TW200946947A - Device and method for automatically calibrating transducers - Google Patents

Device and method for automatically calibrating transducers Download PDF

Info

Publication number
TW200946947A
TW200946947A TW97116212A TW97116212A TW200946947A TW 200946947 A TW200946947 A TW 200946947A TW 97116212 A TW97116212 A TW 97116212A TW 97116212 A TW97116212 A TW 97116212A TW 200946947 A TW200946947 A TW 200946947A
Authority
TW
Taiwan
Prior art keywords
signal
sensor
automatically correcting
microcontroller
output
Prior art date
Application number
TW97116212A
Other languages
Chinese (zh)
Inventor
Guang-Yu Lin
long-ju Chen
Original Assignee
Holtek Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holtek Semiconductor Inc filed Critical Holtek Semiconductor Inc
Priority to TW97116212A priority Critical patent/TW200946947A/en
Priority to JP2008134466A priority patent/JP2009273098A/en
Publication of TW200946947A publication Critical patent/TW200946947A/en

Links

Abstract

The present invention provides a device and method for automatically calibrating transducers. The device includes: an oscillator for generating a system frequency; a microcontroller coupled to the oscillator for receiving the system frequency; a counting unit arranged in the microcontroller for generating at least one clock signal according to the system frequency; a transformer having an input terminal coupled to the counting unit for receiving the clock signal and converting the clock signal to produce a plurality of exciting signals, and an output terminal for feeding back and coupling the exciting signals to an interrupt signal input terminal of the microcontroller, wherein the exciting signals include at least one main oscillating signal and at least one subsidiary oscillating signal, and the number of the clock signals is equal to that of the main oscillating signals; and a transducer having an input terminal coupled to the transformer, the transducer being excited by the exciting signals to generate an output signal for output. Accordingly, the microcontroller is able to dynamically adjust the frequency of the exciting signals according to the frequency change of the output signal of the transducer, so as to achieve the best transmission effect even when the external environment, such as changes in temperature or humidity.

Description

200946947 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種自動校正傳感器的裝置及方法,尤 指一種使微控制器可以隨著傳感器輸出訊號頻率的變化而 動態調整激發訊號頻率的裝置及方法者。 【先前技術】 習知超聲波傳感器(Transducer )係作為距離量測的應 用,通常會使用元件如下:1)微控制器:產生與傳感器輸 出訊號頻率相同的激發訊號頻率;2)變壓器:將時脈訊號 昇壓以供給傳感器;3)傳感器:發射與接收超聲波信號; 4)放大器:放大傳感器接收到的小信號。昔知的微控制器 產生的訊號頻率為一固定頻率,不會隨元件或溫度的變化 而變化。這樣的應用必須取決於一個精準的傳感器,但是 精準的傳感器其製造成本高,不利於產品價格的競爭力。 因此,如何研發出一種自動校正傳感器的裝置及方 法,藉由使微控制器可以隨著傳感器輸出訊號頻率的變化 而動態調整激發訊號頻率,當外在環境變化,如温度、溼 度有變時,仍能達到最好的傳輸效果,將是本發明所欲積 極探討之處。 【發明内容】 本發明提出一種自動校正傳感器的裝置及方法,其主 200946947 要目的為解決習知微控制器,其無法隨著傳感器輸出訊號 頻率的變化而動態調整激發訊號頻率的問題。 本發明之一樣態係為一種自動校正傳感器的裝置,包 括:一震盪器,用來產生一系統頻率;一微控制器,其與 該震盪器耦接,以接收該系統頻率;一計數單元,其設於 該微控制器,其根據該系統頻率以產生至少一時脈訊號; 一變壓器,其輸入端與該計數單元耦接,以接收該時脈訊 號並將該時脈訊號轉換產生複數激發訊號,其輸出端將該 ⑩ 些激發訊號回授耦合至該微控制器之中斷訊號輸入端,其 中該些激發訊號包含至少一主震盪訊號以及至少一餘震盪 訊號且該時脈訊號之數量與該主震盪訊號之數量相同;以 及一傳感器,其輸入端與該變壓器耦接,該傳感器經該些 激發訊號激發後產生一輸出訊號輸出。 本發明之另一樣態係為一種自動校正傳感器的方法,包 括下列步驟: (1) 設定一計數單元之時間參數,其中該計數單元設 G 於一微控制器; (2) 使該計數單元產生至少一時脈訊號; (3) 使該時脈訊號輸入一變壓器並將該時脈訊號轉換 產生複數激發訊號,其中該些激發訊號包含至少一主 震盪訊號以及至少一餘震盪訊號; (4) 使一傳感器將該些激發訊號轉換為複數輸出訊號 輸出; (5) 使該些激發訊號回授至該微控制器;以及 6 200946947 (6)使該計數單元根據該餘震盪訊號計算該傳感器的 輸出訊號頻率。 藉此,使微控制器可以隨著傳感器輸出訊號頻率的變 化而動態調整激發訊號頻率,當外在環境變化,如温度、 溼度有變時,仍能達到最好的傳輸效果。 【實施方式】 為充分瞭解本發明之目的、特徵及功效,茲藉由下述 ❹ 具體之實施例,並配合所附之圖式,對本發明做一詳細說 明,說明如後: 圖一及圖二分別為本發明一種自動校正傳感器的裝置 之系統方塊圖及餘震盪訊號波形示意圖。請同時參考圖一 及圖二.,本發明之自動校正傳感器的裝置1包括:一震盪 器2,用來產生一系統頻率;一微控制器3,其與該震盪器 2耦接,以接收該系統頻率;一計數單元4,其設於該微控 制器3,其根據該系統頻率以產生至少一時脈訊號5(例 ❿ 如,方波,但不限於此);一變壓器6,其輸入端與該計數 單元4耦接,以接收該時脈訊號5並將該時脈訊號5轉換 產生複數激發訊號7(例如,弦波,但不限於此),其輸出 端將該些激發訊號7回授耦合至該微控制器3之中斷訊號 輸入端12,其中該些激發訊號7包含至少一主震盪訊號10 以及至少一餘震盪訊號11且該時脈訊號5之數量與該主震 盪訊號10之數量相同;以及一傳感器8,其輸入端與該變 壓器6耦接,該傳感器8經該些激發訊號7激發後產生一 輸出訊號9(例如,無線輸出訊號)輸出,為了調整該些激 200946947 發訊號7之電壓位準,本發明較佳係包含一電壓箝位單元 16,設於該變壓器6之輸出端與該微控制器3之中斷訊號 輸入端12之間,而當該輸出訊號9發送至一物體丨3時, 該物體13將反射一反射訊號14至該傳感器8,並將該反 射訊號14經由該電壓箝位單元a回授至該微控制器3, 因此本發明較佳係包含一放大器丨5設於該微控制器3,其 與該電壓箝位單元16耦接,以放大該反射訊號14,且當 該些激發訊號7產生完畢時,該放大器15才會開啟,以放 ❹ 大該反射訊號14,而為了計算該傳感器8的輸出訊號9頻 率,本發明較佳係當該時脈訊號5產生完畢時,該計數單 元4根據該餘震盪訊號u至該中斷訊號輸入端12之中斷 週期計算該傳感器8的輪出訊號9頻率(如圖二所示),每 次中斷觸發將會將計數值紀錄下來,一般係紀錄於計數單 元4中’時間點ΤΙ、T2、T3…TN將可忐計數單元4的差值 產生。如此算出平均週期,Taverage= (T1+T2…+TN)/N),將 其倒數後便可計算出該傳感器8的輸出訊號9頻率,進而 ❹ 動態調整激發訊號7頻率。 圖三為本發明一種自動校正傳感器的方法之步驟流程 圖。其中該方法包括以下步驟: (1) 設定一計數單元之時間參數,其中該計數單元設於 一微控制器; (2) 使該計數單元產生至少一時脈訊號(例如,方波’ 但不限於此); (3) 使該時脈訊號輸入一變壓器並將該時脈訊號轉換 產生複數激發訊號(例如,弦波,但不限於此),其 200946947 中該些激發訊號包含至少一主震盪訊號以及至少 一餘震盪訊號; (4) 使一傳感器將該些激發訊號轉換為複數輸出訊號 輸出(例如,無線輸出訊號); (5) 使該些激發訊號回授至該微控制器,為了調整該些 激發訊號之電壓位準,本發明較佳係包含一電壓箝 位單元,設於該變壓器之輸出端與該微控制器之中 斷訊號輸入端之間,而當該無線輸出訊號發送至一 ⑩ 物體時,該物體將反射一反射訊號至該傳感器,並 將該反射訊號經由該電壓箝位單元回授至該微控 制器,因此本發明較佳係包含一放大器設於該微控 制器,其與該電壓箝位單元耦接,以放大該反射訊 號,且當該些激發訊號產生完畢時,該放大器才會 開啟,放大該反射訊號;以及 (6 )當該時脈訊號產生完畢時,使該計數單元根據該餘 震盪訊號計算該傳感器的輸出訊號頻率。 ⑩ 藉此,使微控制器可以隨著傳感器輸出訊號頻率的變 化而動態調整激發訊號頻率,當外在環境變化,如温度、 溼度有變時,仍能達到最好的傳輸效果。 由以上所述可以清楚地明瞭,本發明係提供一種自動 校正傳感器的裝置及方法,藉由使微控制器可以隨著傳感 器輸出訊號頻率的變化而動態調整激發訊號頻率,當外在 環境變化,如温度、溼度有變時,仍能達到最好的傳輸效 果。因此,本發明在專利的角度上具備了新穎性與進步性, 市場上更具備了產業上的利用性,足適貴審查委員給予 200946947 專利。 以上已將本發明專利申請案做一詳細說明,惟以上所 述者,僅為本發明專利申請案之較佳實施例而已,當不能 限定本發明專利申請案實施之範圍。即凡依本發明專利申 請案申請範圍所作之均等變化與修飾等,皆應$仍屬本發明 專利申請案之專利涵盖範圍内。 【圖式簡單說明】 ® 圖一為本發明一種自動校正傳感器的裝置之系統方塊 圖。 圖二為本發明之餘震盪訊號波形示意圖。 圖三為本發明一種自動校正傳感器的方法之步驟流程 圖。 【主要元件符號說明】 ^ (1)-(6)本發明之一種自動校正傳感器的方法的步驟流 程圖步驟編號; 1自動校正傳感器的裝置 2震盪器 3微控制器 4計數單元 5時脈訊號 6變壓器 7激發訊號 200946947 8傳感器 9輸出訊號 10主震盪訊號 11餘震盪訊號 12中斷訊號輸入端 13物體 14反射訊號 15放大器 ® 16電壓箝位單元200946947 IX. Description of the Invention: [Technical Field] The present invention relates to an apparatus and method for automatically correcting a sensor, and more particularly to a method for enabling a microcontroller to dynamically adjust an excitation signal frequency as a function of a frequency of a sensor output signal. Devices and methods. [Prior Art] The conventional ultrasonic transducer (Transducer) is used as a distance measurement. The components are usually used as follows: 1) Microcontroller: generates the same excitation signal frequency as the sensor output signal frequency; 2) Transformer: the clock The signal is boosted to supply the sensor; 3) the sensor: transmitting and receiving ultrasonic signals; 4) the amplifier: amplifying the small signal received by the sensor. The frequency of the signal generated by the known microcontroller is a fixed frequency that does not change with component or temperature. Such an application must depend on a precise sensor, but precision sensors are costly to manufacture and are not conducive to product price competitiveness. Therefore, how to develop an automatic correction sensor device and method, by allowing the microcontroller to dynamically adjust the excitation signal frequency as the sensor output signal frequency changes, when the external environment changes, such as temperature, humidity changes, Still achieving the best transmission effect will be the active discussion of the present invention. SUMMARY OF THE INVENTION The present invention provides an apparatus and method for automatically correcting a sensor, the main purpose of which is to solve a conventional microcontroller that cannot dynamically adjust the frequency of the excitation signal as the frequency of the sensor output signal changes. The apparatus of the present invention is an apparatus for automatically correcting a sensor, comprising: an oscillator for generating a system frequency; a microcontroller coupled to the oscillator to receive the system frequency; a counting unit, The controller is configured to generate at least one clock signal according to the system frequency; a transformer, the input end of which is coupled to the counting unit to receive the clock signal and convert the clock signal to generate a complex excitation signal And outputting the 10 excitation signals to the interrupt signal input end of the microcontroller, wherein the excitation signals include at least one main oscillation signal and at least one residual oscillation signal, and the number of the clock signals is The number of main oscillation signals is the same; and a sensor whose input end is coupled to the transformer, and the sensor is excited by the excitation signals to generate an output signal output. Another aspect of the present invention is a method for automatically correcting a sensor, comprising the following steps: (1) setting a time parameter of a counting unit, wherein the counting unit is set to G in a microcontroller; (2) causing the counting unit to generate At least one clock signal; (3) inputting the clock signal into a transformer and converting the clock signal to generate a plurality of excitation signals, wherein the excitation signals include at least one main oscillation signal and at least one residual oscillation signal; (4) a sensor converts the excitation signals into a plurality of output signals; (5) feedbacks the excitation signals to the microcontroller; and 6 200946947 (6) causes the counting unit to calculate the output of the sensor according to the residual signal Signal frequency. Thereby, the microcontroller can dynamically adjust the excitation signal frequency as the frequency of the sensor output signal changes, and the best transmission effect can be achieved when the external environment changes, such as temperature and humidity change. [Embodiment] In order to fully understand the object, features and effects of the present invention, the present invention will be described in detail by the following specific embodiments and the accompanying drawings, The two are respectively a system block diagram of the device for automatically correcting the sensor and a waveform diagram of the aftershock signal. Referring to FIG. 1 and FIG. 2 simultaneously, the apparatus 1 for automatically correcting the sensor of the present invention comprises: an oscillator 2 for generating a system frequency; and a microcontroller 3 coupled to the oscillator 2 for receiving The system frequency is a counting unit 4, which is disposed in the microcontroller 3, and generates at least one clock signal 5 according to the system frequency (for example, a square wave, but is not limited thereto); a transformer 6, the input thereof The terminal is coupled to the counting unit 4 to receive the clock signal 5 and convert the clock signal 5 to generate a complex excitation signal 7 (for example, a sine wave, but is not limited thereto), and the output end of the excitation signal 7 The feedback signal input terminal 12 is coupled to the microcontroller 3, wherein the excitation signals 7 include at least one main oscillation signal 10 and at least one residual oscillation signal 11 and the number of the clock signal 5 and the main oscillation signal 10 The sensor 8 is coupled to the transformer 6 and the sensor 8 is activated by the excitation signal 7 to generate an output signal 9 (for example, a wireless output signal) output, in order to adjust the stimulus 200946947 Signal No. 7 The present invention preferably includes a voltage clamping unit 16 disposed between the output of the transformer 6 and the interrupt signal input terminal 12 of the microcontroller 3, and when the output signal 9 is sent to an object. At 3 o'clock, the object 13 will reflect a reflected signal 14 to the sensor 8, and the reflected signal 14 is fed back to the microcontroller 3 via the voltage clamping unit a. Therefore, the present invention preferably includes an amplifier 丨5. The micro-controller 3 is coupled to the voltage clamping unit 16 to amplify the reflected signal 14, and when the excitation signals 7 are generated, the amplifier 15 is turned on to release the reflection. In order to calculate the frequency of the output signal 9 of the sensor 8, the present invention is preferably such that when the clock signal 5 is completed, the counting unit 4 is interrupted according to the period of the residual signal u to the interrupt signal input terminal 12. Calculate the frequency of the round-out signal 9 of the sensor 8 (as shown in Figure 2). Each time the interrupt is triggered, the count value will be recorded. Generally, it is recorded in the counting unit 4, 'time point ΤΙ, T2, T3...TN will be available. The difference value of the 忐 counting unit 4 is generatedIn this way, the average period is calculated, and Taverage=(T1+T2...+TN)/N), and the frequency of the output signal 9 of the sensor 8 can be calculated by reciprocal counting, and then the frequency of the excitation signal 7 is dynamically adjusted. Figure 3 is a flow chart showing the steps of a method for automatically correcting a sensor of the present invention. The method includes the following steps: (1) setting a time parameter of a counting unit, wherein the counting unit is disposed in a microcontroller; (2) causing the counting unit to generate at least one clock signal (eg, a square wave 'but not limited to (3) inputting the clock signal into a transformer and converting the clock signal to generate a complex excitation signal (for example, a sine wave, but not limited thereto), wherein the excitation signals in 200946947 include at least one main oscillation signal And at least one oscillating signal; (4) causing a sensor to convert the excitation signals into a plurality of output signal outputs (eg, wireless output signals); (5) causing the excitation signals to be fed back to the microcontroller for adjustment The voltage level of the excitation signal, the present invention preferably includes a voltage clamping unit disposed between the output end of the transformer and the interrupt signal input end of the microcontroller, and when the wireless output signal is sent to the 10 when the object reflects a reflected signal to the sensor, and the reflected signal is fed back to the microcontroller via the voltage clamping unit, so the present invention The system includes an amplifier disposed on the microcontroller, coupled to the voltage clamping unit to amplify the reflected signal, and when the excitation signals are generated, the amplifier is turned on to amplify the reflected signal; and 6) When the clock signal is generated, the counting unit is configured to calculate the output signal frequency of the sensor according to the residual signal. 10 By this, the microcontroller can dynamically adjust the excitation signal frequency as the frequency of the sensor output signal changes. When the external environment changes, such as temperature and humidity change, the best transmission effect can still be achieved. It can be clearly seen from the above that the present invention provides an apparatus and method for automatically correcting a sensor, by allowing the microcontroller to dynamically adjust the excitation signal frequency as the output frequency of the sensor changes, and when the external environment changes, If the temperature and humidity change, the best transmission effect can still be achieved. Therefore, the present invention has novelty and progress in terms of patents, and the market is more industrially usable, and the appropriate examination committee gives the 200946947 patent. The above is a detailed description of the present patent application, but the above description is only a preferred embodiment of the present invention, and the scope of implementation of the patent application of the present invention is not limited. That is, the equivalent changes and modifications made to the scope of application of the patent application of the present invention are still within the scope of the patent application of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a system block diagram of an apparatus for automatically correcting a sensor of the present invention. FIG. 2 is a schematic diagram of the waveform of the aftershock signal of the present invention. Figure 3 is a flow chart showing the steps of a method for automatically correcting a sensor of the present invention. [Description of main component symbols] ^ (1)-(6) Steps of the method for automatically correcting the sensor of the present invention Step number: 1 Device for automatically correcting the sensor 2 Oscillator 3 Microcontroller 4 Counting unit 5 Clock signal 6 transformer 7 excitation signal 200946947 8 sensor 9 output signal 10 main oscillation signal 11 aftershock signal 12 interrupt signal input 13 object 14 reflection signal 15 amplifier ® 16 voltage clamp unit

Claims (1)

200946947 十、申請專利範圍: 1. 一種自動校正傳感器的裝置,包含有: 一震盪器,用來產生一系統頻率; 一微控制器,其與該震盪器耦接,以接收該系統頻率; 一計數單元,其設於該微控制器,其根據該系統頻率 以產生至少一時脈訊號; 一變壓器,其輸入端與該計數單元耦接,以接收該時 脈訊號並將該時脈訊號轉換產生複數激發訊號, β 其輸出端將該些激發訊號回授耦合至該微控制器 之中斷訊號輸入端,其中該些激發訊號包含至少 一主震盪訊號以及至少一餘震盪訊號且該時脈訊 號之數量與該主震盪訊號之數量相同;以及 一傳感器,其輸入端與該變壓器耦接,該傳感器經該 些激發訊號激發後產生一輸出訊號輸出。 2. 如申請專利範圍第1項所述之自動校正傳感器的裝置, 更包含一電壓箝位單元,設於該變壓器之輸出端與該微 〇 控制器之中斷訊號輸入端之間,以調整該些激發訊號之 電壓位準。 3. 如申請專利範圍第2項所述之自動校正傳感器的裝置, 其中該些輸出訊號為無線輸出訊號。 4. 如申請專利範圍第3項所述之自動校正傳感器的裝置, 其中當該無線輸出訊號發送至一物體時,該物體將反射 一反射訊號至該傳感器,並將該反射訊號經由該電壓箝 位單元回授至該微控制器。 5. 如申請專利範圍第4項所述之自動校正傳感器的裝置, 12 200946947 更包含一放大器設於該微控制器,其與該電壓箝位單元 搞接’以放大該反射訊號。 6. 如申請專利範圍第5項所述之自動校正傳感器的裝置, 其中當該些激發訊號產生完畢時,該放大器才會開啟, 以放大該反射訊號。 7. 如申請專利範圍第1項所述之自動校正傳感器的裝置, 其中當該時脈訊號產生完畢時,該計數單元根據該餘震 盪訊號至該中斷訊號輸入端之中斷週期計算該傳感器 的輸出訊號頻率。 8. 如申請專利範圍第1項所述之自動校正傳感器的裝置, 其中該時脈訊號為方波。 9. 如申請專利範圍第1項所述之自動校正傳感器的裝置, 其中該激發訊號為弦波。 10. 一種自動校正傳感器的方法,包含下列步驟: (1) 設定一計數單元之時間參數,其中該計數單元設於 一微控制器; (2) 使該計數單元產生至少一時脈訊號; (3) 使該時脈訊號輸入一變壓器並將該時脈訊號轉換 產生複數激發訊號,其中該些激發訊號包含至少一 主震盪訊號以及至少一餘震盪訊號; (4) 使一傳感器將該些激發訊號轉換為複數輸出訊號 輸出; (5) 使該些激發訊號回授至該微控制器;以及 (6) 使該計數單元根據該餘震盪訊號計算該傳感器的 輸出訊號頻率。 13 200946947 11. 如申請專利範圍第10項所述之自動校正傳感器的裝 置,更包含一電壓箝位單元,設於該變壓器之輸出端與 該微控制器之中斷訊號輸入端之間,以調整該些激發訊 號之電壓位準。 12. 如申請專利範圍第11項所述之自動校正傳感器的方 法,其中該些輸出訊號為無線輸出訊號。 13. 如申請專利範圍第12項所述之自動校正傳感器的方 法,其中當該無線輸出訊號發送至一物體時,該物體將 β 反射一反射訊號至該傳感器,並將該反射訊號經由該電 壓箝位單元回授至該微控制器。 14. 如申請專利範圍第13項所述之自動校正傳感器的方 法,更包含一放大器設於該微控制器,其與該電壓箝位 單元耦接,以放大該反射訊號。 15. 如申請專利範圍第14項所述之自動校正傳感器的方 法,其中當該些激發訊號產生完畢時,該放大器才會開 啟,以放大該反射訊號。 q 16.如申請專利範圍第10項所述之自動校正傳感器的方 法,其中當該時脈訊號產生完畢時,該計數單元根據該 餘震盪訊號至該中斷訊號輸入端之中斷週期計算該傳 感器的輸出訊號頻率。 17. 如申請專利範圍第10項所述之自動校正傳感器的方 法,其中該些時脈訊號為方波。 18. 如申請專利範圍第10項所述之自動校正傳感器的方 法,其中該激發訊號為弦波。 14200946947 X. Patent application scope: 1. A device for automatically correcting a sensor, comprising: an oscillator for generating a system frequency; a microcontroller coupled to the oscillator to receive the system frequency; a counting unit, which is disposed in the microcontroller, and generates at least one clock signal according to the system frequency; a transformer whose input end is coupled to the counting unit to receive the clock signal and convert the clock signal to generate a plurality of excitation signals, wherein the output signals are coupled to the interrupt signal input terminals of the microcontroller, wherein the excitation signals include at least one main oscillation signal and at least one residual oscillation signal and the clock signal The number is the same as the number of the main oscillation signals; and a sensor whose input end is coupled to the transformer, and the sensor is excited by the excitation signals to generate an output signal output. 2. The device for automatically correcting a sensor according to claim 1, further comprising a voltage clamping unit disposed between the output end of the transformer and the interrupt signal input end of the micro-controller to adjust the The voltage level of the excitation signal. 3. The device for automatically correcting a sensor as claimed in claim 2, wherein the output signals are wireless output signals. 4. The apparatus for automatically correcting a sensor according to claim 3, wherein when the wireless output signal is sent to an object, the object reflects a reflected signal to the sensor, and the reflected signal is clamped via the voltage. The bit unit is fed back to the microcontroller. 5. The apparatus for automatically correcting a sensor as described in claim 4, 12 200946947 further comprising an amplifier disposed on the microcontroller, coupled to the voltage clamping unit to amplify the reflected signal. 6. The apparatus for automatically correcting a sensor according to claim 5, wherein when the excitation signals are generated, the amplifier is turned on to amplify the reflected signal. 7. The device for automatically correcting a sensor according to claim 1, wherein when the clock signal is generated, the counting unit calculates the output of the sensor according to the interruption period of the residual signal to the input of the interrupt signal. Signal frequency. 8. The apparatus for automatically correcting a sensor according to claim 1, wherein the clock signal is a square wave. 9. The device for automatically correcting a sensor according to claim 1, wherein the excitation signal is a sine wave. 10. A method for automatically correcting a sensor, comprising the steps of: (1) setting a time parameter of a counting unit, wherein the counting unit is disposed in a microcontroller; (2) causing the counting unit to generate at least one clock signal; (3) The clock signal is input to a transformer and the clock signal is converted to generate a plurality of excitation signals, wherein the excitation signals include at least one main oscillation signal and at least one residual oscillation signal; (4) causing a sensor to activate the excitation signals Converting to a complex output signal output; (5) returning the excitation signals to the microcontroller; and (6) causing the counting unit to calculate the output signal frequency of the sensor based on the residual signal. 13 200946947 11. The device for automatically correcting a sensor according to claim 10, further comprising a voltage clamping unit disposed between the output end of the transformer and the interrupt signal input end of the microcontroller to adjust The voltage level of the excitation signals. 12. The method of automatically correcting a sensor as described in claim 11, wherein the output signals are wireless output signals. 13. The method of automatically correcting a sensor according to claim 12, wherein when the wireless output signal is sent to an object, the object reflects β a reflected signal to the sensor, and the reflected signal is transmitted through the voltage. The clamp unit is fed back to the microcontroller. 14. The method of automatically correcting a sensor of claim 13, further comprising an amplifier disposed on the microcontroller coupled to the voltage clamping unit to amplify the reflected signal. 15. The method of automatically correcting a sensor according to claim 14, wherein when the excitation signals are generated, the amplifier is turned on to amplify the reflected signal. The method of automatically correcting a sensor according to claim 10, wherein when the clock signal is generated, the counting unit calculates the sensor according to the interruption period of the residual signal to the input of the interrupt signal. Output signal frequency. 17. The method of automatically correcting a sensor according to claim 10, wherein the clock signals are square waves. 18. The method of automatically correcting a sensor of claim 10, wherein the excitation signal is a sine wave. 14
TW97116212A 2008-05-02 2008-05-02 Device and method for automatically calibrating transducers TW200946947A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97116212A TW200946947A (en) 2008-05-02 2008-05-02 Device and method for automatically calibrating transducers
JP2008134466A JP2009273098A (en) 2008-05-02 2008-05-22 Apparatus and method of automatic calibration transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116212A TW200946947A (en) 2008-05-02 2008-05-02 Device and method for automatically calibrating transducers

Publications (1)

Publication Number Publication Date
TW200946947A true TW200946947A (en) 2009-11-16

Family

ID=41439217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116212A TW200946947A (en) 2008-05-02 2008-05-02 Device and method for automatically calibrating transducers

Country Status (2)

Country Link
JP (1) JP2009273098A (en)
TW (1) TW200946947A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808948A (en) * 1987-09-28 1989-02-28 Kulicke And Soffa Indusries, Inc. Automatic tuning system for ultrasonic generators
JPH0461919U (en) * 1990-10-03 1992-05-27
US5897569A (en) * 1997-04-16 1999-04-27 Ethicon Endo-Surgery, Inc. Ultrasonic generator with supervisory control circuitry

Also Published As

Publication number Publication date
JP2009273098A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JPWO2010041394A1 (en) Sound playback device
WO2005077029A3 (en) Transducer in-situ testing apparatus and method
WO2010098346A1 (en) Ultrasonic wave propagation time measurement system
JP2009238226A5 (en)
WO2009125843A1 (en) Ultrasonic wave propagation time measurement system
JP2015190817A (en) ultrasonic sensor
JP2002366292A (en) Coordinate input device
CN102670250B (en) Array calibration system and method of ultrasonic transducer
JP2013195211A (en) Ultrasonic sensor and calibration method of the same
JP2010078323A (en) Obstacle detector
RU2007135950A (en) TECHNOLOGICAL CONNECTION FOR DIAGNOSTICS OF THE TECHNOLOGICAL PROCESS
DK1157258T3 (en) Method and apparatus for measuring the propagation time of a signal, in particular an ultrasonic signal
TW200946947A (en) Device and method for automatically calibrating transducers
JPH08105871A (en) Acoustic electrical effect type ultrasonic transmitting/ receiving device and ultrasonic transmitting/receiving method
JP2013221755A (en) Ultrasonic sensor and calibration method therefor
JP2011030755A (en) Non-contact ultrasonic tonometer
KR100702895B1 (en) Testing device for electronic apparatus having the ultrasonic sensor
CN101581784A (en) Device and method for automatic correcting sensor
JP2001108739A (en) Circuit for measuring distance using ultrasonic sensor, method for adjusting sensitivity therefor, and method for measuring distance using circuit
JP2001349773A (en) Sound calibrator
JP2004156917A (en) Ultrasonic thickness measuring method and device
KR20150076870A (en) Apparatus for compensating the output of ultrasonic sensor
JPH02276983A (en) Ultrasonic range finder
TWI310008B (en)
WO2018076586A1 (en) Method, terminal and system for driving ultrasonic conversion device to play ultrasonic waves