TW200948879A - Carbon nanotube/conductive polymer composite - Google Patents

Carbon nanotube/conductive polymer composite Download PDF

Info

Publication number
TW200948879A
TW200948879A TW97120167A TW97120167A TW200948879A TW 200948879 A TW200948879 A TW 200948879A TW 97120167 A TW97120167 A TW 97120167A TW 97120167 A TW97120167 A TW 97120167A TW 200948879 A TW200948879 A TW 200948879A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
conductive polymer
carbon
carbon nanotubes
ordered
Prior art date
Application number
TW97120167A
Other languages
Chinese (zh)
Other versions
TWI371463B (en
Inventor
Chui-Zhou Meng
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097120167A priority Critical patent/TWI371463B/en
Publication of TW200948879A publication Critical patent/TW200948879A/en
Application granted granted Critical
Publication of TWI371463B publication Critical patent/TWI371463B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to a carbon nanotube/conductive polymer composite. The carbon nanotube/conductive polymer composite includes a plurality of carbon nanotubes and conductive polymer fibers. The carbon nanotubes are connected with each other to form a network. The conductive polymer fibers are adhered on surfaces of the carbon nanotubes and/or tube walls of the carbon nanotubes.

Description

200948879 -九、發明說明: •【發明所屬之技術領域】 本發明涉及一種複合材料,尤其涉及一種奈米碳管/導 電聚合物複合材料。 【先前技術】 自1991年日本NEC公司的Iijima發現奈米碳管(Carbon Nanotube,CNT)以來(Iilima S·,Nature,1991,354, 56-58), 立即引起科學界及産業界的極大重視。奈米碳管具有優良 的機械和光電性能,被認爲係複合材料的理想添加物。奈 ^ 米碳管/聚合物複合材料已成爲世界科學研究的熱點 (Ajjayan P.M., Stephan 0., Colliex C., Tranth D. Science. 1994,265,1212-1215: Calvert P., Nature, 1999, 399, 210-211)。奈米碳管作爲增强體和導電體,形成的複合材料 具有抗靜電,微波吸收和電磁屏蔽等性能,具有廣泛的應 用前景。 先前技術中的奈米碳管/導電聚合物複合材料中的奈米 _碳管多爲棒狀物,而導電聚合物以顆粒的形式分佈在奈米 碳管的間隙中。當所述奈米碳管/導電聚合物複合材料在應 用於超級電容器、太陽能電池的電極時,其中的導電聚合 物充放電時會引起得體積收縮和膨脹,而奈米碳管的中空 結構可缓解由上述導電聚合物的體積收縮和膨脹引起的奈 米碳管/導電聚合物複合材料的體積收縮和膨脹,而且奈米 碳管的高導電性可降低導電聚合物的電阻。因此,先前技 術中的奈米碳管/導電聚合物複合材料具有較好的導電性和 較高的比電容量(大於200法拉/克)。然而,先前技術中的 6 200948879 *奈米碳管/導電聚合物複合材料通過採用將奈米碳管分散於 •硫酸及硝酸等强氧化性酸或表面活性劑令進行分散,之後 再與導電聚合物的單體進行電化學反應,並最終在工作電 極上得到一奈米碳管/導電聚合物複合材料的薄臈。通過强 酸處理,會使得所述奈米碳管受到一定程度的破壞,而使 用表面活性劑處理會使得表面活性劑在最終的奈米碳管/導 電聚合物材料中不易除去。因而,經强氧化性酸或表面活 性劑處理後得到的奈米碳管/導電聚合物複合材料的性能會 ❹受到影響。另外,由於奈米碳管易團聚,目前一直不能很 好的分散,故,先前技術所製備得到的奈米碳管/導電聚合 物複合材料中的奈米碳管通常無法形成良好的導電網絡;1 且有些相鄰奈米碳管之間間距較大,相互間接觸性較差, 因而不能充分發揮奈米碳管的優良導電性及導熱性能,造 成所述奈米碳管/導電聚合物複合材料的内阻較大、比電容 量較低。 於此,確有必要提供—種味較小、比電容量較 ❹ 的不米碳管/導電聚合物複合材料。 【發明内容】 米二種;細導電聚合物複合材料,其包括:多個奈 I括夕姻所導電聚合物複合材料進一步 =括夕個導電聚合物纖維,所述多個奈 構,所述多個導電聚合物纖維複合在所述奈米 石及吕的表面或/和附著在所述奈米碳管的管壁上。 $前技術相比較,所述的奈米碳管/導電聚合物複合 材枓具有以下優點:其一,由於所述奈米碳管/導電聚合物 7 200948879 •複合材料中的奈米碳管相互連接形成一網絡結構,該網絡 •結構中的奈米碳管無序排列或有序排列,使得奈米碳管/導 電聚合物複合材料的比電容量大幅度提高。且能克服奈米 碳管在先前技術中的奈米碳管/導電聚合物複合材料易團聚 的缺點。其二,由於採用奈米碳管網絡結構作爲骨架,從 而使得所述的奈米碳管/導電聚合物材料的内阻較小。其 三,由於所述的奈米碳管網絡結構具有很好的柔性,可任 意捲曲、f折’從而所述的奈米碳⑸導電聚合物複合材料 ❹也具有較好的柔性,進-步地,使用上述的奈米碳管/導電 =合物複合材料有利於使得相應地儲能元件具有較好的柔 【實施方式】 ❹ 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖1,本技術方案第一實施例所提供一種奈米 碳官/導電聚合物複合材料10’其包括多個奈采碳管匕及 多個導電聚合物纖維14。所述多個奈米碳管12相互連接 Γ成=絡結構16,多個導電聚合物纖維14複合在所述 不米碳官12的表面或/和附著在所述奈米碳管12的管壁 上。在上述的奈米碳管/導電聚合物複合材料10中,夺米 碳管形成的網絡結構16起骨架作用,導 14依附麵料奈米碳管藝結财紅。進-步地= ^ I 12和導電聚合物纖維14均勾分佈於所述奈米 炭s/V電聚合物複合材料中。 本實施例中’所述奈米碳管12形成的網絡結構16爲 8 200948879 •一無序排列的奈米碳管網絡結構16。 .所述無序排列的奈米碳管網絡結構16中的奈米碳管 12爲,,,、序或各向同性排列。該無序排列的奈米碳管通過凡 德瓦爾力相互吸引、相互纏繞、均句分佈,該各向同性排 列的奈米碳管通過凡德瓦爾力相互吸引且平行於奈米碳管 網絡結構16的表面。 所述奈米碳管12包括單壁奈米碳管、雙㈣米碳管及 多壁奈米碳管中的-種或幾種。單㈣米碳管的直徑爲〇 5 ❹奈米〜50奈米’雙壁奈米碳管的直徑爲1()奈米〜%夺米, 多壁奈米碳管的直徑爲1>5奈米〜5〇奈米。所述奈米碳管 的長度在100奈米到1〇毫米之間。 所述導電聚合物纖維14包括聚苯胺、聚吡咯、聚噻 吩、聚乙炔、聚對苯及聚對苯撐乙烯中的一種或幾種。所 述導電聚合物纖維14的長度在1〇〇奈米到1〇毫米之間, 直徑在30奈米到120奈米之間。所述導電聚合物纖維在所 述奈米碳管/導電聚合物複合材料中的質量百分含量爲 ❹20%〜80%。可以理解,所述導電聚合物纖維14的長度與 所述奈米碳管12的長度相當,有利於所述導電聚合物物纖 維14和所述奈米碳管12相互吸附及均勻分佈。 本技術方案第一實施例製備的奈米碳管/聚苯胺複合 材料的掃描電鏡圖片如圖2所示。該奈米碳管/聚苯胺複合 材料採用聚苯胺纖維作爲導電聚合物纖維14與無序奈米 碳管網絡結構16進行複合。其中,聚苯胺纖維依附在上述 的無序奈米碳管網絡結構16上。聚苯胺纖維的直徑在30 9 200948879 •奈米〜120奈米之間,長度爲500奈米左右。爲便於測量所 述奈米碳管/聚苯胺複合材料的比電容量,將奈米碳管/聚 苯胺複合材料裁剪成兩個圓形的奈米碳管/聚苯胺複合材 料薄片。每個奈米碳管/聚苯胺複合材料薄片的直徑爲13 毫米、厚度爲55微米、質量爲3.95毫克(mg)。 用 Potentiostat/Galvanostat model 1273A 電化學工作 站對第一實施例中包含有無序奈米碳管的奈米碳管/聚苯200948879 - IX. Description of the invention: • Technical field to which the invention pertains The present invention relates to a composite material, and more particularly to a carbon nanotube/conductive polymer composite material. [Prior Art] Since Iijima of NEC Corporation of Japan discovered the Carbon Nanotube (CNT) in 1991 (Iilima S·, Nature, 1991, 354, 56-58), it immediately attracted great attention from the scientific community and industry. . Nano carbon tubes have excellent mechanical and optoelectronic properties and are considered to be ideal additives for composite materials. Nanotubes/polymer composites have become a hot topic in scientific research worldwide (Ajjayan PM, Stephan 0., Colliex C., Tranth D. Science. 1994, 265, 1212-1215: Calvert P., Nature, 1999, 399, 210-211). As a reinforcement and an electrical conductor, the carbon nanotubes have a composite application with antistatic, microwave absorption and electromagnetic shielding properties, and have broad application prospects. The nano-carbon tubes in the prior art carbon nanotube/conductive polymer composite are mostly rods, and the conductive polymers are distributed in the form of particles in the gaps of the carbon nanotubes. When the carbon nanotube/conductive polymer composite is applied to an electrode of a supercapacitor or a solar cell, the conductive polymer in the charging and discharging thereof causes volume shrinkage and expansion, and the hollow structure of the carbon nanotube can be The volume shrinkage and expansion of the carbon nanotube/conductive polymer composite caused by the volume shrinkage and expansion of the above conductive polymer are alleviated, and the high conductivity of the carbon nanotube reduces the electrical resistance of the conductive polymer. Therefore, the prior art carbon nanotube/conductive polymer composites have better electrical conductivity and higher specific capacitance (greater than 200 farads/gram). However, the prior art 6 200948879 *nano carbon nanotube/conductive polymer composite is dispersed by using a strong oxidizing acid or a surfactant such as sulfuric acid and nitric acid, and then conductive polymerization. The monomer of the material undergoes an electrochemical reaction, and finally a thin crucible of a carbon nanotube/conductive polymer composite is obtained on the working electrode. The strong carbon acid treatment causes the carbon nanotubes to be damaged to some extent, and the surfactant treatment makes the surfactant difficult to remove in the final carbon nanotube/conductive polymer material. Therefore, the performance of the carbon nanotube/conductive polymer composite obtained by treatment with a strong oxidizing acid or a surfactant may be affected. In addition, since the carbon nanotubes are easily agglomerated, they have not been well dispersed at present, so the carbon nanotubes in the carbon nanotube/conductive polymer composite prepared by the prior art generally cannot form a good conductive network; 1 and some adjacent carbon nanotubes have a large spacing between them, and the mutual contact between them is poor, so that the excellent electrical conductivity and thermal conductivity of the carbon nanotubes cannot be fully utilized, resulting in the carbon nanotube/conductive polymer composite material. The internal resistance is larger and the specific capacitance is lower. Here, it is indeed necessary to provide a non-carbon tube/conductive polymer composite material having a small taste and a relatively high electrical capacity. SUMMARY OF THE INVENTION Two kinds of meters; a fine conductive polymer composite material, comprising: a plurality of nylon I-bonded conductive polymer composite material further = a rectangular conductive polymer fiber, the plurality of nanostructures, the A plurality of conductive polymer fibers are composited on the surface of the nano-stone and ruthenium and/or attached to the wall of the carbon nanotube. Compared with the prior art, the carbon nanotube/conductive polymer composite crucible has the following advantages: First, due to the carbon nanotube/conductive polymer 7 200948879 • The carbon nanotubes in the composite material are mutually The connections form a network structure in which the carbon nanotubes are randomly arranged or ordered, resulting in a substantial increase in the specific capacitance of the carbon nanotube/conductive polymer composite. Moreover, it can overcome the disadvantages of the carbon nanotubes in the prior art that the carbon nanotube/conductive polymer composite is easy to agglomerate. Second, since the carbon nanotube network structure is employed as the skeleton, the internal resistance of the carbon nanotube/conductive polymer material is small. Third, since the nanocarbon tube network structure has good flexibility, it can be arbitrarily crimped and f-folded, so that the nano carbon (5) conductive polymer composite material has good flexibility, and further steps. The use of the above-mentioned carbon nanotube/conductive compound composite material is advantageous for making the corresponding energy storage element have better flexibility. [The embodiment of the present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1, a first embodiment of the present technical solution provides a nano carbon/conductive polymer composite 10' comprising a plurality of carbon nanotubes and a plurality of conductive polymer fibers 14. The plurality of carbon nanotubes 12 are connected to each other to form a complex structure 16 , and a plurality of conductive polymer fibers 14 are composited on the surface of the carbon-free carbon 12 or/and a tube attached to the carbon nanotubes 12 On the wall. In the above carbon nanotube/conductive polymer composite material 10, the network structure 16 formed by the carbon nanotubes serves as a skeleton, and the guide 14 is attached to the fabric carbon nanotubes. The step-by-step = ^ I 12 and the conductive polymer fibers 14 are both branched in the nano-carbon s/V electropolymer composite. In the present embodiment, the network structure 16 formed by the carbon nanotubes 12 is 8 200948879 • a disordered arrangement of carbon nanotube network structures 16 . The carbon nanotubes 12 in the disordered arrangement of carbon nanotube network structures 16 are arranged in,,, or isotropic. The disordered arrangement of carbon nanotubes is mutually attracted, intertwined, and evenly distributed by van der Waals forces. The isotropically arranged carbon nanotubes are mutually attracted by van der Waals forces and parallel to the carbon nanotube network structure. The surface of 16. The carbon nanotubes 12 include one or more of a single-walled carbon nanotube, a double (tetra) carbon nanotube, and a multi-walled carbon nanotube. The diameter of a single (four) meter carbon tube is 〇5 ❹ nanometer ~ 50 nanometers. The diameter of a double-walled carbon nanotube is 1 () nanometer ~% rice, the diameter of a multi-walled carbon nanotube is 1> Meters ~ 5 〇 nano. The length of the carbon nanotubes is between 100 nm and 1 mm. The conductive polymer fiber 14 includes one or more of polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, and polyparaphenylenevinylene. The conductive polymer fibers 14 have a length between 1 nanometer and 1 millimeter and a diameter between 30 nanometers and 120 nanometers. The conductive polymer fiber has a mass percentage of ❹20% to 80% in the carbon nanotube/conductive polymer composite. It can be understood that the length of the conductive polymer fiber 14 is equivalent to the length of the carbon nanotube 12, which facilitates adsorption and uniform distribution of the conductive polymer fiber 14 and the carbon nanotube 12. A scanning electron micrograph of the carbon nanotube/polyaniline composite prepared in the first embodiment of the present technical solution is shown in Fig. 2. The carbon nanotube/polyaniline composite is composited with a disordered carbon nanotube network structure 16 using polyaniline fibers as the conductive polymer fibers 14. Among them, polyaniline fibers are attached to the above-mentioned disordered carbon nanotube network structure 16. Polyaniline fibers have a diameter of 30 9 200948879 • between nanometers and 120 nanometers and a length of about 500 nanometers. To facilitate measurement of the specific capacitance of the carbon nanotube/polyaniline composite, the carbon nanotube/polyaniline composite was cut into two circular carbon nanotube/polyaniline composite sheets. Each of the carbon nanotube/polyaniline composite sheets has a diameter of 13 mm, a thickness of 55 μm, and a mass of 3.95 mg (mg). Using a Potentiostat/Galvanostat model 1273A electrochemical station for the carbon nanotube/polyphenylene containing the disordered carbon nanotubes in the first embodiment

胺複合材料薄片進行恒流充放電測量。其中,CELGARD ®隔膜紙(聚乙烯薄膜)作隔膜,lmol/L (摩爾每升)的硫 酸溶液作電解液,恒流電流爲1mA (毫安),電壓範圍爲 〇-〇.6V (伏)。測量數據曲線如圖3所示,從充放電部分曲 線可知’所述奈米碳管/聚苯胺複合材料的放電時間大約爲 55〇s。 在對上述的奈米碳管/聚苯胺複合材料薄片的放電過 程中’流過電路中的電荷總量與奈米碳管/聚苯胺複合材料 上存儲的電荷量相等可知: 〇 CxAU=Ixt (i) 其中’ c代表電路中的電容量,⑽代表電路中的電壓 2J代表上述電路中的電流,f爲放電時間。每個奈米碳 & /聚苯胺複合材料薄片的電容量爲c.,因此,整個充電電 路中的電容量爲: 丄 c C. C , 10 (2) 200948879 根據比電容的定義可知,每個奈米碳管/聚笨胺複合材 •料薄片的比電容量Q爲: 其中’ w爲每一個奈米碳管/聚苯胺複合材料薄片的質 量。 將上迷的公式(1)和公式(2)分別代入公式(3)中, 可得: q _ 2Ixt ❹ 5一“ (4) 、,本,施例中,電流j爲lmA,放電時間,爲55〇s,每個 奈米奴管/聚苯胺複合材料薄片的質量m爲3.95mg,施加的 ,壓奶爲0.6V’將上述的數據代人公式(4)計算可知, 每個奈米碳管/聚苯胺複合材料薄片的比電容量cs約爲 464F/g (法拉每克)。 以理解 ❹ 田於眾术胺具有的法拉第電容明顯地大於 奈米碳管的雙電層電容’因此,所述奈米碳管/聚苯胺複合 材料的比電容量隨著其中的聚苯胺的質量分數的增加而增 加三具體地,在本實施财,隨著聚苯胺在所述奈米碳管曰/ 聚苯胺複合材料中所占的質量分數從2G%〜8G%增加,所得 的奈米碳管/聚苯胺複合材料的比電容量也相應地在 200F/g〜600F/g範圍内增加。 本技術方案第一實施例所獲得的奈米碳管/聚苯胺複 。材料的比電容量有明顯的提高。進而,所述的奈米碳管/ 導電聚合物複合材料可用作超級電容器、太陽能電池= 11 200948879 .料電池、鋰離子電池等儲能元件的電極材料。 . 請參閱圖4,本技術方案第二實施例所提供的一種奈 米碳管/導電聚合物複合材料2〇,該奈米碳管/導電聚合物 複合材料20包括多個奈米碳管22及多個導電聚合物纖維 24’所述多個奈米碳管22相互連接形成一有序排列的網絡 結構26。所述奈米碳管/導電聚合物複合材料2〇與第一實 施例所提供的奈米碳管/導電聚合物複合材料1〇結構大體 相同,其不同之處在於,第二實施例中的奈米碳管/導電聚 ©合物複合材料20包括一有序排列的奈米碳管網絡結構 26,該有序排列的奈米碳管網絡結構20中的奈米碳管22 沿一個方向或多個方向擇優取向排列。導電聚合物纖維Μ 依附在所述有序排列的奈米碳管網絡結構26上。 具體地,所述有序排列的奈米碳管網絡結構爲一有序 排列的奈米碳管層。該奈米碳管層包括至少一有序奈米碳 管薄膜,該有序奈米碳管薄膜通過直接拉伸一奈米碳管陣 列獲得。該有序奈米碳管薄膜包括沿同一方向擇優取向排 列^奈米碳管。所述相鄰的奈米碳管之間通過凡德瓦爾力 緊密結合。可以理解,所述有序奈米碳管層可以進一步包 括至二兩個重叠設置的有序奈米後管薄膜。相鄰的兩個有 序奈米碳管薄膜中的奈米碳管沿同一方向或沿不同方向排 列,具體地,相鄰的兩個有序奈米碳管薄膜中的奈米碳管 具有-交又角度a’ 〇度泌9〇度,具體可依據實際需 求製備。可以理解,由於有序排列的奈米碳管層中的有序 奈米碳管薄臈可重叠設置,故,上述有序奈米碳管層的厚 12 200948879 度不限’可根據實際需要製成具有任意厚度的有序排列的 JSi jJ> r山社 ta • 衆木硬官層。 本技術方案實施例所述的奈米碳管/導電聚合物複合 材料具有町優點:其―,由於所述奈米碳管/導電聚合物 複合材料中的奈米碳管相互連接形成一網絡結構,該網絡 -構中的奈米&管無序排列或有序排列,使得奈米碳管/ ,,聚σ物複合材料的比電容量大幅度提高。且克服奈米 碳管在先前技術中的奈米碳管/導電聚合物複合材料易團 ❹聚的缺點。其二,由於採用奈米碳管網絡結構作爲骨架, 從而使得所述的奈米碳管/導電聚合物材料的内阻較小。其 三,由於所述的奈米碳管網絡結構具有很好的柔性,可以 任心捲肖署折,從而所述的奈米碳管/導電聚合物複合材 料也具有較好的柔性,進一步地,使用上述的奈米碳管/ 導電聚合物複合材料有利於使得相應地儲能元件具有較好 的柔性。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟’以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 •似' 【圖式簡單說明】 圖1為本技術方案第一實施例的包含無序奈米碳管的 奈米碳管/導電聚合物複合材料的結構示意圖。 圖2為本技術方案第一實施例製備的奈米碳管/聚笨 13 200948879The amine composite sheet was subjected to constant current charge and discharge measurement. Among them, CELGARD ® diaphragm paper (polyethylene film) is used as separator, lmol/L (mole per liter) sulfuric acid solution is used as electrolyte, constant current is 1mA (milliampere), and the voltage range is 〇-〇.6V (volt). . The measurement data curve is shown in Fig. 3. From the charging and discharging partial curve, it is known that the discharge time of the carbon nanotube/polyaniline composite material is about 55 〇s. During the discharge of the above-mentioned carbon nanotube/polyaniline composite sheet, the total amount of charge flowing through the circuit is equal to the amount of charge stored on the carbon nanotube/polyaniline composite: 〇CxAU=Ixt ( i) where 'c represents the capacitance in the circuit, (10) represents the voltage in the circuit 2J represents the current in the above circuit, and f is the discharge time. The capacitance of each nanocarbon & / polyaniline composite sheet is c. Therefore, the capacitance in the entire charging circuit is: 丄c C. C , 10 (2) 200948879 According to the definition of specific capacitance, each The specific capacitance Q of the carbon nanotube/polyamino compound composite sheet is: where 'w is the mass of each nanocarbon tube/polyaniline composite sheet. Substituting the above formula (1) and formula (2) into equation (3), respectively: q _ 2Ixt ❹ 5 "(4),, in this example, the current j is lmA, discharge time, For 55 〇s, the mass m of each of the nanotube/polyaniline composite sheets is 3.95 mg, and the applied pressure is 0.6 V. The above data is calculated by the formula (4), each nanometer is known. The specific capacitance cs of the carbon tube/polyaniline composite sheet is about 464 F/g (Fara per gram). It is understood that the Faraday capacitance of the amine has a significantly higher capacitance than the electric double layer of the carbon nanotube. The specific capacity of the carbon nanotube/polyaniline composite increases with the increase in the mass fraction of the polyaniline therein. Specifically, in the present implementation, along with the polyaniline in the carbon nanotube / The mass fraction in the polyaniline composite increases from 2G% to 8G%, and the specific capacity of the obtained carbon nanotube/polyaniline composite increases in the range of 200F/g to 600F/g. The carbon nanotube/polyaniline obtained in the first embodiment of the technical solution has a significant increase in the specific capacitance of the material. Further, the carbon nanotube/conductive polymer composite material can be used as an electrode material of an energy storage component such as a supercapacitor or a solar cell=11 200948879. A battery, a lithium ion battery, etc. Please refer to FIG. 4, the technical solution A carbon nanotube/conductive polymer composite material 2 provided by the second embodiment, the carbon nanotube/conductive polymer composite 20 comprises a plurality of carbon nanotubes 22 and a plurality of conductive polymer fibers 24' The plurality of carbon nanotubes 22 are interconnected to form an ordered network structure 26. The carbon nanotube/conductive polymer composite 2〇 and the carbon nanotube/conductive polymerization provided by the first embodiment The composite structure has substantially the same structure, except that the carbon nanotube/conductive composite composition 20 of the second embodiment includes an ordered arrangement of carbon nanotube network structures 26, which has The carbon nanotubes 22 in the aligned carbon nanotube network structure 20 are preferably oriented in one direction or in multiple directions. Conductive polymer fibers 依 are attached to the ordered array of carbon nanotube networks 26. Specifically, the order The aligned carbon nanotube network structure is an ordered arrangement of carbon nanotube layers. The carbon nanotube layer comprises at least one ordered carbon nanotube film, and the ordered carbon nanotube film is directly stretched by one Obtained by a carbon nanotube array. The ordered carbon nanotube film comprises a carbon nanotube arranged in a preferred orientation in the same direction. The adjacent carbon nanotubes are closely coupled by van der Waals force. It is understood that The ordered carbon nanotube layer may further comprise two or two overlapping ordered rear tube films. The carbon nanotubes in the adjacent two ordered carbon nanotube films are in the same direction or along Arranged in different directions, specifically, the carbon nanotubes in the adjacent two ordered carbon nanotube films have a cross-section and an angle of a' 〇 degree, which can be prepared according to actual needs. It can be understood that since the ordered carbon nanotubes in the ordered carbon nanotube layer can be overlapped, the thickness of the ordered carbon nanotube layer is not limited to 200948879 degrees. In an orderly arrangement of JSi jJ with arbitrary thickness, r Shanshe ta • Zhongmu hard official layer. The carbon nanotube/conductive polymer composite material described in the embodiments of the present technical solution has the advantage of the town: that, because the carbon nanotubes in the carbon nanotube/conductive polymer composite are interconnected to form a network structure The nano- & tube in the network-structure is disorderly or ordered, so that the specific capacitance of the carbon nanotube/, poly-σ composite is greatly improved. Moreover, it overcomes the shortcomings of the nano carbon tube/conductive polymer composite in the prior art. Second, since the carbon nanotube network structure is used as the skeleton, the internal resistance of the carbon nanotube/conductive polymer material is small. Thirdly, since the carbon nanotube network structure has good flexibility, the carbon nanotube/conductive polymer composite material can also be flexibly folded, and further, the carbon nanotube/conductive polymer composite material has better flexibility. The use of the above-described carbon nanotube/conductive polymer composite is advantageous in that the corresponding energy storage element has better flexibility. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a carbon nanotube/conductive polymer composite material comprising a disordered carbon nanotube according to a first embodiment of the present technical solution. 2 is a carbon nanotube/poly stupid produced by the first embodiment of the present technical scheme 13 200948879

❹ 胺複合材料的掃描電鏡照片。 圖3為本技術方案第一實施例製備的奈米碳管/聚笨 胺複合材料的充放電曲線圖。 圖4為本技術方案第二實施例的包含有序奈米碳管的 奈米碳管/導電聚合物複合材料的結構示意圖。 【主要元件符號說明】 10, 20 12, 22 14, 24 16, 26 奈米碳管/導電聚合物複合材料 奈米碳管 導電聚合物纖維 網絡結構 ❹ 14Scanning electron micrograph of a ruthenium amine composite. Fig. 3 is a graph showing charge and discharge curves of a carbon nanotube/polyamide compound prepared by the first embodiment of the present invention. Fig. 4 is a schematic view showing the structure of a carbon nanotube/conductive polymer composite comprising ordered carbon nanotubes according to a second embodiment of the present invention. [Main component symbol description] 10, 20 12, 22 14, 24 16, 26 Carbon nanotube/conductive polymer composite Nano carbon tube Conductive polymer fiber Network structure ❹ 14

Claims (1)

200948879 "十、申請專利範圍 • 1.:種奈米碳管/導電聚合物複合材料,其包括:多個奈 米碳管,其改良在於哕太 你歹、該不未石反管/導電聚合物複合材 =進-步包括多個導電聚合物纖維,所述 管相互連接形成一網絡纟士構,所、f夕加播雨 丁厌 維複合在所述夺乎石^;^所述多個導電聚合物纖 管的管:: 或/和附著在所述奈米碳 圍^:了述的奈米碳管/導電聚合物複 磁技、述的網絡結構包括無序排列的奈米 3.心請專:二或有序排列的奈米碳管網絡結構。 合材料,其:圍第2項所述的奈米碳管/導電聚合物複 序#、 所述無序排列的網絡結構包括多個無 4 次各向同性排列的奈米碳管。 .範圍第3、項所述的奈米碳管/導電聚合物複 ^ 爾力相互吸:’f述無序排列的奈米碳管通過凡德瓦 © 5 , ^ 及引、相互纏繞、均勻分佈, X如申請專利範圍坌 刀即 合材料,其 第3項所述的奈米碳管/導電聚合物複 過凡括π添中,所述各向同性排列的多個奈米碳管通 表面。力相互吸引且平行於奈米碳管網絡結構的 合材料專^圍第2項所述的奈米碳管7導電聚合物複 方向十夕^ ,所述有序排列的網絡結構包括沿一個 7如由或多個方向擇優取向排列的夺米碳管。 .如申請專利範圍不木反Β 固第6項所述的奈米碳管/導電聚合物複 15 200948879 - 合材料,其中,所述有 .歹,J的奈米碳管層,該奈米石炭管構爲一有序排 米碳管薄膜。 曰匕括至少一個有序奈 8·如申請專利範圍第7 合材料,其中,所述有庠2不未厌以導電聚合物複 向擇優取向排列的奈米^未碳管薄膜包括沿同一方 通過凡德瓦爾力緊密2管’且相鄰的奈米碳管之間 ❹ 9. =專=圍第8項所述的奈米碳管/導電聚合物複 β枓’其中’所述有%胃 叠設置的有序奈米碳管薄未碳管層包括至少兩個重 10. 如申請專利範圍第9 合材料,其中,所述相鄰導電聚合物複 的奈米碳管具有-交又角戶個有序奈米碳管薄膜中 11. 如申請專利範圍第i項:二〒吵❻度。 合材料,其中,所述奈米碳==官壁:=物複 ❹ 不“ g及夕壁奈米碳管中的一種或幾種。 複第11項所述的奈米碳管/導電聚合物 複= 斗,其中,所述單壁奈米碳管的直徑爲05奈米 壁奈米碳管的直徑爲U奈米,奈米, 多壁奈米碳管的直徑爲1>5奈求〜5〇夺米。 13.=:請專利範圍第1項所述的奈米碳管/導電聚合物複 °料,其中,所述奈米碳管的長度爲 100奈米〜10 毫米。 14·如申請專利範圍第i項所述的奈米碳管/導電聚合物複 16 200948879 合材料,其中,叱 ^ 〇 ^述導電聚合物纖維材料爲聚苯胺、 Λ各塞吩、聚乙炔、聚對苯及聚對苯撑乙烯中 的一種或幾種。 入專利範圍第1項所述的奈米碳管/導電聚合物複 平]Γ;#;其中所述導電聚合物纖維的長度爲100奈 木〜10毫米。 16.如申請專利範 合材料,其中 〜Uo奈米。200948879 "10, the scope of application for patents 1. 1. A variety of carbon nanotubes / conductive polymer composites, including: a number of carbon nanotubes, the improvement is in the 哕 too you, the unrequited stone / conductive The polymer composite=advance step comprises a plurality of conductive polymer fibers, and the tubes are connected to each other to form a network gentleman structure, and the 夕 加 加 雨 雨 厌 厌 厌 厌 厌 厌 在 在a tube of a plurality of conductive polymer tubes:: or / and a carbon nanotube/conductive polymer re-magnetic technique attached to the nanocarbon ring, the network structure including the disordered arrangement of nanoparticles 3. Please select: Second or orderly arranged carbon nanotube network structure. A composite material comprising: the carbon nanotube/conductive polymer repeating # described in item 2, wherein the disordered network structure comprises a plurality of carbon nanotubes having no isotropic alignment. The carbon nanotubes/conductive polymers described in the third paragraph of the scope are mutually absorbing: 'f the disordered arrangement of the carbon nanotubes by van der Waals © 5, ^ and lead, intertwined, uniform Distribution, X is as claimed in the patent scope, the carbon nanotube/conductive polymer described in item 3 is repeated, and the isotropically arranged plurality of carbon nanotubes are connected. surface. The force is mutually attracted and parallel to the composition of the carbon nanotube network structure. The carbon nanotube 7 conductive polymer described in item 2 is in the opposite direction, and the ordered network structure includes along a 7 A rice carbon tube arranged in a preferred orientation by one or more directions. If the patent application scope is not the same as the carbon nanotube/conductive polymer compound 15 described in Item 6, 200948879 - the composite material, wherein the carbon nanotube layer of the 歹, J, the nano The carbon charcoal pipe is an ordered carbon nanotube film. Included in the at least one ordered naphtha, such as the seventh aspect of the patent application, wherein the nano-carbon tube film having the enthalpy 2 is not dissipated in a preferred orientation of the conductive polymer, including the same side Through the van der Valle force tightly 2 tubes 'and between adjacent carbon nanotubes ❹ 9. = special = around the 8th carbon nanotube / conductive polymer complex β 枓 'where 'there is % The ordered carbon nanotube thin carbon tube layer of the stomach stack includes at least two weights. 10. The material of the ninth material of the adjacent conductive polymer, wherein the carbon nanotubes of the adjacent conductive polymer have An ordered carbon nanotube film in the corner of the household. 11. If the patent application scope i: two noise. a composite material, wherein the nanocarbon == official wall: = material reclamation does not "g" and one or more of the niche carbon nanotubes. The carbon nanotubes / conductive polymerization described in the eleventh item物复 = 斗, wherein the diameter of the single-walled carbon nanotube is 05 nanometer wall carbon nanotube diameter of U nanometer, nanometer, multi-walled carbon nanotube diameter of 1> 〜5〇夺米. 13.=: The carbon nanotube/conductive polymer composite according to item 1 of the patent scope, wherein the length of the carbon nanotube is 100 nm to 10 mm. · The carbon nanotube/conductive polymer composite 16 200948879 as described in claim i, wherein the conductive polymer fiber material is polyaniline, bismuth, acetylene, poly One or more of p-benzene and poly-p-phenylene ethylene. The carbon nanotube/conductive polymer described in item 1 of the patent scope is Γ;#; wherein the length of the conductive polymer fiber is 100 Nai ~ 10 mm. 16. As applied for patents, where ~Uo Nano. 圍第1項戶斤、+、 _ ., ^ 吨的奈米碳管/導電聚合物複 ,所述導畲取A 聚合物纖維的直徑爲30奈米Around the first household, +, _., ^ tons of carbon nanotubes / conductive polymer complex, the diameter of the A polymer fiber is 30 nm 1717
TW097120167A 2008-05-30 2008-05-30 Carbon nanotube/conductive polymer composite TWI371463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097120167A TWI371463B (en) 2008-05-30 2008-05-30 Carbon nanotube/conductive polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097120167A TWI371463B (en) 2008-05-30 2008-05-30 Carbon nanotube/conductive polymer composite

Publications (2)

Publication Number Publication Date
TW200948879A true TW200948879A (en) 2009-12-01
TWI371463B TWI371463B (en) 2012-09-01

Family

ID=44870732

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097120167A TWI371463B (en) 2008-05-30 2008-05-30 Carbon nanotube/conductive polymer composite

Country Status (1)

Country Link
TW (1) TWI371463B (en)

Also Published As

Publication number Publication date
TWI371463B (en) 2012-09-01

Similar Documents

Publication Publication Date Title
Chen et al. Carbon-based supercapacitors for efficient energy storage
Heme et al. Recent progress in polyaniline composites for high capacity energy storage: A review
Kwon et al. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power
Du et al. Nanocellulose-based conductive materials and their emerging applications in energy devices-A review
Wang et al. Polypyrrole composites with carbon materials for supercapacitors
Shi et al. Nanostructured conductive polymers for advanced energy storage
CN101582302B (en) Carbon nano tube/conductive polymer composite material
Wu et al. Graphene based architectures for electrochemical capacitors
Xiong et al. Recent advances on multi-component hybrid nanostructures for electrochemical capacitors
Yuan et al. Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors
Dubal et al. Supercapacitors based on flexible substrates: an overview
Chen et al. Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2 hybrid films for high‐performance flexible pseudosupercapacitors
Javaid et al. Multifunctional structural supercapacitors based on polyaniline deposited carbon fiber reinforced epoxy composites
Liu et al. Independently double-crosslinked carbon nanotubes/polyaniline composite films as flexible and robust free-standing electrodes for high-performance supercapacitors
Cheng et al. Conducting polymer nanostructures and their derivatives for flexible supercapacitors
Yang et al. In situ growth of single-stranded like poly (o-phenylenediamine) onto graphene for high performance supercapacitors
Zhou et al. A facile approach to improve the electrochemical properties of polyaniline-carbon nanotube composite electrodes for highly flexible solid-state supercapacitors
Yibowei et al. Carbon-based nano-filler in polymeric composites for supercapacitor electrode materials: a review
Niu et al. Facile fabrication of flexible, bendable and knittable electrode with PANI in the well-defined porous rEGO/GP fiber for solid state supercapacitors
Chen et al. PEDOT: PSS/graphene/PEDOT ternary film for high performance electrochemical electrode
Dawouda et al. A brief overview of flexible CNT/PANI super capacitors
Fei et al. Polyaniline/reduced graphene oxide hydrogel film with attached graphite current collector for flexible supercapacitors
Srikanth et al. Perspectives on state-of-the-art carbon nanotube/polyaniline and graphene/polyaniline composites for hybrid supercapacitor electrodes
Bao et al. Functionalized graphene–polyaniline nanocomposite as electrode material for asymmetric supercapacitors
Wang et al. Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors