TW200945815A - Method for operation of synchronous HARQ in a wireless communicatino system - Google Patents

Method for operation of synchronous HARQ in a wireless communicatino system Download PDF

Info

Publication number
TW200945815A
TW200945815A TW98114235A TW98114235A TW200945815A TW 200945815 A TW200945815 A TW 200945815A TW 98114235 A TW98114235 A TW 98114235A TW 98114235 A TW98114235 A TW 98114235A TW 200945815 A TW200945815 A TW 200945815A
Authority
TW
Taiwan
Prior art keywords
time
slot
harq
time slot
station
Prior art date
Application number
TW98114235A
Other languages
Chinese (zh)
Other versions
TWI407722B (en
Inventor
Chun-Yuan Chiu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/112,304 external-priority patent/US8248973B2/en
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW200945815A publication Critical patent/TW200945815A/en
Application granted granted Critical
Publication of TWI407722B publication Critical patent/TWI407722B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A method of operating synchronous hybrid automatic repeat request (HARQ) between a transmitting station and a receiving station in a Time-Division Duplex (TDD) communication system includes configuring, at the transmitting station, a plurality of HARQ processes; transmitting data packets to the receiving station using the plurality of HARQ processes, wherein the data packets do not include HARQ process identification information; receiving, from the receiving station, a plurality of HARQ feedback packets indicative of whether the data packets were correctly received at the receiving station, wherein the plurality of HARQ feedback packets do not include HARQ process identification information and wherein the plurality of HARQ feedback packets are received in a downlink slot; and mapping, by the transmitting station, the plurality of HARQ feedback packets to the plurality of HARQ processes.

Description

200945815 i 六、發明說明: 【發明所屬之技術領域】 本發明是有關於無線通訊之領域,且特別是有關於一 種用以於無線通訊系統中執行同步混合式自動重複請求 之系統與方法。 【先前技術】 於無線通訊系統中,無線裝置不需經由線路連接即能 達成通訊。由於無線系統已與人們的生活習習相關,使得 支援多媒體服務之無線通訊系統之需求日益成長,例如語 音、音訊、視訊、檔案、以及網路下載等等。為了支援此 些多媒體服務,應用於無線通訊網路中之各種無線通訊協 定已被開發’以滿足人們對於多媒體服務之與日俱增的需 求。 一種通訊協定係為寬頻分碼多重存取(Wideband Code Division Multiple Access,W-CDMA),其係發表於由 多個國際標準研究組織(standard development organization) 所通力合作之第三代合作夥伴計畫(3rd Generation Partnership Project,3GPPTM)。W-CDMA 係為一具有寬頻帶 之展頻行動空中介面(air interface),且使用直接序列(direct sequence)之分碼多重存取(Code Division Multiple Access, CDMA)。 在一些實施例中,W-CDMA可支援通用行動通訊系 統(Universal Mobile Telecommunication System, UMTS)。 UMTS通訊系統於非連線(Connectionless)與連線導向 200945815 (Connection-oriented)之通訊網路中,可提供電話 (telephony)以及承載服務(bearerservice),來供應點對點 (Point-to-Point,P2P)以及點對多點(p〇int_t〇_Multip〇int, P2MP)之間的通訊。在一些UMTS通訊系統中,空中介面 存取方式係可建構於通用陸上無線電存取網路(Universal200945815 i VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of wireless communications, and more particularly to a system and method for performing synchronous hybrid automatic repeat request in a wireless communication system. [Prior Art] In a wireless communication system, a wireless device can achieve communication without a line connection. As wireless systems have become relevant to people's lives, the demand for wireless communication systems that support multimedia services is growing, such as voice, audio, video, archives, and web downloads. To support these multimedia services, various wireless communication protocols used in wireless communication networks have been developed to meet the growing demand for multimedia services. One type of communication protocol is Wideband Code Division Multiple Access (W-CDMA), which is published in a third-generation partner program co-operated by several international standards development organizations. (3rd Generation Partnership Project, 3GPPTM). W-CDMA is a spread spectrum mobile air interface with a wide frequency band and uses Code Division Multiple Access (CDMA) for direct sequence. In some embodiments, W-CDMA can support the Universal Mobile Telecommunication System (UMTS). The UMTS communication system provides telephony and bearer services for connection-oriented (Point-to-Point, P2P) communication networks in Connectionless and Connection-oriented 200945815 (Connection-oriented). And communication between point-to-multipoint (p〇int_t〇_Multip〇int, P2MP). In some UMTS communication systems, the null intermediation access method can be constructed on a universal land radio access network (Universal).

Terrestrial Radio Access Networks, UTRAN)上,UTRAN 亦 可稱為UMTS陸上無線電存取網路(亦稱為UTRAN),或 稱為演進式UTRAN(Evolved UTRAN,E-TRAN),或稱為長 ❹期演進技術(Long Term Evolution)。 典型的無線通訊系統係操作於分頻雙工(Frequency Division Duplex, FDD)、或操作於分時雙工(Time 〇Μ8ί〇ηOn Terrestrial Radio Access Networks (UTRAN), UTRAN may also be called UMTS terrestrial radio access network (also known as UTRAN), or evolved UTRAN (Evolved UTRAN, E-TRAN), or long-term evolution. Technology (Long Term Evolution). A typical wireless communication system operates on a Frequency Division Duplex (FDD) or in a time division duplex (Time 〇Μ8ί〇η)

Duplex, TDD)之模式中。在FDD系統中,上鍵(upUnk)傳 輸或下鏈(downlink)傳輸係操作於不同的頻道(channel) 中,亦即為操作於不同的頻率中。操作於此FDD系統之 無線裝置可同時進行傳送與接收。然而,在TDD無線通 訊系統中,則係藉由上鏈傳輸與下鏈傳輸輪流使用頻道, 以使其等能操作於相同的通訊頻道。在一些系統中,例如 於即將來臨的第四代(4G)無線系統中,TDD之技術將佔有 優勢,原因在於TDD能有效地支援非對稱性之資料交換。 舉例來說,當系統以非對稱性進行傳送時,系統可增 加頻譜之使用率。 請參照第1圖,其%示以無線軌系統為例之傳統之 TDD訊框結構之訊號流程圖。訊框1〇〇係由可用於下鏈及 上鏈傳輸之多個期間組成,其係稱為傳輸時間間隔 (Transmission Time Intervals TTIs) 1〇2。如第 1 圖所示,訊 5 200945815Duplex, TDD) mode. In an FDD system, an upUnk transmission or a downlink transmission operates in different channels, i.e., operates in different frequencies. The wireless device operating in this FDD system can transmit and receive simultaneously. However, in the TDD wireless communication system, the channels are used in turn by the uplink transmission and the downlink transmission so that they can operate on the same communication channel. In some systems, such as the upcoming fourth generation (4G) wireless system, TDD technology will have an advantage because TDD can effectively support asymmetric data exchange. For example, when the system transmits with asymmetry, the system can increase the spectrum usage. Please refer to FIG. 1 , which shows the signal flow chart of the traditional TDD frame structure taking the wireless rail system as an example. Frame 1 is composed of multiple periods that can be used for downlink and uplink transmission. It is called Transmission Time Intervals (TITIs) 1〇2. As shown in Figure 1, News 5 200945815

TW5395PA 框100包括一上鏈子訊框1〇4及一下鏈子訊框1〇6。於使 用上鍵子Sfl框104時,下鏈點(n〇(le)108傳送上鏈傳輸 no,以例如使上鏈點112接收。在下鏈子訊框1〇6中, 上鏈點112傳送下鏈傳輸U4,以例如使得下鏈點1〇8接 收。上鏈子訊框104與下鏈子訊框106可各包括任何數量 之TTI 102 ’故訊框1 〇〇之大小係可改變。在一些變化應 用中,可根據待傳送之上鏈資料與下鏈資料之比例,以動 態地調整訊框1〇〇之結構。 無線電介面之協定架構(protocol stack)例如可包括錯 誤偵測。兩種錯誤偵測之方法係為自動重複請求 (Automatic Repeat Request, ARQ)及混合式自動重複請求 (Hybrid Automatic Repeat Request,HARQ),其係用以控制 當所傳送之資料通過無線網路時出現之錯誤。在ARq中, 接收器偵測訊框錯誤,並請求重新傳送。而HARQ係為 ARQ錯誤控制方法之變化應用,且還增加了前向錯誤更正 碼(forward error correction bit)來更正訊框錯誤。 在一些變化應用中’ HARQ可設定以操作為使用一停 止與等待(Stop-And-Wait,SAW)模式、或一選擇性重送 (Selective Repeat,SR)模式。於SAW模式中,在傳送或重 傳下一個資料封包前,HARQ傳送器必需等待由HARQ接 收器回傳之一 HARQ回返(feedback)封包,例如為一確認 信號(ACK)或一否認信號(NACK)。在一些變化應用中,可 使用包括1位元序號(sequence number)之一相關控制訊 號’來區別新的傳輸以及重新傳輸。在等待HARQ回返封 包的期間中,傳輸頻道可能未被利用。 200945815 i ντ _/j:7jrrvThe TW5395PA frame 100 includes an upper chain frame 1〇4 and a lower chain frame 1〇6. When the upper key Sfl block 104 is used, the lower link point (n〇(le) 108 transmits the uplink transmission no, for example, to receive the upper link point 112. In the lower chain subframe 1〇6, the upper link point 112 is transmitted. The chain transmits U4, for example, such that the downlink point 1 〇 8 is received. The uplink subframe 104 and the downlink subframe 106 can each include any number of TTIs 102 'the size of the frame 1 可 can be changed. In some variations In the application, the structure of the frame can be dynamically adjusted according to the ratio of the uplink data to the downlink data to be transmitted. The protocol stack of the radio interface can include, for example, error detection. The method of measurement is Automatic Repeat Request (ARQ) and Hybrid Automatic Repeat Request (HARQ), which are used to control errors when the transmitted data passes through the wireless network. In the ARq, the receiver detects a frame error and requests retransmission. The HARQ is applied to the change of the ARQ error control method, and a forward error correction bit is added to correct the frame error. In some variant applications, ' HARQ can be set to operate using a Stop-And-Wait (SAW) mode, or a Selective Repeat (SR) mode. In SAW mode, in transmission or heavy Before passing the next data packet, the HARQ transmitter must wait for a HARQ return packet to be returned by the HARQ receiver, such as an acknowledgment signal (ACK) or a negative signal (NACK). In some variations, The new transmission and retransmission are distinguished using one of the 1-bit sequence number associated control signals'. The transmission channel may not be utilized while waiting for the HARQ return packet. 200945815 i ντ _/j:7jrrv

傳送裝置(或傳送台)可包括一 HARQ傳送器(HARQ 相仿地 一 HARQ 接 收器(HARQ RX)機制。HARQ傳送器與HARQ接收器機制 可為軟體及/或硬體之任意組合,並設定以使傳送及/或接 收裝置執行傳送及/或接收HARQ傳輸之功能。HARQ傳 送器及HARQ接收器機制可分別設立於傳送及接收裝置 之MAC子層(sublayer)之中。 請參照第2圖,其繪示為傳統使用一個 HARQ程序The transmitting device (or transmitting station) may include a HARQ transmitter (HARQ-like HARQ receiver (HARQ RX) mechanism. The HARQ transmitter and HARQ receiver mechanisms may be any combination of software and/or hardware, and are set to The transmitting and/or receiving apparatus performs the function of transmitting and/or receiving HARQ transmission. The HARQ transmitter and the HARQ receiver mechanism can be respectively set in the MAC sublayer of the transmitting and receiving apparatus. Referring to FIG. 2, It is shown as a traditional use of a HARQ program

e 於進行傳輸時之訊號流程圖。在一變化應用中,HARQ程 序(process)係為SAW協定之一例,且可用以控制資料的傳 輸/重新傳輸。如第2圖所示,HARQ傳送器202傳送一資 料封包204至一 HARQ接收器206。HARQ傳送器202於 進行傳輸之前可編程此資料封包204,而HARQ接收器206 可解碼此資料封包204。若彳貞測出一錯誤,則可丢棄所接 收之資料封包204 ’且HARQ接收器206可藉由傳送否認 信號(NACK)208至HARQ傳送器202,以要求一重新傳 輸。在接收到否認信號(NACK)208時,HARQ傳送器202e Signal flow diagram for transmission. In a variant application, the HARQ process is an example of a SAW protocol and can be used to control the transmission/retransmission of data. As shown in FIG. 2, the HARQ transmitter 202 transmits a data packet 204 to a HARQ receiver 206. The HARQ transmitter 202 can program the data packet 204 prior to transmission, and the HARQ receiver 206 can decode the data packet 204. If an error is detected, the received data packet 204' can be discarded and the HARQ receiver 206 can request a retransmission by transmitting a negative acknowledgement (NACK) 208 to the HARQ transmitter 202. Upon receiving the negative signal (NACK) 208, the HARQ transmitter 202

重新傳送一資料封包204’至HARQ接收器206。在HARQ 接收器206正確地接收到重新傳送之資料封包204’後, HARQ接收器206傳送確認信號(ACK)210至HARQ傳送 器202。之後,HARQ傳送器202再傳送一新的資料封包 212至HARQ接收器206。 HARQ於多頻道之SAW模式(即使用N個平行之 HARQ程序)中,例如可藉由降低控制訊號之負載 (overhead),來改善傳輸效率。在等待先前傳送資料封包的 7 200945815 TW5395PA τ , HARQ回返封包(ACK/NACK)時,係可進行其它的傳輸。 在一變化應用中’一 HARQ程序識別器(或HARQ程序識 別碼(ID))係可包含於傳輸中’如此,HARQ接收器206能 依照所接收之一資料封包來識別出此HARQ程序。 請參照第3圖,其繪示為傳統於使用多個HARQ程 序進^亍傳輸時之§fL號流程圖。如第3圖所示,在資料封包 204被一第一 HARQ程序傳送出去之後,HARq傳送器2〇2 係經由一第二HARQ程序傳送出一資料封包302。HARQ 接收器206在成功地接收到資料封包302後,傳送一確認 〇 信號(ACK)304至HARQ傳送器2〇2。之後,HARQ傳送 器202可傳送一新的資料封包306至HARQ接收器206。 為了符合IEEE 802.16系列之標準’ HARQ可設定為 同步或非同步且具有適應性或非適應性調變(modulation) 之功能,且可包括應用於不同形式之HARQ程序的編碼方 式’例如連續結合(chase combining)、或累進冗餘操作A data packet 204' is retransmitted to the HARQ receiver 206. After the HARQ receiver 206 correctly receives the retransmitted data packet 204', the HARQ receiver 206 transmits an acknowledgment signal (ACK) 210 to the HARQ transmitter 202. Thereafter, the HARQ transmitter 202 transmits a new data packet 212 to the HARQ receiver 206. In the SAW mode of multi-channel (i.e., using N parallel HARQ programs), HARQ can improve transmission efficiency by, for example, reducing the overhead of the control signal. While waiting for the 7 200945815 TW5395PA τ and HARQ return packet (ACK/NACK) of the previously transmitted data packet, other transmissions are possible. In a variant application, a HARQ program identifier (or HARQ program identification code (ID)) may be included in the transmission. Thus, the HARQ receiver 206 can identify the HARQ program in accordance with one of the received data packets. Please refer to FIG. 3, which is a flow chart of the §fL number conventionally used when multiple HARQ programs are used for transmission. As shown in FIG. 3, after the data packet 204 is transmitted by a first HARQ program, the HARq transmitter 2 〇 2 transmits a data packet 302 via a second HARQ program. After successfully receiving the data packet 302, the HARQ receiver 206 transmits an acknowledgment 〇 signal (ACK) 304 to the HARQ transmitter 2 〇 2. Thereafter, the HARQ transmitter 202 can transmit a new data packet 306 to the HARQ receiver 206. In order to comply with the IEEE 802.16 family of standards, ' HARQ can be set to be synchronous or asynchronous and has the function of adaptive or non-adaptive modulation, and can include coding methods applied to different forms of HARQ programs, such as continuous combining ( Chase combining), or progressive redundancy operation

(incremental redundancy operation)。當實作於同步 HARQ 時’HARQ傳送/重傳的動作係僅能在預定的時間中被傳送 〇 出去。於FDD系統中,由於連續上鏈及下鏈傳輸係在不 同的頻道中’故同步HARQ可使用相同的封包來回傳輸時 間(Round Trip Time,RTT)來實現。對應至一個特定資料封 包或HARQ回返封包的HARQ程序,則是利用一回返時 槽(time slot)來決定。在TDD系統中,因為多個資料封包 或HARQ回返封包係於單一個時槽中被接收,因此,僅僅 一個回返時槽可能不足以用來決定HARQ程序識別碼。 於本發明所揭露之實施例中,係用以克服一個或多個 8 ,200945815 上述所提及之問題。 【發明内容】 根據本發明之一方面’提出一種方法,應用於一分時 雙工(Time-Division Duplex,TDD)之通訊系統中,用以於一 傳送台與一接送台之間執行同步混合式自動重複請求 (Hybrid Automatic Repeat Request,HARQ)。本方法於傳送 台設定多個HARQ程序。本方法利用此多個HARQ程序 © 傳送多個資料封包至該接收台’其中此些資料封包係不包 含HARQ程序識別資訊。而且,本方法接收從接收台而來 的多個HARQ回返封包,用以指示此些資料封包是否於接 收台正確地被接收,其中多個回返封包係不包含HARQ程 序識別資訊’且其中此多個HARQ回返封包係於一下鏈時 槽(downlink slot)中被接收。本方法還由傳送台映射 (mapping)此多個HARQ回返封包至此多個HARQ程序。 根據本發明之另一方面,提出一種方法,應用於一 ❹TDD之通訊系統中,用以於一傳送台與一接送台之間執行 HARQ。本方法於接收台接收從傳送台而來的多個資料封 包,且係來自於多個HARQ程序,其中此些資料封包係不 包含HARQ程序識別資訊。接收台產生多個HARq回返 封包,用以指示此些資料封包是否於接收台正確地被接 收,其中此些HARQ回返封包係不包含HARQ程序識別 資訊。本方法還由接收台於一預定時間傳送此些HARQ回 返封包,且係不傳送HARQ程序識別資訊。 根據本發明之另一方面,提出一種方法,用以於一傳 9 200945815(incremental redundancy operation). The operation of the 'HARQ transmission/retransmission' can be transmitted only for a predetermined time when it is implemented in the synchronous HARQ. In the FDD system, since the continuous uplink and downlink transmission are in different channels, the synchronous HARQ can be implemented using the same packet Round Trip Time (RTT). The HARQ program corresponding to a specific data packet or HARQ return packet is determined by a time slot. In a TDD system, since multiple data packets or HARQ return packets are received in a single time slot, only one return time slot may not be sufficient to determine the HARQ program identification code. In the embodiment disclosed by the present invention, it is used to overcome one or more of the problems mentioned above, 200945815. SUMMARY OF THE INVENTION According to one aspect of the present invention, a method is proposed for use in a Time-Division Duplex (TDD) communication system for performing synchronous mixing between a transfer station and a transfer station. Hybrid Automatic Repeat Request (HARQ). The method sets a plurality of HARQ programs at the transmitting station. The method utilizes the plurality of HARQ programs © to transmit a plurality of data packets to the receiving station, wherein the data packets do not contain HARQ program identification information. Moreover, the method receives a plurality of HARQ return packets from the receiving station to indicate whether the data packets are correctly received at the receiving station, wherein the plurality of return packets do not include the HARQ program identification information 'and many of them The HARQ return packets are received in the downlink slot. The method also maps the plurality of HARQ return packets to the plurality of HARQ programs by the transmitting station. According to another aspect of the present invention, a method is proposed for use in a TDD communication system for performing HARQ between a transmitting station and a pick-up station. The method receives a plurality of data packets from the transmitting station at the receiving station and is from a plurality of HARQ programs, wherein the data packets do not include HARQ program identification information. The receiving station generates a plurality of HARQ return packets to indicate whether the data packets are correctly received at the receiving station, wherein the HARQ return packets do not contain HARQ program identification information. The method also transmits, by the receiving station, the HARQ return packets at a predetermined time and does not transmit the HARQ program identification information. According to another aspect of the present invention, a method is proposed for use in a transmission 9 200945815

i WDJWA 送台設定HARQ程序,且係應用於具有一接收台之一 tdd 之通訊系統中。本方法決定一回返時槽Fj,其中回返時槽 Fi係為接收台於提供一 HARQ回返資料時之一時槽,且對 應於傳送台於一上鏈時槽i使用一 HARQ程序傳送至接收 台之一資料封包。本方法決定一傳輸時槽Ti,其中傳輸時 槽乃係為傳送台在時槽丨傳送資料封包的HaRq程序,其 下一筆^料封包的傳輸時槽。且本方法決定一上鏈時槽之 一數目凡,且係介於上鏈時槽丨以及緊接於傳輸時槽乃 前之一時槽之間。而且,本方法設定HARQ程序之一數量❹ N為Ni之一最大數值’ i係介於卜1至&之間,其中&表 示為一訊框中用於上鏈之時槽的一數目。 根據本發明之另一方面,提出一種無線通訊台,用以 於一 TDD之通訊系統中進行無線通訊。無線通訊台包括 至少一記憶體及至少一處理器。至少一記憶體用以儲存資 料與指令。至少一處理器設定以存取記憶體。至少一處理 器於執行指令時還設定以用來執行下列步驟。設定多個 HARQ程序。而且,至少一處理器還利用多個HARQ程序❹ 傳送資料封包,其中此些資料封包不包含HARq程序識別 資訊,以及接收多個HARQ回返封包,用以指示此些資料 封包是否正確地被接收,其中此多個回返封包係不包含 HARQ程序識別資訊,且其中此多個HARq回返封包係於 一下鏈時槽中被接收。至少一處理器還用以映射此多個 HARQ回返封包至此多個HARQ程序。 根據本發明之另一方面,提出一種無線通訊台,用以 於一 TDD之通訊系統中進行無線通訊。無線通訊台包括 200945815 1 w ^fjyjrrs. 至少一記憶體及至少一處理器。至少一記憶體用以儲存資 料與指令。至少一處理器設定以存取記憶體。至少一處理 器於執行指令時還設定以用來執行下列步驟。接收來自於 多個HARQ程序之多個資料封包,其中此些資料封包係不 包含HARQ程序識別資訊。至少一處理器還於執行指令後 用以產生多個HARQ回返封包,用以指示此些資料封包是 否正確地被接收,其中此些HARQ回返封包係不包含 HARQ程序識別資訊,以及於一預定時間傳送該些HARq ❹回返封包,且係不傳送HARQ程序識別資訊。 根據本發明之另一方面,提出一種傳送台,應用於一 TDD之通訊系統中,此系統具有一接收台。傳送台包括至 少一 §己憶體及至少一處理器。至少一記憶體用以儲存資料 與指令。至少一處理器設定以存取記憶體。至少一記憶體 於執行指令時還設定以用來執行下列步驟。決定一回返時 其中回返時槽Fi係為接收台於提供一 harq回返 負料時之一時槽,且對應於傳送台於一上鏈時槽i使用一 參HARQ匕程序傳送至接收台之一資料封包。至少一處理器於 執行和令後還用以決定一傳輸時槽Ti,其中傳輸時槽乃 係為傳送台在時槽i傳送資料封包的HARQ程序,其下一 筆資料封包的傳輸時槽,及決定一上鏈時槽之一數目Ni, 且係介於上鏈時槽i以及緊接於傳輸時槽A前之一時槽之 間而且,至少一處理器於執行指令後還用以設定HARQ 程序之一數量N為Ni之一最大數值,丨係介於丨=1至汪 之間其中a表示為一訊框中用於上鏈之時槽的一數目β 11 200945815 I W5395FA 【實施方式】 於本發明之實施例中,係提供一方法及系統,用以映 射(mapping)HARQ回返封包至其所回應之一 HARQ程 序’以使一 HARQ接收器與一 HARQ傳送器可於TDD通 訊系統中實現同步HARQ。基地台(Base Station, BS)可包 括一 HARQ接收器,而用戶台(Subscriber Stati〇n, SS)可包 括一 HARQ傳送器。擇一地,HARQ接收器可設置於用戶 台中’而HARQ傳送器可設置於基地台中。接收台接收從 傳送台而來的資料封包,並以回返(feedback)封包回覆至此❹ 傳送台。傳送台係用以傳送資料封包至接收台,且接收從 接收台而來的回返封包。 第4圖繪示為TDD通訊系統中之同步HARQ之訊號 流程圖。由於上鏈及下鏈時間的限制,下鏈點及上鏈點被 迫得延遲其等之傳輸,直至合適的上鏈或下鏈子訊框。舉 例來說’在接收到HARQ接收器206回應於一資料封包 402之傳輸所傳送之確認信號(ACK)400後’ HARQ傳送器 傳送一資料封包4〇4。然而,一直到下鏈子訊框1〇6之前,〇 HARQ接收器206都無法傳送一確認信號(ACK)406至 HARQ傳送器202。如此,在處理資料封包404來決定其 是否正確地被接收後,HARQ接收器206係被迫要等待一 延遲408。因此,一個下鏈時槽可能會包含對應至多個 HARQ程序之多個確認信號及/或否認信號。 於一些實施例中,當於TDD中執行多個HARQ程序 之同步HARQ時,對應至多個HARQ程序之多個資料封 包的HARQ回返封包(確認信號/否認信號)可能需要於一 12 200945815 個下鏈時槽中被傳送。其原因可能在於,下鏈子訊框1〇6 及上鏈子訊框104之大小不一致,或於HARQ傳送器及 HARQ接收器之處理時間不一致。 舉例來說,第5圖繪示為TDD系統中之多個harq 程序之訊號流程圖。HARQ傳送器202使用此多個HARQ 程序,且可分別於時槽i〗、is及匕中傳送資料封包5〇〇、 502及504。在接收到資料封包502時,HARQ接收器2〇6 會處理資料封包502以決定此傳輸中是否有錯誤產生。於 一實施例中,基地台延遲時間dBs5〇6係用以處理於基地 台所接收之資料時所需的延遲。接著,回返5〇8例如會被 HARQ接收器206傳送至HARQ傳送器2〇2。由於基二台i WDJWA sends the station to set the HARQ program and applies it to the communication system with one of the receiving stations tdd. The method determines a return time slot Fj, wherein the return time slot Fi is one time slot when the receiving station provides a HARQ return data, and corresponds to the transmitting station in a uplink time slot i is transmitted to the receiving station by using a HARQ program. A data packet. The method determines a transmission time slot Ti, wherein the transmission time slot is a HaRq program for transmitting a data packet in the time slot of the transmitting station, and a transmission time slot of the next data packet. Moreover, the method determines the number of slots in a winding up, and is between the slot and the slot immediately before the transmission. Moreover, the method sets the number of HARQ programs, ❹ N is one of Ni, and the maximum value 'i is between Bu 1 and &, & is expressed as a number of time slots for the uplink in a frame. . According to another aspect of the present invention, a wireless communication station is proposed for wireless communication in a TDD communication system. The wireless communication station includes at least one memory and at least one processor. At least one memory is used to store data and instructions. At least one processor is set to access the memory. At least one processor is also configured to perform the following steps when executing the instructions. Set multiple HARQ programs. Moreover, at least one processor further uses a plurality of HARQ programs to transmit data packets, wherein the data packets do not include HARQ program identification information, and receive multiple HARQ return packets to indicate whether the data packets are correctly received. The plurality of return packets do not include HARQ program identification information, and wherein the plurality of HARq return packets are received in a slot time slot. At least one processor is further configured to map the plurality of HARQ return packets to the plurality of HARQ programs. According to another aspect of the present invention, a wireless communication station is proposed for wireless communication in a TDD communication system. The wireless communication station includes 200945815 1 w ^fjyjrrs. At least one memory and at least one processor. At least one memory is used to store data and instructions. At least one processor is set to access the memory. At least one processor is also configured to perform the following steps when executing the instructions. Receiving multiple data packets from multiple HARQ programs, wherein the data packets do not contain HARQ program identification information. At least one processor is further configured to generate a plurality of HARQ return packets to indicate whether the data packets are correctly received, wherein the HARQ return packets do not include HARQ program identification information, and are for a predetermined time. The HARQ ❹ return packets are transmitted and the HARQ program identification information is not transmitted. According to another aspect of the present invention, a transmitting station is proposed for use in a TDD communication system having a receiving station. The transfer station includes at least one memory and at least one processor. At least one memory is used to store data and instructions. At least one processor is set to access the memory. At least one memory is also set to perform the following steps when the instruction is executed. When determining the return, the return slot Fi is a time slot for the receiving station to provide a harq returning negative material, and corresponding to the transmitting station when the uplink is in a chain, the slot i is transmitted to the receiving station using a parameter HARQ匕 program. Packet. At least one processor is further configured to determine a transmission time slot Ti, wherein the transmission time slot is a HARQ program for transmitting data packets in the time slot i of the transmitting station, and a transmission time slot of the next data packet, and Determining the number Ni of one slot in the uplink, and between the slot i and the slot immediately before the slot A in the uplink, and at least one processor is used to set the HARQ program after executing the command. One of the numbers N is the maximum value of one of Ni, and the 丨 is between 丨=1 and 汪, where a is a number of time slots for the winding in a frame β 11 200945815 I W5395FA [Embodiment] In an embodiment of the present invention, a method and system are provided for mapping a HARQ return packet to one of the HARQ programs it responds to enable a HARQ receiver and a HARQ transmitter to be implemented in a TDD communication system. Synchronize HARQ. The base station (BS) may include a HARQ receiver, and the subscriber station (Subscriber Stati〇n, SS) may include a HARQ transmitter. Alternatively, the HARQ receiver can be placed in the subscriber station' and the HARQ transmitter can be placed in the base station. The receiving station receives the data packet from the transmitting station and replies to the transmitting station with a feedback packet. The transmitting station is configured to transmit a data packet to the receiving station and receive a return packet from the receiving station. Figure 4 is a flow chart showing the signal of the synchronous HARQ in the TDD communication system. Due to the limitations of the uplink and the downlink time, the lower and upper chain points are forced to delay their transmission until the appropriate uplink or downlink subframe. For example, the HARQ transmitter transmits a data packet 4〇4 after receiving the acknowledgment signal (ACK) 400 transmitted by the HARQ receiver 206 in response to the transmission of a data packet 402. However, until the downlink subframe 1〇6, the HARQ receiver 206 cannot transmit an acknowledgment signal (ACK) 406 to the HARQ transmitter 202. Thus, after processing the data packet 404 to determine if it was received correctly, the HARQ receiver 206 is forced to wait for a delay 408. Therefore, a downlink time slot may contain multiple acknowledgment signals and/or acknowledgment signals corresponding to multiple HARQ procedures. In some embodiments, when performing synchronous HARQ of multiple HARQ procedures in TDD, HARQ return packets (acknowledgement signals/denial signals) corresponding to multiple data packets of multiple HARQ programs may need to be decoupled in one 12 200945815 The time slot is transmitted. The reason may be that the sizes of the downlink subframe 1〇6 and the uplink subframe 104 are inconsistent, or the processing time of the HARQ transmitter and the HARQ receiver is inconsistent. For example, Figure 5 illustrates a signal flow diagram for multiple harq programs in a TDD system. The HARQ transmitter 202 uses the plurality of HARQ programs and can transmit the data packets 5, 502, and 504 in the time slots i, is, and 分别, respectively. Upon receipt of the data packet 502, the HARQ receiver 2〇6 processes the data packet 502 to determine if an error has occurred in the transmission. In one embodiment, the base station delay time dBs5〇6 is the delay required to process the data received by the base station. Next, the return 5〇8 is transmitted, for example, by the HARQ receiver 206 to the HARQ transmitter 2〇2. Due to the base station

延遲時間dBS 506之長度’回返508係僅包括對應於上鏈 時槽h所傳送之資料封包5〇〇之HARQej返封包(確認信 號/否認信號)。在基地台延遲時間dBs5〇6中處理資料封包 502後且w HARQ接收器206可傳送包括對應至資料封 包5〇2之HARQ回返封包之回返51〇時,Harq接收器 2〇6會等待額外的下鍵延遲“ 512,直到下鍵子訊框 /相仿地在基地台延遲時間dBs5〇6中處理資料封包 mV且當Η’接收器2〇6可傳送包括對應至資料封 奋之HARQ回返封包之回返510時,HARQ接收器 延遲“516,直到下鍵子訊框 燐.i回返5iG還可包括對應至於上鏈時 I4封包5186"HARQ回返封包。雖然未繪 點處理ΗΓ〗Ι’ ^,在—些純結構巾,會產生於下鏈 點處理HARQ回返封包的延遲(例如用戶台延遲時間 13 200945815 1 t dss),直到下鏈點能夠於下一個可使用之上鏈時槽傳送或 重傳資料封包。 如此,一個下鏈時槽中接收到的回返可包括一個以上 的HARQ程序及-個以上的資料封包的確認信號/否認信 號。因此,於一實施例中,HARQ傳送器2〇2所接收之回 返510可包括對應至資料封包502、5〇4及/或518的一確 認信號/否認信號。 於使用多個HARQ程序之傳統同步TDD系統中,係 包括明確的HARQ程序識別資料(或稱為HARQ程序識別❹ 碼)訊號、並包括HARQ回返封包,以用來使無線通訊台, 例如一上鏈點或下鏈點,有能力決定與其它HARQ回返封 包同時被傳送之一特定HARQ回返封包,其所對應的 HARQ程序及/或資料封包。然而,由於包括了 harq程 序識別碼,因此增加了訊號負載,並降低了系統之整體效 能。 請參照第6A圖’其繪示無線通訊系統之一例之一方 塊圖。本發明之實施例係可實作於此系統中。於一實施例 Q 中,無線通訊系統600係為一 UMTS系統。如第6A圖所 示,範例性之無線通訊系統600例如包括一核心網路(core network)610 ; —個或多個無線電網路控制器(radio network controller)620,如:無線電網路控制器620a及620b); — 個或多個基地台(basestation)630,如:基地台630a、630b、 630c、630d以及630e ;以及一個或多個用戶台(subscriber station)640,如用戶台 640a、640b、640c、640d、640e、 以及640f。需知者為,於不同的無線系統中,亦可使用不 14 200945815 同的術语以及功能。 核心網路61〇例如為一網路或一組通訊網路,用以提 供通说服務。核心網路610例如用以提供使用者流量的切 換、路由(route)、以及傳輸。此外,核心網路61〇例如還 具有資料庫及網路管理的功能。於一些實施例中,核心網 路係了建構於全球行動通訊系統(Global System forThe length of the delay time dBS 506 'return 508' includes only the HARQej return packet (confirmation signal/denial signal) corresponding to the data packet transmitted by the slot h of the uplink. After processing the data packet 502 in the base station delay time dBs5〇6 and the w HARQ receiver 206 can transmit the return 51包括 including the HARQ return packet corresponding to the data packet 5〇2, the Harq receiver 2〇6 will wait for additional The down key delays "512 until the lower key subframe/synchronously processes the data packet mV in the base station delay time dBs5〇6 and when the 'receiver 2〇6 can transmit the HARQ return packet corresponding to the data seal Upon returning to 510, the HARQ receiver delays "516 until the next key subframe 燐.i returns 5iG may also include an I4 packet 5186" HARQ return packet corresponding to the uplink. Although the unprocessed point processing ΗΓ Ι ' ^, in some pure structural towels, will result in the delay of the downlink point processing HARQ return packet (such as user station delay time 13 200945815 1 t dss), until the downlink point can be under One can use the upper chain time slot to transmit or retransmit data packets. Thus, the return received in a downlink time slot may include more than one HARQ procedure and more than one acknowledgement/denial signal for the data packet. Thus, in one embodiment, the return 510 received by the HARQ transmitter 2 可 2 may include an acknowledgement/denial signal corresponding to the data packets 502, 5〇4, and/or 518. In a conventional synchronous TDD system using multiple HARQ programs, an explicit HARQ program identification data (or HARQ program identification code) signal is included, and a HARQ return packet is included to enable the wireless communication station, for example, to The link point or the downlink point has the ability to decide to transmit a specific HARQ return packet, which corresponds to the HARQ program and/or data packet, with other HARQ return packets. However, due to the inclusion of the harq program identification code, the signal load is increased and the overall efficiency of the system is reduced. Please refer to FIG. 6A for a block diagram showing an example of a wireless communication system. Embodiments of the invention may be implemented in this system. In an embodiment Q, the wireless communication system 600 is a UMTS system. As shown in FIG. 6A, the exemplary wireless communication system 600 includes, for example, a core network 610; one or more radio network controllers 620, such as a radio network controller. 620a and 620b); - one or more base stations 630, such as: base stations 630a, 630b, 630c, 630d, and 630e; and one or more subscriber stations 640, such as subscriber stations 640a, 640b , 640c, 640d, 640e, and 640f. Need to know, in different wireless systems, you can also use the same terminology and functions. The core network 61 is, for example, a network or a group of communication networks for providing a general service. Core network 610, for example, is used to provide switching, routing, and transmission of user traffic. In addition, the core network 61 has, for example, a database and network management functions. In some embodiments, the core network is built on a Global System for Mobile System (Global System for

Mobile Communications,GSM)之網路架構。核心網路 61〇 例如包括任何有線及/或無線連線之組合。 © 各無線電網路控制器620例如為任何型式的通訊裝 置’且用來執行於範例性之無線通訊系統600中。於此領 域中,已有許多此種通訊裝置被開發出來。於無線通訊系 統中’各無線電網路控制器620例如係用以負責資源管 理、行動管理、加密等等。此外,各無線電網路控制器62〇 例如係用以負責控制一個或多個基地台630。雖然未繪示 於圖中’然而一個或多個無線電網路控制器620例如可經 由一個或多個閘道器(gateway)及諸如此類的裝置,來連接 • 至核心網路610。 各無線電網路控制器620例如包括一個或多個以下 的元件:一中央處理單元(central processing unit,CPU), 用以執行電腦執行指令來執行各種程序及方法;隨機存取 記憶體(random access memory, RAM)及唯讀記憶體(read only memory,ROM),用以存取及儲存資料以及電腦程式 指令;記憶體(memory或storage),用以儲存資料及資訊; 資料庫’用以儲存圖表(table)、清單、或其它資料結構; 以及輸入/出裝置、介面、以及天線等等。各此些元件於此 15 200945815Mobile Communications, GSM) network architecture. The core network 61〇 includes, for example, any combination of wired and/or wireless connections. © Each radio network controller 620 is, for example, any type of communication device' and is used in an exemplary wireless communication system 600. In this field, many such communication devices have been developed. In the wireless communication system, each radio network controller 620 is for example responsible for resource management, action management, encryption, and the like. In addition, each radio network controller 62 is, for example, responsible for controlling one or more base stations 630. Although not shown in the figures, one or more radio network controllers 620 may be connected to the core network 610, for example, via one or more gateways and the like. Each radio network controller 620 includes, for example, one or more of the following components: a central processing unit (CPU) for executing computer executable instructions to execute various programs and methods; random access memory (random access memory) Memory, RAM) and read only memory (ROM) for accessing and storing data and computer program instructions; memory (memory or storage) for storing data and information; database 'for storing A table, list, or other data structure; and input/output devices, interfaces, and antennas, and the like. Each of these components is here 15 200945815

IW5395FA 領域中係為具有通常知識者所周知’故不於此詳述。 基地台630例如為任何型式的通訊裝置,用以於無線 通訊系統中’傳送資料及/或通訊至一個或多個用戶台 640,及/或經由此些用戶台接收資料及/或通訊。於此領域 中’已有許多此種通訊裝置被開發出來。於一些實施例 中’基地台630例如還被稱為B點(n〇de-B)、一基地收發 系統(base transceiver system, BTS)、以及一存取 point)等等。基地台630與無線電網路控制器62〇之間的 通訊例如為任何有線及/或無線連線的組合。基地台63〇 〇 與用戶台640之間的通訊例如為無線通訊。於一範例性之 實施例中,在基地台630可與一個或多個用戶台64〇進行 =線通訊的範圍内,基地台㈣例如還具有廣播/接收的功 I。廣播的範圍可能會受到功率級(1)〇你打level)、地點、 以及干擾(物理、電氣等等)的影響而有所變化。 第圖繪示為基地台63〇之架構之一例之方塊圖。 6B圖所不,各基地台63〇例如包括一個或多個以下 人至少一中央處理單元631,用以執行電腦執行指❹ 二執行各種程序及方法;隨機存取記憶體632及唯讀記 二6幻’用以存取及儲存資料以及電腦程式指令;記憶 表、、、l L用以儲存資料及資訊;資料庫635,用以儲存圖 637 π單或其它資料結構;以及輸入/出裝置636、介面 有通常等等。各此些元件於此領域中係為具 过%者所周知,故不於此詳述。 訊裝置\參照至第6A圖’用戶台640例如為任何型式的通 用以於無線通訊系統中’傳送資料及/或通訊至一 16 200945815 個或多個基地台630,及/或經由此些用戶台接收資料及/ 或通訊。於一些範例性的實施例中,用戶台440例如為一 固定的天線、或行動式的用戶台,且亦可稱之為用戶設備 (user equipment)。用戶台640例如包括伺服器、客戶機 (client)、大型主機(mainfraine)、桌上型電腦、膝上型電腦、 網路電腦、工作站、個人數位助理(personal digital assistant, PDA)、平板電腦(tabletpc)、掃描器、通話裝置、傳呼器 (Pager)、照相機、音樂裝置等等。於一實施例中,用戶台 640例如為一行動運算裝置。 第6C _示為用戶台_之架構之—例之方塊圖。 如第6C圖所示,各用戶么 σ 0例如包括一個或多個以下 70 至夕中央處理早元641,用 令來執行各種程序及方法.隨心用以執灯電純仃扣 ㈣w / 隨機存取記憶體642及唯讀記 體644,用以儲存#料及f訊 嗯 表、清單、或其㈣似姓 枓庫 用儲存圖 647、以^始 構;以及輸入/出裝置646、介面 有ii 各此些元件於此領域中係為具 有通常知識者所周知,故不於此詳述。 具The IW5395FA field is well known to those of ordinary skill and is therefore not described in detail herein. The base station 630 is, for example, any type of communication device for transmitting data and/or communication to one or more subscriber stations 640 in a wireless communication system, and/or receiving data and/or communications via such subscriber stations. Many such communication devices have been developed in this field. In some embodiments, the base station 630 is also referred to as, for example, a point B (n〇de-B), a base transceiver system (BTS), and an access point, and the like. The communication between the base station 630 and the radio network controller 62A is, for example, a combination of any wired and/or wireless connection. The communication between the base station 63〇 and the subscriber station 640 is, for example, wireless communication. In an exemplary embodiment, the base station (4), for example, also has a broadcast/received work I, within a range in which the base station 630 can communicate with one or more subscriber stations 64. The range of broadcasts may vary depending on the power level (1), level, location, and interference (physical, electrical, etc.). The figure is a block diagram showing an example of the architecture of the base station 63〇. In the case of FIG. 6B, each base station 63 includes, for example, one or more of the following persons, at least one central processing unit 631, for performing computer execution instructions, and executing various programs and methods; random access memory 632 and reading only two 6 illusion 'used to access and store data and computer program instructions; memory table, , l L for storing data and information; database 635 for storing 637 π single or other data structure; and input / output device 636, the interface is usually the same. Each of these elements is well known in the art and is not described in detail herein. The device 640 refers to FIG. 6A. The subscriber station 640 is, for example, any type of ubiquitous for transmitting data and/or communication to a 16 200945815 or more base stations 630 in a wireless communication system, and/or via such users. Receive data and / or communications. In some exemplary embodiments, subscriber station 440 is, for example, a fixed antenna, or a mobile subscriber station, and may also be referred to as user equipment. The subscriber station 640 includes, for example, a server, a client, a mainfraine, a desktop computer, a laptop computer, a network computer, a workstation, a personal digital assistant (PDA), a tablet computer ( Tabletpc), scanner, call device, pager, camera, music device, etc. In one embodiment, subscriber station 640 is, for example, a mobile computing device. Section 6C_ is shown as a block diagram of the architecture of the subscriber station. As shown in FIG. 6C, each user σ 0 includes, for example, one or more of the following 70 to the central processing early 641, and uses the command to execute various programs and methods. The user can use the lamp to perform the pure deduction (four) w / random storage. The memory 642 and the read-only memory 644 are used to store the #material and the f-meter list, the list, or the (4)-like surname library storage map 647, to start the structure; and the input/output device 646, the interface has ii Each of these elements is well known in the art to those of ordinary skill and is not described in detail herein. With

二由邏輯連接的方式I 610 ik ^ 44 如第6 A圖所示,核心網路 介面Iu · Iφ 之間的邏輯連接例如被稱為 ”面Iu,無線電網路控制 控制器㈣之與—個或多個無線電網路 網路控制器620與芙地5 =如破稱為介面& ;無線電 σ 630之間的邏輯連接例如被稱為 17 200945815 IW5395FA < 介面Iub ;基地台630及用戶台640之間的通訊例如被稱 為介面Uu。於一實施例中,介面iu、iur以及Iub例如可 由非同步傳輸模式(Asynchronous Transfer Mode,ATM)所 實現。於一實施例中,介面Uu例如可藉由使用W-CDMA 所實現。 第7圖繪示為依照本發明一些實施例之於一 TDD訊 框結構中使用TDD同步機制之一例之訊號流程圖。於範 例性之TDD同步機制中,上鏈點例如具有一 HARQ接收 器702 ’下鏈點例如具有一 HARQ傳送器704。HARQ接❹ 收器702及HARQ傳送器704例如可為軟體及/或硬體元 件之任何組合,且係設定以使得此傳送及/或接收裝置執行 所揭露之實施例的功能。於非用以限制的前提下舉例來 說’ HARQ接收器702與HARQ傳送器704係分別設置於 傳送裝置與接收裝置的MAC子層中。 HARQ接收器702與HARQ傳送器704的傳送與接 收係於時槽706中所進行。時槽706包括上鍵時槽708及 下鏈時槽710,兩者合併後係形成訊框711。下鏈點例如 ❹ 為用戶台640。上鏈點例如為基地台630。在使用範例性 TDD同步機制700時,若一可用上鏈時槽號碼以及harq 程序之最大數目係為已知,則可藉以選擇一 HARQ程序識 別碼。如第7圖所示’於範例性tdD同步機制7〇〇中, 並非所有的時槽706皆用於上鏈傳輸。反而,一些用於上 鏈傳輸的時槽706(例如上鏈時槽708)係可用以作為可用 時槽712。如第7圖所示,多個HARQ程序係各自被指定 以一 HARQ程序識別碼714,且係於可用時槽中循環 18 200945815Second, the way of logical connection I 610 ik ^ 44 As shown in Figure 6A, the logical connection between the core network interfaces Iu · Iφ is called "face Iu", the radio network control controller (four) and Or a plurality of radio network controllers 620 and a ground connection 5 = a logical connection between the interface & radio σ 630, for example, referred to as 17 200945815 IW5395FA < interface Iub; base station 630 and subscriber station The communication between the 640 is referred to as the interface Uu, for example. In an embodiment, the interfaces iu, iur and Iub can be implemented, for example, by an Asynchronous Transfer Mode (ATM). In an embodiment, the interface Uu can be, for example. By using W-CDMA, FIG. 7 is a flow chart showing an example of using a TDD synchronization mechanism in a TDD frame structure according to some embodiments of the present invention. In an exemplary TDD synchronization mechanism, The chain point has, for example, a HARQ receiver 702 'the lower link point has, for example, a HARQ transmitter 704. The HARQ receiver 702 and the HARQ transmitter 704 can be, for example, any combination of software and/or hardware components, and are configured to Make this transfer The receiving device performs the functions of the disclosed embodiment. For example, the HARQ receiver 702 and the HARQ transmitter 704 are respectively disposed in the MAC sublayer of the transmitting device and the receiving device, respectively. The transmission and reception of the receiver 702 and the HARQ transmitter 704 are performed in the time slot 706. The time slot 706 includes an upper key time slot 708 and a lower chain time slot 710, which are combined to form a frame 711. For example, 用户 is the subscriber station 640. The uplink point is, for example, the base station 630. When the exemplary TDD synchronization mechanism 700 is used, if the available slot number and the maximum number of harq programs are known, then one can be selected. HARQ program identification code. As shown in Fig. 7, in the exemplary tdD synchronization mechanism, not all time slots 706 are used for uplink transmission. Instead, some time slots 706 for uplink transmission (for example, The uplink time slot 708) can be used as the available time slot 712. As shown in Figure 7, a plurality of HARQ programs are each assigned a HARQ program identification code 714 and are looped in the available time slot 18 200945815

A TV 地被執行。於一實施例中,HARQ傳送器704係可決定出 對應於一傳送資料封包的HARQ程序識別碼714,且係根 據以下公式(1)來決定: HARQ程序識別馬=可用時槽的號碼m〇(j HARQ 程序最大數目 於第7圖所繪示之範例性機制700中,HARQ程序之 最大數目係設定為5。資料封包716係於第1〇號時槽706 所傳送’其係對應至第8號可用時槽712。於使用上述公 ❹式⑴後’因為8 mod 5 = 3,故用於資料封包716的HARQ 程序識別碼714會被決定為3。相仿地,於第η號可用時 槽712中所傳送的資料封包718中,因為u m〇d $ = 1, 所以用於資料封包718的HARQ程序識別碼714為1。 於其它實施例中’亦可使用範例性TDD同步機制, 只要HARQ程序識別碼714於訊框711中係相關於一特定 位置,且HARQ程序的數目係被選擇以符合訊框71丨大小 的倍數,其中訊框711的大小係仰賴於上鏈時槽7〇8與下 ❹鏈時槽71〇的數目。於此一系統中,HARq程序識別碼714 係可由下列公式所決定: HARQ程序識別碼=時槽之號碼m〇dHARQ程序 之最大數目 /Λ、 (2) 根據一些實施例,係可決定出於傳送台(如HARq傳 送器704)中所設定的HARQ程序之較佳數目。增加並列之 HARQ程序的數目可能會增加緩衝的需求、以及增加上鏈 信號的需求,且還會導致過長的來回傳輸時間(r〇undtdp time,RTT)。過長的RTT會致使錯誤地選擇一調變與編碼 19 200945815 l ( 機制(Modulation and Coding Scheme,MCS),且將會接收到 錯誤的封包。同樣地,當HARQ程序之數目增加時,由於 過長的RTT,適應性調變與編碼(Adaptive Modulation and Coding,AMC)將會失去作用。再者,當應用於訊框檢查序 列(Frame Check Sequence,FCS)時,HARQ 狀態資訊可能 需要與一新的基地台進行通訊。為了減小於上鏈之訊號流 的負載’ HARQ程序的較佳數目將會受到限制。然而,所 設定之HARQ程序的數目必需足夠大,才可使所有的 HARQ程序具有足夠的時間來處理資料。若使用了太少的❹ HARQ程序,則當HARQ程序於等候其等所傳送之封包資 料的HARQ回返封包時,上鍵時槽將會被浪費。 第8圖繪示為依照本發明一些實施例之於一 TDD訊 框結構中使用TDD同步機制之一例之訊號流程圖。舉例 來說’如第8圖所示,HARQ傳送器704例如用以設定一 第一 HARQ程序802、一第二HARQ程序804、一第三 HARQ程序806、以及一第四HARQ程序808。如圖所示, 用以處理一資料封包的基地台延遲時間dBS,以及用以處 © 理HARQ回返資料的用戶台延遲時間dss,兩者皆為一個 傳輸時間間隔(Transmission Time Intervals TTIs)。於其它 實施例中’更多或更少的處理時間TTI亦可用來作為一個 或多個基地台延遲時間dBS及用戶台延遲時間dss。 如第8圖所示,位於HARQ傳送器704(如用戶台)之 各HARQ程序802、804、806以及808係傳送一資料封包 至HARQ接收器702。HARQ接收器702接收全部或部分 之此些資料封包,且回應於此些資料封包傳送HARQ回返 20 200945815 * »▼ 1-%. 封包或資料’以表示此些資料封包是否正確地及/或錯誤地 被接收。HARQ程序802、804、806以及808係為SAW HARQ程序,且係設定以循序地執行。舉例來說,於傳輸 資料封包和接收HARQ回返封包時,第二HARQ程序8〇4 係接續在第一 HARQ程序802之後進行,第三HARQ程 序806係接續在第二harq程序8〇4之後進行,且第四 HARQ程序808係接在第三HARQ程序806之後進行。 舉例來說,如第8圖所示,於時槽1中,第一 HARQ ❹程序802傳送一資料封包81〇至HARQ接收器7〇2。當 HARQ接收器702於時槽2中以時間期間dBS處理資料封 包810時,第二HARQ程序8〇4傳送一資料封包gw至 HARQ接收器702。於時槽3中,第三HARQ程序8〇6傳 送一資料封包818至HARQ接收器702,而此時HARQ接 收器702係處理資料封包814。 於時槽4中’HARQ接收器7〇2傳送回返82〇至HARQ 傳送器704。回返820所包括之資料封包,係為已知基地 σ延遲時間dBS之前提下且到時槽4為止之時,HARq接 收器702已處理之資料封包,也就是資料封包81〇及814。 依照一實施例中,回返82〇例如可為位元映像(bitmap)或 其它資料結構之型式,其係包括一個或多個 HARQ回返封 包。於一實施例中,HARQ接收器702於傳送回返820時 之相同的時槽中,係繼續處理資料封包818。 在時槽4至時槽8中,HARQ接收器7〇2係繼續處理 資料封包’ HARQ傳送器704亦繼續處理回返82〇。更詳 細地來說,於時槽5、6及7中,HARQ程序808、802及 21 200945815 804係分別傳送資料封包822、824、及826。於〜實施 中,沒有資料封包會在時槽5時被處理’而資料封包 及824分別會在時槽6及7時被處理。於時槽8中,过八 接收器702傳送回返828至HARQ傳送器704。回返 包括資料封包818、822以及824的HARQ回返封包。 於時槽9中,HARQ傳送器704係不傳送任何資料封 包,其原因在於.因為第二HARQ程序806接著將會被用 來傳送一資料封包,但是,第三HARQ程序806才剛接收 到資料封包818的回返,且還沒有時間來處理此回返以失 定是否需要重傳資料封包818、或是否需要傳送一新的資\ 料封包。同樣地’於一些實施例中’ HARQ傳送器7〇4 某些時槽中係不傳送資料封包。舉例來說,如第8圖所示; 當第三HARQ程序於用戶台延遲時間dss之期間中處理'次 料封包818的HARQ回返封包時,沒有資料封包會在時^ 9中被傳送出去。第三HARQ程序8〇6將會於時槽1〇中句 傳送資料封包830。因此,當於訊框結構中使用過少的 HARQ程序,且系統需要使用基地台延遲時間dBs與用戶 台延遲時間dss時,將會浪費部分的傳輸時槽。為了改| 效能,於一些實施例中,係可計算出HARQ程序的較佳^ 目N,且係設計為足夠大,以減少及/或排除所浪費的傳輪 時槽。 第9圖繪示為依照本發明一些實施例之一系統之訊 號流程圖,&系統係實現一範例⑫演算法,以用來決^ 被用戶台所設定之HARQ程序之數目,且係用於無線通 系統中。於一實施例中’ a係為訊框9〇〇中之上鏈時槽^ 22 200945815 數目’ b為訊框900中下鏈時槽之數目。舉例來說,如第 9圖所示’ a係為3而b係為1。此範例性演算法係可用以 決定回返下鏈時槽Fi、傳輸時槽Ti'以及上鏈時槽之數目A TV is executed. In an embodiment, the HARQ transmitter 704 can determine the HARQ program identification code 714 corresponding to a transport data packet, and is determined according to the following formula (1): The HARQ program identifies the horse = the number of available time slots m〇 (The maximum number of j HARQ programs is shown in the exemplary mechanism 700 shown in Fig. 7. The maximum number of HARQ programs is set to 5. The data packet 716 is transmitted in slot 706 of the first apostrophe. The time slot 712 is available for number 8. After using the above formula (1) 'because 8 mod 5 = 3, the HARQ program identification code 714 for the data packet 716 is determined to be 3. Similarly, when the nth number is available In data packet 718 transmitted in slot 712, because um 〇d $ = 1, the HARQ program identification code 714 for data packet 718 is 1. In other embodiments, an exemplary TDD synchronization mechanism can also be used, as long as The HARQ program identification code 714 is related to a specific location in the frame 711, and the number of HARQ programs is selected to be a multiple of the size of the frame 71, wherein the size of the frame 711 depends on the slot 7 of the winding. 8 and the number of slots 71〇 in the lower chain. In the system, the HARq program identification code 714 can be determined by the following formula: HARQ program identification code = number of time slots m 〇 dHARQ program maximum number / Λ, (2) According to some embodiments, the decision can be made for the transmitting station ( The preferred number of HARQ procedures as set in the HARq Transmitter 704. Increasing the number of juxtaposed HARQ programs may increase the need for buffering and increase the demand for uplink signals, and may also result in excessively long round-trip transmission times ( R〇undtdp time, RTT). An excessively long RTT will result in the wrong selection of a modulation and coding 19 200945815 l (Modulation and Coding Scheme, MCS), and will receive the wrong packet. Similarly, when HARQ When the number of programs increases, Adaptive Modulation and Coding (AMC) will be lost due to excessive RTT. Furthermore, when applied to Frame Check Sequence (FCS), The HARQ status information may need to communicate with a new base station. In order to reduce the load on the uplink signal stream, the better number of HARQ programs will be limited. However, the settings are The number of HARQ programs must be large enough for all HARQ programs to have enough time to process the data. If too few HARQ programs are used, then the HARQ program waits for the HARQ return packets of the packet data it transmits. At the same time, the up key slot will be wasted. Fig. 8 is a flow chart showing an example of using a TDD synchronization mechanism in a TDD frame structure in accordance with some embodiments of the present invention. For example, as shown in FIG. 8, the HARQ transmitter 704 is configured to, for example, set a first HARQ program 802, a second HARQ program 804, a third HARQ program 806, and a fourth HARQ program 808. As shown, the base station delay time dBS used to process a data packet and the user station delay time dss used to process the HARQ return data are both Transmission Time Intervals (TITIs). In other embodiments, more or less processing time TTI may also be used as one or more base station delay times dBS and subscriber station delay times dss. As shown in FIG. 8, each of the HARQ programs 802, 804, 806, and 808 located at the HARQ transmitter 704 (e.g., subscriber station) transmits a data packet to the HARQ receiver 702. The HARQ receiver 702 receives all or part of the data packets and transmits the HARQ return 20 200945815 * »▼ 1-%. Packet or data 'in response to the data packets to indicate whether the data packets are correct and/or incorrect. The ground is received. The HARQ programs 802, 804, 806, and 808 are SAW HARQ programs and are set to be executed sequentially. For example, when transmitting the data packet and receiving the HARQ return packet, the second HARQ process 8〇4 is followed by the first HARQ process 802, and the third HARQ process 806 is followed by the second harq process 8〇4. And the fourth HARQ program 808 is connected after the third HARQ program 806. For example, as shown in FIG. 8, in time slot 1, the first HARQ program 802 transmits a data packet 81A to the HARQ receiver 7〇2. When the HARQ receiver 702 processes the data packet 810 in the time slot 2 with the time period dBS, the second HARQ program 8〇4 transmits a data packet gw to the HARQ receiver 702. In time slot 3, the third HARQ process 8〇6 transmits a data packet 818 to the HARQ receiver 702, while the HARQ receiver 702 processes the data packet 814. The 'HARQ receiver 7〇2 in the time slot 4 transmits a return 82〇 to the HARQ transmitter 704. The data packet included in the return 820 is the data packet processed by the HARq receiver 702, that is, the data packets 81 and 814, when the known base σ delay time dBS is taken up and the time slot 4 is reached. In accordance with an embodiment, the return 82 can be, for example, a bit map or other data structure that includes one or more HARQ return packets. In one embodiment, the HARQ receiver 702 continues to process the data packet 818 in the same time slot as when the return 820 is transmitted. In time slot 4 to time slot 8, the HARQ receiver 7〇2 continues to process the data packet. The HARQ transmitter 704 also continues to process the return 82. More specifically, in time slots 5, 6 and 7, HARQ programs 808, 802 and 21 200945815 804 transmit data packets 822, 824, and 826, respectively. In the implementation, no data packets will be processed in time slot 5, and data packets and 824 will be processed in time slots 6 and 7, respectively. In time slot 8, the eight-receiver 702 transmits a return 828 to the HARQ transmitter 704. Return The HARQ return packet including data packets 818, 822, and 824. In time slot 9, the HARQ transmitter 704 does not transmit any data packets because the second HARQ program 806 will then be used to transmit a data packet, but the third HARQ program 806 has just received the data packet. 818 returns, and there is no time to process this return to determine if a data packet 818 needs to be retransmitted, or if a new resource packet needs to be transmitted. Similarly, in some embodiments, the HARQ transmitter 7〇4 does not transmit data packets in certain time slots. For example, as shown in FIG. 8; when the third HARQ process processes the HARQ return packet of the 'negative packet 818' during the delay period dss of the subscriber station, no data packet is transmitted at time 9. The third HARQ program 8〇6 will transmit the data packet 830 in the sentence slot. Therefore, when too few HARQ programs are used in the frame structure, and the system needs to use the base station delay time dBs and the user station delay time dss, part of the transmission time slot will be wasted. In order to improve performance, in some embodiments, the preferred N of the HARQ program can be calculated and designed to be large enough to reduce and/or eliminate wasted wheel slots. 9 is a signal flow diagram of a system according to some embodiments of the present invention. The & system implements an example 12 algorithm for determining the number of HARQ programs set by the subscriber station, and is used for In the wireless communication system. In one embodiment, 'a is the upper slot of the frame 9〇〇. The number 22 b is the number of the lower slots in the frame 900. For example, as shown in Fig. 9, 'a is 3 and b is 1. This example algorithm can be used to determine the number of slots in the return chain, the slot Ti' in the transmission, and the number of slots in the chain.

Ni’且可使傳送台決定所要設定之HARQ程序的較佳數目 N。 於時槽i所傳送的資料封包902例如係由HARQ接收 器702於基地台延遲時間dbs中所處理。如此,資料封包 902會一直被處理到時槽i+dbs。若下一個時槽i+dbs+1係 ❹為一下鏈時槽,相關回返904將會於此時槽中回覆至 HARQ傳送器7〇4。否則,HARQ接收器7〇2將會等待一 額外的下鏈延遲dDL,以傳送此相關回返9〇4。如第9圖所 示,舉例來說,基地台延遲時間dbs係為3個TTI,而因為 時間i+3後的下一個時槽並不是下鏈時槽,故harq接收 器702在傳送相關回返904之則,會等待額外的下鍵延遲 dDL ’直到下一個可用的下鏈時槽。 回返下鏈時槽Fi係為HARQ接收器7〇2將資料封包 ❹ 902之相關回返9〇4傳送至HARQ傳送器7〇4時之一時 槽,其中資料封包9〇2係於上鏈時槽i所傳送。於一實施 例中,上鏈時槽i於〆訊框中的位置例如可由imod(a+b) 來十算。依照一實施例,以下的公式(3)係可用以決定額外 的下鏈延遲dD]L : dDL=aAi + dBs)^^{a^b) (3) 舉例來說,如第9圖所示,dDL(i=2)=2。 於一實施例中,用於上鏈時槽i之回返下鍵時槽。 係可根據以下公式(4)決定: 23 200945815 l 舉例來說,如第9圖所示,Fi㈣)=_{68} = 8。 當HARQ傳送器740於時槽&接收相關回返% HARQ傳送器704會等到時槽Fi+dss時處理此相關回返。 若時槽Fi+dss後之下-時槽係為—上鍵時槽,則將會進行 額外的資料傳輸906。否則,HARq傳送器7〇4會等待一 額外上鏈延遲dUL,以傳送額外的資料傳輸観。舉例來 說’如第9圖所示’因為Fi+3後之下—個時槽並不是上鍵 時槽,故HARQ傳送器704在傳送額外的資料傳輸9〇6之 前’會等待額外的上鏈延遲dUL。依照_實施例,係可根響 據-公式來決定額外的上鏈延遲duL。更詳細地來說,於 -實施例中,額外的上鏈延遲duL係可根據以下公式⑺所 決定: dUL =b~{Fi^dss~-a)m〇^a + b) (5) 舉例來說,如第9圖所示,duL㈣=i 一(8)则扣(4)= 1 ° 傳輸時槽Ti係為用戶台於傳送額外的資料傳輸9〇6 ❹ 時之時槽,且使用相同於在上鏈時槽丨中用以傳送資料封 包902之HARQ時序。若用戶台接收到一確認信號則額 外的資料傳輸906例如為一新的資料封包,若用戶台接收 到一否認信號,則會在此時槽凡令重新傳送一資料封包, 例如重新傳送資料封包902。依照一範例性之實施例,係 可根據一公式來決定出傳輸時槽Tj。更詳細地說’於一實 施例中’傳輸時槽Ti例如可根據以下公式(6)所決定: 7; = max{ /5; + +1, /5; + dss + (ό - {F^dss - α) mod(a+6))+1} ( 6 ) 24 200945815 舉例來說,如第9圖所示,Ti(i=2)= max{12, 13} = 13 〇 依照一範例性之實施例,係可根據一公式來決定出上 鏈時槽之數目Ni,其係介於上鏈時槽i以及緊接於傳輸時 槽乃前之一時槽之間。更詳細地說,於一實施例中,上鏈 時槽之數目Ni可根據以下公式(7)來決定:Ni' and the transmitting station can determine the preferred number N of HARQ procedures to be set. The data packet 902 transmitted in time slot i is processed, for example, by the HARQ receiver 702 in the base station delay time dbs. Thus, the data packet 902 will be processed until time slot i+dbs. If the next time slot i+dbs+1 is the next time slot, the associated return 904 will be replied to the HARQ transmitter 7〇4 in this slot. Otherwise, the HARQ receiver 7〇2 will wait for an additional downlink delay dDL to transmit this associated return 9〇4. As shown in FIG. 9, for example, the base station delay time dbs is 3 TTIs, and since the next time slot after time i+3 is not the downlink time slot, the harq receiver 702 transmits the relevant return. In 904, it will wait for an additional down key delay dDL ' until the next available downlink time slot. When the return chain is returned, the slot Fi is a time slot when the HARQ receiver 7〇2 transmits the data packet ❹902 back to the HARQ transmitter 7〇4, wherein the data packet 9〇2 is attached to the winding time slot. i transmitted. In one embodiment, the position of the slot i in the frame during the winding is calculated, for example, by imod(a+b). According to an embodiment, the following formula (3) can be used to determine an additional downlink delay dD]L: dDL=aAi + dBs)^^{a^b) (3) For example, as shown in FIG. , dDL(i=2)=2. In an embodiment, the groove i is used to return to the lower key slot when the winding is performed. It can be determined according to the following formula (4): 23 200945815 l For example, as shown in Figure 9, Fi(4))=_{68} = 8. The HARQ transmitter 740 processes the associated return when the time slot & receive related return % HARQ transmitter 704 waits for the time slot Fi+dss. If the time slot Fi+dss is below the time slot and the time slot is the up key slot, an additional data transmission 906 will be performed. Otherwise, the HARq transmitter 7〇4 will wait for an additional uplink delay dUL to transmit additional data transmission ports. For example, 'as shown in Figure 9, 'because Fi+3 is lower than the last slot, the HARQ transmitter 704 will wait for additional before transmitting additional data transmissions 9〇6. Chain delay dUL. According to the embodiment, the additional uplink delay duL can be determined according to the formula. In more detail, in the embodiment, the additional uplink delay duL can be determined according to the following formula (7): dUL = b~{Fi^dss~-a)m〇^a + b) (5) For example, as shown in Figure 9, duL(4)=i(8) is deducted (4)= 1 °. The transmission slot Ti is the time slot for the user station to transmit additional data transmission 9〇6 ,, and use The same as the HARQ timing used to transmit the data packet 902 in the uplink time slot. If the subscriber station receives an acknowledgment signal, the additional data transmission 906 is, for example, a new data packet. If the subscriber station receives a repeal signal, it will retransmit a data packet at this time, for example, retransmit the data packet. 902. According to an exemplary embodiment, the transmission time slot Tj can be determined according to a formula. In more detail, 'in one embodiment' the transmission time slot Ti can be determined, for example, according to the following formula (6): 7; = max{ /5; + +1, /5; + dss + (ό - {F^ Dss - α) mod(a+6))+1} ( 6 ) 24 200945815 For example, as shown in Fig. 9, Ti(i=2)= max{12, 13} = 13 〇 according to an example In an embodiment, the number Ni of the slots in the winding can be determined according to a formula, which is between the slot i of the winding and the slot between the slots immediately before the transmission. In more detail, in an embodiment, the number of time slots of the upper chain may be determined according to the following formula (7):

= Tt -i~bx ( i \ V _a + b_ _a + b J ⑺ 舉例來說,如第9圖所示,Ni(i=2) = 8。如圖所示,8= Tt -i~bx ( i \ V _a + b_ _a + b J (7) For example, as shown in Figure 9, Ni(i=2) = 8. As shown, 8

個上鏈時槽出現於時槽i及時槽12之間:時槽2、3、5、 6、7、9、10 以及 11。 於一範例性之實施例中,用戶台所要決定的HARQ 程序之數目N係不能小於所有上鏈時槽i的凡。如上所 述’當HARQ程序之數目N增加時,則可能會增加緩衝、 重傳以及訊號負載,且可能會產生錯誤。然而,過少的 HARQ程序將會因為浪費時槽而降低效能。再者,若上鏈 時槽i及下鏈時槽j於訊框900中具有相同的位置,亦即i φ mod(a+b)j mod(a+b) ’則%會等於Nj。如此’於一範例 性之實施例中’ HARQ程序之較佳數目N可根據以下公式 (8)所決定: N = max{Ni,i = 1 至 a} (8) 藉由使用上述公式(8)、(7)、(6)及(4)的範例性演算法 來決定N、Ni、Ti及Fi之其中一個或多個,HARQ接收器 (如基地台)可決定所要設定之HARQ程序的數目N。於一 實施例中,HARQ傳送器例如可使用此範例性演算法’來 決定已被或將被HARQ傳送器所設定之HARQ程序之數 25 200945815 1 W53V5m 目N 〇 在決定出HARQ程序之數目N後,HARQ傳送器接 著使用此多個HARQ程序N來傳送資料封包至HARQ接 收器。於一實施例中,資料封包係不包括HARQ程序識別 資訊(亦稱為HARQ程序識別碼),而jjARQ接收器(或基 地台)會接收或企圖去接收資料封包。於一些實施例中,在 接收到資料封包時,HARQ接收器會決定出用於HARQ傳 送器所傳送之資料封包的HARQ程序識別碼。A winding time slot appears between the time slot i and the time slot 12: the time slots 2, 3, 5, 6, 7, 9, 10 and 11. In an exemplary embodiment, the number N of HARQ programs to be determined by the subscriber station cannot be less than that of all uplink slots i. As described above, when the number N of HARQ programs increases, buffering, retransmission, and signal loading may increase, and errors may occur. However, too few HARQ programs will degrade performance due to wasted time slots. Furthermore, if the slot i and the lower slot slot j have the same position in the frame 900, i φ mod(a+b)j mod(a+b) ', then % will be equal to Nj. Thus, in a preferred embodiment, the preferred number N of HARQ programs can be determined according to the following formula (8): N = max{Ni, i = 1 to a} (8) by using the above formula (8) , (7), (6), and (4) to determine one or more of N, Ni, Ti, and Fi, and the HARQ receiver (such as a base station) can determine the HARQ program to be set. Number N. In an embodiment, the HARQ transmitter can use, for example, the exemplary algorithm ' to determine the number of HARQ programs that have been or will be set by the HARQ transmitter. 25 200945815 1 W53V5m NN Determine the number of HARQ programs N Thereafter, the HARQ transmitter then uses the plurality of HARQ procedures N to transmit the data packet to the HARQ receiver. In one embodiment, the data packet does not include HARQ program identification information (also known as HARQ program identification code), and the jjARQ receiver (or base station) receives or attempts to receive the data packet. In some embodiments, upon receipt of the data packet, the HARQ receiver determines the HARQ program identification code for the data packet transmitted by the HARQ transmitter.

依照一範例性實施例,係可根據一公式來決定用於— 個或多個資料封包的HARQ程序識別碼。更詳細地說’用 於上鏈時槽X所接收到之資料的HARQ程序識別碼係可根 據以下公式(9)來決定: HARQ程序識別碼= x — bx X a + bAccording to an exemplary embodiment, the HARQ program identification code for one or more data packets may be determined according to a formula. More specifically, the HARQ program identification code used for the data received by the slot X during the uplink can be determined according to the following formula (9): HARQ program identification code = x - bx X a + b

mod N (9) 同樣地’當HARQ接收器接收到從HARQ傳送器而 來的資料封包,且並未接收到一明確的HARQ程序識別辱Mod N (9) Similarly 'when the HARQ receiver receives the data packet from the HARQ transmitter and does not receive a clear HARQ program identification humiliation

時’仍可決定出HARQ程序識別碼。因此,對於一上鏈 HARQ傳輸來說,基地台在沒有接收來自用戶台之一明確 的HARQ程序識別碼的情況下,可依照其所接收之一資料The time can still determine the HARQ program identification code. Therefore, for an uplink HARQ transmission, the base station can receive one of the received data without receiving an explicit HARQ program identification code from the subscriber station.

封包來決定HARQ程序識別碼。相仿地,對於一下鏈HARQ 傳輸來說,用戶台在沒有接收來自基地台之一明破的 HARQ程序識別碼的情況下,可依照其所接收之一資料封 包來決定HARQ程序識別碼。 第10圖繪示為一系統之訊號流程圖,此系統係實現 —範例性演算法’以依照一下鏈時槽所傳送之HARQ回返 26 200945815 資料決定一 HARQ程序。於一實施例中,HARQ接收器 702例如係產生HARQ回返封包之—位元映像,用以表示 為此些資料封包是否於基地台中正確地被接收。於一實施 例中’位元映像與回返封包皆不包含H A R Q程序識別資 訊。HARQ接收器702傳送此位元映像至HARq傳送器 704 ’ HARQ傳送器704例如係於下鏈時槽k中接收到此 位元映像,下鏈時槽k包括kl、匕及、。 於一範例性之實施例中,HARQ接收器7〇2及/或 ❹HARQ傳送器704係用以映射(map)於下鏈時槽让所傳送之 此些HARQ回返封包,且係對應於上鏈時槽心中所傳送 之資料封包。Sk&k係可根據以下公式(10)予以映射: 假使 k mod (a+b) = 卜 貝J Sk {卜其中i為介於k— dbs— a— 1至k— i — 1之所有上鏈時槽}; 否則 ❷ k - m碼為k—dbs_ 1之上鍵時槽}。 (1〇) 對應至此群上鏈時槽Sk之回返封包可結合於—位元映像 :’且係由HARQ接收器所產生’而所產生之位元映像接 者於-預定時間(例如是下鏈時槽k)中被傳送至以叫傳 送器704。於-實施例中,上鏈時槽〜係以 :A射至此位元映像中。於-實施例中,位元映像 可在接收位元映像後’HARQ傳送器704 了使用範例性之公式⑽來蚊出此上鏈時槽^。 、如第10圖所緣示之範例性之訊號流程圖,基地 遲時間dbs 1002係為6,a係為5而b係為3。因此,若將 27 200945815 1 ^ 8 ^人至公式(1G),因為8 mod 8係不等於a+1(=6), s二上:::槽让傳送之回返所對應之上鏈時槽Sk係為 Sk= {上鍵時# 1}。於另一例子中,若 式⑽,因為14m〇d8係室μ & ^ d係等於6,所以,上鏈時槽Sk係為 ,} 之間的時槽,即包括時槽2、3、4以及5。 接收器7〇2及職〇傳送器704例如可為軟 或接^體轉之㈣組合,且係蚊以使得此傳送及/ 芝、、裝置執行所揭露之實施例的功能。於執行上述之演The packet determines the HARQ program identification code. Similarly, for downlink HARQ transmission, the subscriber station can determine the HARQ program identification code according to one of the received data packets without receiving the HARQ program identification code from one of the base stations. Figure 10 is a flow chart of a system that implements an exemplary algorithm to determine a HARQ procedure in accordance with the HARQ return 26 200945815 data transmitted by the chain time slot. In one embodiment, the HARQ receiver 702, for example, generates a bit map of the HARQ return packet to indicate whether the data packets are correctly received in the base station. In one embodiment, both the bit map and the return packet do not contain H A R Q program identification information. The HARQ receiver 702 transmits this bit map to the HARq transmitter 704. The HARQ transmitter 704 receives this bit map, e.g., in the downlink slot k, and the downlink slot k includes kl, 匕, and . In an exemplary embodiment, the HARQ receiver 7〇2 and/or the ❹HARQ transmitter 704 is configured to map the downlink timing slots to transmit the HARQ return packets, and corresponds to the uplink. The data packet transmitted in the heart of the slot. Sk&k can be mapped according to the following formula (10): If k mod (a+b) = 卜贝J Sk {i where i is between k-dbs-a-1 to k-i-1 Chain time slot}; otherwise ❷ k - m code is k-dbs_ 1 key time slot}. (1〇) The return packet corresponding to the group uplink time slot Sk can be combined with the -bit map: 'and generated by the HARQ receiver' and the bit map generated is at the predetermined time (for example, the next The chain slot k) is transmitted to the transmitter 704. In the embodiment, the upper slot time is caused by :A being shot into the bit map. In an embodiment, the bit map can be used after the bit map is received. The HARQ transmitter 704 uses the exemplary formula (10) to mosquito the slot. As shown in Fig. 10, the exemplary signal flow chart shows that the base delay time dbs 1002 is 6, the a system is 5 and the b system is 3. Therefore, if 27 200945815 1 ^ 8 ^ people to the formula (1G), because 8 mod 8 is not equal to a + 1 (= 6), s two on the ::: slot to make the return of the corresponding upper chain time slot Sk is Sk= {up key #1}. In another example, if the equation (10) is 14m 〇 d8, the chamber μ & ^ d is equal to 6, so that the groove Sk in the winding time is the time slot between, ie, the time slot 2, 3, 4 and 5. The receiver 7〇2 and the job transmitter 704 can be, for example, a soft or a combination of (4) and mosquitoes to enable the transmission and/or device to perform the functions of the disclosed embodiments. Perform the above performance

ARQ接收器例如使用基地台630之一個或多個 ^ 、處理單元63卜隨機存取記憶體632、唯讀記憶體633、 4輸入/輸出裝置636、及天線638。HARQ傳 送器例如使用用戶台64〇之一個或多個中央處理單元 64卜隨機存取記憶體642、唯讀記憶體643、記憶體644、 輸入/輸出裝置646、及天線 648。The ARQ receiver uses, for example, one or more of the base stations 630, the processing unit 63, the random access memory 632, the read only memory 633, the 4 input/output devices 636, and the antenna 638. The HARQ transmitter uses, for example, one or more central processing units 64 of the subscriber station 64, a random access memory 642, a read only memory 643, a memory 644, an input/output device 646, and an antenna 648.

於本發明上述實施例之揭露内容主要係描述上鏈 HARQ傳輸,其中接收台係為一基地台,而傳送台係為一 用戶台。此佈置係對應於3GPP之LTE,而HARQ係建構 於上鍵路徑之同步重傳與下鏈路徑之非同步重傳。然而, 具有通常知識者根據本發明實施例所揭露之内容應知其 亦適用於下鏈HARQ傳輸,其中接收台係為一用戶台,而 傳送台係為一基地台。 請參照第11圖,其繪示依照本發明實施例之無線通 訊系統的訊框示意圖。在一個實施例中,傳送台與收送台 間之傳輪操作時槽依照IEEE. 802.16m規範,被定義成多 個訊框。各個訊框包括U個上鏈時槽、D個下鏈時槽、Ngi 28 .200945815 1 VV jjyjrrt. 個第-閒置時槽、Ng2個第二閒置時槽及%個第 槽,其中U、D、Ngl、Ng2及Ng3為自然數。 舉例來說,HARQ傳送器7〇4,與HARQ接收器7〇2, 間執行若干個HARQ程序。在各個HARQ程序中1 傳送器704’傳輸資料封包至HARQ接收器7〇2,之操作係 執行在各訊框内之u個上鏈時槽中,HARQ接收器、7〇2,、 回覆回返封包至HARQ傳送器7〇4,之操作係執行在各 框内之D個下鏈時槽中。 ° • 在1EEE 802.16m規範中更定義參數NA_MAP,用以指 :在各訊框内之D個下鏈時槽中,每Namap個下鏈“ 有一個下鏈時槽具有回覆資源配置資訊A_MAp。 接收器702’回覆回返封包至HARQ傳送器7〇4,之操作需 執行在此些具有此回覆資源配置資訊冬MAp之下鏈時槽 中。舉例來說,參數NA_MAP具有數值卜換言之,在這; J子中,母個下鏈時槽均具有此回覆資源配置資訊 ❸A:MAP,而hARq接收器702,回覆回返封包至1^]1(3傳 送器704,之操作可執行於各訊框中之任一下鍵時槽中。 第12圖繪示依照本發明一些實施例之一系統之訊號 流程圖。此系統係實現一範例性演算法,以用來決定harq 傳送器704,與HARQ接收器702,間執行之HARq程序之 數目。舉例來說,U、D、Ngl、Ng2及Ng3分別具有數值3、 2 1、2及2。換s之’各訊框具有1〇個時槽,其中第〇 時槽、第3與第4時槽及第8與第9時槽分別對應至^ 個第一閒置時槽、Ngs個第二閒置時槽及Ng3個第三閒置時 槽’第1時槽與第2時槽及第5至第7時槽分別對應至d 29 200945815 1 w * 個下鏈時槽及U個上鏈時槽。各訊框中之各個時槽例如由 訊框索引(Frame Index)i及次訊框索引(Sub-frame Index)j 來進行指示,其中j的數值介於0-9之間。而根據訊框索 引i與次訊框索引j可得到對應之全局索引(Global Index)k ° 請參照第13圖,其繪示依照本實施例之範例性演算 法的流程圖。此範例性演算法包括下列之步驟。首先如步 驟(a),令多個HARQ程序中之一 HARQ程序於第1-1個訊 框中之一第u個上鏈時槽中輸出資料封包,I為自然數,u Ο 為小於或等於U之自然數,u之起始值為1。舉例來說, 1=1 ’此第u個上鏈時槽對應之訊框索引i及次訊框索引j 分別滿足: i=I-l=0 ; j=5 而對應之全局索引k等於K,其中K為自然數。舉例來說, K等於5。 接著如步驟(b) ’對應至此HARQ程序(於此第1-1個 訊框之此第u個上鏈時槽輸出資料封包),計算對應之最早 Ο 重傳上鏈時槽,其之全局索引例如等於rk。然後如步驟 (c),根據最早重傳上鏈時槽之全局索引fK、此第u個上鏈 時槽之全局索引尺及數值1;、〇、乂1、]^2與1^3,計算 此第u個上鏈時槽與此最早重傳上鏈時槽間之上鏈時槽數 目Νκ。接著如步驟(d),遞增u並重複前述步驟,以得到 對應至一個訊框(例如是對應至訊框索引1_1之訊框)中之 U個上鏈時槽(例如是對應至全局索引為κ、K+1及K+2 之3個上鏈時槽)之U筆上鏈時槽數目。之後如步驟(e)’ 30 200945815 根據此υ筆上鏈時槽數目,計算將被設定之此些 程序之一數量N。接下來係舉例,來對前述各步驟進行 進一步之說明。 更 在計算數量N之步驟(e)中,例如設定此數量N為此^ 筆上鏈時槽數目中之最大數值。舉例來說,步驟(e)例 以下列算式表*: ^ N = max{Nj,j = D + Ngl + N?2to D + Ngl+ Ng2+ U-1} (“) Ο ❷ 其中,j為次訊框索引,ND+Ng %至ND+Ng +Ng2+U丨分別為此 筆上鏈時槽數目。 請參照第14圖’其繪示依照本實施例之範例性續算 法的部份流程圖。在計算此上鏈時槽數目Νκ之步驟(〇)中 例如包括下列之步驟。首先如步驟(cl),根據此第u個上 鍵時槽之全局索引K及此最早重傳上鏈時槽之全局索弓丨 rtK’計算此最早重傳上鏈時槽與此第u個上鏈時槽間之線 時槽數目、此第u個上鏈時槽之訊框索引及此最早重傳^ 鏈時槽之訊框索引。接著如步驟(c2),根據數值D、υ、The disclosure of the above embodiments of the present invention mainly describes uplink HARQ transmission, wherein the receiving station is a base station and the transmitting station is a subscriber station. This arrangement corresponds to 3GPP's LTE, and the HARQ system is constructed for asynchronous retransmission of the uplink path and asynchronous retransmission of the downlink path. However, those having ordinary knowledge in accordance with embodiments of the present invention should be aware that they are also applicable to downlink HARQ transmission, where the receiving station is a subscriber station and the transmitting station is a base station. Please refer to FIG. 11 , which is a schematic diagram of a frame of a wireless communication system according to an embodiment of the invention. In one embodiment, the transport time slot between the transmitting station and the receiving station is defined as a plurality of frames in accordance with the IEEE 802.16m specification. Each frame includes U winding time slots, D lower chain time slots, Ngi 28 .200945815 1 VV jjyjrrt. first idle time slots, Ng 2 second idle time slots, and % first slots, where U, D , Ngl, Ng2 and Ng3 are natural numbers. For example, the HARQ transmitter 7〇4, and the HARQ receiver 7〇2, execute several HARQ programs. In each HARQ program, the 1 transmitter 704' transmits the data packet to the HARQ receiver 7〇2, and the operation is performed in the u uplink time slots in each frame, the HARQ receiver, the 7〇2, and the reply return. The packet is packetized to the HARQ transmitter 7〇4, and the operation is performed in the D downlink time slots in each frame. ° • The parameter NA_MAP is further defined in the 1EEE 802.16m specification to indicate that there is a downlink time slot with a reply resource configuration information A_MAp in each of the D downlink time slots in each frame. The receiver 702' replies back to the return packet to the HARQ transmitter 7〇4, and the operation is performed in the slot with the reply resource configuration information in the winter MAp. For example, the parameter NA_MAP has a value, in other words, In J, the parent downlink time slot has the reply resource configuration information :A: MAP, and the hARq receiver 702 replies back the packet to 1^]1 (3 transmitter 704, the operation can be performed in each frame Any of the lower key time slots. Figure 12 is a flow chart of a system in accordance with some embodiments of the present invention. The system implements an exemplary algorithm for determining the harq transmitter 704, and HARQ reception. The number of HARQ programs executed between the controllers 702. For example, U, D, Ngl, Ng2, and Ng3 have values of 3, 2 1, 2, and 2, respectively, and each frame has one time slot. The third time slot, the third and fourth time slots, and the eighth and ninth time slots respectively correspond to ^ An idle time slot, Ngs second idle time slots, and Ng three third idle time slots '1st time slot and 2nd time slot and 5th to 7th time slots respectively correspond to d 29 200945815 1 w * downlink Time slot and U-winding time slot. Each time slot in each frame is indicated by, for example, a frame index i and a sub-frame index j, where the value of j is between Between 0 and 9. According to the frame index i and the subframe index j, a corresponding global index (Global Index) k ° can be obtained. Please refer to FIG. 13 , which illustrates the flow of the exemplary algorithm according to the embodiment. The exemplary algorithm includes the following steps. First, as step (a), one of the plurality of HARQ programs outputs HARQ in the u-th chain time slot of the 1-1th frame. Packet, I is a natural number, u Ο is a natural number less than or equal to U, and the starting value of u is 1. For example, 1=1 'the index of the frame corresponding to the i-th winding time slot and the number of times The frame index j satisfies: i=Il=0; j=5 and the corresponding global index k is equal to K, where K is a natural number. For example, K is equal to 5. Then, as in step (b) Corresponding to this HARQ program (the u-th uplink time slot output data packet of the 1-1st frame), the corresponding initial Ο retransmission time slot is calculated, and the global index thereof is equal to, for example, rk. Step (c), calculating according to the global index fK of the earliest retransmission time slot, the global index ruler of the uth uplink time slot, and the value 1;, 〇, 乂 1, ]^2, and 1^3 The number of time slots Νκ between the slots in the u-th winding and the earliest re-transmission. Then, as in step (d), increment u and repeat the foregoing steps to obtain U uplink time slots corresponding to a frame (for example, a frame corresponding to frame index 1_1) (for example, corresponding to the global index is The number of U-chain time slots for the three winding time slots of κ, K+1, and K+2. Then, as step (e)' 30 200945815, the number N of one of the programs to be set is calculated based on the number of slots in the pen. Next, an example will be given to further describe the foregoing steps. Further, in the step (e) of calculating the number N, for example, the number N is set to be the largest value among the number of time slots in the pen winding. For example, the case of step (e) is as follows: ^ N = max{Nj,j = D + Ngl + N?2to D + Ngl+ Ng2+ U-1} (") Ο ❷ where j is the second The frame index, ND+Ng% to ND+Ng+Ng2+U丨, respectively, is the number of time slots for the pen. Please refer to FIG. 14 for a partial flow chart of an exemplary continuation algorithm according to the present embodiment. In the step (计算) for calculating the number of slots Ν κ in the winding, for example, the following steps are included. First, as step (cl), according to the global index K of the u-th up key slot and the earliest retransmission time slot The global cable 丨 rtK' calculates the number of time slots between the earliest retransmission winding time slot and the u-th winding time slot, the frame index of the u-th winding time slot and the earliest retransmission ^ The frame index of the chain time slot. Then, as in step (c2), according to the value D, υ,

Ngi、Ng2及Ngs,計算各訊框之訊框長度及各訊框内之非 上鏈時槽數目。之後如步驟(C3),根據此最早重傳上鏈時 槽與此第u個上鏈時槽間之此總時槽數目、此第u個上鍵 時槽之訊框索引、此最早重傳上鍵時槽之訊框索引、各訊 框之訊框長度及各訊框内之非上鏈時槽數目,計算上鏈時Ngi, Ng2, and Ngs calculate the frame length of each frame and the number of non-winding slots in each frame. Then, as in step (C3), according to the number of the total time slot between the last retransmission time slot and the uth uplink time slot, the frame index of the uth upper key time slot, the earliest retransmission The index of the frame of the last key slot, the frame length of each frame, and the number of non-winding slots in each frame, when calculating the winding

槽數目Νκ°舉例來說,步驟(cl)-(c3)可以下列算式表示: Nk = rtK - K - (D + Ngl + Ng2 + NJ X .D^U + Ngl+N^N^H^W+Ngl+N'^-11 〇2) 31 200945815The number of slots Νκ° For example, steps (cl)-(c3) can be expressed by the following equation: Nk = rtK - K - (D + Ngl + Ng2 + NJ X .D^U + Ngl+N^N^H^W +Ngl+N'^-11 〇2) 31 200945815

*. ΤΤ μ/·/ ^ I V 其中,K為此第U個上鏈時槽之全局索弓丨;rtK為此最早重 傳上鏈時槽之全局索引;Νκ為此第u個上鏈時槽與對應之 此最早重傳上鍵時槽間之上鍵時槽數目;rtK-K對應至此 最早重傳上鏈時槽與此第U個上鏈時槽間之此總時槽數 目;D+U+Ngi+Ng2+Ng3對應至各訊框之訊框長产; D+Ngl+Ng2+Ng3對應至各訊框内之非上鏈時槽數目; __^_ 及 _ίκ_*. ΤΤ μ/·/ ^ IV where K is the global index of the U-winding time slot; rtK is the earliest re-transmission of the global index of the winding time slot; Νκ for this u-th winding The number of slots in the slot between the slot and the corresponding one of the earliest retransmission keys; rtK-K corresponds to the total number of slots between the earliest retransmission slot and the U-up chain slot; +U+Ngi+Ng2+Ng3 corresponds to the long-term frame of each frame; D+Ngl+Ng2+Ng3 corresponds to the number of non-winding slots in each frame; __^_ and _ίκ_

D + U + WnJ iD + U + Ny+W 分別對應至此第U個上鏈時槽之訊框索引及此最早重傳上 鏈時槽之訊框索引。 請參照第15圖,其繪示依照本實施例之範例性演算 法的部份流程圖。計算此最早重傳上鏈時槽之步驟(bj中例 如包括下列之步驟。首先如步驟(bl),對應至於此第u個 上鏈時槽輸出資料封包之此HARQ程序,計算對應之最 回返下鍵時槽,其對應之全局索引例如等於fK。然後如, 驟(b2),對應至此HARQ程序,計算對應之上鏈延遲時步 之後如步驟(b3),根據此最早回返下鏈時槽、此上、D + U + WnJ iD + U + Ny+W respectively correspond to the frame index of the U-th chain time slot and the frame index of the earliest retransmission chain time slot. Referring to Figure 15, a partial flow chart of an exemplary algorithm in accordance with the present embodiment is shown. The step of calculating the earliest retransmission uplink time slot (bj includes, for example, the following steps. First, as step (bl), corresponding to the HARQ program of the u-th uplink time slot output data packet, the corresponding return is calculated. The lower key time slot, whose corresponding global index is equal to, for example, fK. Then, as in step (b2), corresponding to the HARQ program, the corresponding upper chain delay time step is calculated as step (b3), according to the earliest returning downlink time slot. Here,

Q 時間及傳送台延遲時間,決定此最早重傳上鏈時槽。遲 凊參照》16®,其纷示依照本實施例之範例性 二:邛份流程圖。決定最早重傳上鏈時槽之步驟 , 如包括下列之步驟。首先如步驟(b31),根據此=中例 鏈時槽之全局索引及轉送台延料 返下 =鍵時槽之全局索引、此傳送台延遲時間及此 = 、B ’叶算延遲後最早上鏈操作就緒時間之全局㈣。= 32 200945815 後如步驟(b33)’設定此最早重傳上鏈時槽為與此最早上鍵 操作就緒時間之全局索引及此延遲後最早上鍵操作就緒 時間之全局索引中之最大數值對應之時槽。舉例來步 驟(b31)-(b33)可以下列算式表示: y (13) rtK =max{ fK 十丁⑽+l,fK +丁邮 +Dul +1} 其中,K為此第u個上鏈時槽之全局索引;〜為此最早重 傳上鏈時槽之全局索引;fK為此最早回返下鏈時槽之全局 索引;Tms為此傳送台延遲時間;du1為此上鏈延^時間: fk+Tms+l對應至此最早上鏈操作就緒時間;fK+Tms+D 1+1 對應至此延遲後最早上鏈操作就緒時間。The Q time and the delay of the transfer station determine the earliest retransmission time slot. Later, reference is made to "16®", which is illustrated in accordance with the exemplary embodiment of the present embodiment: a flow chart. The steps to determine the earliest retransmission time slot, such as the following steps. First, as in step (b31), according to the global index of the slot in the example chain and the global index of the transfer station delay = key time slot, the delay time of the transmission station, and the first delay after the delay of the B' leaf The overall operation of the chain operation time (four). = 32 200945815 After step (b33)', set the earliest retransmission time slot to correspond to the global index of the earliest up-key operation ready time and the largest value in the global index of the earliest up-key operation ready time after this delay. Time slot. For example, the steps (b31)-(b33) can be expressed by the following formula: y (13) rtK = max{ fK ten (10) + l, fK + Ding + Dul +1} where K is the u-th winding The global index of the slot; ~ the earliest retransmission of the global index of the uplink time slot; fK is the earliest return global index of the downlink time slot; Tms is the delay time of the transmission station; du1 is the uplink delay time: fk +Tms+l corresponds to the earliest winding operation ready time; fK+Tms+D 1+1 corresponds to the earliest winding operation ready time after this delay.

請參照第17圖,其繪示依照本實施例之範例性演算 法的部份流程圖。計算此上鏈延遲時間之步驟(b2)中例如 包括下列之步驟。首先如步驟(b21),根據數值D'u'Ny、 Ng2及Ng3,計算各訊框之訊框長度及此上鏈延遲時間之一 最大值。接著如步驟(b22),根據此最早回返下鏈時槽之全 局索引fK及此傳送台延遲時間,計算此最早上鏈操作就緒 時間之全局索引。然後如步驟(b23),根據一全局索引偏移 量校正此最早上鏈操作就緒時間之全局索引。之後如步驟 (b24) ’根據此上鏈延遲時間之此最大值、此訊框長度及校 正後之此最早上鏈操作就緒時間之全局索引,計算上鏈延 遲時間。舉例來說,步驟(b21)-(b24)可以下列算式表示· (fK +Tms +l+Ng3)modp+U+Ngl +¾ +Ng3) (14) 其中,K為此第u個上鏈時槽之全局索引,Dui為此上鏈延 遲時間’ ίκ為此最早回返下鏈時槽之全局索引;Tros為此 33 200945815 1 TT r\ 傳送台延遲時間;D+U+Ngl+Ng2+Ng3為各訊框之訊框長. 度;D+Ngl+Ng2+Ng3為此上鏈延遲時間之此最大值· fk+Tms+l為此最早上鏈操作就緒時間之全局索引· n為 此全局索引偏移量;fK+Tms+l+Ng3為校正後之此最早1鏈 操作就緒時間之全局索引。 應用此全局索引偏移量(=Νρ)來校正此最早上鏈操作 就緒時間之全局索引(=fK+Tms+1)並對其進行相對於訊框 長度取餘數操作(Mod Operation),可對應至此最早上鏈操 作就緒時間找出-距離dt’用以表示此最早上鏈操作就緒❹ 時間之前一個時槽和前一個上鏈時槽間之距離。舉例來 說,fK等於21,Tms等於6,此最早上鏈操作就緒時間之 全局索引等於28,而對應之距離dt等於0(=28+2 mod 10), 表示此最早上鏈操作就緒時間之前一個時槽(k=27)離前一 個上鏈時槽(k=27)之距離為〇個時槽。將此上鏈延遲時間 之此最大值(=D+Ngl+Ng2+Ng3=7)減去距離叫=0),可得此 上鏈延遲時間。 請參照第18圖,其繪示依照本實施例之範例性演算❹ 法的部份流程圖。計算對應之此最早回返下鏈時槽之步驟 (bl)中例如包括下列之步驟。首先如步驟(bn),對應至於 此第u個上鍵時槽輸出資料封包之此harq程序,計算對 應之下鏈延遲時間。之後如步驟(bl2),根據此下鏈延遲時 間及此接送台延遲時間,決定此最早回返下鏈時槽。 請參照第19圖,其繪示依照本實施例之範例性演算 法的部份流程圖。決定此最早回返下鏈封包之步驟<bl2) 例如包括下列之步驟。首先如步驟(bl2a),根據此第u個 34 200945815 上鏈時槽之全局索引及此接送台延遲時間,計算一最早下 鏈操作就緒時間之全局索引。然後如步驟(bl2b),根據此 第u個上鏈時槽之全局索引、此接送台延遲時間及此下鏈 延遲時間’計算一延遲後最早下鏈操作就緒時間之全局索 引。之後如步驟(bl2c),設定此最早回返下鏈時槽為與此 最早下鏈操作就緒時間之全局索引及此延遲後最早下鏈 操作就緒時間之全局索引中之最大數值對應之時槽。 舉例來說’步驟(bl2a)-(bl2c)可以下列算式表示: ❹ f^maxiK + Rbs + i’K + R^+Dm+l} (15) 其中’ K為此第u個上鏈時槽之全局索引;fK為此最早回 返下鏈時槽之全局索引;Rbs為此接送台延遲時間;〇(11為 此下鏈延遲時間;K+Rbs+1對應至此最早下鏈操作就緒時 間之全局索引;K+Rbs+Ddl+1對應至此延遲後最早下鏈操 作就緒時間。 請參照第20圖,其繪示依照本發明實施例之範例性 演算法的部份流程圖。計算對應之此下鏈延遲時間之步驟 ❹ (b11)例如包括下列之步驟。首先如步驟(blla),根據數值 D、ϋ、Ngi、Ng2及Ng3 ’計算各訊框之一訊框長度及此下 鏈延遲時間之一最大值。然後如步驟(bllb),根據此第u 個上鏈時槽之全局索引及此接送台延遲時間,計算一最早 下鏈操作就緒時間。接著如步驟(bile),根據一全局索引 偏移量校正此最早下鏈操作就緒時間。之後如步驟 (blld) ’根據此下鏈延遲時間之此最大值、此訊框長度及 校正後之此最早下鏈操作就緒時間,計算此下鏈延遲時 間。舉例來說,步雜(blla)-(blld)可以下列算式表示: 35 (16) 200945815Referring to Figure 17, a partial flow chart of an exemplary algorithm in accordance with the present embodiment is shown. The step (b2) of calculating the uplink delay time includes, for example, the following steps. First, as step (b21), based on the values D'u'Ny, Ng2, and Ng3, the frame length of each frame and the maximum value of the uplink delay time are calculated. Then, as in step (b22), the global index of the earliest winding operation ready time is calculated based on the global index fK of the earliest returning down slot and the delay time of the transmitting station. Then, as in step (b23), the global index of the earliest uplink operation ready time is corrected based on a global index offset. Then, as in step (b24)', the uplink delay time is calculated based on the maximum value of the uplink delay time, the length of the frame, and the global index of the earliest winding operation ready time after correction. For example, steps (b21)-(b24) can be expressed by the following equation: (fK + Tms + l + Ng3) modp + U + Ngl + 3⁄4 + Ng3) (14) where K is the second u-winding The global index of the slot, Dui for this uplink delay time ' ί κ is the earliest return global index of the downlink slot; Tros for this 33 200945815 1 TT r\ transmission station delay time; D + U + Ngl + Ng2 + Ng3 The frame length of each frame. Degree; D+Ngl+Ng2+Ng3 is the maximum value of the uplink delay time. fk+Tms+l is the global index of the earliest uplink operation ready time. n This is the global index. Offset; fK+Tms+l+Ng3 is the global index of the earliest 1-chain operation ready time after correction. Applying this global index offset (=Νρ) to correct the global index of the earliest uplink operation ready time (=fK+Tms+1) and perform a remainder operation relative to the frame length (Mod Operation). At this point, the earliest winding operation ready time is found - the distance dt' is used to indicate the distance between the time slot and the previous winding time slot before the earliest winding operation is ready. For example, fK is equal to 21, Tms is equal to 6, the global index of the earliest winding operation ready time is equal to 28, and the corresponding distance dt is equal to 0 (=28+2 mod 10), indicating that this earliest winding operation is ready before time. The distance between one time slot (k=27) and the previous winding time slot (k=27) is one time slot. This maximum delay time is obtained by subtracting the maximum value of the uplink delay time (= D + Ngl + Ng 2 + Ng 3 = 7) from the distance = 0). Referring to Figure 18, there is shown a partial flow chart of an exemplary algorithm in accordance with the present embodiment. The step (b1) for calculating the earliest returning to the lower chain time slot includes, for example, the following steps. First, as step (bn), corresponding to the harq program of the u-th up key time slot output data packet, the corresponding chain delay time is calculated. Then, as step (bl2), the earliest returning time slot is determined based on the downlink delay time and the delay time of the shuttle. Referring to Figure 19, a partial flow chart of an exemplary algorithm in accordance with the present embodiment is shown. The step of determining the earliest returning of the downlink packet <bl2) includes, for example, the following steps. First, as step (bl2a), the global index of the earliest downlink operation ready time is calculated according to the global index of the last 34 200945815 winding time slot and the delay time of the shuttle. Then, as step (bl2b), a global index of the earliest downlink operation ready time after the delay is calculated based on the global index of the u-th winding time slot, the delay time of the shuttle station, and the downlink delay time. Then, as step (bl2c), the earliest return chain time slot is set to the time slot corresponding to the global index of the earliest downlink operation ready time and the maximum value of the global index of the earliest downlink operation ready time after the delay. For example, 'step (bl2a)-(bl2c) can be expressed by the following formula: ❹ f^maxiK + Rbs + i'K + R^+Dm+l} (15) where 'K is the u-th winding time slot The global index; fK is the earliest return global index of the downlink time slot; Rbs is the delay time of the shuttle station; 〇 (11 is the downlink delay time; K+Rbs+1 corresponds to the global order of the earliest downlink operation ready time Index; K+Rbs+Ddl+1 corresponds to the earliest downlink operation ready time after this delay. Please refer to Fig. 20, which shows a partial flow chart of an exemplary algorithm according to an embodiment of the present invention. The step (b11) of the chain delay time includes, for example, the following steps. First, as step (blla), the frame length of each frame and the delay time of the downlink are calculated according to the values D, ϋ, Ngi, Ng2, and Ng3'. a maximum value. Then, as step (bllb), according to the global index of the u-th winding time slot and the delay time of the shuttle station, an earliest downlink operation ready time is calculated. Then, as in the step (bile), according to a global index The offset corrects this earliest downlink operation ready time. After that, as step (blld) 'root According to the maximum value of the downlink delay time, the length of the frame, and the earliest downlink operation ready time after the correction, the downlink delay time is calculated. For example, the step (blla)-(blld) can be as follows. Representation: 35 (16) 200945815

TW5395PATW5395PA

DrCU+WNJ- (K+Rbs +1 + U+Ng2 +Ng3)mod^) + U+Ngl +Ng2 +Ng3) 其中’ K為此第u個上鏈時槽之全局索引;Rbs為此接送台 延遲時間;Ddl為此下鏈延遲時間;D+U+Ngl+Ng2+Ng3為各 訊框之訊框長度;U+Ngl+Ng2+Ng3為此下鏈延遲時間之此 最大值;K+Rbs+1為此最早下鏈操作就緒時間之全局索 引;U+Ng2+Ng3為此全局索引偏移量;K+Rbs+1+U+Ng2+Ny 為校正後之此最早下鍵操作就緒時間之全局索引。 〇 相似於前述應用全局索引偏移量(=Ν0)對最早上鏈操 作就緒時間進行校正之步驟,此處應用此全局索引偏移量 (=U+Ng2+Ng3)來校正此最早下鏈操作就緒時間之全局索引 (=K+Rbs+1)並對其進行相對於訊框長度取賊之操作,可 對應至此最早下鏈操作就緒時間找出一距離办,,用以表示 此最早下鏈操作就緒時間之前一個時槽與前一個下鍵 槽間之距離。 〇DrCU+WNJ- (K+Rbs +1 + U+Ng2 +Ng3)mod^) + U+Ngl +Ng2 +Ng3) where 'K is the global index of the u-th winding time slot; Rbs is the pick-up Delay time; Ddl is the downlink delay time; D+U+Ngl+Ng2+Ng3 is the frame length of each frame; U+Ngl+Ng2+Ng3 is the maximum value of the downlink delay time; K+Rbs +1 is the global index of the earliest downlink operation ready time; U+Ng2+Ng3 is the global index offset; K+Rbs+1+U+Ng2+Ny is the corrected next key operation ready time Global index. 〇 Similar to the previous application global index offset (= Ν 0) to correct the earliest uplink operation ready time, where this global index offset (= U + Ng + Ng3) is applied to correct this earliest downlink operation The global index of the ready time (=K+Rbs+1) and the operation of the thief relative to the length of the frame, corresponding to the earliest downlink operation ready time to find a distance, to indicate the earliest downlink The distance between a time slot and the previous lower keyway before the operation ready time. 〇

在别述例子中,參數Na _具有數值i之情形為例做 說明’ ^而參數Να·μαρ亦可具有其他數值。請參昭第 2二:繪示依照本實施例另一訊框的示意圖。訊:FM ° 下鏈時槽,其中每Να-μαρ個下鏈時槽中包括一 個配置有回覆資源配置資訊Α-ΜΑΡ之下鏈時槽,參數 Να_μαρ為自然數。接下來,係舉例說明 之圖框結構下,舛瞀+且 周所不 及此:鏈延遲時間之詳細操作。 王局索引 ΙλαΓ參第22圖’ L示依照本實施例之範例性演算 法的部份流程圖。篦22圄 、算 第22圖所不之流程步驟與第18圖所示 36 200945815 之步驟不同之處在於其於步驟(bll,)之前更包括步驟 (bl3) ’根據此參數NA_MAP重新定義數值D為〇·,並重新 定義數值Ng2為N’g2。接著如步驟(ΜΓ),對應至此HARQ 程序,根據數值D,、N,g2、U、Ngl、Ng3及接送台延遲時 間計算對應之下鏈延遲時間。其中根據參數Na -MAP重新定 義數值D為D’及重新定義Ng2為N’g2之步驟可以下列算式 表示: D’=D-(D_l)modNA._ (17) © N'g^Ng^D-UmodNA^p (18) 然後如步驟(bl4),根據此下鏈延遲時間及此參數 NA_MAP,計算時槽偏移量。之後如步驟(bl2’),根據此下鏈 延遲時間、此時槽偏移量及此接送台延遲時間,決定此最 早回返下鏈時槽。 請參照第23圖,其繪示依照本實施例之範例性演算 法的部份流程圖。在第23圖中,步驟(bl2)之詳細步驟 (bl2b')及(bl2c,)分別相近於第19圖繪示之步驟(bl2b)及 ❹ (bl2c);而步驟(bl2a·)與步驟(bl2a)不同之處在於步驟 (bl2a’)中更參考此時槽偏移量來計算最早下鏈操作就緒時 間之全局索引。舉例來說,步驟(12a,)-(12c,)可以下列算式 表示: fK^maxlK + R^+l + w, K + Rbs+0^+1} (19) K為此第u個上鏈時槽之全局索引;0、為此下键延遲時 間’ Rbs為該接送台延遲時間;w為此時槽偏移量’ K+Rbs+l+w對應至此最早下鏈操作就緒時間之全局索 引;K+Rbs+D’dl+1對應至此延遲後最早下鏈操作就緒時間。 37 200945815In the other examples, the case where the parameter Na _ has the value i is taken as an example '^ and the parameter Να·μαρ may have other values. Please refer to FIG. 2: a schematic diagram of another frame according to this embodiment. Signal: FM ° downlink time slot, in which each α-μαρ downlink time slot includes a time slot with a configuration information of the reply resource configuration, and the parameter Να_μαρ is a natural number. Next, in the frame structure illustrated by the example, 舛瞀+ and weeks are not the same: the detailed operation of the chain delay time. The 局λαΓ参第22图' L shows a partial flow chart of the exemplary algorithm according to the present embodiment.篦22圄, the process steps of Figure 22 are different from the steps of 36 200945815 shown in Figure 18, which consists of step (bl3) before step (bll,) 'Redefined value D according to this parameter NA_MAP For 〇·, and redefine the value Ng2 to N'g2. Then, as step (ΜΓ), corresponding to the HARQ program, the corresponding lower chain delay time is calculated according to the values D, N, g2, U, Ngl, Ng3 and the delay time of the shuttle. The step of redefining the value D to D' according to the parameter Na-MAP and redefining Ng2 to N'g2 can be expressed by the following formula: D'=D-(D_l)modNA._ (17) © N'g^Ng^D -UmodNA^p (18) Then, as in step (bl4), the time slot offset is calculated based on this downlink delay time and this parameter NA_MAP. Then, as step (bl2'), the earliest returning time slot is determined based on the downlink delay time, the slot offset at this time, and the delay time of the shuttle. Referring to Figure 23, a partial flow chart of an exemplary algorithm in accordance with the present embodiment is shown. In Fig. 23, the detailed steps (bl2b') and (bl2c,) of step (bl2) are respectively similar to the steps (bl2b) and ❹ (bl2c) shown in Fig. 19; and the steps (bl2a·) and steps ( Bl2a) differs in the step (bl2a') by referring to the slot offset at this time to calculate the global index of the earliest downlink operation ready time. For example, the steps (12a,)-(12c,) can be expressed by the following formula: fK^maxlK + R^+l + w, K + Rbs+0^+1} (19) K for this u-th winding The global index of the time slot; 0, the delay time of the lower key 'Rbs is the delay time of the shuttle station; w is the global index of the slot offset 'K+Rbs+l+w corresponding to the earliest downlink operation ready time ; K+Rbs+D'dl+1 corresponds to the earliest downlink operation ready time after this delay. 37 200945815

TW5395FA 計算此時槽偏移量之步驟(bl4)例如包括下列之步 驟。當此下鏈延遲時間大於〇時,此時槽偏移量具有數值 0;當此下鏈延遲時間大於〇,此時槽偏移量之數值由此下 鍵延遲時間與此參數NA-MAP決定。前述計算此時槽偏移量 之步驟可以下列算式表示: w = 0 if D'dl > 0; w = (2 + D% )111〇肌撕)if D,^ 〇 (20) w為此時槽偏移量;D’dl為此下鏈延遲時間。 請參照第24圖,其纷示依照本實施例之範例性演算 法的部份流程圖。在第24圖中,步驟(Μ1)内之詳細步驟 (blla)-(blld)分別相近於第2〇圖繪示之步驟作丨丨約及 (biid),其不同之處在於步驟(bUa,)係根據數值u、Ngi、The TW5395FA step (bl4) of calculating the slot offset at this time includes, for example, the following steps. When the downlink delay time is greater than 〇, the slot offset has a value of 0; when the downlink delay time is greater than 〇, the value of the slot offset is determined by the lower key delay time and the parameter NA-MAP. . The foregoing step of calculating the slot offset at this time can be expressed by the following formula: w = 0 if D'dl >0; w = (2 + D% ) 111 〇 muscle tear) if D, ^ 〇 (20) w Time slot offset; D'dl is the downlink delay time. Referring to Figure 24, there is shown a partial flow chart of an exemplary algorithm in accordance with the present embodiment. In Fig. 24, the detailed steps (blla)-(blld) in the step (Μ1) are respectively similar to the steps shown in the second drawing, and the difference is in the step (bUa, ) based on the values u, Ngi,

Ng3及經過參數ΝΑ·ΜΑΡ重新定義後之D,及N,g2來計算此下 鏈延遲時間之最大值及各訊框之訊框長度;步驟(bllc,)係 根據等於數值U+N’gdNg3之全局索引偏移量來校正步驟 (bllb’)計算得到之最早下鏈操作就緒時間。舉例來說,前 述计算此下鍵延遲時間之步驟(b 11 a’)-(b 11 d’)可以下列算 ❹ 式表示: D'dl = [(U+Ngl+N'g2+Ng3)- (K+Rbs +l + U+N,g2+Ng3)mod(D,+U+Ngl +N'g2+Ng3) (21) 其中,K為此第u個上鏈時槽之全局索引;Rbs為此接送台 延遲時間;D’dl為此下鏈延遲時間;D’+U+Ngl+N,g2+Ng3 為各訊框之訊框長度;U+Ngl+N’g2+Ng3為此下鏈延遲時間 之此最大值;K+Rbs+1為此最早下鏈操作就緒時間之全局 索引;1;+>1’§2+1^3為此全局索引偏移量; 38 200945815 Κ+‘+1 +U+N,g2+Ng3為校正後之此最早下鏈操作就緒時 間之全局索引。 在一個例子中,本實施例之範例性演算法更用以計算 參數FK,用以指示此第1-1個訊框中之此第u個上鏈時槽 與此最早回返下鏈時槽間之一回覆延遲時間。舉例來說, 計算此參數FK之步驟相似於先前計算最早回返下鍵時槽 之步驟,而可以下列算式表示: FK =max{Rbs +l + w, Rbs +D.dl+l} (22) ❹ w = 0 if D’dl > 0; w = (2 + D'dl )mod(NA.MAP) if D'dl < 0 D'di = [(U+Ngl+N'g2+Ng3)- (K+Rbs +l+U+N'g2+Ng3)modp+U+Ngl +^+¾) D’=D-(D-l)modNA._ N’g2 = Ng2 + (D - UmodNA-MAp 在一個例子中,本實施例之範例性演算法更用以計算 參數RTK,用以指示此第Μ個訊框之此第u個上鏈時槽 ❿與此最早重傳上鏈時槽間之一回傳延遲時間。舉例來說, 計算此參數RTK之步驟可以下列算式表示: RTfN + CD + WN,N + K-(gl^tNg2) (23) 其中N為前述步驟(e)計算之將被設定之此些HARQ程序 之數量;K為此第u個上鏈時槽之全局索引;N表示此些 HARQ程序之數量,換言之,即是第u個上鏈時槽之下一 個時槽至對應之重傳上鏈時槽間之上鏈時槽數目; D+Ngi+Ng2+Ng3表示各訊框中非上鏈時槽(包括下鏈時槽 39 2009s^ 及間置時槽)之數 N + K-Ng3 and D, and N, g2, which are redefined by the parameter ΝΑ·ΜΑΡ, calculate the maximum value of the downlink delay time and the frame length of each frame; the step (bllc,) is based on the equal value U+N'gdNg3 The global index offset is used to correct the earliest downlink operation ready time calculated by the step (bllb'). For example, the aforementioned step (b 11 a')-(b 11 d') for calculating the delay time of the lower key can be expressed by the following formula: D'dl = [(U+Ngl+N'g2+Ng3)- (K+Rbs +l + U+N, g2+Ng3) mod(D, +U+Ngl +N'g2+Ng3) (21) where K is the global index of the u-th winding time slot; Rbs For this reason, the delay time of the shuttle station; D'dl is the delay time of the downlink; D'+U+Ngl+N, g2+Ng3 is the frame length of each frame; U+Ngl+N'g2+Ng3 for this The maximum value of the chain delay time; K+Rbs+1 is the global index of the earliest downlink operation ready time; 1;+>1'§2+1^3 is the global index offset; 38 200945815 Κ+ '+1 + U+N, g2+Ng3 is the global index of the earliest downlink operation ready time after correction. In an example, the exemplary algorithm of this embodiment is further used to calculate a parameter FK for indicating the ninth uplink time slot in the 1-1st frame and the earliest return chain time slot. One of the reply delay times. For example, the step of calculating this parameter FK is similar to the previous step of calculating the earliest return time of the down key, and can be expressed by the following formula: FK = max{Rbs + l + w, Rbs + D.dl + l} (22) ❹ w = 0 if D'dl >0; w = (2 + D'dl ) mod(NA.MAP) if D'dl < 0 D'di = [(U+Ngl+N'g2+Ng3) - (K+Rbs +l+U+N'g2+Ng3)modp+U+Ngl +^+3⁄4) D'=D-(Dl)modNA._ N'g2 = Ng2 + (D - UmodNA-MAp In an example, the exemplary algorithm of this embodiment is further used to calculate a parameter RTK for indicating one of the u-th winding time slot of the second frame and the earliest retransmission time slot. Return delay time. For example, the step of calculating this parameter RTK can be expressed by the following formula: RTfN + CD + WN, N + K-(gl^tNg2) (23) where N is calculated in the foregoing step (e) Set the number of these HARQ programs; K is the global index of the u-th uplink time slot; N indicates the number of these HARQ programs, in other words, the time slot below the u-th winding time slot to the corresponding The number of time slots above the slot when retransmitting the chain; D+Ngi+Ng2+Ng3 indicates the non-winding slot in each frame (including when the chain is down) Slot 39 2009s^ and intervening slots) N + K-

百 樞數第U個上鏈時槽炱對應之重傳上鏈時槽間經過之訊 時榔目。如此,根據各訊框中非上鏈時槽與此第U個上鏈 得^對應之重傳上鏈時槽間經歷過之訊框數目,可相乘 槽數目Y個上鏈時槽至對應之重傳上鏈時槽間之非上鏈時 非上 根據第u個上鍵時槽至對應之重傳上鏈時槽間之 〇 槽間之時槽數目與此第U個上鏈時槽至對應之重傳上鏈時 最早重槽數目’ <相加得到此第u個上鏈時槽與此 & 得上鏈時槽間之此回傳延遲時間。 然其並1^:述,雖然本發0月已以—較佳實施例揭露如上, 常知識者,二限定本發明。本發明所屬技術領域中具有通 之更動離本發Γ精神和範圍内,當可作各種 專利範圍所:〜2此:之保護範圍當視後附之申請 【圖式簡單說;】為準。 ❹ 輪時之訊傳統於使用1 HARQ程序於進行傳 時之訊號流=為傳驗使用多個HARQ程序進行傳輸 流程圖。了為TDD通訊系统巾之同步HARQ之訊號 40 200945815 X TT ΓΛ. 第5圖繪示為TDD系統中之多個HARQ程序之同步 HARQ之訊號流程圖。 第6A圖繪示無線通訊系統之一例之方塊圖。 第6B圖繪示一基地台結構之一例之方塊圖。 第6C圖繪示一用戶台結構之一例之方塊圖。 第7圖繪示為依照本發明一些實施例之於一 TDD訊 框結構中使用TDD同步機制之一例之訊號流程圖。 第8圖繪示為依照本發明一些實施例之於一 TDD訊 ❿ 框結構中使用TDD同步機制之一例之訊號流程圖。 第9圖繪示為依照本發明一些實施例之一系統之訊 號流程圖,此系統係實現一範例性演算法,以用來決定將 被一用戶台所設定之HARQ程序之一數目,且係用於一無 線通訊系統中。 第10圖繪示為一系統之訊號流程圖,此系統係實現 一範例性演算法,以依照一下鏈時槽所傳送之HARQ回返 資料決定一 HARQ程序。 ❹ 第11圖繪示依照本發明實施例之無線通訊系統的訊 框示意圖。 第12圖繪示依照本發明一些實施例之一系統之訊號 流程圖 第13圖繪示依照本實施例之範例性演算法的流程 阖。 第14圖繪示依照本實施例之範例性演算法的部份流 程圖。 第15圖繪示依照本實施例之範例性演算法的部份流 200945815 l 程圖。 第16圖繪示依照本實施例之範例性演算法的部份流 程圖。 第17圖繪示依照本實施例之範例性演算法的部份流 程圖。 第18圖繪示依照本實施例之範例性演算法的部份流 程圖。 第19圖繪示依照本實施例之範例性演算法的部份流 程圖。 第20圖繪示依照本發明實施例之範例性演算法的部 份流程圖。 第21圖繪示依照本實施例另一訊框的示意圖。 第22圖繪示依照本實施例之範例性演算法的部份流 程圖。 第23圖繪示依照本實施例之範例性演算法的部份流 程圖。 第24圖繪示依照本實施例之範例性演算法的部份流 程圖。 【主要元件符號說明】 100、900 :訊框 102 :傳輸時間間隔 104 :上鏈子訊框 106、514 :下鏈子訊框 108 :下鏈點 200945815 1 yn 110 :上鏈傳輸 112 :上鏈點 114 :下鏈傳輸 206、702、702’ : HARQ 接收器 202、704、704’ : HARQ 傳送器 204、212、302、306、402、404、500、502、504、 518、716、718、810、814、818、822、824、826、830、 902、906 :資料封包 Ο 204’ :重新傳送之資料封包 208 ··否認信號 210、304、400、406 :確認信號 408 :延遲 508、510、820、828、904:回返(確認信號/否認信號) 506 基地台延遲時間cIbs 512 下鏈延遲dDL2 516 下鏈延遲dDL3 706 時槽 i!〜i4、708 :上鏈時槽 600 :無線通訊系統 610 :核心網路 620、620a、620b :無線電網路控制器 630、 630a〜630e :基地台 640、640a〜640f :用戶台 631、 641 :中央處理單元 632、 641 :隨機存取記憶體 43 200945815 1 W3JWA * 633、 643 :唯讀記憶體 634、 644 :記憶體 635、 645 :資料庫 636、 646 :輸入/出裝置 637、 647 :介面 638、 648 :天線 710 :下鏈時槽 711 :訊框 712 :可用時槽 ❹ 714 : HARQ程序識別碼 802〜808 : HARQ 程序 1002 :基地台延遲時間dbs a:訊框中用於上鏈之時槽數目 b:訊框中用於下鏈之時槽數目 i :某個上鏈時槽The number of pivots in the U-th winding is corresponding to the retransmission of the slot. In this way, according to the number of frames experienced between the non-winding time slot and the U-up chain corresponding to the U-up chain, the number of slots can be multiplied by the number of slots. When the retransmission is on the chain, the non-winding between the slots is not based on the number of slots between the slots in the slot from the u-up key to the corresponding retransmission, and the U-th winding slot The number of the oldest troughs to the corresponding retransmission chain is '<added to obtain the backhaul delay time between the slot of the uth uplink and the slot of this & However, it has been described above, although the present invention has been disclosed in the preferred embodiment as above, and is not limited to the present invention. It is within the spirit and scope of the present invention to be able to make various patents within the scope of the present invention: ~2 This: The scope of protection is subject to the attached application [Simple figure;]. ❹ The time of the round is traditionally used in the signal flow using the 1 HARQ program for transmission = the flow chart for the transmission using multiple HARQ programs for the test. Synchronous HARQ signal for TDD communication system towel 40 200945815 X TT ΓΛ. Figure 5 shows the signal flow chart of synchronous HARQ for multiple HARQ programs in TDD system. Figure 6A is a block diagram showing an example of a wireless communication system. Figure 6B is a block diagram showing an example of a base station structure. Figure 6C is a block diagram showing an example of a subscriber station structure. Figure 7 is a flow chart showing an example of using a TDD synchronization mechanism in a TDD frame structure in accordance with some embodiments of the present invention. FIG. 8 is a flow chart showing an example of using a TDD synchronization mechanism in a TDD frame structure in accordance with some embodiments of the present invention. FIG. 9 is a flow chart of a system according to some embodiments of the present invention. The system implements an exemplary algorithm for determining the number of HARQ programs to be set by a subscriber station. In a wireless communication system. Figure 10 is a flow chart of a system. The system implements an exemplary algorithm to determine a HARQ procedure in accordance with the HARQ return data transmitted by the chain time slot. Figure 11 is a block diagram of a wireless communication system in accordance with an embodiment of the present invention. Figure 12 is a flow chart of a system in accordance with some embodiments of the present invention. Figure 13 is a flow chart showing an exemplary algorithm in accordance with the present embodiment. Figure 14 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 15 is a partial flow diagram of an exemplary algorithm in accordance with the present embodiment. Figure 16 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 17 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 18 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 19 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 20 is a partial flow diagram of an exemplary algorithm in accordance with an embodiment of the present invention. FIG. 21 is a schematic diagram showing another frame according to the embodiment. Figure 22 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 23 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. Figure 24 is a partial flow diagram showing an exemplary algorithm in accordance with the present embodiment. [Main component symbol description] 100, 900: frame 102: transmission time interval 104: uplink subframe 106, 514: downlink subframe 108: downlink point 200945815 1 yn 110: uplink transmission 112: uplink point 114 : Downlink transmissions 206, 702, 702': HARQ receivers 202, 704, 704': HARQ transmitters 204, 212, 302, 306, 402, 404, 500, 502, 504, 518, 716, 718, 810, 814, 818, 822, 824, 826, 830, 902, 906: data packet Ο 204': retransmitted data packet 208 · ACK signal 210, 304, 400, 406: acknowledgment signal 408: delay 508, 510, 820 828, 904: Return (confirmation signal/denial signal) 506 Base station delay time cIbs 512 Downlink delay dDL2 516 Downlink delay dDL3 706 Time slot i!~i4, 708: Winding time slot 600: Wireless communication system 610: Core network 620, 620a, 620b: radio network controller 630, 630a~630e: base station 640, 640a~640f: subscriber station 631, 641: central processing unit 632, 641: random access memory 43 200945815 1 W3JWA * 633, 643: Read-only memory 634, 644: Memory 635, 645: Library 636, 646: input/output devices 637, 647: interface 638, 648: antenna 710: downlink time slot 711: frame 712: available time slot 714: HARQ program identification code 802 to 808: HARQ program 1002: Base station delay time dbs a: number of slots used for winding in the frame b: number of slots for the lower chain in the frame i: a certain time slot

Fi :在時槽i傳送的資料封包,其回返下鏈時槽 在時槽i傳送資料封包的HARQ程序,其下一筆 〇 資料封包的傳輸時槽Fi: the data packet transmitted in time slot i, which returns to the downlink time slot. The HARQ program that transmits the data packet in time slot i, the next one 〇 the transmission time slot of the data packet

Ni :在時槽i到Ti-1間的上鏈時槽數目 dss :用戶台處理延遲時間 dBS :基地台處理延遲時間 44Ni : number of slots in the time slot from time slot i to Ti-1 dss : user station processing delay time dBS : base station processing delay time 44

Claims (1)

200945815 1 w 七、申請專利範圍: 1. 一種方法’應用於一分時雙工(Time_Division Duplex,TDD)之通訊系統中,用以於一傳送台與一接送台 之間執行同步混合式自動重複請求(Hybrid Automatic Repeat Request,HARQ),該方法包括: 於該傳送台設定複數個harq程序; 利用該複數個HARQ程序傳送複數個資料封包至該 接收台,其中該些資料封包係不包含11八11(^程序識別資 〇 訊; 接收從該接收台而來的複數個HARQ回返封包,用 以指示該些資料封包是否於該接收台正確地被接收,其中 該複數個回返封包係不包含HARQ程序識別資訊,且其中 該複數個HARQ回返封包係於一下鏈時槽(d〇wnHnk si〇t) 中被接收;以及 由該傳送台映射(mapping)該複數個HARq回返封包 至該複數個HARQ程序。 © 2.如申請專利範圍第1項所述之方法,其中該傳送 台係為一用戶台(Subscriber Station,SS),且該接收台係為 一基地台(Base Station,BS)。 3. 如申請專利範圍第1項所述之方法,其中該複數 個HARQ回返封包係結合於一位元映像(bitmap)中。 4. 如申請專利範圍第3項所述之方法,其中該位元 映像中之該複數個HARQ回返封包係依序地對應至該複 數個HARQ程序,用以傳送相關於該複數個HARq回返 封包之該些資料封包。 45 200945815 1W5395FA 5.如申凊專利範圍帛2項所述之方法,其中該複數 個HARQ回返封包係結合於一位元映像(bi_p)中該位 元映像係於''下鏈時槽k中所接收,且用以指示上鏈時槽 Sk所識狀資料封包於職地台之接收狀態&係由下列 方式所決定: 假使 k mod (a+b> = a+ 1, 貝J & {i ’ 其中 i 為介於 k — dbs — a— 1 至 k — dbS _1之所有上鏈時槽 否則 sk = {號碼為k—dbs— 1之上鏈時槽},其中 k表示為該下鏈時槽, dbS表示為一基地台延遲時間,用以於該基地台處理 該資料封包, a表示為一訊框中用於上鍵之時槽的一數目,以及 b表示為該訊框中用於下鏈之時槽的一數目。 6. 如申請專利範圍第1項所述之方法,其中該複數 個HARQ回返封包係結合於一位元映像(bitmap)中,該位 元映像係於一下鏈時槽k中所接收,且用以指示上鏈時槽 Sk所識別之資料封包於該傳送台之接收狀態,上鏈時槽Sk 係由一訊框中用於上鏈之時槽的一數目、該訊框中用於下 鏈之時槽的一數目、以及用以於該接收台處理些資料封包 之一延遲時間之中的一關係所決定。 7. 如申請專利範圍第2項所述之方法’其中設定該 複數個HARQ程序之該步驟更包括決定將被設定之該些 HARQ程序一數量n,並根據下列方式所決定: 200945815 1 yv jjyjrn. 至a} f Tt i \ V _a + b_ _a + b_ ) N = max{Nj, N( = Tt —i-bx 7; = max{ f+心 +1,巧+《+ (A - (F’+心-a) mod(a+△))+,以及 g = max{ (· + +1, ζ· + + (<a _ (/ + ) mod(a + 厶))+1},其中 i表示一上鏈時槽, Fi表示一回返下鏈時槽,用於一上鏈時槽i所傳送之 該資料封包, ❹ Ti表示一傳輸時槽,此時一額外的資料傳輸係由該用 戶台所傳送,且使用相同於在該上鏈時槽丨中用以傳送該 資料封包之該HARQ程序, Ni表示上鏈時槽之一數目,且係介於該上鏈時槽i以 及緊接於該傳輸時槽Ti前之一時槽之間, a表示為一訊框中用於上鏈之時槽的一數目,以及 b表示為該訊框中用於下鏈之時槽的一數目, dss表示一用戶台延遲時間,用以於該用戶台處理該 ❹ HARQ回返資料,以及 dbs表示一基地台延遲時間,用以於該基地台處理該 資料封包。 8.如申請專利範圍第1項所述之方法,其中設定該 複數個HARQ程序之該步驟更包括決定將被設定之該些 HARQ程序之一數量n,並根據用於一上鏈時槽i之Ni之 一最大數值所決定,i係介於i=l至一訊框中用於上鏈之時 槽之一數目之範圍之間, 其中,Nj表示上鏈時槽之一數目’且係介於該上鍵時 47 200945815 I WDJV3KA :的資一傳輸時槽乃前之-時槽之間,此時-額 鏈時样i、由該接收台所傳送,且使用相同於在該上 ==傳送該資料封包之-,程序,其中 == 該上_、-訊框中用於上鏈 之中的-關係所決ί及—訊框中用於下鍵之時槽的一數目 料封係由用於該上鍵時槽ι送之資 ΗΑ二;::鏈:槽^、用以於該接收台處理該 之時槽的該數目、以^送台延遲時間、一訊框中用於上鏈 之中:-關係所決定:框 鏈之時槽的該數目 令用於上鍵之口延遲時間、一訊框 押的兮數目^ 目、以及一訊框中用於下鍵之時 槽㈣數目之中的—關係所決定。 9’ Μ請專利_第1項所述之方法,其中: 複數間之傳輸操作時槽係被定義成 Ng3個第:間置時:::置時槽,個第二閒置時槽及 數'及 槽其中U、D、〜、及Ng3為自然 行在线㈣㈣包之操作執 "To TtV^ 圍第9項所述之方法,其中設定該 48 200945815 X TV Λ & 複數個HARQ程序之該步驟更包括·· 令該些HARQ程序中之一 HARQ程序於各該些訊框 中之-第u個上鏈時槽中’輪出一資料封包,u為小於或 等於U之自然數,u之起始值為i ; 對應至該些HARQ程序中之該HARQ程序計算對 應之一最早重傳上鏈時槽; 根據該最早重傳上鏈時槽、該第u個上鏈時槽及數值 U、D、Ngl、Ng2與Ν§3 ’計算該第u個上鏈時槽與該最早 ❹重傳上鏈時槽間之一上鏈時槽數目; 遞增u,並重複前述步驟,以得到11筆上鏈時槽數目; 及 根據該u筆上鏈時槽數目計算將被設定之該些HARQ 程序之一數量N。 11.如申請專利範圍第1〇項所述之方法,其中計算將 被設定之該些HARQ之該數量n之步驟包括: 設定該數量N為該U筆上鍵時槽數目中之最大數值。 ❹ 12.如申請專利範圍第10項所述之方法,其中計算該 上鏈時槽數目之步驟包括: 根據該第u個上鏈時槽之全局索引(Global Index)及該 最早重傳上鏈時槽與之全局索引,計算該最早重傳上鏈時 槽與該第u個上鏈時槽間之一總時槽數目、該第u個上鏈 時槽之訊框索引(Frame Index)及該最早重傳上鏈時槽之訊 框索引; 根據數值D、U、Ngl、Ng2及Ng3計算各該些訊框之 一訊框長度及一非上鏈時槽數目;及 49 200945815 1 WDJWA 根據該總時槽數目、該第u個上鏈時槽之訊框索引 該最早重傳上鏈時槽之訊框料、各該些訊框之該訊 度及該非上鏈時槽數目,計算該上鏈時槽數目。 13.如申請專利範圍第10項所述之方法,其中 最早重傳上鏈時槽之步驟包括: Μ 對應至該些HARQ程序中之該HARQ程序,計算對 應之一最早回返下鏈時槽; 對應至該些HARQ程序中之該HARq程序,計算對 應之一上鏈延遲時間;及200945815 1 w VII. Patent application scope: 1. A method is applied to a Time_Division Duplex (TDD) communication system for performing synchronous hybrid automatic repetition between a transfer station and a transfer station. Request (Hybrid Automatic Repeat Request, HARQ), the method includes: setting a plurality of harq programs at the transmitting station; transmitting, by the plurality of HARQ programs, a plurality of data packets to the receiving station, wherein the data packets do not include 11 11 (^ program identification information; receiving a plurality of HARQ return packets from the receiving station, to indicate whether the data packets are correctly received at the receiving station, wherein the plurality of return packets do not include HARQ The program identifies information, and wherein the plurality of HARQ return packets are received in a downlink time slot (d〇wnHnk si〇t); and the plurality of HARq return packets are mapped by the transmitting station to the plurality of HARQs The method of claim 1, wherein the transfer station is a subscriber station (SS), and the receiving The system is a base station (BS). The method of claim 1, wherein the plurality of HARQ return packets are combined in a single bit map. The method of claim 3, wherein the plurality of HARQ return packets in the bitmap are sequentially corresponding to the plurality of HARQ programs for transmitting the data related to the plurality of HARQ return packets. 5. The method of claim 2, wherein the plurality of HARQ return packets are combined in a one-dimensional image (bi_p) in the bit-chain time slot. The reception state & which is received in k and used to indicate the information of the slot Sk recognized in the uplink is determined by the following method: If k mod (a+b> = a+ 1, Bay J &amp ; {i ' where i is between k - dbs - a - 1 to k - all the time slots of dbS _1 or sk = {number is k-dbs - 1 chain time slot}, where k is the The downlink time slot, dbS is expressed as a base station delay time for the base station The data packet is processed, a is a number of slots for the up key in the frame, and b is a number of slots for the downlink in the frame. 6. The method of the item, wherein the plurality of HARQ return packets are combined in a bitmap, the bit map is received in the slot k of the downlink, and is used to indicate the slot time Sk of the winding The identified data packet is received in the receiving state of the transmitting station, and the uplink slot S is a number of slots for the uplink in a frame, a number of slots for the downlink in the frame, and It is determined by a relationship among the delay times of processing one of the data packets by the receiving station. 7. The method of claim 2, wherein the step of setting the plurality of HARQ programs further comprises determining a number n of the HARQ programs to be set, and determining according to the following manner: 200945815 1 yv jjyjrn To a} f Tt i \ V _a + b_ _a + b_ ) N = max{Nj, N( = Tt —i-bx 7; = max{ f+heart+1, Qiao+“+ (A - (F' +Heart-a) mod(a+△))+, and g = max{ (· + +1, ζ· + + (<a _ (/ + ) mod(a + 厶))+1}, where i Indicates an uplink time slot, Fi represents a return chain time slot, and is used for the data packet transmitted by slot i when it is uplinked. ❹ Ti represents a transmission time slot, and an additional data transmission is performed by the user. Transmitted by the station, and using the HARQ program which is the same as the HARQ program used to transmit the data packet in the winding time slot, Ni represents the number of slots in the winding time, and is located in the winding time slot i and immediately after Between the time slots of the slot Ti in the transmission, a is represented as a number of slots for the uplink in a frame, and b is a number of slots for the downlink in the frame, dss Indicates when a subscriber station is delayed For processing the HARQ return data at the subscriber station, and dbs indicating a base station delay time for processing the data packet at the base station. 8. The method of claim 1, wherein The step of setting the plurality of HARQ programs further includes determining the number n of the HARQ programs to be set, and determining the maximum value of one of the Nis for the slot i for an uplink, i is between i= l between the range of the number of time slots for the winding in the frame, where Nj represents the number of slots in the upper chain and is between the upper keys 47 200945815 I WDJV3KA: The time slot is between the previous-time slot, at this time - the front-line chain i, transmitted by the receiving station, and the same as the above-mentioned == transmission of the data packet - the program, where == the upper _ - the frame is used in the chain - the relationship is determined - and the number of time slots for the time slot of the frame is used by the slot 2 for the up button; ::chain: slot ^, the number of slots used to process the time at the receiving station, delay time of sending the station, used in the frame In the upper chain: - the relationship is determined: the number of slots in the chain is the delay time for the upper key, the number of frames for the message, and the time for the next button in the frame. The relationship between the number of slots (four) is determined by the relationship. 9' 专利 专利 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The slot, the second idle slot and the number 'and the slot, wherein U, D, ~, and Ng3 are the natural line online (4) (four) package operation method " To TtV^ circumference method according to item 9, wherein the setting is 48 200945815 X TV Λ & The steps of the plurality of HARQ programs further include: • causing one HARQ program of the HARQ programs to rotate a data packet in the u-th chain time slot of each of the frames. u is a natural number less than or equal to U, and the initial value of u is i; corresponding to the HARQ program in the HARQ program, one of the earliest retransmission time slots is calculated; according to the earliest retransmission time slot , the u-th winding time slot and the values U, D, Ngl, Ng2 and Ν§3 'calculate the u-th winding time slot and the earliest ❹ The number of slots in one of the slots when the chain is transmitted; increment u, and repeat the foregoing steps to obtain the number of slots in the 11-up winding; and calculate the HARQs to be set according to the number of slots in the u-winding The number of programs is N. 11. The method of claim 1, wherein the step of calculating the number n of the HARQs to be set comprises: setting the number N to be the largest of the number of slots on the U pen. ❹ 12. The method of claim 10, wherein the step of calculating the number of slots in the winding includes: a global index based on the u-th winding time slot (Global Index) and the earliest retransmission winding a time slot and a global index, calculating a total number of time slots between the earliest retransmission winding time slot and the uth uplink time slot, a frame index of the uth uplink time slot and The index of the frame of the earliest retransmission time slot; calculating the frame length of one of the frames and the number of non-winding slots according to the values D, U, Ngl, Ng2, and Ng3; and 49 200945815 1 WDJWA The number of the total time slots, the frame index of the u-th uplink time slot, the frame material of the earliest retransmission time slot, the signal of each of the frames, and the number of the non-winding time slots, The number of slots when winding. 13. The method of claim 10, wherein the step of retransmitting the uplink time slot at the earliest comprises: 对应 corresponding to the HARQ program in the HARQ programs, calculating one of the earliest returning downlink time slots; Corresponding to the HARQ program in the HARQ programs, calculating a corresponding one-chain delay time; and 根據該最早回返下鏈時槽、該上鏈延遲時間及—傳送 台延遲時間,決定該最早重傳上鏈時槽。 、 如申請專利範圍第13項所述之方法,其中決定該 最早重傳上鏈時槽之步驟包括: Λ 根據該最早回返下鏈時槽之全局索引及該傳送台延 遲時間’計算一最早上鏈操作就緒時間之全局索引; Q 根據該最早回返下鏈時槽之全局索引、該傳送台延遲 時間及該上鏈延遲時間,計算一延遲後最早上鏈操作就緒 時間之全局索引;及 設定該最早重傳上鏈時槽為與該最早上鏈操作就緒 時間之全局索引及該延遲後最早上鏈操作就緒時間之全 局索引中之最大數值對應之時槽。 15.如申請專利範圍第13項所述之方法,其中計算該 上鏈延遲時間之步驟包括: 根據數值D、U、Ngl、Ng2及八3 ’計算各該些訊框之 一訊框長度及該上鏈延遲時間之一最大值; 50 200945815 根據該最早回返下鏈時槽之全局索引及該傳送台延 遲時間,計算一最早上鏈操作就緒時間之全局索引; 根據一全局索引偏移量校正該最早上鏈操作就緒時 間之全局索引;及 根據該上鏈延遲時間之該最大值、該訊框長度及校正 後之該最早上鏈操作就緒時間之全局索引,計算該上鏈延 遲時間。 ......1 J π厂,丨K々沄,其中計算該 最早回返下鏈時槽之步驟包括: 對應至該些HARQ程序中之該HARQ程序計算對 應之一下鏈延遲時間;及 根據該下鏈延遲時間及一接送台延遲時間,決定該 早回返下鏈時槽。 以取 17·如申請專利範圍第16項所述之方法其中決 最早回返下鏈時槽之步驟包括: 、^ ❹ 根據該第u個上鏈時槽之全局索引及該 間’計算一最早下鏈操作就緒時間之全局索引;遲時 根據該第U個上鏈時槽之全局索引、 ==遲:間’計算,後最早;鏈操;= 局索引中之最大數值對應之時槽。 全 I8·如申請專利範圍第16項所述 下鏈延遲時間之步驟包括: 之方法其中叶算該 51 200945815 1 WDjWA 根據數值D、U、Ngi、NgS,計算各該些訊框之 一訊框長度及該下鏈延遲時間之一最大值; 根據該第u個上鏈時槽之全局索引及該接送台延遲時 間,計算一最早下鏈操作就緒時間; 根據一全局索引偏移量校正該最早下鏈操作就緒時 間;及 根據該下鏈延遲時間之該最大值、該訊框長度及校正 後之該最早下鏈操作就緒時間,計算該下鏈延遲時間。 19.如申請專利範圍第13項所述之方法,其中決定該❹ 最早回返下鏈時槽之步驟包括: 根據一參數NA-MAP重新定義數值D為D,,並重新定 義數值NgZ為N’g2’該參數NA_MAP用以定義該d個上鏈時 槽中,每Na-map 個下鏈時槽中有一個下鏈時槽具有回覆資 源配置; 對應至該些HARQ程序中之該HARQ程序,根據數 值D’、N’g2、U、Ngl、Ng2及一接送台延遲時間計算對應 之一下鍵廷遲時間; ^ 根據該下鏈延遲時間及該參數心碰,計算一時槽偏C 移量(w);及 根據該下鍵延遲時間、該時槽偏移量及該接送台延遲 時間,決定該最早回返下鏈時槽。 20·如申請專利範圍第19項所述之方法’其中決定該 最早回返下鏈時槽之步驟包括: 人 根據該第u個上鏈時槽之全局索引、該接送台延 間及該時槽偏移量,計算一最早下鏈操作就緒時間之全局 52 200945815 1 vy 索引; 根據該第u個上鏈時槽之全局索引、該接送台延遲時 間、該時槽偏移量及該下鏈延遲時間,計算一延遲後最早 下鏈操作就緒時間之全局索引;及 設定該最早回返下鏈時槽為與該最早下鏈操作就緒 時間之全局索引及該延遲後最早下鏈操作就緒時間之全 局索引中之最大數值對應之時槽。 21. 如申請專利範圍第19項所述之方法,其中計算該 β 時槽偏移量之步驟包括: 當該下鏈延遲時間大於0時,該時槽偏移量具有數值 0 ’當該下鏈延遲時間大於0,該時槽偏移量之數值由該下 鏈延遲時間與該參數ΝΑ-ΜΑΡ決定。 22. 如申請專利範圍第19項所述之方法,其中計算該 下鏈延遲時間之步驟包括: 根據數值D,、U、Ngl、N’g2及Ng3,計算各該些訊框 之一訊框長度及該下鏈延遲時間之一最大值; ® 根據該第u個上鏈時槽之全局索引及該接送台延遲時 間’計算一最早下鏈操作就緒時間; 根據一全局索引偏移量校正該最早下鏈操作就緒時 間;及 根據該下鏈延遲時間之該最大值、該訊框長度及校正 後之該最早下鏈操作就緒時間,計算該下鏈延遲時間。 23·如申請專利範圍第19項所述之方法,其中根據該 參數NA_MAP重新定義數值D為D·及重新定義Ng2為N’g2 之步驟分別包括: 53 200945815 i * l)modA^_庸;及 〜='2 + Φ - Umod 沁身。 24. 如申請專利範圍第1〇項所述之方法,其中更包 括: 計算從該第u個上鏈時槽與該最早回返下鏈時槽間之 一回覆延遲時間。 25. 如申請專利範圍第1〇項所述之方法,其中更包 括: 計算從該第u個上鏈時槽與該最早重傳上鏈時槽間之❹ 一回傳延遲時間。 26. —種方法,應用於一分時雙工(Time-Division Duplex,TDD)之通訊系統中,用以於一傳送台與一接送台 之間執行同步混合式自動重複請求(Hybrid Automatic Repeat Request, HARQ),該方法包括: 於該接收台接收從該傳送台而來的複數個資料封 包’且係來自於複數個HARQ程序,其中該些資料封包係 不包含HARQ程序識別資訊; ❹ 由該接收台產生複數個HARQ回返封包,用以指示 該些資料封包是否於該接收台正確地被接收,其中該些 HARQ回返封包係不包含HARQ程序識別資訊;以及 由該接收台於一預定時間傳送該些HARQ回返封 包’且係不傳送HARQ程序識別資訊。 27. 如申請專利範圍第26項所述之方法,其中該傳 送台係為一用戶台(Subscriber Station, SS),且該接收台係 為一基地台(Base Station, BS)。 54 200945815 28. 如申請專利範圍第26項所述之方法,更包括: 由該接收台映射(mapping)該些HARQ回返封包至一 位元映像(bitmap),且係使用一預定組態(configUrati〇n), 其中該位元映像係不包含HARQ程序識別資訊,且其中於 傳送該些HARQ回返封包之該步驟包括於該預定時間傳 送該位元映像至該傳送台。 29. 如申請專利範圍第28項所述之方法,其中該些 HARQ回返封包係於一下鏈時槽k中被接收,且用以指示 ❹上鏈時槽sk所識別之資料封包於該基地台之接收狀態,心 係由下列方式所決定: 假使 k mod 〇+ b) = a+ 1, 貝J & - {i,其中 i 為介於 k — dbs — a — 1 至 k — dbs~~ i之所有上鍵時槽}; s 否則 ❹ sk - {號碼為k—dbs—1之上鏈時槽},其中 k表示為該下鏈時槽, 、 dbs表示為一傳送台延遲時間,用以處理於該 所接收之資料, 疋0 a表示為-訊框中用於上鏈之時槽的—數目,以及 b表不為該訊框中用於下鏈之時槽的一數目。 ,美二2請專利範圍第27項所述之方法,更包括由 該基地。心於該用戶台所設定之該些ηα 數量Ν,並根據下列方式所決定: V桎序之一 Ν = maX{Ni,i = 1 至 a}, 55 200945815 1 W^iVM^A _ZL a + b a + b a)m_+⑼+1},以及 € _ 咖屯 + 4 + 丄’z + 4 + Ο - (/ + 〇mod(a + Z〇) +1},其中 i表示一上鍵時槽, Fi表示—回返下鏈時槽,用於一上鏈時槽i所傳送之 資料封包, 乃表不一傳輸時槽,此時一額外的資料傳輸係由該用 戶σ所傳送,且使用相同於在該上鍵時槽丨中用以 資料封包之該HARQ程序, 送^ 凡表不上鏈時槽之一數目,且係介於該上鏈時槽i以 及緊接於該傳輸時槽Tj前之一時槽之間, a表示為一訊框中用於上鏈之時槽的一數目, b表不為該訊框中用於下鏈之時槽的一數目, dss表示一用戶台延遲時間,用以於該用戶台處理該 HARQ回返資料,以及 Λ dbs表示一基地台延遲時間,用以於該基地台處理 資料封包。 ~ 31.如申請專利範圍第26項所述之方法,其中: 該傳送台與該接送台間之傳輸操作時槽係被定義成 複數個訊框(Frame),各該些訊框包括xj個上鏈時槽、d 個下鏈時槽、Ngl個第-閒置時槽、Ng2個第二閒置時槽及 Ng3個第三閒置時槽’其中…卜化〜及心心然 數;及 、 該些HARQ程序傳輸對應之該些資料封包之操作執 56 200945815 行在上鏈時槽中,該訊框更 之該些HARQ目返料鮮HARQ財接收對應 請執行在下鏈時槽中。 1項所述之方法’其中今定兮 複數個HARQ程序之該步驟更包括: 又疋該 令該些HARQ程序中夕 ^ 喊冰 之〜HARQ程序於各該些訊框 中之一第u個上鏈時槽中,认 吨❿甲’輪出一資料封包,uA小於或 等於ϋ之自然數,u之起始值為1; 巧』飞The earliest retransmission winding time slot is determined based on the earliest return chain time slot, the uplink delay time, and the transmission station delay time. The method of claim 13, wherein the step of determining the earliest retransmission time slot comprises: 计算 calculating an earliest based on the global index of the earliest returning downlink slot and the delay time of the transmitting station a global index of the chain operation ready time; Q calculating a global index of the earliest uplink operation ready time after a delay based on the global index of the earliest return downlink time slot, the transmission station delay time, and the uplink delay time; The earliest retransmission time slot is the time slot corresponding to the global index of the earliest uplink operation ready time and the maximum value of the global index of the earliest uplink operation ready time after the delay. 15. The method of claim 13, wherein the step of calculating the uplink delay time comprises: calculating a frame length of each of the frames according to the values D, U, Ngl, Ng2, and 八3' The maximum value of one of the uplink delay times; 50 200945815 calculates a global index of the earliest uplink operation ready time according to the global index of the earliest return downlink time slot and the delay time of the transmission station; and corrects according to a global index offset The global index of the earliest uplink operation ready time; and calculating the uplink delay time according to the maximum value of the uplink delay time, the frame length, and the corrected global index of the earliest uplink operation ready time. ???1 J π factory, 丨K々沄, wherein the step of calculating the earliest returning downlink time slot comprises: calculating a corresponding one downlink delay time corresponding to the HARQ program in the HARQ programs; The downlink delay time and the delay time of a shuttle station determine the early return slot time. In the method described in claim 16 of the patent application scope, the steps of returning the original slot at the earliest stage include: , ^ ❹ according to the global index of the u-th winding time slot and the calculation of the first one The global index of the chain operation ready time; late according to the global index of the U-winding time slot, == late: 'calculation, the earliest; chain operation; = the time slot corresponding to the largest value in the local index. The step of the downlink delay time as described in item 16 of the patent application scope includes: the method wherein the leaf calculation is 51 200945815 1 WDjWA calculates one of the frames according to the values D, U, Ngi, NgS a maximum value of the length and the downlink delay time; calculating an earliest downlink operation ready time according to the global index of the u-th winding time slot and the delay time of the shuttle station; correcting the earliest according to a global index offset The downlink operation ready time; and calculating the downlink delay time according to the maximum value of the downlink delay time, the frame length, and the corrected down-chain operation ready time. 19. The method of claim 13, wherein the step of determining the earliest returning to the downlink time slot comprises: redefining the value D to D according to a parameter NA-MAP, and redefining the value NgZ to N' G2' The parameter NA_MAP is used to define the d-winding time slots, and each of the Na-map downlink time slots has a downlink time slot with a reply resource configuration; corresponding to the HARQ program in the HARQ programs, Calculate the corresponding one-down delay time according to the values D', N'g2, U, Ngl, Ng2 and a delay time of the shuttle station; ^ Calculate the one-time slot offset C shift according to the downlink delay time and the parameter collision w); and according to the down key delay time, the time slot offset and the shuttle delay time, determine the earliest return chain time slot. 20. The method of claim 19, wherein the step of determining the earliest returning to the lower chain includes: a global index of the slot according to the u-th winding, the docking station extension and the time slot Offset, calculate the global order of the earliest downlink operation ready time. 200945815 1 vy index; according to the global index of the u-th winding time slot, the shuttle delay time, the time slot offset and the downlink delay Time, calculate a global index of the earliest downlink operation ready time after a delay; and set the global index of the earliest return downlink time slot to be the earliest downlink operation ready time and the earliest downlink operation ready time after the delay The maximum value in the corresponding time slot. 21. The method of claim 19, wherein the step of calculating the beta time slot offset comprises: when the downlink delay time is greater than 0, the time slot offset has a value of 0' when the next The chain delay time is greater than 0, and the value of the slot offset is determined by the downlink delay time and the parameter ΝΑ-ΜΑΡ. 22. The method of claim 19, wherein the step of calculating the downlink delay time comprises: calculating one of the frames according to the values D, U, Ngl, N'g2, and Ng3 a maximum value of the length and the delay time of the downlink; ® calculating an earliest downlink operation ready time according to the global index of the u-th winding time slot and the delay time of the shuttle station; correcting the signal according to a global index offset The earliest downlink operation ready time; and calculating the downlink delay time according to the maximum value of the downlink delay time, the frame length, and the corrected earliest downlink operation ready time. 23. The method of claim 19, wherein the step of redefining the value D to D according to the parameter NA_MAP and redefining Ng2 to N'g2 respectively comprises: 53 200945815 i * l) modA^_庸; And ~='2 + Φ - Umod is all over. 24. The method of claim 1, wherein the method further comprises: calculating a response delay time between the slot of the u-th winding and the slot of the earliest returning. 25. The method of claim 1, wherein the method further comprises: calculating a delay time between the slot of the u-th winding and the slot of the earliest retransmission. 26. A method for use in a Time-Division Duplex (TDD) communication system for performing a Hybrid Automatic Repeat Request between a transmitting station and a pick-up station (Hybrid Automatic Repeat Request) , HARQ), the method includes: receiving, at the receiving station, a plurality of data packets from the transmitting station' and from a plurality of HARQ programs, wherein the data packets do not include HARQ program identification information; The receiving station generates a plurality of HARQ return packets to indicate whether the data packets are correctly received at the receiving station, wherein the HARQ return packets do not include HARQ program identification information; and are transmitted by the receiving station at a predetermined time. The HARQ return packets are not transmitted HARQ program identification information. 27. The method of claim 26, wherein the transmitting station is a subscriber station (SS) and the receiving station is a base station (BS). 54. The method of claim 26, further comprising: mapping, by the receiving station, the HARQ return packets to a bitmap, and using a predetermined configuration (configUrati) 〇n), wherein the bit map does not contain HARQ program identification information, and wherein the step of transmitting the HARQ return packets includes transmitting the bit map to the transmitting station at the predetermined time. 29. The method of claim 28, wherein the HARQ return packets are received in a slot k of the chain, and the data identified by the slot sk is indicated to be packetized to the base station The receiving state, the heart is determined by the following way: If k mod 〇 + b) = a + 1, Bay J & - {i, where i is between k - dbs - a - 1 to k - dbs ~ ~ i All of the upper key slots}; s otherwise ❹ sk - {number is k-dbs-1 upper chain time slot}, where k is the lower chain time slot, and dbs is represented as a transfer station delay time for Processing the received data, 疋0 a is the number of time slots used for the uplink in the frame, and b is not a number of slots for the downlink in the frame. , US 2 2, please refer to the method described in item 27 of the patent scope, including by the base. The number of ηα set by the user station is determined according to the following method: One of the V orders Ν = maX{Ni, i = 1 to a}, 55 200945815 1 W^iVM^A _ZL a + ba + ba)m_+(9)+1}, and € _ 咖屯+ 4 + 丄'z + 4 + Ο - (/ + 〇mod(a + Z〇) +1}, where i represents an up key slot, Fi indicates that the back-slot time slot is used for the data packet transmitted by slot i when it is uplinked. It is not a transmission time slot. At this time, an additional data transmission is transmitted by the user σ, and the same is used. In the HARQ program for the data packet in the slot key, the number of slots in the slot is not displayed, and is in the slot i and the slot Tj immediately before the slot. Between one time slot, a is a number of slots for the uplink in a frame, b is not a number of slots for the downlink in the frame, and dss indicates a delay time of the subscriber station. For processing the HARQ return data at the subscriber station, and Λ dbs indicating a base station delay time for processing the data packet at the base station. The method of claim 26, wherein: the transmission operation slot between the transfer station and the transfer platform is defined as a plurality of frames, each of the frames including xj uplink time slots, d a downlink time slot, Ngl first-idle time slots, Ng2 second idle time slots, and Ng3 third idle time slots, wherein the HARQ program transmission corresponds to the The operation of the data packet 56 200945815 is in the slot of the winding, and the frame is more suitable for the HARQ receipt. Please execute the method in the lower chain slot. The steps of the plurality of HARQ programs include: 疋 令 该 该 该 该 该 该 该 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 'Turn out a data packet, uA is less than or equal to the natural number of ϋ, the starting value of u is 1; 對應至該些HARQ程序中之該HARQ程序計算對 應之一最早重傳上鏈時槽; 根據該最早重傳上鏈時槽、該第u個上鍵時槽及數值 U、D、Ngl、Νρ與,計算該第u個上鏈時槽與該最早 重傳上鏈時槽間之一上鏈時槽數目; 遞增u’並重複前述步驟,以得au筆上鏈時槽數目; 及 根據該U筆上鏈時槽數目計算將被設定之該些HARq 程序之一數量N。 33.如申請專利範圍第32項所述之方法,其中計算將 被設定之該些HARQ之該數量n之步驟包括: 設定該數量N為該U筆上鏈時槽數目中之最大數值。 34·如申請專利範圍第32項所述之方法,其中計算該 上鏈時槽數目之步驟包括: 根據該第u個上鏈時槽之全局索引(Global Index)及該 最早重傳上鏈時槽與之全局索引,計算該最早重傳上鏈時 槽與該第U個上鏈時槽間之一總時槽數目、該第u個上鍵 時槽之訊框索引(Frame Index)及該最早重傳上鏈時槽之訊 57 200945815 框索引; 根據數值D、U、Ngl、NgZ及Ng3計算各該些訊框之 一訊框長度及一非上鏈時槽數目;及 根據該總時槽數目、該第u個上鏈時槽之訊框索引、 該最早重傳上鏈時槽之訊框索引、各該些訊框之該訊框長 度及該非上鏈時槽數目,計算該上鏈時槽數目。 35.如申請專利範圍第32項所述之方法,其中計算該 最早重傳上鏈時槽之步驟包括: 對應至該些HARQ程序中之該HARQ程序,計算對 〇 應之一最早回返下鏈時槽; 對應至該些HARQ程序中之該HARQ程序,計算對 應之一上鏈延遲時間;及 根據該最早回返下鏈時槽、該上鏈延遲時間及一傳送 台延遲時間,決定該最早重傳上鍵時槽。 36·如申請專利範圍第35項所述之方法,其中決定該 最早重傳上鏈時槽之步驟包括: 根據該最早回返下鏈時槽之全局索引及該傳送台延 〇 遲時間’計算一最早上鏈操作就緒時間之全局索引; 根據該最早回返下鏈時槽之全局索引、該傳送台延遲 時間及該上鏈延遲時間,計算一延遲後最早上鏈操作就緒 時間之全局索引;及 設定該最早重傳上鏈時槽為與該最早上鏈操作就緒 時間之全局索引及該延遲後最早上鏈操作就緒時間之全 局索引中之最大數值對應之時槽。 37.如申請專利範圍第35項所述之方法,其中計算該 58 200945815 * 1 yy 上鏈延遲時間之步驟包括: 根據數值D、U、Ngl、N芬χτ ▲丄 g1 Wg2及Nw ,計鼻各該些訊框 一訊框長度及該上鏈延遲時間之一最大值; 根據該最早回返下鏈時槽之全局索引及該傳送台延 遲時間,計算-最早上鍵操作就緒時間之全局索引. 根據-全局索引偏移量校正該最早上鏈操作就緒時 間之全局索引丨及 根據該上舰遲時間之料大值、該純長度及校正 ❹後之該最早上鏈操作就緒時間之全局索引,計算該上鍵延 遲時間。 38. 如申請專利範圍第35項所述之方法,其中計算該 最早回返下鏈時槽之步驟包括: μ 對應炱該些HARQ程序中之該HARQ程序計算對 應之一下鏈延遲時間;及 根據該下鏈延遲時間及-接送台延遲時間,決定該最 早回返下健時槽。 39. 如申請專利範圍帛38項所述之方法,其中決定該 最早回返下鍵時槽之步驟包括: 根據該第u個上鏈時槽之全局索引及該接送台延遲時 間,計算〆最早下鏈操作就緒時間之全局索引; 根據該第U個上鏈時槽之全局索引、該接送台延遲時 間及該下减延遲時間’計算—延遲後最早下鏈操作就緒時 間之全扃索引,及 設定該最早回返下鏈時槽為與該最早下鏈操作就緒 時間之食扃索引及該延遲後最早下鏈操作就緒時間之全 59 200945815 1 局索引中之最大數值對應之時槽。 40.如申請專利範圍第38項所述之方法,其 下鏈延遲時間之步驟包括: ° 根據數值D、U、Ngl、%及%,計算各該些訊框之 一訊框長度及該下鏈延遲時間之一最大值; 根據該第u個上鏈時槽之全局索引及該接送台延 間,計算一最早下鏈操作就緒時間; 門據-全局索引偏移量校正該最早下鏈操作就緒時Corresponding to the HARQ program in the HARQ program, one of the earliest retransmission time slots is calculated; according to the earliest retransmission time slot, the uth upper key time slot, and the values U, D, Ngl, Νρ And calculating a number of time slots between the slot in the u-th winding and the slot in the earliest retransmission; incrementing u' and repeating the foregoing steps to obtain the number of slots in the au pen; and according to the The number of slots in the U-pen up time slot is calculated by the number N of one of these HARq programs. 33. The method of claim 32, wherein the step of calculating the number n of the HARQs to be set comprises: setting the number N to be the largest of the number of slots in the U-pen. 34. The method of claim 32, wherein the step of calculating the number of slots in the winding includes: a global index based on the u-th winding time slot (Global Index) and the earliest retransmission chaining a global index of the slot and the total number of time slots between the earliest retransmission time slot and the U uplink time slot, a frame index of the uth upper key time slot, and the frame index The earliest retransmission of the chain time slot 57 200945815 frame index; according to the values D, U, Ngl, NgZ and Ng3 calculate the frame length of each of the frames and the number of non-winding slots; and according to the total time The number of slots, the frame index of the u-th uplink time slot, the frame index of the earliest retransmission time slot, the frame length of each of the frames, and the number of the non-winding slots, The number of chain slots. 35. The method of claim 32, wherein the step of calculating the earliest retransmission time slot comprises: corresponding to the HARQ program in the HARQ programs, calculating one of the earliest return chains of the response a time slot; corresponding to the HARQ program in the HARQ processes, calculating a corresponding one-chain delay time; and determining the earliest weight according to the earliest return downlink time slot, the uplink delay time, and a transmission station delay time Pass the key slot. 36. The method of claim 35, wherein the step of determining the earliest retransmission time slot comprises: calculating a global index based on the earliest return downlink time slot and the delay time of the transmission station The global index of the earliest uplink operation ready time; the global index of the earliest uplink operation ready time after a delay is calculated according to the global index of the earliest return downlink time slot, the transmission station delay time, and the uplink delay time; The earliest retransmission uplink time slot is a time slot corresponding to the global index of the earliest uplink operation ready time and the largest value in the global index of the earliest uplink operation ready time after the delay. 37. The method of claim 35, wherein the step of calculating the 58 200945815 * 1 yy on-chain delay time comprises: counting the nose according to the values D, U, Ngl, N, χ χ 丄 丄 g1 Wg2 and Nw The maximum length of each frame frame and the uplink delay time; according to the global index of the earliest return downlink time slot and the delay time of the transmission station, the global index of the earliest up key operation ready time is calculated. Correcting a global index of the earliest uplink operation ready time according to the global index offset and a global index according to the material large value of the ship arrival time, the pure length, and the corrected earliest winding operation ready time after the correction, Calculate the up key delay time. 38. The method of claim 35, wherein the step of calculating the earliest returning downlink time slot comprises: μ calculating a corresponding one of a downlink delay time corresponding to the HARQ program in the HARQ processes; The delay time of the downlink and the delay time of the shuttle station determine the earliest return to the lower time slot. 39. The method of claim 38, wherein the step of determining the earliest return time slot comprises: calculating the earliest time according to the global index of the u-th winding time slot and the delay time of the shuttle station a global index of the chain operation ready time; a global index based on the global index of the U-up time slot, the delay time of the shuttle station, and the delay time of the delay--the full index of the earliest downlink operation ready time after the delay, and setting The earliest returning chain time slot is a time slot corresponding to the maximum value in the index of the restaurant index of the earliest downlink operation ready time and the earliest downlink operation ready time after the delay. 40. The method of claim 38, wherein the step of downlink delay time comprises: ° calculating a frame length of each of the frames according to the values D, U, Ngl, %, and % a maximum value of the chain delay time; calculating an earliest downlink operation ready time according to the global index of the u-th winding time slot and the shuttle station delay; correcting the earliest downlink operation by the door data-global index offset When ready 最早回返下鏈時槽之步驟包括: 根據該下鏈延遲時間之該最大值、該純長度及校 後之該最早下_魏_間,計算該下鏈延遲時間。 41·如申請專利範圍第%項所述之方法,其中決定· 根據-參數ΝΑ·ΜΑΡ重新定義數值D為D,,並重新定 義數值Ng2為N’g2 ’該參數Namap用収義該d個上鍵時 ❹ 槽中,每NA_MAP個下鏈時槽中有一個下鏈時槽具有回覆資 源配置; 對應至該些HARQ程序中之該HARQ程序,根據數 值D、N g2、U、Ngl、Ng2及一接送台延遲時間計算對應 之一下鏈延遲時間; 根據該下鏈延遲時間及該參數I·,計算一時槽偏 移量(w);及 根據該下鍵延遲時間、該時槽偏移量及該接送台延遲 時間,決定該最早回返下鏈時槽。 42.如申請專利範圍f4l項所述之方法,其中決定該 60 I 200945815 i vy 最早回返下鏈時槽之步驟包括: 該接送台延遲時 就緒時間之全局 索引 根據該第U個上鏈時槽之全局索 間及該時㈣移量,計算-最早下鍵操作 根據該第U個上鍵時槽之全局索引 間、該時频移纽訂鏈延科fa1 if I延遲時 下鏈操作就緒時間之全局索引;及 β舁延遲後最早 設定該最早回返下鏈時槽為與該The first step of returning the downlink time slot includes: calculating the downlink delay time according to the maximum value of the downlink delay time, the pure length, and the earliest lower_wei__. 41. The method according to item 5% of the patent application, wherein the decision is based on the parameter ΝΑ·ΜΑΡ to re-define the value D to D, and to redefine the value Ng2 to be N'g2 'the parameter Namap is used to receive the d In the up key slot, there is a downlink time slot in each of the NA_MAP downlink time slots with a reply resource configuration; corresponding to the HARQ program in the HARQ programs, according to the values D, N g2, U, Ngl, Ng2 And a delay time of the shuttle station is calculated corresponding to one of the downlink delay time; according to the downlink delay time and the parameter I·, the one-time slot offset (w) is calculated; and according to the downlink delay time, the time slot offset And the delay time of the transfer desk, determine the earliest return time slot. 42. The method of claim 5, wherein the step of determining the 60 I 200945815 i vy earliest returning to the downlink time slot comprises: the global index of the ready time of the shuttle station delay according to the U-th winding time slot Between the global cable and the time (four) shift, the calculation - the earliest down key operation is based on the U-th up key, the global index between the slots, the time-frequency shift, the chain, the fa1 if I delay, the down-chain operation ready time Global index; and the earliest setting of the earliest return chain time slot after the delay of β舁 43.如申請專利範圍第41 時槽偏移量之步驟包括: 項所述之方法,其中計算該 當該下鏈延遲時間大於〇時,該時槽偏移量 〇,當該下鏈延遲時間大於0,該時槽偏移量之數值由該 鍵延遲時間與該參數ΝΑ·ΜΑΡ決定。 ❹ 44.如申請專利範圍第41項所述之方法,其中計算該 下鏈延遲時間之步驟包括: 根據數值〇’、1;、:^^1、>^2及1^3,計算各該些訊框 之一訊框長度及該下鏈延遲時間之一最大值; 根據該第u個上鏈時槽之全局索引及該接送台延遲時 間,計算一最早下鏈操作就緒時間; 根據一全局索引偏移量校正該最早下鏈操作就緒時 間;及 根據該下鏈延遲時間之該最大值、該訊框長度及校正 後之該最早下鏈操作就緒時間’計算該下鏈延遲時間。 61 200945815 1 w^yom λ 45. 如申請專利範圍第竹項所述之方法,其中根據該 參數NA_MAP重新定義數值D為D,及重新定義Ng2為N,g2 之步驟分別包括: £)'=£)-(/)-1)111〇£1%_看;及 + Φ -1) mod 〇 46. 如申請專利範圍第26項所述之方法,其中更包 括: 計异從該第u個上鏈時槽與該最早回返下鏈時槽間之 一回覆延遲時間。 ❹ 47. 如申請專利範圍第26項所述之方法,其中更包 括: s十算從該第u個上鍵時槽與該最早重傳上鏈時槽間之 一回傳延遲時間。 48. —種方法,應用於—分時雙工(TimeDivisi〇n DUpleX,TDD)之通訊系、统中’肖以於一傳送台與一接送台 之間設定同步混合式自動重複請求(Hybrid Automatic Repeat Request,HARQ)程序,該方法包括: ❹ 決定-回返時槽Fi ’其中該回返時槽匕係為該接收 台於提供- HARQ回返資料時之一時槽,且對應於該傳送 台於一上鏈時槽i使用一 HARQ程序傳送至該接收台之一 資料封包; 決定一傳輸時槽Ti’其中該傳輸時槽乃係為該傳送 台在該時槽i傳送該資料封包的HARQ程序,其下一筆資 料封包的傳輸時槽; Μ 決定上鏈時槽之—數目Ni,且係介於該上鏈時槽i 62 200945815 Λ. »Τ /1 以及緊接於該傳輸時槽Tj前之一時槽之間;以及 設定HARQ程序之一數量N為Ni之一最大數值,i 係介於至a之間,其中a表示為一訊框中用於上鏈之 時槽的一數目。 49. 如申请專利範圍第48項所述之方法,其中該傳 送台係為一用戶台(Subscriber Station,SS),且該接收台係 為一基地台(Base Station, BS) 〇43. The method of claim 41, wherein the step offset is 〇, when the downlink delay time is greater than 〇, the time slot offset 〇, when the downlink delay time is greater than 0, the value of the time slot offset is determined by the key delay time and the parameter ΝΑ·ΜΑΡ. The method of claim 41, wherein the step of calculating the downlink delay time comprises: calculating each according to the values 〇', 1;, :^^1, >^2 and 1^3 One of the frame lengths of the frames and the maximum of the downlink delay time; calculating an earliest downlink operation ready time according to the global index of the u-th winding time slot and the delay time of the shuttle station; The global index offset corrects the earliest downlink operation ready time; and calculates the downlink delay time according to the maximum value of the downlink delay time, the frame length, and the corrected earliest downlink operation ready time. 61 200945815 1 w^yom λ 45. The method of claim 5, wherein the step of re-defining the value D to D according to the parameter NA_MAP, and redefining Ng2 to be N, g2 respectively comprises: £) '= £)-(/)-1)111〇£1%_ see; and + Φ -1) mod 〇46. The method of claim 26, which further includes: counting from the uth One of the delay time between the winding time slot and the slot when the earliest returning to the lower chain. ❹ 47. The method of claim 26, wherein the method further comprises: s calculating a backhaul delay time between the slot of the u-th key and the slot of the earliest retransmission. 48. A method, applied to the time division duplex (TimeDivisi〇n DUpleX, TDD) communication system, the system is set up between the transmission station and a shuttle station to set up a synchronous hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) program, the method includes: 决定 determining - returning time slot Fi 'where the return time slot is one time slot for the receiving station to provide - HARQ return data, and corresponding to the transmitting station on one The chain slot i is transmitted to a data packet of the receiving station by using a HARQ program; determining a transmission time slot Ti', wherein the transmission time slot is a HARQ program for the transmitting station to transmit the data packet in the time slot i, The transmission time slot of the next data packet; 决定 determines the number Ni of the slot in the winding, and is between the time slot i 62 200945815 Λ. »Τ /1 and immediately before the transmission time slot Tj Between the slots; and setting the number N of one of the HARQ programs to be one of the maximum values of Ni, i is between a and a, where a is a number of slots for the uplink in a frame. 49. The method of claim 48, wherein the transmitting station is a subscriber station (SS), and the receiving station is a base station (BS) 〇 50. 如申請專利範圍第49項所述之方法,其中該回 返下鏈時槽Fj係用於該上鏈時槽i所傳送之該資料封包, 立係根據下列方式所決定: 巧=max{ 4 4 +1, / +《+ (α - (/· + 〇 m〇(j(a + 办))+ 〇,其中 dbs表示一基地台延遲時間’用以於該基地台處理該 資料封包,以及 b表示為該訊框中用於下鏈之時槽的一數目。 51. 如申請專利範圍第50項所述之方法,其中該傳 輸時槽Ti係根據下列方式所決定: ^ = max{ β + <4 + Θ+( + (办一 (FfK* - a) mod(a+⑼+1},其中 dss表示一用戶台延遲時間’用以於該用戶台處理該 HARQ回返資料。 52.如申請專利範圍第51項所述之方法,其中該此 上鏈時槽之該數目凡係介於該上鏈時槽i以及位於該傳輪 時槽Ti前之該時槽之間,且係由下列方式所決定 a + b 53.如申請專利範圍第48項所述之方法,更包括由 63 200945815 該接收台決定-harq程序識別竭,用於該傳送台之該複 數個HARQ轉之被選擇之―,該傳送台產生對應於一上 鍵時槽父所#收之資料之該資料#包,$ HARQ程序識別 碼係根據下列方式所決定: HARQ程序識別碼sjx-Ax ,其中 •jy a表示為一訊框中用於上鏈之時槽的一數目,以及 b表示為該訊框中用於下鏈之時槽的一數目。 54. —無線通訊台,用以於一分時雙工(TimeDivisi〇n Duplex,TDD)之通訊系統中進行無線通訊,該無線通訊台 包括: 至少一記憶體,用以儲存資料與指令;以及 至少一處理器,設定以存取該記憶體,且於執行指令 時還設定以用來執行下列步驟: 設定複數個HARQ程序; 利用該複數個HARQ程序傳送複數個資料封 包,其中該些資料封包係不包含HArq程序識別資訊; 接收複數個HARQ回返封包,用以指示該些資 料封包是否正確地被接收,其中該複數個回返封包係不包 含HARQ程序識別資訊,且其中該複數個HARQ回返封 包係於一下鏈時槽(downlink slot)中被接收;以及 映射(mapping)該複數個HARQ回返封包至該複 數個HARQ程序。 55. 如申請專利範圍第54項所述之無線通訊台,其 中該複數個HARQ回返封包係結合於一位元映像(bitmap) 64 200945815 1 wjjyjr/v 中。 56. 如申請專利範圍第55項所述之無線通訊台,其 中該位元映像中之該複數個HARq回返封包係依序地對 應至該複數個HARQ程序,以用來傳送相關於該些harq 回返封包之該些資料封包。 57. 如申請專利範圍第54項所述之無線通訊台,其 中該無線通訊台係為一用戶台(Subscriber Station,ss),其 中該些HARQ回返封包係於一下鍵時槽k中被接收’且用 ©以指示上鏈時槽Sk所識別之資料封包之接收狀態,Sk係由 下列方式所決定: 假使 kmod(a+b) = a+l, 貝! Sk {i,其中 i 為介於 k— dbs— a— 1 至 k— dbs_ 1之所有上鏈時槽}; 否則 Sk = ·{號碼為k—dbs— 1之上鏈時槽},其中 k表示為該下鏈時槽, 參 dbs表示為一基地台延遲時間,用以於一基地台處理 該資料封包, a表示為一訊框中用於上鏈之時槽的一數目,以及 b表示為該訊框中用於下鏈之時槽的一數目。 58. 如申請專利範圍第54項所述之無線通訊台,其 中該無線通訊台係為一用戶台(Subscriber Station, SS),且 其中設定該複數個HARQ程序之動作更包括決定將被設 定之該些HARQ程序之一數量N,並根據下列方式所決定: N = max{Ni,i = 1 至 a}, 65 200945815 / —T. — i — bx a + b a + b 忑—max{巧 + 尤 +1,β + 毛 + (办 - a) mod(j+△))+1},以及 i表示一上鏈時槽, Fi表示一回返下鏈時槽,用於—上鏈時槽丨所傳送之 該資料封包, Ti表示一傳輸時槽,此時一額外的資料傳輸係由該用 戶台所傳送,且使用相同於在該上鏈時槽丨中用以傳送該 資料封包之該HARQ程序, ❹ A表示上鏈時槽之一數目,且係介於該上鏈時槽i以 及緊接於該傳輸時槽乃前之一時槽之間, a表不為一訊框中用於上鏈之時槽的一數目,以及 b表示為該訊框中用於下鏈之時槽的一數目, dss表示—用戶台延遲時間’用以於制戶台處理該 HARQ回返資料,以及 dbs表不一基地台延遲時間 資料封包。 ’用以於一基地台處理該 〇 59. —無線通訊台,用 Duplex,TDD)之通訊系統中 包括: 以於一分時雙工(Time-Division 進行無線通訊,該無線通訊台 至少一 記憶體 用以儲存資料與指令;以及 至>、-處理器,設定以存取該 時還歧以用來執行下列步驟: 絲執订指π 接收來自於複數個HARQ轉之複數個資料封 66 200945815 X TT i 包,其中該些資料封包係不包含HARQ程序識別資訊; 產生複數個HARQ回返封包,用以指示該些資 料封包是否正確地被接收,其中該些HARQ回返封包係不 包含HARQ程序識別資訊;以及 於一預定時間傳送該些HARQ回返封包,且係 不傳送HARQ程序識別資訊。 60.如申請專利範圍第59項所述之無線通訊台,其 中該至少一處理器更用以設定以映射(map)該些HARQ回 Ο 返封包至一位元映像(bitmap),且係使用一預定組態 (configuration),其中該位元映像係不包含HARQ程序識 別資訊,且其中該些HARQ回返封包係包含於該位元映像 中以被傳送。 61.如申請專利範圍第59項所述之無線通訊台,其 中該無線通訊台係為一基地台(Base Station, BS),且其中 該些HARQ回返封包係於一下鏈時槽k中被接收’且用以 指示上鏈時槽Sk所識別之資料封包於該基地台之接收狀 ❿態,Sk係由下列方式所決定: 假使 km〇d(a+b) = a+l, 貝1J sk = {i ’ 其中 i 為介於 k—dbs—a—1 至 k—dbs — 1之所有上鏈時槽}; 否則 sk = {號碼為k—dbs—1之上鏈時槽} ’其中 k表示為該下鍵時槽, dbs表示為一基地台延遲時間’用以處理所接收之資 料, 67 200945815 i WDJvom a表示為一訊框中用於上鍵之時槽的一數目,以及 b表示為該訊框中用於下鍵之時槽的一數目。 62.如申请專利範圍第59項所述之無線通訊台’其 中該無線通訊台係為一基地台(Base Station, BS),且其中 該至少一處理器更用以設定以決定一用戶台(Subscriber Station,SS)所設定之該些HARQ程序之一數量N,並根據 下列方式所決定: N = max{Ni,i = 1 至 a} =T( ~i-bx _ZL a + b a + b50. The method of claim 49, wherein the returning slot Fj is used for the data packet transmitted by the slot i during the winding, and the system is determined according to the following manner: 巧=max{ 4 4 +1, / + "+ (α - (/· + 〇m〇(j(a + do))) + 〇, where dbs represents a base station delay time' for the base station to process the data packet, And b is a number of time slots for the downlink in the frame. The method of claim 50, wherein the transmission time slot Ti is determined according to the following manner: ^ = max{ β + <4 + Θ+( + (FfK* - a) mod(a+(9)+1}, where dss represents a subscriber station delay time') is used by the subscriber station to process the HARQ return data. The method of claim 51, wherein the number of the winding time slots is between the winding time slot i and the time slot before the transmission time slot Ti, and It is determined by the following methods: a + b 53. The method described in claim 48 of the patent application, including the decision of the receiving station by 63 200945815 - the use of the harq program to identify The plurality of HARQs are selected at the transfer station, and the transfer station generates the data #package corresponding to the information received by the slot parent. The HARQ program identification code is determined according to the following manner. : HARQ program identification code sjx-Ax, where •jy a represents a number of time slots for the uplink in a frame, and b represents a number of time slots for the downlink in the frame. a wireless communication station for wireless communication in a Time Divisi〇 Duplex (TDD) communication system, the wireless communication station comprising: at least one memory for storing data and instructions; and at least a processor configured to access the memory and configured to perform the following steps when executing the instruction: setting a plurality of HARQ programs; transmitting the plurality of data packets by using the plurality of HARQ programs, wherein the data packets are The HARQ program identification information is not included; and a plurality of HARQ return packets are received to indicate whether the data packets are correctly received, wherein the plurality of return packets do not include HARQ program identification information. And wherein the plurality of HARQ return packets are received in a downlink slot; and mapping the plurality of HARQ return packets to the plurality of HARQ programs. 55. The wireless communication station, wherein the plurality of HARQ return packets are combined in a one-bit bitmap 64 200945815 1 wjjyjr/v. 56. The wireless communication station of claim 55, wherein the plurality of HARQ return packets in the bit map are sequentially corresponding to the plurality of HARQ programs for transmitting related to the harq Return the data packets of the packet. 57. The wireless communication station of claim 54, wherein the wireless communication station is a subscriber station (ss), wherein the HARQ return packets are received in slot k when the key is down. And with © to indicate the reception status of the data packet identified by the slot time Sk, Sk is determined by the following method: If kmod(a+b) = a+l, !! Sk {i, where i is K— dbs— a—1 to k—all the time slots of dbs_ 1}; otherwise, Sk = · {number is k—dbs—1 chain time slot}, where k is the time slot of the chain, Dbs is expressed as a base station delay time for processing the data packet at a base station, a denotes a number of time slots for uplinking in a frame, and b denotes that the frame is used for downlink A number of slots at that time. 58. The wireless communication station according to claim 54, wherein the wireless communication station is a Subscriber Station (SS), and the action of setting the plurality of HARQ programs further comprises determining that the wireless communication program is to be set. The number of these HARQ programs is N and is determined according to the following way: N = max{Ni,i = 1 to a}, 65 200945815 / -T. — i — bx a + ba + b 忑—max{巧+ Exception +1, β + hair + (do - a) mod (j + △)) +1}, and i represents a winding time slot, Fi represents a returning chain time slot, used for - winding time slot Transmitting the data packet, Ti denotes a transmission time slot, at which time an additional data transmission is transmitted by the subscriber station, and the same HARQ procedure as used in the uplink time slot for transmitting the data packet is used. ❹ A indicates the number of slots in the upper chain, and is between the slot i and the slot immediately before the transmission, and a is not used in the frame for the winding. a number of time slots, and b is a number of slots for the downlink in the frame, dss means - user extension The late time is used to process the HARQ return data for the customer base, and the dbs table does not have a base station delay time data packet. 'Communication system for processing the 〇59.-Wireless communication station, Duplex, TDD) for one base station includes: For one-time duplex (Time-Division wireless communication, the wireless communication station at least one memory The body is used to store data and instructions; and to >, the processor, the settings are used to access the time to perform the following steps: Silk binding refers to π receiving a plurality of data blocks from a plurality of HARQ turns 66 200945815 X TT i packet, wherein the data packets do not include HARQ program identification information; generating a plurality of HARQ return packets to indicate whether the data packets are correctly received, wherein the HARQ return packets do not include a HARQ program Identifying the information; and transmitting the HARQ return packets at a predetermined time, and not transmitting the HARQ program identification information. 60. The wireless communication station of claim 59, wherein the at least one processor is further configured to set Mapping the HARQ responses to a bitmap, and using a predetermined configuration, wherein the bitmap is not included The HARQ program identification information is included, and wherein the HARQ return packets are included in the bit map to be transmitted. 61. The wireless communication station according to claim 59, wherein the wireless communication station is a base Base station (BS), and wherein the HARQ return packets are received in the slot k of the downlink, and are used to indicate that the data identified by the slot Sk in the uplink is encapsulated in the receiving state of the base station, Sk is determined by the following methods: If km〇d(a+b) = a+l, Bay 1J sk = {i ' where i is all between k-dbs-a-1 to k-dbs-1 Chain time slot}; otherwise sk = {number is k-dbs-1 upper chain time slot} 'where k is the lower key time slot, dbs is expressed as a base station delay time' to process the received data, 67 200945815 i WDJvom a denotes a number of time slots for the up key in a frame, and b denotes a number of time slots for the down key in the frame. 62. The wireless communication station, wherein the wireless communication station is a base station (BS), and The at least one processor is further configured to determine the number N of the HARQ programs set by a subscriber station (SS), and is determined according to the following manner: N = max{Ni, i = 1 to a } =T( ~i-bx _ZL a + ba + b [=max{ β + ( +1,巧+( + (办-(F,+尤—α) πιοφ+⑼+1},以及 β = max{ ’·,· + +1,’· + + (“ 一 (,· + 4 ) m〇d(a + Z〇) +1},其中 i表示一上鏈時槽, Fi表示一回返下鏈時槽,用於一上鏈時槽i所傳送之 該資料封包, 乃表示一傳輸時槽,此時一額外的資料傳輸係由該無 線通訊台所傳送,且使用相同於在該上鏈時槽丨中用以傳 0 送該資料封包之該HARQ程序, Ni表示上鏈時槽之一數目,且係介於該上鏈時槽i以 及緊接於該傳輸時槽Ti前之一時槽之間, a表示為一訊框中用於上鏈之時槽的一數目, b表示為該訊框中用於下鏈之時槽的一數目, dss表示一用戶台延遲時間,用以於該用戶台處理該 HARQ回返資料,以及 dbs表示一基地台延遲時間,用以於該無線通訊台處 68 200945815 _ 裊 TV 1 l 理所接收之該資料封包。 63. 一種傳送台’應用於一分時雙工(Time-Division Duplex,TDD)之通訊系統中,該系統具有一接收台,該傳 送台包括: 至少一記憶體’用以儲存資料與指令;以及 至少一處理器’設定以存取該記憶體,且於執行指令 時還設定以用來執行下列步驟: 決定一回返時槽Fi,其中該回返時槽Fi係為該 ❹接收台於提供一 HARQ回返資料之一時槽,且對應於該傳 送台於一上鏈時槽i使用一混合式自動重傳(Hybrid Automatic Repeat Request,HARQ)程序傳送至該接收台之 一資料封包; 決定一傳輸時槽Ti,其中該傳輸時槽Ti係為該 傳送台在該時槽i傳送該資料封包的HARQ程序,其下一 筆資料封包的傳輸時槽;以及 決定上鏈時槽之一數目Ni,且係介於該上鏈時 Φ 槽i以及緊接於該傳輸時槽乃前之一時槽之間;以及 設定HARQ程序之一數量N為Ni之一最大數 值,i係介於卜1至a之間,其中a表示為一訊框中用於 上鍵之時槽的一數目。 64. 如申請專利範圍第63項所述之傳送台,其中該 傳送台係為一用戶台(Subscriber Station, SS),且其中該回 返下鏈時槽Fi係用於該上鏈時槽i所傳送之該資料封包, 且係根據下列方式所決定: g = maxU + + L + + 0 — + ) mod(a + 6)) +1},其中 69 200945815 i WDJVDrA dbs表示一基地台延遲時間,用以於該接收台處理該 資料封包,其中該接收台係為一基地台,以及 b表示為該訊框中用於下鏈之時槽的一數目。 65.如申請專利範圍第63項所述之傳送台,其中該 傳送台係為一用戶台(Subscriber Station,SS),且其中該傳 輸時槽乃係根據下列方式所決定: T^maxk+^+lJ+^+p-CFVK^-emodp+^+l},其中[=max{ β + ( +1, Qiao + ( + (do - (F, + especially - α) πιοφ + (9) +1}, and β = max{ '·, · + +1, '· + + ( "一(,· + 4 ) m〇d(a + Z〇) +1}, where i denotes an up-chain time slot, Fi denotes a return-down chain time slot, which is used for slot-up when a winding is applied The data packet represents a transmission time slot, and an additional data transmission is transmitted by the wireless communication station, and the HARQ program is the same as that used in the uplink time slot to transmit the data packet. , Ni represents the number of slots in the winding, and is between the slot i and the slot immediately before the slot Ti, a is represented by a frame for winding a number of slots, b is a number of slots for the downlink in the frame, dss represents a subscriber station delay time for processing the HARQ return data for the subscriber station, and dbs indicates a base station delay Time, used to receive the data packet received by the wireless communication station at 68 200945815 _ 袅TV 1 l. 63. A transmission station 'applies to a time division duplex (Time-Division Duplex) In the communication system of TDD), the system has a receiving station, the transmitting station includes: at least one memory 'for storing data and instructions; and at least one processor' setting to access the memory, and when executing the instruction It is further configured to perform the following steps: determining a return time slot Fi, wherein the return time slot Fi is a slot for the receiving station to provide one of the HARQ return data, and corresponding to the transmitting station in a winding time slot i is transmitted to a data packet of the receiving station by using a Hybrid Automatic Repeat Request (HARQ) program; determining a transmission time slot Ti, wherein the transmission time slot Ti is the transmitting station at the time slot i The HARQ program for transmitting the data packet, the transmission time slot of the next data packet; and the number Ni of the slot when determining the winding, and the Φ slot i and the slot immediately before the transmission Between one time slot; and one of the HARQ programs, the number N is one of the maximum values of Ni, and the i is between b and 1 a, where a is a number of time slots for the up key in a frame. 64. If you apply for a special The transmitting station of claim 63, wherein the transmitting station is a subscriber station (SS), and wherein the returning downlink slot Fi is used for the data packet transmitted by the slot i , and is determined according to the following way: g = maxU + + L + + 0 — + ) mod(a + 6)) +1}, where 69 200945815 i WDJVDrA dbs represents a base station delay time for the reception The station processes the data packet, wherein the receiving station is a base station, and b represents a number of slots for the downlink in the frame. 65. The transfer station of claim 63, wherein the transfer station is a Subscriber Station (SS), and wherein the transfer time slot is determined according to the following manner: T^maxk+^+ lJ+^+p-CFVK^-emodp+^+l}, where dss表示一用戶台延遲時間,用以於該用戶台處理該 HARQ回返資料,以及 b表示為該訊框中用於下鏈之時槽的一數目。 66.如申請專利範圍第65項所述之傳送台,其中上 鏈時槽之該數目Ni係介於該上鏈時槽i以及位於該傳輸時 槽乃前之該時槽之間,且係由下列方式所決定: Nt =Ti-i — bx _Ά_ a + b a + bDss represents a subscriber station delay time for processing the HARQ return data for the subscriber station, and b represents a number of slots for the downlink for the downlink. 66. The transfer station of claim 65, wherein the number Ni of the winding time slots is between the winding time slot i and the time slot before the transmission time slot, and Determined by: Nt = Ti-i - bx _Ά_ a + ba + b 7070
TW98114235A 2008-04-30 2009-04-29 Method for operation of synchronous harq in a wireless communication system TWI407722B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/112,304 US8248973B2 (en) 2008-04-30 2008-04-30 Method for operation of synchronous HARQ in a wireless communication system
US16459209P 2009-03-30 2009-03-30

Publications (2)

Publication Number Publication Date
TW200945815A true TW200945815A (en) 2009-11-01
TWI407722B TWI407722B (en) 2013-09-01

Family

ID=44869847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98114235A TWI407722B (en) 2008-04-30 2009-04-29 Method for operation of synchronous harq in a wireless communication system

Country Status (1)

Country Link
TW (1) TWI407722B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9686048B2 (en) 2010-04-06 2017-06-20 Qualcomm Incorporated Delayed automatic repeat request (ARQ) acknowledgment
CN108886436A (en) * 2016-04-07 2018-11-23 瑞典爱立信有限公司 Radio network node, wireless device and the method wherein executed

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286247B2 (en) * 1998-05-08 2002-05-27 松下電器産業株式会社 Wireless communication system
KR20020034640A (en) * 2000-11-02 2002-05-09 윤종용 Apparatus for controlling time slot of sub frame randomly and method thereof in narrow band time division duplex code division multiple access system
DE60236377D1 (en) * 2002-08-13 2010-06-24 Panasonic Corp Hybrid automatic repeat request protocol
DE10252536A1 (en) * 2002-11-08 2004-05-27 Philips Intellectual Property & Standards Gmbh Data transmission method for universal mobile telecommunication system telephone, involves retransmitting second data packet, when the packet is not successfully decoded at receiver
KR101221821B1 (en) * 2006-04-21 2013-01-14 삼성전자주식회사 A Method for signaling a resource assignment information in frequency division multiple access system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9686048B2 (en) 2010-04-06 2017-06-20 Qualcomm Incorporated Delayed automatic repeat request (ARQ) acknowledgment
CN108886436A (en) * 2016-04-07 2018-11-23 瑞典爱立信有限公司 Radio network node, wireless device and the method wherein executed
CN108886436B (en) * 2016-04-07 2021-11-09 瑞典爱立信有限公司 Radio network node, wireless device and methods performed therein

Also Published As

Publication number Publication date
TWI407722B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
TWI387374B (en) Method for operation of synchoronous harq in a wirless communciation system
US20230084733A1 (en) Method and arrangement for retransmission using harq
US8407549B2 (en) Method for operation of synchronous HARQ in a wireless communication system
US20190274024A1 (en) Wireless bluetooth communication mechanism capable of effectively reducing number of audio packet retransmission
US7916751B2 (en) Method and apparatus for efficient operation of an enhanced dedicated channel
EP2204937B1 (en) Method and apparatus for improving ACK/NACK bundling
MX2007010049A (en) Radio link protocols for multi-link communication systems.
MXPA04011166A (en) Prioritization of protocol data for retransmission.
WO2017016351A1 (en) Uplink data transmission method and device
KR20120016174A (en) Introducing a delay in the transmission of a nack for a packet received employing coordinated multi-point transmission
WO2018137714A1 (en) Method for transmitting and receiving uplink control information, terminal, and base station
US20080019373A1 (en) System and method for scheduling data transmissions
US20160218837A1 (en) Method and apparatus to use more transmission opportunities in a distributed network topology with limited harq processes
US20170331594A1 (en) User equipment, network device, and acknowledgement information transmission method
CN104685953A (en) Method, user equipment and base station for transmitting uplink data
JP2007300509A (en) Radio transmitting method and radio communication equipment
CN106171004A (en) A kind of RLC packet shunt method and base station
US11133898B2 (en) Retransmission handling at TTI length switch
TW202241171A (en) Indication of harq-ack codebook for retransmission
US10530538B2 (en) Hybrid automatic repeat request method and system
JP6736767B2 (en) Transmission method, mobile communication terminal, and network-side device
JP7149970B2 (en) Feedback response information transmission method, device and system
WO2020220316A1 (en) Feedback information determining method and apparatus, and terminal
TW200945815A (en) Method for operation of synchronous HARQ in a wireless communicatino system
TWI486030B (en) Method and apparatus for polling transmission status in a wireless communications system