200950748 port. 9. The portable motion track recording and analysis system of claim 1, wherein the processor continuously captures the acceleration data and the direction of motion at a frequency of 20 Hertz (Hz). , 30 Hz, '40 Hz, 50 Hz or 60 Hz. 10. The portable athletic performance record and analysis system of claim 1, wherein the analysis device is a handheld device or a computer. 11. A portable motion track recording and analysis system, comprising: a data meter, configured in one of a user's part and comprising: a three-dimensional acceleration sensor for measuring motion of the part of the user a plurality of acceleration data generated; an electronic compass that measures at least one direction of movement of the portion of the user when moving in the portion; and a first wireless module that periodically outputs the acceleration data and the motion Directions; and © - an analysis device, comprising: a memory unit; a second wireless module that obtains the acceleration data transmitted by the first wireless module and the direction of motion; a processor according to the second wireless The acceleration data obtained by the module, the motion direction and the corresponding acquisition time are integrated into one motion data for storage in the memory unit; and a track construction module is constructed according to the motion of the memory unit 22 200950748 The user's movements are obstructed. 12. The portable track record and analysis system according to claim 11, wherein the track building module is configured to select the acceleration data corresponding to the time according to the time of the drawing. The time product is divided into two, and a plurality of motion speeds are calculated, and then the motion speeds are time-integrated to calculate a plurality of travel distances. 13. The portable track record recording and analyzing system according to claim 12, wherein the track building module performs coordinate conversion according to the moving direction, the drawing time, and the traveling distance, and establishes the The user's movement is obsessed. 14. The portable motion track recording and analysis system according to claim 11, wherein the three-dimensional acceleration sensor senses a plurality of accelerations of three axial directions that are different from each other when the user moves, according to The accelerations calculate an instantaneous acceleration and remove the acceleration from the acceleration to calculate an acceleration data. The portable motion record recording and analysis system of claim 11, wherein the analysis device further comprises an input module for obtaining a weight value of the user, the track construction module according to the The motion obstruction determines a plurality of exercise intensities of the user at different times, and calculates the exercise energy consumption value of the user in combination with the weight value. 16. The portable motion record recording and analysis system of claim 11, wherein the memory unit is a flash memory or a hard disk. The portable motion record recording and analysis system of claim 11, wherein the first wireless module and the second wireless module are both Bluetooth communication modules. 18. The portable motion track recording and segmentation system according to claim 11, wherein the first wireless module and the second wireless module are global interoperable microwave access modules. The portable motion track recording and analysis system described in claim 11 wherein the analysis device is a handheld device or a computer. 〇 20. The portable motion track recording and analysis system according to claim 11 The first wireless module transmits the acceleration data to a frequency of 20 Hz, 30 Hz, 40 Hz, 50 Hz, or 60 Hz. 21. A method for constructing a motion trajectory The motion data is constructed by a trajectory, and the motion data is stored with a plurality of acquisition times, each of which corresponds to a plurality of acceleration data and at least one motion direction. The construction method includes: providing a multi-dimensional coordinate axis and setting a reference coordinate, a reference angle and a distance single bait, the distance unit being a ratio of the coordinate distance of the multi-dimensional coordinate axis to the actual distance; Obtaining an uncalculated and most prioritized one of the time and the corresponding plurality of axial acceleration data and a moving direction; calculating a traveling distance according to the acceleration data, the traveling angle corresponding to the moving direction and the reference The angle comparison determines the direction of travel before 24 200950748; calculates and records one of the hit coordinates corresponding to the distance according to the travel distance, the reference coordinate, the current travel direction, and the distance unit; and '· judges the Whether the motion data is read or not. If the judgment is yes, the motion track is integrated according to the storage order of the track coordinates. If the determination is no, the track coordinates are used as the reference coordinate, and the reading is returned. Taking out the unpredicted and highest priority one of the acquisition time and its corresponding plurality of Han direction acceleration data and a moving direction step. 22. The method of constructing a motion trajectory according to claim 21, wherein the coordinate axis of the evening dimension is one The one-dimensional coordinate axis 'the acceleration data corresponding to each of the acquisition times includes αχ (〇 and noisy ( , t is the extraction time, and it seems that (7) is the acceleration of the line taking time on the X axis, which is the acceleration of the extraction time on the Y axis, the reference angle is 6>, and the traveling angle is βι(ί), utilizing冲)=01(〇_0. Calculate a motion turning angle (10), and judge the current traveling direction according to the motion ^ turning angle, that is, the scoring coordinate of the capturing time is (&(〇,& (〇), the trajectory corresponding to the previous acquisition time is (5 (Bu 1), >^-1)), and the trajectory between the two trajectory coordinates is xP(t) = Μ * ( Ax(t) * cos( 0{t)) ~ ay (t)* sin(^(/))) +xp(t~ 1) and ~(,)=Λ/*(〇x(,)* (outside)) + noisy (〇*cos(external)))+ 1) ' where M represents the coefficient of motion, integrating the trajectories between all of these trajectory coordinates to form the trajectory, the formula is χΜ * (αχ ( t) * c〇s( ^(0) - ay (〇* sin( ^(0)) and t 25 200950748 ~(1)=Ζ κ * (like (Ο * sin( θ(〇) + noisy (ί) * Cos( 0(1)° t 23. The method for constructing a motion track according to claim 21, wherein the multi-dimensional coordinate axis is a three-dimensional coordinate axis, each The acceleration data corresponding to the extraction time includes 〇χ (0 and noisy (7), t is the extraction time α χ (7) is the acceleration of the naked time on the X axis ' π (ί) is the time of the capture Acceleration of the Υ axis, melon (0 is the acceleration time of the Ζ axis, the reference angle includes a reference lateral angle Α and a reference lifting angle Ο amp & 'the traveling angle includes a traveling lateral angle q (7) With a traveling lifting angle, the turning angle of the movement includes a corner 叩) and a lifting angle ,), and $ 峨 = 0ιΟ) - θ. Calculating the angle of rotation 'by the suppression' = color to calculate the elevation angle state), according to the rotation angle _ and the elevation angle state, determining the current direction of travel 'the coordinates of the acquisition time coordinate, the front-fetch time The corresponding trajectory is that the trajectory between the two trajectory coordinates is xp(t) = Μ * (αχ(〇* cos(^(/)) - ay(ί)* sin(^(0)) + xp{t -1) and yp(t) = M * (ax(t)* sin(0(t)) + ay(t)* cos(0(t))) + yp(t -l) %〇)=From*(Melon (〇+忌*(;08(州)))) + Zp〇-l), where M stands for the motion coefficient' integrates the trajectory between all of these trajectory coordinates to form the motion Trajectory, its formula x P(〇~ ^ Μ * (αχ (/) * cos( 0(t)) - ay (t) * sin( Θ (t)))) and yP(〇- 'Σ, ^ * ( Ax{t)* sin( 6{t)) + ay (t) * cos( 9(t))) t ^(')= Σ M * (like (1) + g * cos( / (0)). 26
TW97120834A 2008-06-04 2008-06-04 Portable record and analysis system of exercise track and a track building method TW200950748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97120834A TW200950748A (en) 2008-06-04 2008-06-04 Portable record and analysis system of exercise track and a track building method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97120834A TW200950748A (en) 2008-06-04 2008-06-04 Portable record and analysis system of exercise track and a track building method

Publications (1)

Publication Number Publication Date
TW200950748A true TW200950748A (en) 2009-12-16

Family

ID=44871475

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97120834A TW200950748A (en) 2008-06-04 2008-06-04 Portable record and analysis system of exercise track and a track building method

Country Status (1)

Country Link
TW (1) TW200950748A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396576B (en) * 2010-04-02 2013-05-21 Hon Hai Prec Ind Co Ltd System and method for simulating basketball actions
TWI400447B (en) * 2010-03-24 2013-07-01
CN103620607A (en) * 2010-12-13 2014-03-05 耐克国际有限公司 Processing data of a user performing an athletic activity to estimate energy expenditure
TWI612829B (en) * 2015-11-18 2018-01-21 財團法人資訊工業策進會 System of location push notification service, user mobile device, and method of location push notification service
US11915814B2 (en) 2010-11-05 2024-02-27 Nike, Inc. Method and system for automated personal training

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400447B (en) * 2010-03-24 2013-07-01
TWI396576B (en) * 2010-04-02 2013-05-21 Hon Hai Prec Ind Co Ltd System and method for simulating basketball actions
US11915814B2 (en) 2010-11-05 2024-02-27 Nike, Inc. Method and system for automated personal training
CN103620607A (en) * 2010-12-13 2014-03-05 耐克国际有限公司 Processing data of a user performing an athletic activity to estimate energy expenditure
CN103620607B (en) * 2010-12-13 2017-08-11 耐克创新有限合伙公司 Processing carries out the method and apparatus that the data of the user of motor activity are consumed with estimated energy
TWI612829B (en) * 2015-11-18 2018-01-21 財團法人資訊工業策進會 System of location push notification service, user mobile device, and method of location push notification service

Similar Documents

Publication Publication Date Title
US10740650B2 (en) Systems and methods for non-contact tracking and analysis of exercise
Vlasic et al. Practical motion capture in everyday surroundings
CN105979855B (en) The limbs of wearable electronic are being dressed in detection
Liu et al. A wearable human motion tracking device using micro flow sensor incorporating a micro accelerometer
JP5623294B2 (en) Behavior monitoring system unaffected by accelerations induced by external motion factors
CN102946802B (en) For the method for measuring vibrations, device, computer program and system
CN105050487A (en) Athletic performance monitoring system utilizing heart rate information
Morrison et al. Design and testing of a multi-sensor pedestrian location and navigation platform
KR20160070131A (en) Calculating pace and energy expenditure from athletic movement attributes
JP2012513227A (en) Walking monitor
TW200950748A (en) Portable record and analysis system of exercise track and a track building method
JP5768021B2 (en) Gait measuring device, method and program
Bai et al. Low cost inertial sensors for the motion tracking and orientation estimation of human upper limbs in neurological rehabilitation
Bertschi et al. Accurate walking and running speed estimation using wrist inertial data
JP2006305311A (en) Exercising/action meter and service system using it
JP4719768B2 (en) Method for measuring oxygen intake and apparatus using this method
Qiu et al. Heterogeneous data fusion for three-dimensional gait analysis using wearable MARG sensors
CN210078765U (en) Motion capture recognition and evaluation device based on wearable sensor
CN116108873B (en) Motion posture assessment system based on RFID/IMU fusion
JP2018094092A (en) Physical ability evaluation system, electronic apparatus, physical ability evaluation server, physical ability evaluation method, physical ability evaluation program and recording medium
Zhao et al. Towards arbitrary placement of multi-sensors assisted mobile navigation system
Mercado-Aguirre et al. Design and construction of a wearable wireless electrogoniometer for joint angle measurements in sports
JP2018094089A (en) Physical ability evaluation system, electronic apparatus, physical ability evaluation server, physical ability evaluation method, physical ability evaluation program and recording medium
Abhayasinghe Human gait modelling with step estimation and phase classification utilising a single thigh mounted IMU for vision impaired indoor navigation
Zaman et al. Kinematic-based sedentary and light-intensity activity detection for wearable medical applications