200949374 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種背光模組及其應用,且特別是有 關於用以提升背光均勻性之背光模組及其在顯示裝置上的 應用。 【先前技術】 隨著資訊、通信產業不斷地推陳出新,帶動了液晶顯 示器(Liquid Crystal Display ; LCD)市場的蓬勃發展。液晶 顯示器具有高畫質、體積小、重量輕、低驅動電壓、與低 消耗功率等優點’因此被廣泛應用於個人數位助理 (Personal Digital Assistant; PDA)、行動電話、攝錄放影機、 筆記型電腦、桌上型顯示器、車用顯示器、及投影電視等 消費性通訊或電子產品。加上積體電路(Integrated Circuit ; 1C)產業與液晶顯示器製造技術的突飛猛進,這些消費性通 訊或電子產品亦朝向輕、薄、短、小的趨勢發展。尤其是 在電腦產品方面’除了高性能、高速度之桌上型電腦外, 攜帶方便的筆記型電腦更是受到極大的注意與重視。 目則市場上常見之液晶顯示器大部分為背光型液晶顯 示器’這類的液晶顯示器一般主要係由前端之液晶顯示面 板以及後端之背光模組所組成。因此,背光模組為液晶顯 不器中相當關鍵之零組件之一。背光模組可依照光源入射 位置的不同为成側光式入光(Edge Lighting)與直下式入光 (Bottom Lighting)兩種,通常係運用於各種資訊、通訊、消 5 200949374 費產°〇之中’藉以提供上述產品的液晶顯示器(Liquid ' Cwtal Display,LCD)一個面光源。 田者光模組為直下式入光時,一般背光模組可設有複 數個光源於一背板上,以形成一面光源》然而,若此時背 光模、及的光源數目不足,亦即光源之間的間距過大,則容 ^形成雲紋(Mura),亦即背光模組所提供之面光源不均 勻為了改善上述問題,可增加光源與一光學膜片(例如擴 〇 散片)或一面板之間的距離(亦即混光距離),以提升混光效 果減少雲紋情形。然而,雖然增加混光距離可提升混光 效果亦同時增加背光模組的厚度,因而不利於背光模組 或液晶顯示器的薄型化發展。 【發明内容】 因此本發明之一方面係在於提供一種背光模組及其應 用,藉以均勻化複數個光源的發光,以減少雲紋情形 〇 纟發明之又-方面係在於提供一種背光模組及其應 用,藉以減少光源的設置數量和混光距離。 本發明之X-方面係在於提供—種背光模組及其應 用,藉以提升背光強度。 根據本發明之實施例,本發明之背光模組至少包含有 複數個光源、微結構透光板及至少一光學膜片。微結構透 t板係設置於此些光源上,^此些光源與微結構透光板之 2的距離較質大於2mm,其中微結構透光板可包含有透 光板難和複數個微結構。此些微結構形成於透光板想的- 6 200949374 側表面上,其中微結構係選自由三角柱、半圓柱、四角錐、 半圓球及其任意組合所組成之一族群。光學膜片係設置於 微結構透光板上。 又,根據本發明之實施例,本發明之背光模組可應用 於液晶顯示裝置中。 因此,本發明之背光模組及其應用可有效地提升背光 均勻性和光強度,因而可減少光源的設置數量和混光距 離’以達到降低成本和薄型化的功效。。 【實施方式】 請參照第1圖’其繪示依照本發明之第一實施例之背 光模組與液晶顯示面板的剖面示意圖。本實施例之背光模 組100較佳為直下式背光模組,其相對於一液晶顯示面板 200來設置,藉以形成一液晶顯示裝置(Liquid Crystal Display; LCD) 〇背光模組100可包含有殼體11〇、複數個 光源120、微結構透光板130及至少一光學膜片14〇。殼體 110係用以承載此些光源120、微結構透光板13〇及光學媒 片140。微結構透光板130係設置於此些光源120上,用以 細部投射光線至光學膜片140’藉以避免背光模組1〇〇的出 光具有發光不均(Mura)之情形。光學膜片14〇設置於微結 構透光板130的上方,以進行不同目的之光學改善動作。 如第1圖所示,本實施例之殼體110具有光出射口 m 和腔室112。光出射口 111係用以出光,在本實施例中,殼 體110可與微結構透光板130形成密閉結構之燈罩,用以 200949374BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backlight module and an application thereof, and more particularly to a backlight module for improving backlight uniformity and its use in a display device. [Prior Art] With the continuous innovation of the information and communication industry, the market for liquid crystal display (LCD) has been booming. The liquid crystal display has the advantages of high image quality, small size, light weight, low driving voltage, and low power consumption. Therefore, it is widely used in Personal Digital Assistant (PDA), mobile phones, video recorders, and notes. Consumer communications or electronic products such as computers, desktop displays, automotive displays, and projection televisions. Coupled with the rapid advancement of the integrated circuit (1C) industry and liquid crystal display manufacturing technology, these consumer communications or electronic products are also moving toward light, thin, short and small trends. Especially in computer products, in addition to high-performance, high-speed desktop computers, portable notebooks are highly valued and valued. Most of the liquid crystal displays commonly used in the market are backlit liquid crystal displays. Liquid crystal displays such as those generally consist of a liquid crystal display panel at the front end and a backlight module at the rear end. Therefore, the backlight module is one of the most critical components in the liquid crystal display. The backlight module can be used for both Edge Lighting and Bottom Lighting depending on the incident position of the light source. It is usually used for various information, communication, and consumption. In the liquid crystal display (Liquid 'Cwtal Display (LCD)) that provides the above products. When the field light module is a direct-lit light, the general backlight module may be provided with a plurality of light sources on a back plate to form a light source. However, if the backlight module and the number of light sources are insufficient, that is, the light source If the spacing between the two is too large, the Mura is formed, that is, the surface light source provided by the backlight module is uneven. In order to improve the above problem, the light source and an optical film (for example, a diffused film) or a light source may be added. The distance between the panels (ie, the blending distance) to enhance the blending effect and reduce the moiré. However, although increasing the light mixing distance can enhance the light mixing effect and increase the thickness of the backlight module, it is not conducive to the thinning development of the backlight module or the liquid crystal display. SUMMARY OF THE INVENTION Accordingly, it is an aspect of the present invention to provide a backlight module and an application thereof for homogenizing the illumination of a plurality of light sources to reduce moiré. Its application is to reduce the number of light sources and the distance of light mixing. The X-side of the present invention is to provide a backlight module and an application thereof for improving backlight intensity. According to an embodiment of the invention, the backlight module of the present invention comprises at least a plurality of light sources, a microstructure light transmissive plate and at least one optical film. The micro-structured through-plate is disposed on the light sources, and the distance between the light sources and the microstructure-transmitting plate 2 is greater than 2 mm, wherein the microstructure-transmitting plate may include a light-transmissive plate and a plurality of microstructures. . The microstructures are formed on the side surface of the light-transmissive panel, wherein the microstructure is selected from the group consisting of a triangular prism, a semi-cylindrical cone, a quadrangular pyramid, a semi-spherical sphere, and any combination thereof. The optical film is disposed on the microstructured light transmissive plate. Further, according to an embodiment of the present invention, the backlight module of the present invention can be applied to a liquid crystal display device. Therefore, the backlight module of the present invention and the application thereof can effectively improve the backlight uniformity and the light intensity, thereby reducing the number of light sources and the mixing distance ′ to achieve cost reduction and thinning. . [Embodiment] Please refer to FIG. 1 for a schematic cross-sectional view of a backlight module and a liquid crystal display panel according to a first embodiment of the present invention. The backlight module 100 of the present embodiment is preferably a direct-lit backlight module, which is disposed relative to a liquid crystal display panel 200 to form a liquid crystal display (LCD). The backlight module 100 may include a shell. The body 11 〇, the plurality of light sources 120, the microstructured light-transmitting plate 130 and the at least one optical film 14 〇. The housing 110 is used to carry the light source 120, the microstructure light transmissive plate 13 and the optical medium 140. The microstructure light-transmitting plate 130 is disposed on the light sources 120 for projecting light to the optical film 140' in detail to prevent the light of the backlight module 1 from having uneven illumination (Mura). The optical film 14 is disposed above the micro-structured light-transmissive plate 130 for optical improvement of different purposes. As shown in Fig. 1, the housing 110 of the present embodiment has a light exit opening m and a chamber 112. The light exit opening 111 is used for light extraction. In this embodiment, the housing 110 can form a closed structure with the microstructure light transmissive plate 130 for use in 200949374.
避免光線從光出射口 111以外的部分洩漏出去,其中殼體 110係由不透光材質所製成,例如:塑化材料、金屬材料或 上述材料之組合。腔室112係形成於殼體110的内部空間, 用以容置此些光源120。腔室112的内側侧壁丨12a可塗佈 有南反射率材料’例如:銀、鋁、金、路、銅、銦、銥、 鎳、鉑、銖、鍺、錫、钽、鎢、錳、其上述任意組合之合 金或耐黃化且耐熱之白色反射漆料,用以反射一部分未正 面射出的光線至光出射口 1U。 如第1圖所示,本實施例之此些光源12〇例如為:冷 陰極螢光燈管(Cold Cathode Fluorescent Lamp; CCFL)、熱 陰極螢光燈(Hot Cathode Fluorescent Lamp ; HCFL)、發光 二極體(Light-Emitting Diode ; LED)或有機發光二極體 (Organic Light Emitting Diode,· 〇LED)等點光源或線光源 β 此些光源120係排列設置於殼體η〇的腔室U2中,用以 朝光出射口 111來發光》 請參照第2Α圖至第2〇圖,第2Α圖和第28圖係繪示 依照本發明之第-實施例之f光模組之微結構透光板的立 體不意圖’第2C圖和第2D圖係繪示依照本發明之第一實 施例之微結構透光板之微結構的立體示意圖。本實施例之 微結構透光板130可利用任何組合或固定方式(例如嵌設、 緊配或黏著)來設置於殼體UG之腔室U1中,且位於光源 120與光學膜#140之間’光源120(例如燈管表面)與微結 構透光板13G之間的距離d較佳係實質大於2mm(例: 2mm 15mm),以確保微結構透光板⑽的光線投射效果。 8 200949374 微結構透光板130與光學膜片140之間的距離d,較佳係實 '質大於2mm,以提升均光效果。微結構透光板13〇例如可 利用鑄造、機械加工、壓鑄或射出成型等一體成型的方式 來製成,其材質例如為光硬化型樹脂、丙稀、聚甲基丙稀 酸甲脂(PMMA)或聚碳酸脂(PC)#透明或半透明材料。微結 構透光板130可包含有透光板體131和複數個微結構m 其中微結構132可為微凸狀結構或微凹狀結構。微結構i32 φ 係連續或非連續地形成於透光板體131的一側表面上,且 較佳係面對於光學膜片140。微結構132可利用一體成型的 方式來形成於透光板體131上,用以均勻化光源12〇之發 光,其中此些微結構132可選自由三角柱(如第2A圖所 不)、半圓柱(如第2B圖所示)、四角錐(如第2C圖所示)、 半圓球(如第2D圖所示)及其任意组合所組成之一族群。 如第1圖所示,本實施例之光學膜片140例如為:擴 散片、稜鏡片、增亮膜(Brightness Enhancement Film; BEF)、 _ 反射式增亮膜(Dual Brightness Enhancement Film ; DBEF)、 非多層膜式反射偏光片(Diffused Reflective p〇larizer Film ; DRPF)或上述之任意組合,其設置於微結構透光板 130的上方’用以對微結構透光板13〇所出光之光線進行不 同目的之光學改善動作。 請參照第3圖,其繪示依照傳統背光模組與本發明之 第一實施例之背光模組的光強度量測圖。當本實施例之背 光模組100進行出光時,此些光源120所發出之光線可藉 由微結構透光板130的微凸狀結構132來投射至光學膜片 200949374 140。此時,光線可藉由微結構透光板i3〇來導引正向出光 或發散光線,以達到均光效果,因而減少雲紋(背光不均勻) 情形。如第3圖所示,當量測背光模組在不同位置及其光 強度的關係時,線段101係表示傳統背光模組(未設有微結 構透光板13G)在延著光學膜片上之—水平方向上的不同位 置及其光強度的關係,而線段102係表示本實施例的背光 模組100在延著光學膜片上之一水平方向上的不同位置及 其光強度的關係。由線段1〇1和線段1〇2中可發現,本實 施例的背光模組!〇〇可具有較高且較均勻的光強度。因此, 本實施例的背光模組100可有效地提升背光均勻性和光強 度。再者,由於背光模組1〇〇之微結構透光板13〇可有效 減少雲紋情形,因而背光模組丨〇〇可減少光源12〇(例如燈 管)的設置數量和混光距離(例如光源12〇與光學膜片14〇 之間的距離),進而降低成本和減少背光模組〗〇〇的厚度。 且由於光源120的光線係透過微結構透光板13〇和光學膜 片140來發出,因而光源12〇的光線係經過二次混光後發 出’而大幅地提升背光模組1 00的混光效果。 請參照第4圖,其繪示依照本發明之第二實施例之背 光模組之微結構透光板的剖面示意圖。以下僅就本實施例 與第一實施例之相異處進行說明,關於相似處在此不再贅 述。相較於第一實施例,第二實施例之微結構透光板13〇a 可同時形成有不同結構形狀的微凸狀結構132a於透光板體 上。例如’微結構透光板130a可同時形成有三角柱微結構 和半圓柱微結構,且可不規格地排列於透光板體131上, 200949374 以提升混光效果。 由上述本發明的實施例可知,本發明之背光模組及其 在液晶顯示裝置上的應用可有效地提升背光均勾性和光強 度,並減少雲紋情形,因而可減少光源的設置數量和混光 距離,以達到降低成本和薄型化的功效。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 ❹ 圍内田可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係依照本發明之第一實施例之背光模組與液晶 顯示面板的剖面示意圖。 〇 上第2A圖和第2B圖係緣示依照本發明之第-實施例之 老光模組之微結構透光板的立體示意圖。 微和第2D圖料示依照本發明之第-實施例之 Ό構透先板之微凸狀結構的立體示意圖。 第3圖係繪示依照傳統背光模組與本發明之第一實施 例之背光模組的光強度量測圖。 k第實施 微处身示依照本發明之第二實施例之背光模組之 微結構透先板的剖面示意圖。 200949374 【主要元件符號說明】 d、d,:距離 101、102 :線段 100 :背光模組 110 : 殼體 111 :光出射口 112 : 腔室 112a :内側側壁 120 : 光源 130、130a :微結構透光板 131 : 透光板體 132、132a :微凸狀結構 140 : 光學膜片 200 ·液晶顯不面板 12Light is prevented from leaking out of portions other than the light exit opening 111, wherein the housing 110 is made of an opaque material such as a plasticized material, a metallic material or a combination of the above. The chamber 112 is formed in an inner space of the housing 110 for accommodating the light sources 120. The inner side wall 丨 12a of the chamber 112 may be coated with a south reflectivity material 'eg silver, aluminum, gold, road, copper, indium, antimony, nickel, platinum, rhodium, ruthenium, tin, antimony, tungsten, manganese, The alloy of any combination of the above or the yellowish-resistant and heat-resistant white reflective paint is used to reflect a part of the light that is not emitted from the front side to the light exit opening 1U. As shown in FIG. 1 , the light sources 12 本 of the embodiment are, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), and a Light Emitting Diode. a point source or a line source β such as a Light-Emitting Diode (LED) or an Organic Light Emitting Diode (LED), wherein the light sources 120 are arranged in the chamber U2 of the housing n〇 For emitting light toward the light exit opening 111, please refer to FIG. 2 to FIG. 2, and FIG. 2 and FIG. 28 are diagrams showing the light transmission of the optical module of the f-light module according to the first embodiment of the present invention. 3D and 2D are schematic perspective views showing the microstructure of the microstructured light-transmissive plate according to the first embodiment of the present invention. The microstructure light transmissive plate 130 of the present embodiment can be disposed in the chamber U1 of the housing UG by any combination or fixed manner (for example, embedded, tightly fitted or adhered), and is located between the light source 120 and the optical film #140. The distance d between the light source 120 (e.g., the surface of the tube) and the microstructured light-transmitting plate 13G is preferably substantially greater than 2 mm (e.g., 2 mm 15 mm) to ensure the light projection effect of the microstructure-transmissive plate (10). 8 200949374 The distance d between the microstructured light-transmitting plate 130 and the optical film 140 is preferably more than 2 mm to enhance the uniform light effect. The microstructure light-transmitting plate 13 can be formed, for example, by integral molding such as casting, machining, die-casting, or injection molding, and is made of, for example, a photocurable resin, acryl, or polymethyl methacrylate (PMMA). Or polycarbonate (PC) #transparent or translucent material. The micro-structured light-transmitting plate 130 may include a light-transmitting plate body 131 and a plurality of microstructures m, wherein the microstructures 132 may be a micro-convex structure or a micro-concave structure. The microstructure i32 φ is formed continuously or discontinuously on one side surface of the light-transmitting plate body 131, and is preferably the same as the optical film 140. The microstructures 132 can be formed on the light-transmissive plate body 131 by means of an integral molding to homogenize the light emission of the light source 12, wherein the microstructures 132 can be selected from a triangular prism (as shown in FIG. 2A) and a semi-cylindrical ( As shown in Figure 2B), a quadrangular pyramid (as shown in Figure 2C), a semi-spherical sphere (as shown in Figure 2D), and any combination of these. As shown in FIG. 1 , the optical film 140 of the present embodiment is, for example, a diffusion sheet, a crepe sheet, a brightness enhancement film (BEF), a _ reflective brightness enhancement film (Dual Brightness Enhancement Film; DBEF), A non-multilayer reflective reflective polarizer (DRPF) or any combination of the above, disposed above the microstructured light-transmitting plate 130 for conducting light to the light of the microstructure-transmitting plate 13 Optical improvements for different purposes. Please refer to FIG. 3, which illustrates a light intensity measurement diagram of a backlight module according to a conventional backlight module and a first embodiment of the present invention. When the backlight module 100 of the present embodiment emits light, the light emitted by the light sources 120 can be projected to the optical film 200949374 140 by the micro-convex structure 132 of the microstructured light-transmitting plate 130. At this time, the light can be guided by the microstructure light-transmitting plate i3〇 to guide the forward light emission or the divergent light to achieve the uniform light effect, thereby reducing the moiré (uneven backlight). As shown in FIG. 3, when the equivalent backlight module is in different positions and its light intensity, the line segment 101 indicates that the conventional backlight module (not provided with the microstructured light-transmitting plate 13G) is on the optical film. The relationship between the different positions in the horizontal direction and the light intensity thereof, and the line segment 102 indicates the relationship between the different positions of the backlight module 100 of the present embodiment in a horizontal direction on the optical film and the light intensity thereof. The backlight module of this embodiment can be found from the line segment 1〇1 and the line segment 1〇2! The crucible can have a higher and more uniform light intensity. Therefore, the backlight module 100 of the present embodiment can effectively improve backlight uniformity and light intensity. Furthermore, since the micro-transparent light-transmissive plate 13 of the backlight module 1 can effectively reduce the moiré, the backlight module can reduce the number of light sources 12 (for example, lamps) and the light-mixing distance ( For example, the distance between the light source 12A and the optical film 14A), thereby reducing the cost and reducing the thickness of the backlight module. And since the light of the light source 120 is transmitted through the microstructure light-transmitting plate 13 and the optical film 140, the light of the light source 12 is emitted after the second light mixing, and the light mixing of the backlight module 100 is greatly improved. effect. Referring to FIG. 4, a cross-sectional view of a microstructure light transmissive plate of a backlight module according to a second embodiment of the present invention is shown. Only the differences between the present embodiment and the first embodiment will be described below, and the similarities will not be described herein. Compared with the first embodiment, the microstructure light-transmitting plate 13A of the second embodiment can simultaneously form the micro-convex structures 132a of different structural shapes on the light-transmitting plate body. For example, the microstructured light-transmitting plate 130a may be formed with a triangular prism microstructure and a semi-cylindrical microstructure at the same time, and may be arranged on the light-transmitting plate body 131 without specification, 200949374 to enhance the light mixing effect. According to the embodiment of the present invention, the backlight module of the present invention and the application thereof on the liquid crystal display device can effectively improve the uniformity and light intensity of the backlight and reduce the moiré, thereby reducing the number of the light source and mixing. Light distance to achieve cost reduction and thinning. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make various modifications and retouchings without departing from the spirit and scope of the present invention. This is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic cross-sectional view of a backlight module and a liquid crystal display panel. 2A and 2B are perspective views showing the microstructure light-transmitting plate of the old light module according to the first embodiment of the present invention. The micro and 2D drawings show a perspective view of the micro-convex structure of the 透-structured permeable plate according to the first embodiment of the present invention. Fig. 3 is a view showing the light intensity measurement of the backlight module according to the conventional backlight module and the first embodiment of the present invention. k. First Embodiment A schematic cross-sectional view of a microstructured transparent plate of a backlight module according to a second embodiment of the present invention. 200949374 [Description of main component symbols] d, d,: distance 101, 102: line segment 100: backlight module 110: housing 111: light exit port 112: chamber 112a: inner side wall 120: light source 130, 130a: microstructured Light plate 131: light-transmitting plate body 132, 132a: micro-convex structure 140: optical film 200 · liquid crystal display panel 12