TW200945741A - Structure for reducing temperature of cooling water and enhancing unit efficiency for generator - Google Patents

Structure for reducing temperature of cooling water and enhancing unit efficiency for generator Download PDF

Info

Publication number
TW200945741A
TW200945741A TW97114955A TW97114955A TW200945741A TW 200945741 A TW200945741 A TW 200945741A TW 97114955 A TW97114955 A TW 97114955A TW 97114955 A TW97114955 A TW 97114955A TW 200945741 A TW200945741 A TW 200945741A
Authority
TW
Taiwan
Prior art keywords
water
cooling
generator
temperature
heat exchange
Prior art date
Application number
TW97114955A
Other languages
Chinese (zh)
Other versions
TWI364904B (en
Inventor
tai-xiong Huang
zhi-xin Zhang
Original Assignee
Taiwan Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Power Co filed Critical Taiwan Power Co
Priority to TW97114955A priority Critical patent/TW200945741A/en
Publication of TW200945741A publication Critical patent/TW200945741A/en
Application granted granted Critical
Publication of TWI364904B publication Critical patent/TWI364904B/zh

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The invention relates to a structure for reducing temperature of cooling water and enhancing unit efficiency for generators. The structure comprises a generator cooling system and a heat recycling boiler feed-water system. The generator cooling system has several generator coolers and at least one lubricant cooler. A generator enforcing cooling fan set is installed in front of the system. The heat recycling boiler feed-water system has a Gram heat exchanger and an outfall heat exchanger. A heat exchanging device is disposed in between the generator cooling system and the heat recycling feed-water system for performing heat exchange between the cooling water of the generator cooling system and the feed-water of the heat recycling boiler in the heat exchanging device and then outputting the heat.

Description

200945741 九、發明說明: 【發明所屬之技術領域】 率之㈣㈣—種降低發錢冷卻水溫度提升機組效 尤指一種藉由發電機之冷卻水以及熱回收鋼爐 之飼水進行熱交換之結構。 【先前技術】 如第3圖所示’為習用之發電機冷卻水系統,如圖中所 •痛、^電機之冷卻水系統是經由冷卻風扇帶動大氣,使空 _ <和&内之冷卻水做熱交換,加以強制冷卻管内之冷卻 =、’如附件1之資料可見,f用發電機冷卻水純之冷卻 :溫度由46eC(lGQ kg/s)(設計值為42。〇降至43<t(設 s十值為37eC)後,冷卻水再用以冷卻發電機之潤滑油及空 氣。 惟’風扇冷卻系統由於鰭片老化及堵塞導致冷卻效果 。遞減’致使冷卻水進出口溫度較設計值分別提升^艺及6 C ’且利用冷卻風扇來將冷卻水降溫必須耗費大量之電 Ο 力,相對的電費成本提高。 另外’請參閱第4圖,其係習用之熱回收鍋爐飼水系 ' 統流程圖’由圖中可見,冷凝泵出口給予格蘭熱交換器之 例水係藉由後端之鍋爐飼水槽將部份高溫之飼水回流混 合’使進入格籣熱交換器之飼水可預先提高,由圖中可見, 於混合前之飼水溢度為39.5eC,於混合後可達65°C,而此 一溫度差仍具有改善而奴其二者更接近之空間。 因此,如何降低發電機冷卻水降溫所需用電’並可於 5 200945741 混入由鋼爐飼水槽之高溫飼水前提高飼水溫度,使锅爐飼 水槽回流之飼水可相對減少而降低冷凝水猶環栗之負荷, 並增加發電量即為本發明所欲解決之重點所在。 【發明内容】 本發明之主要目的,在於解決上述的問題而提供一種 降低發電機冷卻水溫度提升機組效率之結構,藉由發電機 冷卻系統與熱回收鋼爐飼水系統間具有一熱交換裝置,俾 .供發電機冷卻系統之冷卻水與熱回收鍋爐之飼水於熱交換 _ 裝置内進行熱交換後輪出,故冷卻水冷卻不需藉由發電機 強制冷卻風扇即可冷卻,相較於習用之冷卻系統不會產生 冷卻器韓片老化及堵塞等影響冷卻效率之問題,並可使發 電機冷卻系統節省發電機強制冷卻風扇組所需之用電,更 可使熱回收锅墟之飼水於混合鍋爐飼水槽之高溫飼水前先 提高飼水溫度以降低冷凝水循環泵之負荷。 為達前述之目的,本發明係包括: 一發電機冷鄭系統,此發電機冷卻系統具有數以冷卻 •水循環降溫之發電機冷卻器’並具有至少一亦由冷卻水循 : 環降溫之潤滑油冷卻器,於該發電機冷卻器以及潤滑油冷 卻器之冷卻水入位前端設有一發電機強制冷卻風扇組,於 此風扇組前端設有一可控制冷卻水流通之控制閥。 一熱回收锅蜂飼水系統’其具有至少一提供飼水予熱 回收鋼墟之冷凝水果’於此冷凝水栗飼水出口連接一供飼 水預熱之格蘭熱交換器’於格蘭熱交換器後端連接一洩水 熱交換器,俾供麴水於預熱後進入熱回收鍋爐中。 6 200945741 一供發電機冷卻水與熱回收鍋爐飼水熱交換之熱交換 裝置,其係設於發電機冷卻系統與熱回收鍋爐飼水系統之 間,此熱交換裝置包括一連通於該二冷卻器與控制閥間= 冷卻水入口、一連通於該發電機強制冷卻風扇組與該二= 卻器間之冷卻水出口、且熱交換裝置於前後分別具 於冷凝水泵流向洩水熱交換器之間之—飼水入口以及一 水出口。 飼 藉此,冷卻水與飼水於該熱交換裝置内進行熱交換, ❿俾供冷卻水於進入該二冷卻器進行冷卻前降至適當之溫 度’且供飼水於進入格蘭熱交換器前先行預熱至適當溫度。 本發明之上述及其他目的與優點,不難從下述所選用 實施例之詳細說明與附圓中,獲得深入了解。 當然,本發明在某些另件上,或另件之安排上容許有 所不同,但所選用之實施例,則於本說明書中,予以詳細 說明,並於附圖中展示其構造。 【實施方式】 ❹ 請參閱第1圖至第2圖,圖中所示者為本發明所選用 之實施例結構’此僅供說明之用,在專利申請上並不受此 種結構之限制》 本實施例提供一種降低發電機冷卻水溫度提升機組效 率之結構,其係包括: 一發電機冷卻系統1,此發電機冷卻系統1具有數發 電機冷卻器1 1 ’此數發電機冷卻器1 1利用冷卻水循環 降溫(於本實施例:中具有四座),此發電機冷卻系統1另具 7 200945741 有至少一潤滑油冷卻器1 2 (於本實施例中為一座),此潤 滑油冷卻器12亦由冷卻水循環降溫。於該發電機冷卻器 11以及潤滑油冷卻器12二者之冷卻水入口前端設有一 發電機強制冷卻風扇組13 ’俾供冷卻經由發電機冷卻器 1 1以及潤滑油冷卻器1 2二者於熱交換後流出之冷卻 水。另於此風扇組1 3前端設有一控制閥14,此控制閥 14俾供控制冷卻水流通至該發電機強制冷卻風扇組1 3。於本實施例中,該發電機強制冷卻風扇組1 3包含四 具以馬達驅動之冷卻風扇1 31,而各該冷卻風扇1 3 1 ❹ 分別具有四具驅動馬達1 3 2驅動該冷卻風扇1 3 1運 轉。 一熱回收鋼爐飼水系統2,其具有至少一冷凝水栗2 1’俾供供飼水予熱回收鍋爐22使用,於此冷凝水泵2 1飼水出口連接一格蘭熱交換器2 3,此格蘭熱交換器2 3係供飼水於送入熱回收鍋爐2 2前先行預熱,於格蘭熱 交換器2 3後端連接一浪水熱交換器24,藉此熱回收鋼 ❹ 爐飼水系統2俾供飼水於預熱後進入熱回收鍋爐2 2中。 熱交換裝査3,此熱交換裝置3係供發電機冷卻水 與熱回收鋼爐2 2飼水進行熱交換,其係設於發電機冷卻 系統1與熱回收鍋爐飼水系統2之間,此熱交換裝置3包 括一冷卻水入口31 ,此冷卻水入口;3 1係連通於該二冷 卻器1 1、12流經該控制閥14之間;一冷卻水出口 3 2 ’此冷卻水出σ 3 2係連通於該發電機強制冷卻風扇組 13流經該二冷卻器1 1、12之間;一飼水入口 3 3與 8 200945741 一飼水出口 3 4,此飼水入口 3 3與飼水出口 3 4係連通 於冷凝水泵21與洩水熱交換器2 4之間。於本實施例中 所使用之熱交換裝置3係一板片式冷卻器,此板片式冷卻 器係於冷卻器内設有供冷卻水與飼水循環時俾供熱量傳遞 而進行熱交換(當然,本實施例中利用板片式冷卻器進行 熱交換係各種熱交換型態其中之一,並非侷限於此一熱交 換型態,亦可利用如殼管式熱交換器或其他可等效替代之 熱交換器以達到相同之功效)。且本實施例中,該格蘭熱交 換器2 3係連接於該冷凝水泵21後方,飼水流經該格蘭 熱交換器23後再進入該熱交換裝置3之飼水入口33( 另外’該格蘭熱交換器2 3之位置亦可變換,意即該冷凝 水泵2 1之飼水亦可先流經該熱交換裝置3之飼水入口 3 3進行熱交換後,再由飼水出口 3 4流往格蘭熱交換器2 3 ’飼水於格蘭熱交換器23内第二次熱交換後再流往线 水熱交換器2 .4 )。 由上述之結構可見,發電機冷卻水係由該二冷卻器工 ❹ 1、12流出後成為溫度較高之冷卻水,此冷卻水流往讀 熱交換裝置3 (板片式冷卻器)之冷卻水入口3 1,並於 熱交換裝置3 (板片式冷卻器)内流經板片(於圖中未杀 )而將熱量傳遞至板片後流經該冷卻水出口 3 2後,再流 往發電機端冷卻該二冷卻器1 1、12。而於熱回收鍋壚 飼水系統2端,欲送往熱回收鍋爐2 2之飼水則先進入謗 熱交換裝置3 (板片式冷卻器)之飼水入口,並於熱交換 裝置3 (板片式冷卻器)内流經板片(於圓中未示)而將 9 200945741 板片吸收冷卻水之熱量傳至铜水後,攜帶熱量之甸水再經 由熱交換裝置3(板片式冷卻器)之飼水出口流出至格= 熱交換器2 3進行第二次的熱交換後,再送往熱回收鍋爐 2 2使用。 ° ❺ ❹ 将w ‘肌% Μ几,贫·冷钾糸統工之冷卻水由 該二冷卻器1 1、12流出時所帶之熱量傳導給予熱回收 锅爐2 2所欲使用之飼水(其熱交換之過程可參閱^件一 之圖六-板片式熱交換器之工作原理),藉此達到熱交換之 功效,其目的之一在於節省冷卻水冷卻時利用發電機強制 冷卻風扇組1 3之電力,以達到節能之效果,另外,利用 此結構進行冷卻水冷卻不會產生冷卻器鰭片老化及堵塞等 影響冷卻效率之問題,使師水冷卻之溫度差更接近理論 數據;另外,其目的之二在於,藉上述之結構除可使發電 機冷卻系統1節省發電機強制冷卻風扇組i 3所需之用電 ,更可使熱回收鍋爐2 2之匈水於混合鍋爐飼水槽之高溫 飼水前先提高飼水溫度以降低冷凝水循環泵之負荷(實際 實驗之數據請參閱附件一)。 ” 值得-提的是,由該二冷卻器i i、丄2流出帶有熱 量之冷卻水,除可直接流人熱交換裝置3(板片式冷卻器 )進行熱交換之外’亦可選擇開啟該控制閥^ 4,使冷卻 水分別進人熱交換裝置3與發電機強制冷卻風糕i 3中 同時進行冷卻,使冷卻水達到雙4冷卻,而能更有效率的 將溫度降低。 以上所述實施例之揭示係用以說明本發明,並非用以 200945741 限制本發明’故舉凡數值之變更或等效元件之置換仍應隸 屬本發明之範舜。 由以上詳細說明’可使熟知本項技藝者明暸本發明的 確可達成前述目的,實已符合專利法之規定,爰提出專利 申請β 【圖式簡單說明】200945741 IX. Description of the invention: [Technical field of invention] Rate (4) (4) - Reduce the cost of cooling water to increase the efficiency of the unit Especially refers to a structure in which heat is exchanged by the cooling water of the generator and the feed water of the heat recovery steel furnace. [Prior Art] As shown in Figure 3, it is a conventional generator cooling water system. As shown in the figure, the cooling water system of the motor is driven by a cooling fan to make the air _ < and & Cooling water for heat exchange, forced cooling in the cooling tube =, 'As can be seen from the information in Annex 1, f is cooled by generator cooling water: temperature is 46eC (lGQ kg / s) (design value is 42. 〇 down 43<t (set s ten value is 37eC), the cooling water is used to cool the generator's lubricating oil and air. However, the 'fan cooling system' cooling effect due to fin aging and blockage. Decrease 'cause cooling water inlet and outlet temperature Compared with the design value, the technology and 6 C ' are respectively increased, and the use of a cooling fan to cool the cooling water requires a large amount of electric power, and the relative cost of electricity is increased. In addition, please refer to Fig. 4, which is a conventional heat recovery boiler feed. The water system 'flow chart' can be seen from the figure. The condensate pump outlet gives the example of the water heater of the Grand Heat Exchanger. The backwater boiler feed water tank recirculates some of the high temperature feed water to make it enter the grid heat exchanger. Feed water can be raised in advance, by It can be seen that the feed water concentration before mixing is 39.5eC, which can reach 65°C after mixing, and this temperature difference still has improved and the slaves are closer to each other. Therefore, how to reduce the generator cooling water The electricity required for cooling can be used to increase the feed water temperature before the high temperature feed water from the steel stove water tank is mixed in 5 200945741, so that the feed water flowing back from the boiler feed water tank can be relatively reduced to reduce the load of the condensed water. Increasing the amount of power generation is the focus of the present invention. SUMMARY OF THE INVENTION The main object of the present invention is to solve the above problems and provide a structure for reducing the efficiency of the cooling water of the generator to improve the efficiency of the unit, by the generator cooling system. There is a heat exchange device between the heat recovery steel furnace feed water system, and the cooling water for the generator cooling system and the heat recovery boiler feed water are exchanged in the heat exchange _ device, so the cooling water is not cooled. It needs to be cooled by the forced cooling fan of the generator. Compared with the conventional cooling system, it will not cause problems such as aging and clogging of the cooler, which can affect the cooling efficiency, and can generate electricity. The cooling system saves the electricity required for the forced cooling fan unit of the generator, and further increases the feed water temperature to reduce the load of the condensate circulation pump before the hot water of the heat recovery boiler feeds the hot water in the mixing boiler feed water tank. In view of the foregoing, the present invention comprises: a generator cold-supplied system having a plurality of generator coolers for cooling/water circulation cooling and having at least one cooling water: cooling of the lubricating oil of the ring cooling A generator forced cooling fan group is disposed at the front end of the cooling water inlet of the generator cooler and the lubricating oil cooler, and a control valve for controlling the circulation of the cooling water is disposed at the front end of the fan group. The water system 'has at least one condensed fruit that provides feed water to the heat recovery steel market'. The condensed water chestnut feed water outlet is connected to a Glue heat exchanger for feed water preheating. The water discharge heat exchanger is supplied with water to the heat recovery boiler after preheating. 6 200945741 A heat exchange device for heat exchange between generator cooling water and heat recovery boiler feed water is provided between a generator cooling system and a heat recovery boiler feed water system, and the heat exchange device includes a communication between the two cooling units Between the controller and the control valve = a cooling water inlet, a cooling water outlet connected between the forced cooling fan group of the generator and the second heater, and the heat exchange device is respectively disposed in front of the condensate pump to the drain heat exchanger Between the water inlet and the water outlet. By this, the cooling water and the feed water exchange heat in the heat exchange device, and the cooling water is cooled to an appropriate temperature before entering the two coolers for cooling, and the feed water enters the Glan heat exchanger. Preheat to the appropriate temperature beforehand. The above and other objects and advantages of the present invention will become more apparent from the detailed description and the appended claims. Of course, the invention may be varied on certain components, or in the arrangement of the components, but the selected embodiments are described in detail in the specification and their construction is shown in the drawings. [Embodiment] ❹ Please refer to Fig. 1 to Fig. 2, which shows the structure of the embodiment selected for the present invention. 'This is for illustrative purposes only, and is not limited by this structure in patent application. The embodiment provides a structure for reducing the efficiency of the generator cooling water temperature raising unit, which comprises: a generator cooling system 1 having a number of generator coolers 1 1 'the number of generator coolers 1 1 using cooling water circulation to cool down (in this embodiment: there are four seats), the generator cooling system 1 has another 7 200945741 has at least one lubricating oil cooler 12 (in this embodiment, a), the lubricating oil cooler 12 is also cooled by the cooling water circulation. A generator forced cooling fan group 13' is provided at the front end of the cooling water inlet of the generator cooler 11 and the lubricating oil cooler 12 for cooling via the generator cooler 1 1 and the lubricating oil cooler 1 2 Cooling water flowing out after heat exchange. In addition, a control valve 14 is provided at the front end of the fan unit 13 for controlling the flow of cooling water to the generator forced cooling fan group 13. In this embodiment, the generator forced cooling fan group 13 includes four motor-driven cooling fans 1 31, and each of the cooling fans 1 3 1 具有 has four driving motors 1 3 2 to drive the cooling fan 1 3 1 operation. a heat recovery steel furnace feed water system 2, which has at least one condensed water chestnut 2 1 '俾 for feeding water to the heat recovery boiler 22, wherein the condensate water pump 2 1 feed water outlet is connected to a gran heat exchanger 2 3 The water supply of the Grand Heat exchanger 2 3 is preheated before being sent to the heat recovery boiler 2 2 , and a water heat exchanger 24 is connected to the rear end of the Grand Heat exchanger 23 to heat the steel crucible. The feed water system 2 feed water enters the heat recovery boiler 22 after preheating. The heat exchange device 3 is configured to exchange heat between the generator cooling water and the heat recovery steel furnace 22, which is disposed between the generator cooling system 1 and the heat recovery boiler feed system 2, The heat exchange device 3 includes a cooling water inlet 31, the cooling water inlet; 31 is connected to the two coolers 1 1 and 12 flowing between the control valves 14; a cooling water outlet 3 2 'the cooling water is discharged σ 3 2 is connected to the generator forced cooling fan group 13 flowing between the two coolers 1 1 and 12; a feed water inlet 3 3 and 8 200945741 a feed water outlet 3 4 , the feed water inlet 3 3 and The feed water outlet 34 is connected between the condensate water pump 21 and the drain heat exchanger 24 . The heat exchange device 3 used in the embodiment is a plate type cooler, and the plate type cooler is provided in the cooler for heat exchange between the cooling water and the feed water for heat transfer (of course In the embodiment, one of the heat exchange types of the heat exchange system using the plate type cooler is not limited to the heat exchange type, and may also be replaced by a shell-and-tube heat exchanger or the like. Heat exchangers to achieve the same effect). In this embodiment, the Gland heat exchanger 23 is connected to the rear of the condensate water pump 21, and the feed water flows through the Gland heat exchanger 23 and then enters the feed water inlet 33 of the heat exchange device 3 (otherwise The position of the Grand Heat exchanger 2 3 can also be changed, that is, the feed water of the condensate water pump 2 1 can also flow through the feed water inlet 3 3 of the heat exchange device 3 for heat exchange, and then the feed water outlet 3 4 Flowing to the Grand Heat Exchanger 2 3 'The feed water is passed through the second heat exchange in the Grand Heat exchanger 23 and then to the line water heat exchanger (2.4). It can be seen from the above structure that the generator cooling water flows out of the two coolers 1, 12 to become a relatively high temperature cooling water, and the cooling water flows to the cooling water of the reading heat exchange device 3 (plate cooler). The inlet 3 1 and the heat exchange device 3 (plate cooler) flow through the plate (not killed in the figure) to transfer heat to the plate and then flow through the cooling water outlet 3 2, and then flow to The generator end cools the two coolers 1 1, 12. At the end of the heat recovery boiler feed water system 2, the feed water to be sent to the heat recovery boiler 2 2 first enters the feed water inlet of the heat exchange device 3 (plate cooler) and is in the heat exchange device 3 ( The plate-type cooler) flows through the plate (not shown in the circle) and transfers the heat of the cooling water absorbed by the 9 200945741 plate to the copper water, and then carries the heat of the water and then passes through the heat exchange device 3 (plate type) The feed water outlet of the cooler) flows out to the heat exchanger 2 3 for the second heat exchange, and then sent to the heat recovery boiler 2 2 for use. ° ❺ ❹ Will w ' muscle% Μ, poor, cold potassium 糸 之 cooling water from the two coolers 1 1, 12 when the heat is transferred to the heat recovery boiler 2 2 to use the feed water (The process of heat exchange can be referred to Figure 6 - Working principle of plate heat exchanger), thereby achieving the effect of heat exchange. One of the purposes is to save the cooling fan by using a generator to cool the cooling water. Group 1 3 power, in order to achieve the effect of energy saving, in addition, the use of this structure for cooling water cooling does not cause problems such as aging and blockage of the fins, which affects the cooling efficiency, so that the temperature difference of the water cooling is closer to the theoretical data; In addition, the second purpose is that, in addition to the above structure, the generator cooling system 1 can save the electricity required for the generator forced cooling fan group i 3 , and the H2 water of the heat recovery boiler can be fed in the mixed boiler. Before the high temperature feed of the water tank, increase the feed water temperature to reduce the load of the condensate circulation pump (for the actual experimental data, please refer to Appendix 1). It is worth mentioning that the cooling water with heat is discharged from the two coolers ii and 丄2, and the heat exchange device 3 (plate cooler) can be directly used for heat exchange. The control valve 4 causes the cooling water to be simultaneously cooled into the heat exchange device 3 and the forced cooling air cake i3 of the generator, so that the cooling water reaches double 4 cooling, and the temperature can be lowered more efficiently. The disclosure of the embodiments is intended to be illustrative of the invention, and is not intended to limit the invention, and the invention is intended to be in accordance with the scope of the invention. The skilled person understands that the present invention can achieve the foregoing objectives, and has already met the requirements of the Patent Law, and has filed a patent application β [Simple Description]

第1囷係本發明之冷卻流程示意圊 第2圖係本發明之風扇冷卻示意圖 第3圖係習用之發電機冷卻系統流程示意圖 第4囷係習用之熱回收鍋爐飼水系統流程示意圖 【主要元件符號說明】 (習用部分) 無 (本發明部分) 發電機冷卻系統1 發電機冷卻器11 潤滑油冷卻器12 發電機強制冷卻風扇組1 冷卻風扇131 驅動馬達1 3 2 控制閥1 4 熱回收鋼爐飼水系統2 冷凝水泵2 i 熱回收鋼爐2 2 格蘭熱交換器2 3 洩水熱交換器2 4 熱交換裝置3 冷卻水入口 3 1 冷卻水出口 3 2 飼水入口 3 3 飼水出口 3 4 ❹BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a schematic diagram of cooling of a fan of the present invention. FIG. 3 is a schematic diagram of a flow chart of a conventional generator cooling system. Explanation of Symbols] (Applicable part) None (part of the invention) Generator Cooling System 1 Generator Cooler 11 Lubricating Oil Cooler 12 Generator Forced Cooling Fan Set 1 Cooling Fan 131 Drive Motor 1 3 2 Control Valve 1 4 Heat Recovery Steel Furnace feed system 2 Condensate pump 2 i Heat recovery steel furnace 2 2 Grand heat exchanger 2 3 Water discharge heat exchanger 2 4 Heat exchange unit 3 Cooling water inlet 3 1 Cooling water outlet 3 2 Feed water inlet 3 3 Feed water Export 3 4 ❹

U 200945741 / 降低南火#1〜約發電機冷卻水溫度提升機組效率改善成果探討 參 南部電廠黃臺雄、王瑞煌、李文洲、張智信 200945741 改善理念 1、 锅爐飼水流程介紹 CEP出口之飼水(96 kg/s,34°C)先送至格蘭熱交換器(如圖 三)和格蘭蒸汽做熱交換以提升飼水溫度;並在送入鍋爐 前和冷凝水循環泵所打出之飼水(158 t)混合使進入鍋爐 之飼水溫度大65t以避免露點腐蚀,由於冷凝水循環泵是 將飼水槽之水打出後再打入飼水槽内;如果CEP出口之飼 水溫度越高,則所需調溫之冷凝水循環泵所打出之飼水量 需求量就減少。故若將CEP出口之飼水先送至擬新設冬板 片式冷卻器和發電機冷卻水做熱交換後;再送回飼水管路 利用格蘭熱交換器和格蘭蒸汽再做一次熱交換一來提高飼 水溫度,二來降低廠内用電量。 2、 發電機強制冷卻系統 MPR(Generator Forced Cooling System)發電機強制冷卻系 統(如困二)是利用16台風扇將管内之冷卻水和大氣做強制 冷卻。而冷卻水再經過4座發電機冷卻器及1座潤滑油冷 卻器分別冷卻空氣及潤滑油。底下為其發電機強制冷卻系 統原先設計之技術資料: 最大進口水溫 42〇C 最大出口水溫 37〇C 操作座力 8 bar 冷卻水流量 360 m3/h 發電機冷卻器熱交換董 1,610 kw 潤滑油冷卻器熱交換量 450 kw 空氣冷卻器風扇流量 224m3/h 空氣冷卻器風扇馬力. 5.5 kw 空氣冷卻器風扇數目 16台 空氣冷卻器數目 4座 200945741 空氣冷卻器熱交換董 2,060 kw 在目前運轉實務上當機組停機24小時内,則必須運轉其中四 台風扇;以降低冷卻水溫度使其可以將發電機之餘熱帶走, 而飼水關斷閥則在氣渦輪機停機換至少半小時後才關閉。 規劃及實施 1、熱董計算‘ 由設計值可知水之比熱為4.12kJ/kg K(=2,060kw/(100 kg/s ❹ x5K)),而飼水品質為(96 kg/s34°C);假設我們多設計 一成之裕度(margin),故CEP飼水必須能吸收 3,662kw(=3,296kw/0.9)的熱量才能將發電機冷卻水溫度降 低4 °C,此時則CEP飼水溫可由34eC提高至43.3eC (=3,662kw/(4.12 kJ/ kgK x 96 kg/s));則經由新設軍之板 片式熱交換器.發電機冷卻水溫度可由46°C降至42 °C (=3,296kw/(4.12kJ/kg Kx 200 kg/s))。故經由計算如增設 一座熱交換量為3,662kw(=3,296kw/0.9)之板片式熱交換 器,則可達到原先假設之運轉條件,也就是發電機冷卻 水進口溫度為46°C,而出口溫度為42°C。 ❹ 2、管路流程故 可利用大修時增設效率為90〜95 %之板片式熱交換器,為 了保留其單循環之可行性;可將原有管路保留只增加流量 控制閥以便做切換及控制冷卻水流量之用,為了增加靈活 性’可於熱交換器前後加裝關斷閥及洩水管路以利維修工 作之進行。 底下將所有運轉棋式及流程做一整理: 200945741 * § —-— —----- ^- 1 ---------- 鉤水來猓 CEP出口(未經格蘭熱交換器)之水(18bar,96 kg /s* 34°〇 2 〜—s 冷卻方弐 發電機冷卻水·· 200 kg/s皆和飼水經由板片式系厂 交換器做熱交換 ''' 3 ---- 二句水預估溫 度 發電機冷卻水進口溫度為46°C,而出口溫度為42 °C m 4 ------ 喝 ——, 運轉模式 5對1運轉切換為1對1達轉解聯初期飼水關斷 閥尚未關閉,解聯之機組其發電機冷卻水200 kg/s 仍經由新設置之板片式熱交換器由飼水冷卻;當飼 水關斷閥關閉後,所有發電機冷卻水將由一台運轉 中之铜水冷卻。1對1運轉切換解聯解聯初期飼水 關斷閥尚未關閉,解聯之機組其發電機冷卻水2〇〇 kg/s仍經由新設置之板片式熱交換器由飼水冷 卻;當CEP停止運轉後,可由電動閥控制決定 發電機冷卻水流向維持不變或將冷卻水送至原風 扇冷卻系統並啟動四台風扇冷卻。 5 熱交換後飼水 溫度 43.3°C(尚未經過格蘭熱交換器及洩水熱交換器) ❹ 6 施工方式 増琛一座板片式熱交換器於GTN1發電機強制冷 卻系統冷卻風扇旁(N :為機组別,別分別為1,2,3) GTN2發電機冷卻水(100 kg/s)連接GTN1發電 機冷卻水(100 kg/s)混合後送至板片式熱交換器 和飼水做熱交換(N:為機組別,別分別為1,2,3)由 汽機房之未經格蘭熱交換器之飼水送至板片式熱 交換器和發電機冷卻水做熱交換後再送回原管路 飼水 200945741 施工記要 本改善案已於日前(96年6月8日)發包完成,其熱換器 採用GEA公司所生產之半銲式(semi-welded)板片熱交換器共 有一座,型號為LWC 250S B-25 ;其主要規格如表一。其和一 般板片式熱交換器最大不同在於高壓流體通道為銲接式,而 低壓流體通道則為墊片式。 由表一可知此型式的熱交換器其預度(Duty margin)達30 %,其代表意思為設計熱交換量雖為4,050kw ;但最大熱交換 ❽ 量可達5,265kw以上β 表二則是發電機冷卻水(熱水)及飼水(冷水)模擬溫度表(發 電機冷卻水進口溫度由46°C到36°C,每隔1°C作一間隔β飼水 流量由96 kg/s到30 kg/s,每隔10 kg/s作一間隔;飼水進 口溫度由381到34°(:,每隔leC作一間隔)。如此我們便可以依 據運轉條件推估冷、熱水熱交換後之溫度。 上面所討論皆為理输值,但現場實務上確有諸多限制; 我們將逐一探討: 1、飼水管路: 由上方討論我們得知我們將用C E P出α之飼水,尚未經過 ® 格蘭熱交換器,其溫度將與經過格蘭熱交換器之飼水比較 低約2它。但問題是:尚未經坶格蘭熱交換器之飼水遠在汽 機房,而且用其做冷卻源將使管路延伸約300公尺遠;第一 個發生的問題就是壓損之問題,第二個就是施工問題,因為 新設熱交換器設置地點和汽機房相隔兩條馬路,如果將飼水 管路延伸則將挖管溝,如此做只為2°C,似乎不值得,故 最後改採用經過格蘭熱交換器之铜水,因為經由汽機房到鍋 爐房其溫度僅略高於未經過格籣熱交換器之铜水(约1°C), ‘ 管路減少一半以上長度(長約100公尺);並且經設計後不用 200945741 • 經過馬路,使工作難度降低許多而壓損又在可接受範圍。版 賺Μ妝珥我們採經過格蘭熱交換器之飼水但在鍋爐房侧》 2、發電機冷卻水管路: 由於此次將冷卻器置於GT21侧而且只有一座,故需將兩 台發電機冷卻水合併後再送入新設之冷卻中;但問題是: 由GT22將發電機冷卻水延伸至GT21侧需經過膨脹接頭 及馬路’管路長度約2〇〇公尺遠且需挖管溝;其管路壓損 及經膨脹接頭時燃氣外洩造成發電機冷卻水溫度提高。最 _ 後改將延伸管路部分由1〇”管擴張為12,,管,並且管路延伸 部分改採由空中經過(原先此部份就有現有之管架可利 用)’延伸管路長度縮減為1〇〇公尺。而原有之發電機冷卻 水系統我們則加裝一只逆止閥及電動閥,逆止閥作用作於 使用改善系統時不會發生改善系統之冷卻水倒灌進入原風 扇系統’而電動閥之作用則偵測當發電機冷卻水溫度過高 時(目前設定為52eC閥打開將原風扇系統内之冷卻水一併 加入系統做調節冷卻水溫度之作用;而當發電機冷卻水溫 度將低時(目前設定為46 °C劂离閉,此時則只運轉改善系 統。 © 3、管路補水: 為了減少實際測試時間,故於97.01.10 GT22待機時先行做 管路沖洗及補水之動作,由於補水時怕原有發電機冷卻水 空氣進入;所有採原有系統繼續運轉僅是利用補水管路加 以補水’也正是因為如此所以整個補水過程共需時80分 鐘’而增設管路排氣過裎則整整花了 40分鐘》接著於 97.01.15我們利用GT22待機時將原有發電機冷卻水系統 利用電動閥加以隔離,直接使用改善後系统,但是測試 結果發現流量僅為2,500 kg/mim(約為42'kg/s),和實際系 200945741 統流董(100 kg/s)相差甚大,經校正流量計後並利用超音波 流量计加以量測,此時流董約為110 kg/s,較原系統流量 大;原因可能是因為未經過原有之熱交換器使管損變小流 量增加所致。97.01.16重新確認流量發現流孔板尺寸不 符,重新修正後補水排氣,此時發現壓力較之前為高(電 動閥開啟增設管路流量為9〇 kg/s,進、出口壓力為1.34 / 1·31 kg/cm ;電動閥關閉時1設管路流量為138 kg/s,進、 出口壓力為1.44/ 1.19 kg/cm )。為再次確認流量計與壓力 計正確與否,故請GEA原廠做一張流量與壓損對照表(如 下表),我們發現當壓捐為0.25 kg/cm2時,對照此時流 量約為7,666 kg/mim,即約128 kg/s,與偵測之流量138竑 /s尚在可接受範圍(因偵測流量設計在2〇〇吆/s);此時方 可巧 1認未經過廣有之熱交換器使/ ^員變 、流量湾 f加所致β 流量kg /mim 5,000 6,000 7,000 8,000 9,000 ιο,οοο 11,000 12,000 壓損bar 0.11 0.15 0.21 0.27 0.34 0.42 0.51 0.58 伺水端之補水則較為順利,利用1對1運轉時先將管路 補好水後,再將增設於原先管路之關斷閥關閉使飼水泵經增 設之韵水管路。發電機冷卻水系統改善工作實際管路流程曰 圊五· 200945741 現場測試 在97.01.18向調度處申請解聯測試此改善工作之成效,其最 主要目的在於棋擬運轉中之各種狀態;使機組確保安全,其紀 錄表如表三,原有發電機冷卻水膨脹槽原有壓力為40kPa(理論 上應維持lOOkPa),故量測壓力偏低,經補充後已經同步上升 約60kPa;確認於運轉中任何狀態下皆可如使用風扇系統一樣 (原先預估當1對1運轉時,由於兩台冷卻水系統並連在一 起;當不運轉機組之冷卻水泵停用或突然啟動時,造成壓力波 會影響運轉中之機組而導致跳機)。於97.01.19再次向調度處要 求作2對1滿載測試,並於12 : 00時達成滿載。此次測試心 得如下: 卜發電機冷卻水流量超過原先設計值。原先發電機冷卻水設 計值為200 kg/s,但是此次測試量測值為228 kg/s(設定最 大量測值為260 kg/s),唯恐量測值有問題,再請GEA原 廠做一張流量與壓損對照表(如下表)往前次做的表格上下 延伸· 流量kg /mim 3,000 4,000 13,000 14,000 15,000 16,000 壓損bar 0.05 0.08 0.68 0.79 0.91 1.04 由此表得知流量228 kg/s(=13,680 kg/min)壓損約為 〇.75bar,而現場壓差約為0.85 kg/cm1。兩者存在相當誤 差,後來將量測最大值改為280 kg/s,此時流量為242 kg /s(=14,520 kg/min),對照表格此時壓損約為0.85 kg/cm2, 200945741 兩者相當接近•故確認冷卻水流量應該為24〇吆/S左右 超乎預期(原設計值為200 kg/s)〇 2、初期運轉時注意發電機冷卻水溫度。髡號值發現當^丁啟 動後約經過30分後,才開始有飼水流量N是開始有冷水 可供熱交換),此時發電機冷卻水溫度較剛啟動時高約9 .°C,尚在可接受範固。葦崤p欲啟動機紕之第一台氣谪輪機 時需請值班同仁注意發電機冷卻水溫升情形,以避免溫度 過高傷及機組運轉安全· Β 3·所有機組解聯後注意發電機冷卻水溫度。原先預計於 97.01.18完成1對1測試,但因電力需求不高,故調度處 要求解聯;雖然機組解聯後CEP仍然維持約45分運轉, 但是仍不足以帶走熱量;故到隔天上班時發電機冷卻水 溫度維持在45°C,後來為了機組安全打開電動閥讓原有 風扇系統内之冷卻水(因無做冷卻作用溫度較低)和增設管 路之冷卻水一併運轉以降低溫度。日後如遇此種情形煩請 '值班同仁依此操作。 4· 膨脹槽壓力及水位•此次測試前由於膨脹稽壓力不足故補 充氣壓,但卻忽略GT21及GT22兩邊之發電機冷卻水已 〇 經連通;在兩邊水位相差太多之狀況下逕自由GT21之膨 脹槽補壓力•導致測試中GT22之膨脹槽水位一直上升, 最後將GT21之氮氣壓力降低並由GT22之膨服槽洩水讓 兩者之水位及壓力相當。爾後運锝時當膨脹槽補充壓力時 需注意兩邊之水位差,或者封閉一邊之膨脹槽而單獨使 用一只膨脹槽。 200945741 效率試驗 申請發電機冷卻水 小時滿載運轉。另 個小時,以確認改 使用風扇系統,而 。底下是我們測試 本廠於97.02.01 0G00 〜97.02.03 1GO0 系統改善工作效率試驗,GT21/22連續48 外為了做一比較,申請GT11/12滿載運轉4 善案之功效。並在最後兩個小時,由GT21 GT22使用改善系統,兩者再做進一步確認 的一些小小心得:U 200945741 / Reduced South Fire #1~ About Generator Cooling Water Temperature Enhancement Unit Efficiency Improvement Results Discussion Southern Power Plant Huang Taixiong, Wang Ruihuang, Li Wenzhou, Zhang Zhixin 200945741 Improvement Concept 1. Boiler Feeding Process Introduction CEP Export Feed Water (96 kg / s, 34 ° C) first sent to the Grand Heat exchanger (Figure 3) and Granville steam for heat exchange to increase the feed water temperature; and before feeding to the boiler and condensate circulation pump The water (158 t) is mixed so that the feed water entering the boiler is 65t high to avoid dew point corrosion, because the condensate circulation pump drives the water in the feed water and then enters the feed water tank; if the feed water temperature of the CEP outlet is higher, The amount of feed water pumped by the condensate circulating pump that requires temperature adjustment is reduced. Therefore, if the feed water from the CEP outlet is sent to the new winter plate chip cooler and the generator cooling water for heat exchange, then return to the feed water line and use the Grand Heat Exchanger and the Grand Steam for another heat exchange. Increase the feed water temperature, and secondly reduce the electricity consumption in the plant. 2, generator forced cooling system MPR (Generator Forced Cooling System) generator forced cooling system (such as sleepy 2) is the use of 16 fans to cool the cooling water and atmosphere in the tube. The cooling water then cools the air and lubricating oil through four generator coolers and a lubricating oil cooler. The technical information originally designed for the forced cooling system of the generator is as follows: Maximum inlet water temperature 42〇C Maximum outlet water temperature 37〇C Operating seat force 8 bar Cooling water flow 360 m3/h Generator cooler heat exchange Dong 1,610 kw Lubrication Oil cooler heat exchange capacity 450 kw air cooler fan flow 224m3 / h air cooler fan horsepower. 5.5 kw air cooler fan number 16 air cooler number 4 seat 200945741 air cooler heat exchange Dong 2,060 kw in the current operation practice Within 24 hours of the shutdown of the unit, four of the fans must be operated; to reduce the temperature of the cooling water so that the generator can be removed from the tropics, and the feed shut-off valve is closed after the gas turbine has been shut down for at least half an hour. Planning and implementation 1. Hot Dong calculation 'The design value shows that the specific heat of water is 4.12kJ/kg K (=2,060kw/(100 kg/s ❹ x5K)), while the quality of feed water is (96 kg/s34°C) Suppose we design a margin of 10%, so CEP feed water must absorb 3,662kw (=3,296kw/0.9) of heat to reduce the generator cooling water temperature by 4 °C, then CEP Feed water temperature can be increased from 34eC to 43.3eC (=3,662kw / (4.12 kJ / kgK x 96 kg / s)); then through the new plate plate heat exchanger. Generator cooling water temperature can be reduced from 46 ° C 42 °C (=3,296kw/(4.12kJ/kg Kx 200 kg/s)). Therefore, by adding a plate-type heat exchanger with a heat exchange capacity of 3,662kw (=3,296kw/0.9), the original assumed operating condition can be achieved, that is, the generator cooling water inlet temperature is 46 °C. The outlet temperature was 42 °C. ❹ 2. The pipeline process can use the plate-type heat exchanger with an efficiency of 90~95% during overhaul, in order to preserve the feasibility of its single cycle; the original pipeline can be reserved only to increase the flow control valve for switching. And to control the flow of cooling water, in order to increase flexibility 'can be installed before and after the heat exchanger shut-off valve and drain pipe for maintenance work. Under the bottom, all the running moves and processes will be sorted out: 200945741 * § —-— —------ ^- 1 ---------- Hooked water to CEP exit (not Gran Hot Exchange Water) (18bar, 96 kg / s * 34 ° 〇 2 ~ - s cooling square 弐 generator cooling water · · 200 kg / s and feed water through the plate type factory exchanger for heat exchange ''' 3 - --- Two sentences predict the temperature of the generator cooling water inlet temperature is 46 ° C, and the outlet temperature is 42 ° C m 4 ------ drink -, operation mode 5 to 1 operation switch to 1 to 1 The feed water shut-off valve has not been closed since the beginning of the transfer, and the generator cooling water of the unit is still cooled by the feed water via the newly-set plate heat exchanger; when the feed shut-off valve is closed All generator cooling water will be cooled by a running copper water. The 1 to 1 operation switching decoupling and uncoupling initial feed shut-off valve has not been closed, and the unit cooling water of the unit is 2〇〇kg/s. The plate heat exchanger is newly cooled by the feed water; when the CEP is stopped, the flow of the generator cooling water can be determined by the electric valve control or the cooling water can be sent to the original wind. Cool the system and start four fans to cool. 5 Feeding water temperature after heat exchange is 43.3 °C (not yet passed through the Grand Heat Exchanger and the drain heat exchanger) ❹ 6 Construction method 増琛 A plate heat exchanger is issued on GTN1 Motor forced cooling system next to the cooling fan (N: for the unit, not 1, 2, 3 respectively) GTN2 generator cooling water (100 kg / s) connected to GTN1 generator cooling water (100 kg / s) mixed and sent The heat exchange to the plate heat exchanger and the feed water (N: for the unit, 1, 2, 3 respectively) is sent to the plate type heat exchange by the feed water of the turbine room without the G. After the heat exchange between the generator and the generator cooling water is sent back to the original pipeline feed water 200945741 The construction record has been completed in the previous day (June 8, 1996), and the heat exchanger is semi-welded by GEA. There is one type of semi-welded plate heat exchanger, model LWC 250S B-25; the main specifications are shown in Table 1. The biggest difference from the general plate heat exchanger is that the high pressure fluid passage is welded and low pressure. The fluid passage is a gasket type. It can be seen from Table 1 that this type of heat exchanger has a Duty margin. 30%, which means that the designed heat exchange capacity is 4,050kw; but the maximum heat exchange capacity can reach 5,265kw or more. β Table 2 is the generator cooling water (hot water) and feed water (cold water) analog thermometer ( Generator cooling water inlet temperature from 46 ° C to 36 ° C, every 1 ° C for an interval β feed water flow from 96 kg / s to 30 kg / s, every 10 kg / s interval; feed water The inlet temperature is from 381 to 34° (: every interval of leC). In this way, we can estimate the temperature after cold and hot water heat exchange according to the operating conditions. The above discussion is for the value of the field, but there are many restrictions on the field practice; we will discuss one by one: 1. Feeding pipeline: From the discussion above, we know that we will use CEP to produce α-feed water, which has not yet passed through The heat exchanger, whose temperature will be about 2 lower than the feed water passing through the Glan heat exchanger. But the problem is: the feed water that has not yet passed through the Genglan heat exchanger is far away from the steam engine room, and using it as a cooling source will extend the pipe about 300 meters away; the first problem is the problem of pressure loss. The two are construction problems, because the new heat exchanger installation location and the steam engine room are separated by two roads. If the water supply pipeline is extended, the trench will be dug. This is only 2 °C. It seems that it is not worth it. The copper water of the Grand Heat Exchanger, because the temperature through the turbine room to the boiler room is only slightly higher than the copper water (about 1 ° C) that has not passed through the grid heat exchanger, 'the pipeline is reduced by more than half the length (about 100 long) Meter); and not designed for 200945741. • After crossing the road, the work is much less difficult and the pressure loss is within acceptable limits. The version earns Μ 珥 珥 珥 珥 珥 格兰 格兰 格兰 格兰 格兰 格兰 格兰 格兰 格兰 格兰 2、 2、 2、 2、 2、 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 After the motor cooling water is combined, it is sent to the newly set cooling; however, the problem is: GT22 extends the generator cooling water to the GT21 side through the expansion joint and the road's length is about 2 meters away and the pipe trench needs to be dug; The pressure loss of the pipeline and the leakage of gas through the expansion joint cause the temperature of the generator cooling water to increase. The most _ later change will extend the pipe section from 1〇” pipe to 12, the pipe, and the pipe extension will be adopted by the air (the original pipe frame is available in the original part) The reduction is 1 ft.. In the original generator cooling water system, we add a check valve and an electric valve. The check valve acts as a cooling system to improve the system. The original fan system' and the action of the electric valve detects when the temperature of the generator cooling water is too high (currently set to 52eC valve open, the cooling water in the original fan system is added to the system to adjust the cooling water temperature; When the temperature of the generator cooling water will be low (currently set to 46 °C, the system will only be shut off. At this time, only the system will be improved.) 3. Pipeline hydration: In order to reduce the actual test time, the first step is to do it at 97.01.10 GT22 standby. Pipe flushing and water replenishment action, because the original generator cooling water enters when hydrating; all the original system continues to operate only by using the water supply pipe to replenish the water. The total time required for the process is 80 minutes' and the additional exhaust pipe is used for 40 minutes. Then, at 97.01.15, we use the GT22 to isolate the original generator cooling water system with the electric valve. System, but the test results found that the flow rate is only 2,500 kg/mim (about 42'kg/s), which is quite different from the actual system 200945741 (100 kg/s). After the calibration of the flowmeter, the ultrasonic flowmeter is used. The measurement is carried out. At this time, the flow is about 110 kg/s, which is larger than the original system flow. The reason may be that the tube loss is reduced by the original heat exchanger. 97.01.16 reconfirmed the flow of the flow. The size of the orifice plate does not match, and the water is replenished after re-correction. At this time, the pressure is higher than before (the electric valve opening is increased by 9 〇kg/s, the inlet and outlet pressures are 1.34 / 1.31 kg/cm; When the valve is closed, the flow rate of the pipeline is 138 kg/s, and the inlet and outlet pressures are 1.44/ 1.19 kg/cm. To confirm the correctness of the flowmeter and the pressure gauge, please check the flow and pressure of the GEA factory. Loss comparison table (as shown in the table below), we found that when the pressure is 0.25 kg / At cm2, the flow rate at this time is about 7,666 kg/mim, which is about 128 kg/s, and the detected flow rate is still 138 竑/s (the detection flow rate is designed at 2〇〇吆/s); At this time, it can be recognized that the heat exchanger has not passed the extensive heat exchanger, and the flow rate is increased by the amount of kg /mim 5,000 6,000 7,000 8,000 9,000 ιο, οοο 11,000 12,000 pressure loss bar 0.11 0.15 0.21 0.27 0.34 0.42 0.51 0.58 The water supply at the water supply end is smoother. After the 1 to 1 operation, the pipeline is filled with water, and then the shut-off valve added to the original pipeline is closed to make the feed water pump pass through the added rhyme pipeline. Generator cooling water system to improve the actual pipeline process 曰圊五·200945741 The field test applied to the dispatching office at 97.01.18 to test the effectiveness of this improvement work, the main purpose of which is to play various states in the operation; To ensure safety, the record table is shown in Table 3. The original pressure of the original generator cooling water expansion tank is 40 kPa (theoretical should maintain lOOkPa), so the measurement pressure is low, and has been increased by about 60 kPa after replenishment; In any state, it can be the same as using a fan system (it was originally estimated that when one-to-one operation was performed, two cooling water systems were connected together; when the cooling water pump that did not operate the unit was deactivated or suddenly started, the pressure wave was caused. Will affect the running unit and cause the jump). At 27.10.19, the dispatcher was asked to make a 2-to-1 full load test and reached full load at 12:00. The test results are as follows: The generator cooling water flow exceeds the original design value. The original generator cooling water design value is 200 kg / s, but the test measurement value is 228 kg / s (set the maximum measured value of 260 kg / s), fearing that the measured value is problematic, then please GEA original factory Make a flow and pressure loss comparison table (as shown below) to extend the table above and above. Flow kg /mim 3,000 4,000 13,000 14,000 15,000 16,000 Pressure loss bar 0.05 0.08 0.68 0.79 0.91 1.04 The flow rate is 228 kg/ s (= 13, 680 kg / min) pressure loss is about 75.75bar, and the field pressure difference is about 0.85 kg / cm1. There is considerable error between the two. Later, the maximum value of the measurement is changed to 280 kg/s. At this time, the flow rate is 242 kg / s (= 14,520 kg / min), and the pressure loss at the time of the comparison table is about 0.85 kg/cm 2 , 200945741 The result is quite close. Therefore, it is confirmed that the cooling water flow rate should be about 24 〇吆/S or more (the original design value is 200 kg/s). 2. Pay attention to the generator cooling water temperature during initial operation. The nickname value found that after about 30 minutes after the start of the cockroach, the feed water flow rate N was started to have cold water for heat exchange. At this time, the temperature of the generator cooling water was about 9. °C higher than when it was just started. Still acceptable. When you want to start the first gas turbine of the machine, you need to pay attention to the temperature rise of the generator cooling water to avoid the excessive temperature and damage the safety of the unit. Β 3. All the units are uncoupled and pay attention to the generator. Cooling water temperature. It was originally expected to complete the one-to-one test at 97.01.18, but due to the low power demand, the dispatching department requested the unlinking; although the CEP still maintained about 45 minutes after the unit was uncoupled, it was still not enough to take away the heat; The cooling water temperature of the generator was maintained at 45 °C during the day shift. Later, the electric valve was opened safely for the unit to make the cooling water in the original fan system (below the cooling temperature is low) and the cooling water of the additional pipeline. To lower the temperature. In the future, if you encounter such a situation, please ask the staff on duty to do so. 4. Expansion tank pressure and water level • Before the test, the air pressure was added due to insufficient expansion pressure, but the generator cooling water on both sides of GT21 and GT22 was ignored. The water level on both sides was too much. The expansion tank fill pressure • The water level of the expansion tank of the GT22 has been rising during the test. Finally, the nitrogen pressure of the GT21 is lowered and the water is released by the expansion tank of the GT22 so that the water level and pressure of the two are equivalent. When the expansion tank is replenished, pay attention to the water level difference between the two sides, or close one side of the expansion tank and use an expansion tank alone. 200945741 Efficiency test Apply for generator cooling water for full load operation. Another hour to confirm the use of the fan system, and. Under the test is our factory in 97.02.01 0G00 ~ 97.02.03 1GO0 system to improve the efficiency test, GT21/22 for 48 consecutive times in order to make a comparison, apply for GT11/12 full load operation 4 good case effect. And in the last two hours, the GT21 GT22 uses an improved system, and the two are further confirmed by some small cautions:

1.天氣溫度影饗發電機冷水系統之冷卻效率。由於GTii剛士 於下午時應調度要求而滿載,但隨即改為AGC運轉,I 如果繼續運轉下去發電機冷卻水溫度將持續升高。下兩個表 格分別於97.02.01 AM 09 : 00及PM 13 : 30所記錄,由 於在早上時其外部大氣溫度約16°C,而中午時其外部溫度 提高到22°C ;所以可以明顯發現GT11/GT12使用原先之風 扇冷卻系統早上及中午時其發電機冷卻水溫度則隨大氣溫度 變化甚大,而GT21/GT22使用改善之系統其發電機冷卻水 溫度則相對穩定•但如果到盛夏時,其外大氣溫度將達32 °C以上,改善之系統是利用冷凝水做冷卻,而冷凝水則是利 用海水做冷卻;海水溫度之變化量相對穩定(去年盛夏時冷凝 水溫度最高為40eC,而目前冷凝水溫度36°C)e由此推估此改 善系統在冬天溫度低時,最多只能維持原系統之溫度,但於 高溫盛夏運轉時將能超越原系統而將發電機冷卻水溫度降1. The weather temperature affects the cooling efficiency of the generator cold water system. Since GTii Gang was fully loaded in the afternoon due to scheduling requirements, it was changed to AGC operation. I If the generator continues to run, the temperature of the generator cooling water will continue to rise. The next two tables are recorded at 97.02.01 AM 09: 00 and PM 13: 30, respectively, because the external atmospheric temperature is about 16 ° C in the morning, and the external temperature is raised to 22 ° C at noon; so it can be clearly found The GT11/GT12 uses the original fan cooling system. In the morning and at noon, the generator cooling water temperature varies greatly with the atmospheric temperature, while the GT21/GT22 uses an improved system whose generator cooling water temperature is relatively stable. But if it is in midsummer, The external atmospheric temperature will be above 32 °C. The improved system uses condensed water for cooling, while the condensed water is cooled by seawater; the seawater temperature is relatively stable (the condensate temperature is up to 40eC during the summer last year, and At present, the condensate temperature is 36 ° C) e. It is estimated that the improved system can only maintain the temperature of the original system when the temperature is low in winter, but the temperature of the generator cooling water can be exceeded when the high temperature is running in the summer.

低 97.02.01 AM 09 : 〇〇 滿載運轉 GT11 GT12 GT21 發電機冷卻水進口溫度(°c) 34.250 35.063 42.563 200945741 發電機冷卻水出口温度< 〇 31.313 32.375 39.313 38.938 發電機冷卻空氣進口湿度(°C) 35.438 34.500 41.813 41.813 發電機冷卻空氣出口溫度(°C) 68.688 66.438 73.438 73.438 97.02.01 PM 13 : 30 滿載運轉 GT11 GT12 GT21 GT22 發電機冷卻水進口溫度(°C) 42.125 42.813 42.500 發電機冷卻水出口溫度(°C) 39.750 39.500 39.188 發電機冷卻空氣進口溢度(°c) 42.375 42.625 42.125 發電機冷卻空氣出口涵度(°c) 73.813 76.188 75.125 2 .發電機冷卻水冷卻效率提升。下表為整理上表將發電機之冷 卻水及冷卻空氣冷卻前後(即是溫冓)做一個比較,我們發現 不管早上或中午其發電機冷卻水之溫差,改善系統之溫度皆 大於原有系統之溫差,這代表改善系統之冷卻能力較原系統 佳。推測其原因應該是發電機冷卻水量增加(原先兩台發電機 H 冷卻水流量為200/kgs,而現在為24V/S豆Ν卻水流速增加所 致β 97.02.01AM09:00 滿载運轉 GT11 GT12 GT21 GT22 發電機冷卻水溫差ΓΟ 2.937 2.688 3.250 3.187 發電機冷卻空氣31差(eC) 33.25 31.938 31.625 31.625 200945741 97.02.01 PM 13 : 30 滿載運轉 GT11 GT12 GT21 GT22 發電機冷卻水溫差ct) 2.375 3.313 3.312 發電機冷卻空氣溫差(ec) 31.438 33.563 33.000 3.發電機冷卻水吸熱能力變差。下表中所謂的系統切換前指的 是GT21/22皆使用改善系統,而系統切換後指的是GT21使 用原風扇系統;而GT22使用改善系統。因為原先風扇系統 設計發電機冷卻水進口溫度為42°C,而出口溫度為37°C ; 瘳 意味著此系統可吸熱5°C的温差,但是我們發現當系統切換後 GT22發電機進出口溫差也僅僅是近3*0而已;而GT21也 僅為3.25°C,並未達成系統吸熱5°C之要求,所以有可能 發電機冷卻器及潤滑油冷卻器其熱交換效果變差導致。在系 統切換前發電機冷卻水溫差約3.35 t而系統切換後溫差則 縮小為近3eC,歸咎其因應該是所软置的冷卻器設計量太大 (發電機冷卻水設計量為200 kg/s’而切換後發電機冷卻水因 只盛係GT22之冷卻水流經熱交換器;故其流量降為143 kg /s),導致發電機冷卻水在_通道内無法被冷凝+充分冷卻。 97.02.03 AM 0G30 滿載運轉 系統切換前 系統切換後(C5T21 使用原風扇系統’ GT22使用改善系 統) GT21 GT22 GT21 GT22 發電機冷卻水進口溢度(°C) 43.063 42.813 37.188 39.563 發電機冷卻水出口溫度(c) 39.750 39.375 33.938 36.625 發電機冷卻水溫差(c) 3.313 3.438 3.250 2.938 _____— ❹ 200945741 發電機冷卻空氣進口溫度ΓΟ 43.063 42.500 37.313 39.625 發電機冷卻空氣出口溫度Ct) 77.375 76.438 72.875 74.313 發電機冷卻空氣溫差(°c) 34.312 33.938 35.562 34.688 97.02.03 AM 0G30 滿載運轉 系統切換前 系統切換後 GT21 GT22 GT21 GT22 冷凝水出口溫度(ec) 43.2 39.7 調溫用飼水流量V/s) 12.190 11.512 13.787 13.325 離開鍋爐之飼水溫度(ec) 153.20 153.50 151.94 152.44 4.冷凝水溫度提升改變鍋爐熱交換行為。由下列表格發現系統 切換前後其冷凝水溫度相差3.5 eC,而調溫用飼水流量則增 加約1.5 kg/s;而最終離開鍋爐之飼水溫度則降低約丨.^, 由此觀之冷凝水吸收發電機冷卻水之熱量確實反應在鍋爐的 熱交換行為上;最終將表現在機組之發電量及效率上,如此 也可驗證提昇飼水之溫度將可提昇機組效率,此\點和傳統燃 煤機組一樣;並不因復循環機組之飼水進入鍋爐前有一溫度 控制(本廠#1^3號機設定為65eC,而#4號機為55°C)而有所 不同。 ___ 在表四為此次發電機冷卻水之效率試驗紀錄表,可發現效 率皆優於合約要求值(93%),可確認此方案確實可行。我們可 發現實際之熱交換量約為3,300kw而已’換言之即使增設板 片式熱交換器其吸熱量仍然達不到原先設計之目標 (4,120kw)。而明類的改善後之系統其冷卻水流量增加’且板 片式熱交換器之設計熱交換量也足夠(5,265kw) ’為何其熱交 200945741 換量會不足?所以有可能發電機冷卻器及湖滑油冷卻器其熱交 換效果變差導致,導致發電機冷卻空氣及潤滑油和發電機冷卻 水之熱交換變差;雨發電機冷卻水無法將足夠之熱量帶走。 在囷六中我們附錄一座熱交換器之工作原理,其熱交換為 -片熱水片及-片冷水片相互間隔所組成;其優點是^交換面 積大,相對殼管式熱交換器其體積較小。但 鬧 故對於較高 之示意圖,其黑色部分為類似橡膠類的密-其:點如圖七板片 溫之熱交換流體有限制》 條’Low 97.02.01 AM 09 : 〇〇 Full load operation GT11 GT12 GT21 Generator cooling water inlet temperature (°c) 34.250 35.063 42.563 200945741 Generator cooling water outlet temperature < 〇31.313 32.375 39.313 38.938 Generator cooling air inlet humidity (°C 35.438 34.500 41.813 41.813 Generator cooling air outlet temperature (°C) 68.688 66.438 73.438 73.438 97.02.01 PM 13 : 30 Full load operation GT11 GT12 GT21 GT22 Generator cooling water inlet temperature (°C) 42.125 42.813 42.500 Generator cooling water outlet Temperature (°C) 39.750 39.500 39.188 Generator cooling air inlet overflow (°c) 42.375 42.625 42.125 Generator cooling air outlet metric (°c) 73.813 76.188 75.125 2. Generator cooling water cooling efficiency is improved. The following table compares the cooling water of the generator and the cooling air before and after cooling (ie, temperature). We find that the temperature of the system is higher than the original system regardless of the temperature difference of the cooling water of the generator in the morning or at noon. The temperature difference, which means that the cooling capacity of the improved system is better than the original system. It is speculated that the reason should be that the generator cooling water volume increases (the original two generators H cooling water flow rate is 200/kgs, but now the 24V/S soybean meal has increased water flow rate β 97.02.01AM09:00 full load operation GT11 GT12 GT21 GT22 Generator cooling water temperature difference 937 2.937 2.688 3.250 3.187 Generator cooling air 31 difference (eC) 33.25 31.938 31.625 31.625 200945741 97.02.01 PM 13 : 30 Full load operation GT11 GT12 GT21 GT22 Generator cooling water temperature difference ct) 2.375 3.313 3.312 Motor cooling air temperature difference (ec) 31.438 33.563 33.000 3. The heat absorption capacity of the generator cooling water is deteriorated. The so-called system switching in the table below refers to the use of the GT21/22 to improve the system, while the system switching refers to the GT21 using the original fan system; and the GT22 uses the improved system. Because the original fan system design generator cooling water inlet temperature is 42 ° C, and the outlet temperature is 37 ° C; 瘳 means that this system can absorb 5 ° C temperature difference, but we found that the system GT22 generator inlet and outlet temperature difference after system switching It is only about 3*0; the GT21 is only 3.25 °C, and the system heat absorption requirement of 5 °C is not achieved, so it is possible that the heat exchange effect of the generator cooler and the oil cooler is deteriorated. Before the system is switched, the temperature difference of the generator cooling water is about 3.35 t, and the temperature difference after the system switching is reduced to nearly 3eC, which is due to the fact that the design of the softer cooler is too large (the generator cooling water design is 200 kg/s). 'When switched, the generator cooling water flows through the heat exchanger because only the cooling water of the GT22 is flown; therefore, the flow rate is reduced to 143 kg / s), so that the generator cooling water cannot be condensed + sufficiently cooled in the _ channel. 97.02.03 AM 0G30 Full load operation system switching before system switching (C5T21 using original fan system 'GT22 use improvement system) GT21 GT22 GT21 GT22 Generator cooling water inlet overflow (°C) 43.063 42.813 37.188 39.563 Generator cooling water outlet temperature (c) 39.750 39.375 33.938 36.625 Generator cooling water temperature difference (c) 3.313 3.438 3.250 2.938 _____— ❹ 200945741 Generator cooling air inlet temperature ΓΟ 43.063 42.500 37.313 39.625 Generator cooling air outlet temperature Ct) 77.375 76.438 72.875 74.313 Generator cooling air Temperature difference (°c) 34.312 33.938 35.562 34.688 97.02.03 AM 0G30 GT21 GT22 GT21 GT22 condensate outlet temperature (ec) after system switching before full load operation system switching 43.2 39.7 Feed water flow rate for temperature adjustment V/s) 12.190 11.512 13.787 13.325 Leave Boiler feed water temperature (ec) 153.20 153.50 151.94 152.44 4. Condensate temperature rise changes boiler heat exchange behavior. The following table shows that the condensate temperature difference before and after the system switching is 3.5 eC, while the feed water flow rate for temperature adjustment is increased by about 1.5 kg/s; and the temperature of the feed water leaving the boiler is reduced by about ^.^, thus the condensation The heat of the water-absorbing generator cooling water does reflect the heat exchange behavior of the boiler; it will ultimately be reflected in the power generation and efficiency of the unit. It can also be verified that increasing the temperature of the feed water will increase the efficiency of the unit. The coal-fired unit is the same; it is not different because the feed water of the double-cycle unit has a temperature control before entering the boiler (the factory #1^3 is set to 65eC, and the #4 machine is 55°C). ___ In Table 4, the efficiency test record of the generator cooling water shows that the efficiency is better than the contract requirement (93%), which confirms that the scheme is feasible. We can find that the actual heat exchange capacity is about 3,300kw. In other words, even if the plate heat exchanger is added, the heat absorption will not reach the original design target (4,120kw). In the improved system, the cooling water flow rate increases, and the design heat exchange capacity of the plate heat exchanger is sufficient (5, 265kw). Why is the heat exchange 200945741? Therefore, it is possible that the heat exchange effect of the generator cooler and the lake oil cooler is deteriorated, resulting in deterioration of the heat exchange between the generator cooling air and the lubricating oil and the generator cooling water; the rain generator cooling water cannot provide enough heat. take away. In the sixth six, we append the working principle of a heat exchanger. The heat exchange is composed of a piece of hot water piece and a piece of cold water piece separated from each other; the advantage is that the exchange area is large, and the volume of the shell-and-tube heat exchanger is opposite. Smaller. However, for the higher schematic diagram, the black part is rubber-like dense--the point is as shown in Figure 7. The heat exchange fluid of the plate is limited.

❹ 200945741❹ 200945741

❹ 表一 :ljWC250SB-25其主要規格 Hot side Cold side Fluid Water Water Density kg/m3 990.78 992.56 heat capacity J/ikg^K) 4,179.01 4,178.35 Thermal conductivity W/(m*K) 0.6329 0.6271 Dyn. Viscosity inlet cP 0.585 0.734 Dyn. Viscosity outlet cP 0.639 0.605 Flow channels of media Welded channel Gasketed channel Mass flow rate kg/h 720,000 345,600 Volume flow m3/h 726.70 348.19 Inlet Temperature °C 46.00 34.00 Outlet Temperature °C 41.15 44.10 Pressure drop bar 0.58 0.17 Internal flow(passes x channel) 1x153 1x152 Heat exchanged kw 4,050 L.M.T.D K 3.966 O.H.T.C needs W/(m2*k) 3,573.9 O.H.T.C service W/(m2*k) 4,649.6 Heat transfer area m2 285.76 Duty margin % 30.1 200945741❹ Table 1: ljWC250SB-25 its main specifications Hot side Cold side Fluid Water Water Density kg/m3 990.78 992.56 heat capacity J/ikg^K) 4,179.01 4,178.35 Thermal conductivity W/(m*K) 0.6329 0.6271 Dyn. Viscosity inlet cP 0.585 0.734 Dyn. Viscosity outlet cP 0.639 0.605 Flow channels of media Welded channel Gasketed channel Mass flow rate kg/h 720,000 345,600 Volume flow m3/h 726.70 348.19 Inlet Temperature °C 46.00 34.00 Outlet Temperature °C 41.15 44.10 Pressure drop bar 0.58 0.17 Internal flow (passes x channel) 1x153 1x152 Heat exchanged kw 4,050 LMTD K 3.966 OHTC needs W/(m2*k) 3,573.9 OHTC service W/(m2*k) 4,649.6 Heat transfer area m2 285.76 Duty margin % 30.1 200945741

Hot side Cold side Fluid Water Water Plate material / thickness ALLOY 316/0.6 mm Sealing material EPDM glueless Connection material Stainless steel Stainless steel Connection diameter mm 250 250 Design code AD-2000 Design pressure barg 10.0 20.0 Test pressure barg 13.0 26.0 Design temperature °C 100.0/0.0 100.0/0.0 Overall length x width x height mm 2,446x895x2,212 Net weigh, empty / operating kg 4,594/5,619 200945741 熱水流量30kg/s 46.00 44.22 34.00 45.87 45.00 I 43.37 34.00 44.88 44.00 , 42.52 34.00 43.89 43.00 I 41.67 34.00 42.90 42.00 40.81 34.00 41.91 41.00 39.96 34.00 40.92 40.00 39.11 34.00 39.93 39.00 38.26 34.00 38.94 38.00 37.41 34.00 37.95 37.00 36.56 34.00 36.97 36.00 35.70 34.00 35.97 P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口温度 熱水流量40kg/s 46.00 I 43.68 I 34.00 45.60 45.00 42.87 34.00 44.63 44.00 42.07 34.00 43.67 43.00 1 41.26 34.00 42.70 42.00 40.45 34.00 41.73 41.00 39.65 34.00 40.77 40.00 | 38.84 34.00 39.80 39.00 38.03 34.00 38.83 38.00 37.23 34.00 37.87 37.00 36.42 34.00 36.90 36.00 35.61 34.00 35.93 P P 熱.水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 ♦1 46.00 43.15 34.00 45.40 45.00 I 42.39 34.00 44.45 44.00 41.63 34.00 43.50 43.00 I 40.86 34.00 42.55 42.00 40.10 34.00 41.60 41.00 | 39.34 34.00 40.65 40.00 38.58 34.00 39.70 39.00 37.81 34.00 38.75 38.00 37.05 34.00 37.80 37.00 36.29 34.00 36.85 36.00 35.53 34.00 35.90 P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量60kg/s 46.00 42.67 34.00 丨 45.10 45.00 41.95 34.00 ! 44.17 44.00 1 41.23 ! 34.00 43.25 43.00 1 40.45 1 34.00 42.32 42.00 39.78 34.00 41.40 41.00 1 39.06 34.00 40.47 40.00 38.34 34.00 39.55 39.00 37.61 34.00 38.62 38.00 36.89 34.00 37.70 37.00 36.17 34.00 36.77 36.00 35.45 34.00 35.58 P 〇〇 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口温度 200945741 - 〇 1 46.00 I 42.20 34.00 44.86 45.00 41.52 34.00 43.95 44.00」 40.83 34.00 43.05 43.00 40.15 34.00 42.14 42.00 39.47 | 34.00 41.24 41.00 38.78 34.00 1 40.33 40.00 38.10 34.00 39.43 39.00 37.42 34.00 38.52 38.00 36.73 34.00 37.62 37.00 36.05 34.00 36.71 36.00 35.37 34.00 35.81 Ρ Ρ Ρ 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口温度 &㈣ 46.00 I 41.80 34.00 44.50 45.00 41.15 34.00 43.63 44.00 40.50 34.00 42.75 43.00 39.85 34.00 41.88 42.00 ί 39.20 34.00 41.00 41.00 38.55 34.00 40.13 40.00 37.90 34.00 39.25 39.00 37.25 34.00 38.38 38.00 36.60 34.00 37.50 37.00 35.95 34.00 36.63 36.00 35.30 34.00 35.75 Ρ Ρ Ρ Ρ 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口温度 熱水流量90kg/s 46.00 41.40 I 34.00 44.22 45.00 40.78 34.00 43.37 44.00 | 40.17 34.00 42.52 43.00 39.55 34.00 41.67 42.00 38.93 34.00 40.81 41.00 38.32 | 34.00 39.96 40.00 37.70 34.00 1 39.11 39.00 37.08 34.00 38.26 38.00 36.47 34.00 37.41 37.00 35.85 34.00 36.56 36.00 35.23 34.00 35.70 P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量96]ig/s 46.00 41.15 1 34.00 44.11 45.00 40.56 34.00 43.26 44.00 39.96 34.00 42.42 43.00 j 39.36 34.00 41.58 42.00 38.77 34.00 40.74 41.00 38.17 34.00 39.89 40.00 37.58 34.00 39.05 39.00 36.98 34.00 38.21 38.00 36.38 34.00 37.37 37.00 35.79 34.00 36.53 36.00 35.19 34.00 35.68 P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 200945741Hot side Cold side Fluid Water Water Plate material / thickness ALLOY 316/0.6 mm Sealing material EPDM glueless Connection material Stainless steel Stainless steel Connection diameter mm 250 250 Design code AD-2000 Design pressure barg 10.0 20.0 Test pressure barg 13.0 26.0 Design temperature °C 100.0/0.0 100.0/0.0 Overall length x width x height mm 2,446x895x2,212 Net weigh, empty / operating kg 4,594/5,619 200945741 Hot water flow 30kg/s 46.00 44.22 34.00 45.87 45.00 I 43.37 34.00 44.88 44.00 , 42.52 34.00 43.89 43.00 I 41.67 34.00 42.90 42.00 40.81 34.00 41.91 41.00 39.96 34.00 40.92 40.00 39.11 34.00 39.93 39.00 38.26 34.00 38.94 38.00 37.41 34.00 37.95 37.00 36.56 34.00 36.97 36.00 35.70 34.00 35.97 PPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 40kg /s 46.00 I 43.68 I 34.00 45.60 45.00 42.87 34.00 44.63 44.00 42.07 34.00 43.67 43.00 1 41.26 34.00 42.70 42.00 40.45 34.00 41.73 41.00 39.65 34. 00 40.77 40.00 | 38.03 34.00 39.80 39.00 38.00 38.83 388.00 37.23 34.00 37.87 37.00 36.42 34.00 36.90 36.00 35.61 34.00 35.93 PP Heat. Water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature ♦1 46.00 43.15 34.00 45.40 45.00 I 42.39 34.00 44.45 44.00 41.63 34.00 43.50 43.00 I 40.86 34.00 42.55 42.00 40.10 34.00 41.60 41.00 | 39.34 34.00 40.65 40.00 38.58 34.00 39.70 39.00 37.81 34.00 38.75 38.00 37.05 34.00 37.80 37.00 36.29 34.00 36.85 36.00 35.53 34.00 35.90 PPP hot water inlet temperature hot water outlet temperature cold water inlet temperature Cold water outlet temperature Hot water flow 60kg/s 46.00 42.67 34.00 丨45.10 45.00 41.95 34.00 ! 44.17 44.00 1 41.23 ! 34.00 43.25 43.00 1 40.45 1 34.00 42.32 42.00 39.78 34.00 41.40 41.00 1 39.06 34.00 40.47 40.00 38.34 34.00 39.55 39.00 37.61 34.00 38.62 38.00 36.89 34.00 37.70 37.00 36.17 34.00 36.77 36.00 35.45 34.00 35.58 P 〇〇 hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature 20094574 1 - 〇1 46.00 I 42.20 34.00 44.86 45.00 41.52 34.00 43.95 44.00" 40.83 34.00 43.05 43.00 40.15 34.00 42.14 42.00 39.47 | 34.00 41.24 41.00 38.78 34.00 1 40.33 40.00 38.10 34.00 39.43 39.00 37.42 34.00 38.52 38.00 36.73 34.00 37.62 37.00 36.05 34.00 36.71 36.00 35.37 34.00 35.81 Ρ Ρ Ρ Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature & (4) 46.00 I 41.80 34.00 44.50 45.00 41.15 34.00 43.63 44.00 40.50 34.00 42.75 43.00 34.00 41.88 42.00 39 39.20 34.00 41.00 41.00 38.55 34.00 40.13 40.00 37.90 34.00 39.25 39.00 37.25 34.00 38.38 38.00 36.60 34.00 37.50 37.00 35.95 34.00 36.63 36.00 35.30 34.00 35.75 Ρ Ρ Ρ Ρ Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 90kg/s 46.00 41.40 I 34.00 44.22 45.00 40.78 34.00 43.37 44.00 | 40.17 34.00 42.52 43.00 39.55 34.00 41.67 42.00 38.93 34.00 40.81 41.00 38.32 | 34.00 39.96 40.00 37.70 34.00 1 39.11 39.00 37.08 34.00 38.26 38.00 36.4 7 34.00 37.41 37.00 35.85 34.00 36.56 36.00 35.23 34.00 35.70 PPPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 96]ig/s 46.00 41.15 1 34.00 44.11 45.00 40.56 34.00 43.26 44.00 39.96 34.00 42.42 43.00 j 39.36 34.00 41.58 42.00 38.77 34.00 40.74 41.00 38.17 34.00 39.89 40.00 37.58 34.00 39.05 39.00 36.98 34.00 38.21 38.00 36.38 34.00 37.37 37.00 35.79 34.00 36.53 36.00 35.19 34.00 35.68 PPPP Hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature 200945741

o. - O ♦1 戚 I 46.00 44.38 I 35.00 45.80 45.00 I 43.53 35.00 44.81 44.00 ί 42.68 35.00 43.83 43.00 41.82 35.00 42.85 42.00 I 40.97 35.00 41.87 41.00 40.12 35.00 ! 40.89 40.00 | 39.26 35.00 1 39.91 39.00 38.41 35.00 38.93 38.00 | 37.56 35.00 37.94 37.00 36.71 35.00 36.96 36.00 35.85 35.00 35.98 Ρ Ρ Ρ 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 〇 I 46.00 I 43.88 35.00 45.60 45.00 43.07 35.00 44.64 44.00 42.27 35.00 1 43.67 43.00 41.46 35.00 42.71 42.00 40.65 35.00 41.75 41.00 39.84 35.00 40.78 40.00 39.04 35.00 39.82 39.00 38.23 35.00 38.85 38.00 37.42 35.00 37.89 37.00 36.62 35.00 36.93 36.00 35.81 35.00 35.96 | P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 46.00 43.39 35.00 45.44 45.00 42.63 35.00 44.49 44.00 41.87 35.00 43.54 43.00 I 41.10 35.00 42.59 42.00 40.34 35.00 41.64 41.00 [39.58 35.00 40.69 40.00 38.81 35.00 39.74 39.00 38.05 35.00 38.80 38.00 37.29 35.00 37.84 37.00 36.53 35.00 36.90 36.00 35.76 35.00 35.95 P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量60kg/s 46.00 42.94 35.00 1 45.20 45.00 42.22 35.00 44.27 44.00 I 41.50 35.00 43.34 43.00 1 40.78 35.00 42.42 42.00 40.05 35.00 41.49 41.00 39.33 35.00 40.56 40.00 38.61 35.00 39.63 39.00 37.89 35.00 38.71 38.00 37.17 35.00 37.78 37.00 36.44 35.00 36.85 36.00 35.72 35.00 35.93 P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 200945741 〇 Φ4 46.00 42.55 35.00 44.86 45.00 41.86 35.00 43.96 44.00 41.18 35.00 —. 43.06 43.00 40.49 1 35.00 42.17 42.00 … j 39.81 35.00 41.27 41.00 ______________1 39.12 35.00 40.38 40.00 38.43 35.00 39.48 39.00 37.75 35.00 Γ 38.58 38.00 37.06 1 35.00 37.69 37.00 36.37 35.00 36.79 36.00 35.69 35.00 35.89 〇〇 Ο〇 Ρ Ρ 熱水進口溫度 熱水出口溫度 冷水進口温度 冷水出口温度 熱水流量80kg/s 46.00 42.15 35.00 I 44.63 45.00 41.50 1 35.00 43.75 44.00 40.85 35.00 42.88 43.00 40.20 35.00 42.00 42.00 39.55 35.00 41.13 41.00 | 38.90 35.00 40.25 40.00 38.25 35.00 39.38 39.00 37.60 35.00 38.50 38.00 36.95 35.00 37.63 37.00 36.30 35.00 36.75 36.00 35.65 35.00 35.88 P 0〇 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量90ltg/s I 46.00 41.80 35.00 44.33 45.00 41.18 35.00 I 43.49 44.00 一 1 1 40.56 35.00 42.64 43.00 ____ ___ 1 39.95 35.00 41.79 42.00 39.33 35.00 40.94 41.00 38.71 35.00 40.09 40.00 38.09 35.00 ί 39.24 39.00 37.37 35.00 38.39 38.00 36.86 35.00 37.54 37.00 36.24 35.00 36.70 36.00 35.62 35.00 35.85 P 〇〇 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度o. - O ♦1 戚I 46.00 44.38 I 35.00 45.80 45.00 I 43.53 35.00 44.81 44.00 42 42.68 35.00 43.83 43.00 41.82 35.00 42.85 42.00 I 40.97 35.00 41.87 41.00 40.12 35.00 ! 40.89 40.00 | 39.26 35.00 1 39.91 39.00 38.41 35.00 38.93 38.00 | 35.00 37.94 37.00 36.71 35.00 36.96 36.00 35.85 35.00 35.98 Ρ Ρ Ρ Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature 〇I 46.00 I 43.88 35.00 45.60 45.00 43.07 35.00 44.64 44.00 42.27 35.00 1 43.67 43.00 41.46 35.00 42.71 42.00 40.65 35.00 41.75 41.00 39.84 35.00 40.78 40.00 39.04 35.00 39.82 39.00 38.23 35.00 38.85 38.00 37.42 35.00 37.89 37.00 36.62 35.00 36.93 36.00 35.81 35.00 35.96 | PPPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature 46.00 43.39 35.00 45.44 45.00 42.63 35.00 44.49 44.00 41.87 35.00 43.54 43.00 I 41.10 35.00 42.59 42.00 40.34 35.00 41.64 41.00 [39.58 35.00 40.69 40.00 38.81 35.00 39.74 39.00 38.05 35.00 38.80 38.00 37.29 35.00 37.84 3 7.00 36.53 35.00 36.90 36.00 35.76 35.00 35.95 PPPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 60kg/s 46.00 42.94 35.00 1 45.20 45.00 42.22 35.00 44.27 44.00 I 41.50 35.00 43.34 43.00 1 40.78 35.00 42.42 42.00 40.05 35.00 41.49 41.00 39.33 35.00 40.56 40.00 38.61 35.00 39.63 39.00 37.89 35.00 38.71 38.00 37.17 35.00 37.78 37.00 36.44 35.00 36.85 36.00 35.72 35.00 35.93 PPPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature 200945741 〇Φ4 46.00 42.55 35.00 44.86 45.00 41.86 35.00 43.96 44.00 41.18 35.00 —. 43.06 43.00 40.49 1 35.00 42.17 42.00 ... j 39.81 35.00 41.27 41.00 ______________1 39.12 35.00 40.38 40.00 38.43 35.00 39.48 39.00 37.75 35.00 Γ 38.58 38.00 37.06 1 35.00 37.69 37.00 36.37 35.00 36.79 36.00 35.69 35.00 35.89 〇〇Ο〇 Ρ Ρ Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 80kg/s 46.00 42.15 35.00 I 44.63 45.00 41. 50 1 35.00 43.75 44.00 40.85 35.00 42.88 43.00 40.20 35.00 42.00 42.00 39.55 35.00 41.13 41.00 | 38.90 35.00 40.25 40.00 38.25 35.00 39.38 39.00 37.60 35.00 38.50 38.00 36.95 35.00 37.63 37.00 36.30 35.00 36.75 36.00 35.65 35.00 35.88 P 0〇 Hot water inlet temperature hot water Outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 90ltg/s I 46.00 41.80 35.00 44.33 45.00 41.18 35.00 I 43.49 44.00 1 1 40.56 35.00 42.64 43.00 ____ ___ 1 39.95 35.00 41.79 42.00 39.33 35.00 40.94 41.00 38.71 35.00 40.09 40.00 38.09 35.00 ί 39.24 39.00 37.37 35.00 38.39 38.00 36.86 35.00 37.54 37.00 36.24 35.00 36.70 36.00 35.62 35.00 35.85 P 〇〇 hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature

熱水流量96 lig/s 46.00 41.56 35.00 44.25 45.00 40.96 35.00 43.41 44.00 40.37 35.00 42.57 43.00 39.77 1 35.00 1 41.73 42.00 1 39.18 35.00 40.89 41.00 38.58 35.00 I 40.04 40.00 37.98 35.00 39.20 39.00 37.39 35.00 38.36 38.00 36.79 35.00 37.52 37.00 36.19 35.00 36.68 36.00 35.60 35.00 35.84 熱水進口溫度°C 熱水出口溫度°C 冷水進口溫度°C 冷水出口溫度°C 200945741 e-.G 41 46.00 44.53 I 36.00 45.80 45.00 43.68 36.00 44.82 44.00 42.82 36.00 43.84 43.00 41.97 36.00 42.86 42.00 41.12 36.00 41.88 41.00 40.27 36.00 40.90 40.00 39.41 36.00 39.92 39.00 38.56 36.00 38.94 38.00 1 37.71 36.00 37.96 37.00 36.85 36.00 36.98 36.00 36.00 36.00 36.00 P O〇 P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度Hot water flow 96 lig/s 46.00 41.56 35.00 44.25 45.00 40.96 35.00 43.41 44.00 40.37 35.00 42.57 43.00 39.77 1 35.00 1 41.73 42.00 1 39.18 35.00 40.89 41.00 38.58 35.00 I 40.04 40.00 37.98 35.00 39.20 39.00 37.39 35.00 38.36 38.00 36.79 35.00 37.52 37.00 36.19 35.00 36.68 36.00 35.60 35.00 35.84 Hot water inlet temperature °C Hot water outlet temperature °C Cold water inlet temperature °C Cold water outlet temperature °C 200945741 e-.G 41 46.00 44.53 I 36.00 45.80 45.00 43.68 36.00 44.82 44.00 42.82 36.00 43.84 43.00 41.97 36.00 42.86 42.00 41.12 36.00 41.88 41.00 40.27 36.00 40.90 40.00 39.41 36.00 39.92 39.00 38.56 36.00 38.94 38.00 1 37.71 36.00 37.96 37.00 36.85 36.00 36.98 36.00 36.00 36.00 36.00 PO〇PP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature

〇 46.00 44.06 36.00 45.70 45.00 43.25 36.00 44.73 44.00 | 42.45 36.00 43.76 43.00 41.64 36.00 42.79 42.00 40.84 36.00 41.82 41.00 40.03 36.00 40.85 40.00 39.22 36.00 39.88 39.00 38.42 36.00 38.91 38.00 37.61 36.00 37.94 37.00 36.81 36.00 36.97 36.00 36.00 36.00 36.00 熱水進口溫度°C 熱水出口溫度°C 冷水進口溫度°C 冷水出口溫度°C 熱水流量50Icg/s 46.00 43.62 36.00 I 45.52 45.00 42.86 36.00 44.57 44.00 i 42.10 36.00 43.61 43.00 41.33 36.00 42.67 42.00 40.57 36.00 41.71 41.00 | 39.81 36.00 40.76 40.00 39.05 36.00 39.81 39.00 38.26 36.00 38.86 38.00 37.52 36.00 37.90 37.00 36.76 36.00 36.95 36.00 36.00 36.00 36.00 P P 〇0 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量60kg/s 46.00 I 43.24 36.00 45.20 45.00 I 42.52 36.00 44.28 44.00 41.79 ! 36.00 43.36 43.00」 41.07 36.00 42.44 42.00 40.34 36.00 41.52 41.00 39.62 36.00 ί 40.60 40.00 38.90 36.00 39.68 39.00 38.17 36.00 38.76 38.00 37.45 36.00 37.84 37.00 36.72 36.00 36.92 36.00 36.00 36.00 36.00 P P P Ρ 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口温度 200945741 e_ ' 〇 〇 φ| 46.00 42.86 36.00 44.97 45.00 42.17 36.00 44.08 44.00 41.49 36.00 43.18 43.00 ί 40.80 36.00 42.38 42.00 j 40.12 36.00 41.38 41.00 39.43 36.00 40.49 40.00 1 38.74 36.00 39.59 39.00 38.06 36.00 38.69 38.00 37.37 36.00 37.79 37.00 36.69 36.00 36.90 36.00 36.00 36.00 36.00 P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量80 kg/s 46.00 42.50 36.00 丨 44.75 45.00 41.85 36.00 43.88 44.00 41.20 36.00 43.00 43.00 ί 40.55 36.00 42.13 42.00 39.90 36.00 41.25 41.00 39.25 36.00 40.38 40.00 38.60 36.00 39.50 39.00 37.95 36.00 38.63 38.00 37.30 36.00 37.75 37.00 36.65 36.00 36.90 36;00 36.00 36.00 36.00 〇〇 P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度〇46.00 44.06 36.00 45.70 45.00 43.25 36.00 44.73 44.00 | 42.45 36.00 43.76 43.00 41.64 36.00 42.79 42.00 40.84 36.00 41.82 41.00 40.03 36.00 40.85 40.00 39.22 36.00 39.88 39.00 38.42 36.00 38.91 38.00 37.61 36.00 37.94 37.00 36.81 36.00 36.97 36.00 36.00 36.00 36.00 Hot water inlet temperature °C Hot water outlet temperature °C Cold water inlet temperature °C Cold water outlet temperature °C Hot water flow 50Icg/s 46.00 43.62 36.00 I 45.52 45.00 42.86 36.00 44.57 44.00 i 42.10 36.00 43.61 43.00 41.33 36.00 42.67 42.00 40.57 36.00 41.71 41.00 | 39.81 36.00 40.76 40.00 39.05 36.00 39.81 39.00 38.26 36.00 38.86 38.00 37.52 36.00 37.90 37.00 36.76 36.00 36.95 36.00 36.00 36.00 36.00 PP 〇0 Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 60kg/s 46.00 I 43.24 36.00 45.20 45.00 I 42.52 36.00 44.28 44.00 41.79 ! 36.00 43.36 43.00” 41.07 36.00 42.44 42.00 40.34 36.00 41.52 41.00 39.62 36.00 ί 40.60 40.00 38.90 36.00 39.68 39.00 38.17 36.00 38.76 38.00 37.4 5 36.00 37.84 37.00 36.72 36.00 36.92 36.00 36.00 36.00 36.00 PPP Ρ Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature 200945741 e_ ' 〇〇φ| 46.00 42.86 36.00 44.97 45.00 42.17 36.00 44.08 44.00 41.49 36.00 43.18 43.00 ί 40.80 36.00 42.38 42.00 j 40.12 36.00 41.38 41.00 39.43 36.00 40.49 40.00 1 38.74 36.00 39.59 39.00 38.06 36.00 38.69 38.00 37.37 36.00 37.79 37.00 36.69 36.00 36.90 36.00 36.00 36.00 36.00 PP Hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature hot water flow 80 Kg/s 46.00 42.50 36.00 丨44.75 45.00 41.85 36.00 43.88 44.00 41.20 36.00 43.00 43.00 40 40.55 36.00 42.13 42.00 39.90 36.00 41.25 41.00 39.25 36.00 40.38 40.00 38.60 36.00 39.50 39.00 37.95 36.00 38.63 38.00 37.30 36.00 37.75 37.00 36.65 36.00 36.90 36;00 36.00 36.00 36.00 〇〇PP hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature

熱水流量90kg/s 46.00 42.18 36.00 44.49 45.00 41.56 36.00 43.64 44.00 40.94 1 36.00 42.79 43.00 40.33 36.00 41.94 42.00 39.71 36.00 41.09 41.00 39.09 36.00 40.25 40.00 38.47 36.00 39.40 39.00 37.85 36.00 38.55 38.00 37.24 36.00 37.70 37.00 36.62 36.00 36.85 36.00 36.00 36.00 36.00 熱水進口溫度°C 熱水出口溫度°C 冷水進口溫度°c 命水出口溫度°C 熱水流量96kg/s 46.00 41.96 36.00 44.42 45.00 41.36 36.00 43.58 44.00 ί 40.77 36.00 42.73 43.00 j 40.17 36.00 41.89 42.00 1 39.58 36.00 41.05 41.00 38.89 36.00 40.21 40.00 38.38 36.00 39.37 39.00 37.79 36.00 38.53 38.00 37.19 36.00 37.68 37.00 36.60 36.00 36.84 36.00 36.00 36.00 36.00 〇〇 P P P 熱水進口温度 熱水出口溫度 冷水進口溫度 冷水出口溫度 200945741 - 熱水流量30 kg/s 46.00 44.67 I 37.00 I 45.87 45.00 — 1 43.82 37.00 44.88 44.00 42.97 1 37.00 43.89 43.00 L42.ll — 37.00 42.91 42.00 41.26 37.00 1 41.92 41.00 40.41 37.00 40.94 40.00 39.56 37.00 39.95 39.00 38.71 37.00 38.97 38.00 37.85 37.00 37.98 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量40 kg/s 46.00 I 44.26 I 37.00 45.70 45.00 43.45 37.00 44.73 44.00 ί 42.65 1 37.00 43.77 43.00 1 41.84 37.00 1 42.80 42.00 41.03 37.00 ! 41.83 41.00 40.23 37.00 40.87 40.00 39.42 37.00 39.90 39.00 38.61 37.00 38.93 38.00 37.81 37.00 ί 37.97 37.00 37.00 37.00 37.00 | 36.00 \ 37.00 \ Ρ Ρ 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量50 kg/s 46.00 43.87 I 37.00 45.52 45.00 43.11 37.00 44.57 44.00 43.63 37.00 42.34 43.00 41.58 37.00 42.68 42.00 40.82 37.00 41.73 41.00 40.05 37.00 40.78 40.00 39.29 37.00 39.84 39.00 38.53 37.00 38.89 38.00 37.76 37.00 37.94 37.00 37.00 37.00 37.00 | 36.00 \ 37.00 \ P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量60lcg/s 46.00 43.50 37.00 45.33 45.00 42.78 37.00 44.41 44.00 42.06 37.00 43.48 43.00 41.33 37.00 42.55 42.00 ! 40.61 37.00 41.63 41.00 1 39.89 37.00 40.70 40.00 39.17 37.00 39.78 39.00 38.45 37.00 38.85 38.00 37.72 37.00 37.92 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 200945741 Φ - ❿ 〇 碳 46.00 43.16 I I 37.00 1 45.12 45.00 42.48 37.00 44.21 44.00 I 41.79 37.00 43.31 43.00 I 41.11 1 37.00 1 ___ 42.41 42.00 I 40.42 37.00 41.51 41.00 | 39.74 37.00 40.61 40.00 39.05 37.00 39.70 39.00 38.37 37.00 38.80 38.00 37.69 37.00 37.90 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P O〇 P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 § 46.00 I 42.55 37.00 44.67 45.00 i —___ __ 1 42.204 37.00 44.00 44.00 41.55 37.00 43.13 43.00 40.90 37.00 42.25 42.00 40.25 37.00 41.38 41.00 1 39.60 37.00 40.50 40.00 38.95 37.00 39.63 39.00 38.30 37.00 38.75 38.00 37.65 37.00 37.88 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P O〇 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量90 kg/s 46.00 42.55 | 37.00 I 44.67 45.00 41.93 37.00 43.81 44.00 41.32 37.00 42.96 43.00 40.70 37.00 42.11 42.00 | 40.08 37.00 41.26 41.00 39.47 37.00 40.41 40.00 38.85 37.00 39.56 39.00 38.23 37.00 38.70 38.00 37.62 37.00 37.85 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P P O〇 P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量96kg/s 46.00 44.56 37.00 42.37 45.00 41.77 37.00 43.72 44.00 I 41.18 37.00 42.88 43.00 40.58 37.00 42.04 42.00 39.98 37.00 41.20 41.00 39.39 37.00 40.36 40.00 38.79 37.00 39.52 39.00 38.19 37.00 38.68 38.00 37.60 37.00 37.84 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 200945741 o ‘ ❹ 熱水流量30kg/s 46.00 44.82 I 38.00 45.87 45.00 43.97 38.00 1 44.88 44.00 _1 43.12 38.00 43.90 43.00 _1 42.26 38.00 42.96 42.00 ! 41.41 38.00 1 41.93 | 41.00 1 _1 40.56 38.00 40.95 40.00 39.71 38.00 39.97 39.00 38.85 38.00 38.98 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ Ρ Ρ Ρ 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量40kg/s 46.00 | 44.44 | 38.00 45.80 45.00 | 43.64 38.00 44.83 44.00 42.83 38.00 43.85 43.00 42.03 38.00 42.88 42.00 : 41.22 38.00 41.90 41.00 40.42 38.00 40.93 40.00 39.61 38.00 39.95 39.00 38.81 38.00 38.98 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P 0〇 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量50kg/s 46.00 44.10 [ 38,00 I 45.60 45.00 | 43.34 1 38.00 44.65 44.00 42.58 38.00 43.70 43.00 i 41.81 | 38.00 42.75 42.00 41.05 38.00 丨 41.80 41.00 40.29 38.00 40.85 40.00 39.53 38.00 39.90 39.00 38.76 38.00 38.95 38.00 38.00 38.00 38.00 1 37.00 \ 38.00 \ 36.00 \ 38.00 \ 〇〇 P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量60kg/s 46.00 1 43.77 1 38.00 45.43 45.00 43.05 38.00 44.50 44.00 i 42.33 38.00 43.57 43.00 41.61 38.00 丨 42.64 42.00 40.89 38.00 41.72 41.00 40.16 38.00 40.79 40.00 39.44 38.00 39.86 39.00 38.72 38.00 38.93 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 200945741Hot water flow 90kg/s 46.00 42.18 36.00 44.49 45.00 41.56 36.00 43.64 44.00 40.94 1 36.00 42.79 43.00 40.33 36.00 41.94 42.00 39.71 36.00 41.09 41.00 39.09 36.00 40.25 40.00 38.47 36.00 39.40 39.00 37.85 36.00 38.55 38.00 37.24 36.00 37.70 37.00 36.62 36.00 36.85 36.00 36.00 36.00 36.00 Hot water inlet temperature °C Hot water outlet temperature °C Cold water inlet temperature °c Life water outlet temperature °C Hot water flow 96kg/s 46.00 41.96 36.00 44.42 45.00 41.36 36.00 43.58 44.00 40 40.77 36.00 42.73 43.00 j 40.17 36.00 41.89 42.00 1 39.58 36.00 41.05 41.00 38.89 36.00 40.21 40.00 38.38 36.00 39.37 39.00 37.79 36.00 38.53 38.00 37.19 36.00 37.68 37.00 36.60 36.00 36.84 36.00 36.00 36.00 36.00 〇〇PPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature 200945741 - Hot water flow 30 Kg/s 46.00 44.67 I 37.00 I 45.87 45.00 — 1 43.82 37.00 44.88 44.00 42.97 1 37.00 43.89 43.00 L42.ll — 37.00 42.91 42.00 41.26 37.00 1 41.92 41.00 40.41 37.00 40.94 40.00 39.56 37.00 39 .95 39.00 38.71 37.00 38.97 38.00 37.85 37.00 37.98 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ P Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 40 kg/s 46.00 I 44.26 I 37.00 45.70 45.00 43.45 37.00 44.73 44.00 ί 42.65 1 37.00 43.77 43.00 1 41.84 37.00 1 42.80 42.00 41.03 37.00 ! 41.83 41.00 40.23 37.00 40.87 40.00 39.42 37.00 39.90 39.00 38.61 37.00 38.93 38.00 37.81 37.00 37 37.97 37.00 37.00 37.00 37.00 | 36.00 \ 37.00 \ Ρ 热水 Hot water inlet temperature heat Water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 50 kg/s 46.00 43.87 I 37.00 45.52 45.00 43.11 37.00 44.57 44.00 43.63 37.00 42.34 43.00 41.58 37.00 42.68 42.00 40.82 37.00 41.73 41.00 40.05 37.00 40.78 40.00 39.29 37.00 39.84 39.00 38.53 37.00 38.89 38.00 37.76 37.00 37.94 37.00 37.00 37.00 37.00 | 36.00 \ 37.00 \ PPPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 60lcg/s 46.00 43.50 37.00 45.33 45.00 42.78 37.00 44.41 44.00 42.06 37.00 43.48 43.00 41.33 37.00 42.55 42.00 ! 40.61 37.00 41.63 41.00 1 39.89 37.00 40.70 40.00 39.17 37.00 39.78 39.00 38.45 37.00 38.85 38.00 37.72 37.00 37.92 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ PPPP Hot water inlet temperature hot water outlet temperature Cold water inlet temperature Cold water outlet temperature 200945741 Φ - ❿ 〇 carbon 46.00 43.16 II 37.00 1 45.12 45.00 42.48 37.00 44.21 44.00 I 41.79 37.00 43.31 43.00 I 41.11 1 37.00 1 ___ 42.41 42.00 I 40.42 37.00 41.51 41.00 | 39.74 37.00 40.61 40.00 39.05 37.00 39.70 39.00 38.37 37.00 38.80 38.00 37.69 37.00 37.90 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ PO〇PP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature § 46.00 I 42.55 37.00 44.67 45.00 i —___ __ 1 42.204 37.00 44.00 44.00 41.55 37.00 43.13 43.00 40.90 37.00 42.25 42.00 40.25 37.00 41.38 41.00 1 39.60 37.00 40.50 40.00 38.95 37.00 39.63 39.00 38.30 37.00 38.75 38.00 37.65 37.00 37.88 37.00 37.00 37.00 37. 00 36.00 \ 37.00 \ PO〇 Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 90 kg/s 46.00 42.55 | 37.00 I 44.67 45.00 41.93 37.00 43.81 44.00 41.32 37.00 42.96 43.00 40.70 37.00 42.11 42.00 | 40.08 37.00 41.26 41.00 39.47 37.00 40.41 40.00 38.85 37.00 39.56 39.00 38.23 37.00 38.70 38.00 37.62 37.00 37.85 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ PPO〇P Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 96kg/s 46.00 44.56 37.00 42.37 45.00 41.77 37.00 43.72 44.00 I 41.18 37.00 42.88 43.00 40.58 37.00 42.04 42.00 39.98 37.00 41.20 41.00 39.39 37.00 40.36 40.00 38.79 37.00 39.52 39.00 38.19 37.00 38.68 38.00 37.60 37.00 37.84 37.00 37.00 37.00 37.00 36.00 \ 37.00 \ PPPP Hot water inlet temperature hot water Outlet temperature Cold water inlet temperature Cold water outlet temperature 200945741 o ' ❹ Hot water flow 30kg/s 46.00 44.82 I 38.00 45.87 45.00 43.97 38.00 1 44.88 44.00 _1 43.12 38.00 43.90 43.00 _1 42.26 38.00 42.96 42.00 ! 41.41 38.00 1 41.93 | 41.00 1 _1 40.56 38.00 40.95 40.00 39.71 38.00 39.97 39.00 38.85 38.00 38.98 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ Ρ Ρ Ρ Hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water Outlet temperature hot water flow 40kg/s 46.00 | 44.44 | 38.00 45.80 45.00 | 43.64 38.00 44.83 44.00 42.83 38.00 43.85 43.00 42.03 38.00 42.88 42.00 : 41.22 38.00 41.90 41.00 40.42 38.00 40.93 40.00 39.61 38.00 39.95 39.00 38.81 38.00 38.98 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P 0〇hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature hot water flow 50kg/s 46.00 44.10 [ 38,00 I 45.60 45.00 | 43.34 1 38.00 44.65 44.00 42.58 38.00 43.70 43.00 i 41.81 | 38.00 42.75 42.00 41.05 38.00 丨41.80 41.00 40.29 38.00 40.85 40.00 39.53 38.00 39.90 39.00 38.76 38.00 38.95 38.00 38.00 38.00 38.00 1 37.00 \ 38.00 \ 36.00 \ 38.00 \ 〇〇PP Hot water inlet temperature hot water outlet temperature cold water Port temperature cold water outlet temperature hot water flow 60kg/s 46.00 1 43.77 1 38.00 45.43 45.00 43.05 38.00 44.50 44.00 i 42.33 38.00 43.57 43.00 41.61 38.00 丨42.64 42.00 40.89 38.00 41.72 41.00 40.16 38.00 40.79 40.00 39.44 38.00 39.86 39.00 38.72 38.00 38.93 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ PPPP hot water inlet temperature hot water outlet temperature cold water inlet temperature cold water outlet temperature 200945741

0 .G 熱水流量70kg/s 46.00 | 43.48 38.00 45.20 45.00 42.80 38.00 1 44.30 | 44.00 _1 42.11 38.00 43.40 43.00 j 41.43 38.00 1 42.50 | 42.00 40.74 38.00 41.60 41.00 40.06 38.00 40.70 40.00 39.37 38.00 39.80 39.00 38.69 38.00 38.90 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P 0〇 P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量80kg/s 46.00 1 43.20 38.00 45.00 45.00 | 42.55 38.00 I 44.13 44.00 41.90 38.00 43.25 43.00 41.25 38.00 42.38 42.00 | 40.60 38.00 41.50 41.00 39.95 38.00 40.63 40.00 39.30 38.00 39.75 39.00 38.65 38.00 38.88 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 「36.00 \ 38.00 \ P P P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量90kg/s 46.00 | 42.93 38.00 44.82 45.00 42.31 38.00 43.97 44.00 1 41.70 [38.00 43.12 43.00 41.08 38.00 42.22 42.00 40.47 38.00 41.41 41.00 39.58 38.00 40.56 40.00 39.23 38.00 39.70 39.00 38.62 38.00 38.85 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P 0〇 P P 熱水進口溫度 熱水出口溫度 冷水進口溫度 冷水出口溫度 熱水流量96kg/s 46.00 42.76 38.00 44.75 45.00 42.17 38.00 43.91 44.00 41.57 38.00 43.06 43.00 40.98 38.00 42.22 42.00 40.38 38.00 41.38 41.00 39.79 38.00 40.53 40.00 39.19 38.00 39.69 39.00 38.60 38.00 38.84 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P P P P 熱水進口没度 熱水出口溫度 冷水進口溫度 冷水出口溫度 2009457410 .G hot water flow 70kg/s 46.00 | 43.48 38.00 45.20 45.00 42.80 38.00 1 44.30 | 44.00 _1 42.11 38.00 43.40 43.00 j 41.43 38.00 1 42.50 | 42.00 40.74 38.00 41.60 41.00 40.06 38.00 40.70 40.00 39.37 38.00 39.80 39.00 38.69 38.00 38.90 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P 0〇P Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 80kg/s 46.00 1 43.20 38.00 45.00 45.00 | 42.55 38.00 I 44.13 44.00 41.90 38.00 43.25 43.00 41.25 38.00 42.38 42.00 | 40.60 38.00 41.50 41.00 39.95 38.00 40.63 40.00 39.30 38.00 39.75 39.00 38.65 38.00 38.88 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ "36.00 \ 38.00 \ PPPP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water Flow rate 90kg/s 46.00 | 42.93 38.00 44.82 45.00 42.31 38.00 43.97 44.00 1 41.70 [38.00 43.12 43.00 41.08 38.00 42.22 42.00 40.47 38.00 41.41 41.00 39.58 38.00 40.56 40.00 39.23 38.00 39.70 39.00 38.62 38.00 38.85 38.00 38.00 38. 00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ P 0〇PP Hot water inlet temperature Hot water outlet temperature Cold water inlet temperature Cold water outlet temperature Hot water flow 96kg/s 46.00 42.76 38.00 44.75 45.00 42.17 38.00 43.91 44.00 41.57 38.00 43.06 43.00 40.98 38.00 42.22 42.00 40.38 38.00 41.38 41.00 39.79 38.00 40.53 40.00 39.19 38.00 39.69 39.00 38.60 38.00 38.84 38.00 38.00 38.00 38.00 37.00 \ 38.00 \ 36.00 \ 38.00 \ PPPP Hot water inlet no hot water outlet temperature cold water inlet temperature cold water outlet temperature 200945741

HPHP

遝运礙i^iCN GT22電動閥關 22P’P啟動 |21P’P 關閉 | D 35 \ Ο cs 97 kg/s 進口 \ 寸 〇· 21P’P啟動 出σ | r-H c4 CN CN 170 kg/s 進口 寸 〇· v〇 d 22P’P關閉 21P,P關閉 出口 \ \ \ 進口丨 \ \ 21P’P啟動 出口 〇 (N 90 kg/s 進口 v〇 d GT22電動閥開 22PT啟動 i 21P’P關閉| D 33 O) 70 kg/s 進口 \ 寸 d 21P’P啟動 D •Η 〇 (N o CN 丨 135 kg/s 進口 〇 寸 d 22P’P關閉 21 P’P關閉 出口 \ \ \ 進口 \ \ 21 P’P啟動 D Ή 1.95 \ 68 kg/s 進口 ΙΛ d \ CN 1流量遝 碍 i i^iCN GT22 electric valve off 22P'P start | 21P'P off | D 35 \ Ο cs 97 kg / s import \ inch 〇 · 21P'P start σ | rH c4 CN CN 170 kg / s import Inch 〇 · v〇d 22P'P off 21P, P off the exit \ \ \ Import 丨 \ \ 21P'P start the exit 〇 (N 90 kg / s import v 〇 GT22 electric valve open 22PT start i 21P 'P off | D 33 O) 70 kg / s import \ inch d 21P 'P start D • Η 〇 (N o CN 丨 135 kg / s import d inch d 22P 'P off 21 P'P closed export \ \ \ import \ \ 21 P'P start D Ή 1.95 \ 68 kg/s inlet ΙΛ d \ CN 1 flow

瑟遝焱蛱I(N GT22電動閥關 22 P’P啟動 21卩’1>關閉| D •H \ f-H CN 135 kg/s 進口 \ 〇 21 PT啟動 D •H 寸 Η 寸 CS 228 kg/s 丨進口 0.45 〇 22 P’P關閉 21PT關閉 D 33 \ \ \ 進口. \ 21 P’P啟動 D •3Ϊ 〇 οί \ 136 kg/s 進口 寸 〇 \ GT22電動閥開 22 P’P啟動 21PT關閉 D H \ Ο) — 91 kg/s 進口 \ 0.45 21 P’P啟動 D •33 <Ν CN <N 173 kg/s 進D 寸 〇 0.55 22 P’P關閉 21P’P關閉 D 33 \ \ \ 進口 \ \ 21 ΡΊ»啟動 出Π 〇\ \ 98 kg/s 進口 寸 〇· \ CN 流量 200945741 \ Mh Thin Thout Qh Me Tcin Tc out Qc Qc/Qh 1 14,340 44.1 40.7 3,392.61 6,246 35.6 43.2 3,331.13 0.9819 2 14,356 44.2 40.8 3,396.39 6,296 35.6 43.3 3,248.99 0.9566 3 14,412 44.1 40.8 3,309.36 6,061 35.7 43.3 3,206.79 0.9690 4 14,376 44.2 40.8 3,401.12 6,232 35.7 43.3 3,297.27 0.9695 5 14,387 44.2 40.8 3,403.72 6,205 35.7 43.3 3,282.98 0.9645 6 14,417 44.1 40.8 3,310.50 6,141 35.7 43.3 3,249.12 0.9815 7 14,392 44.0 40.7 3,304.76 6,087 35.6 43.2 3,220.55 0.9745 8 14,412 44.0 40.7 3,309.36 5,983 35.5 43.2 3,207.18 0.9691 9 14,335 43.9 40.6 3,291.67 6,021 35.4 43.1 3,227.55 0.9805 10 14,469 44.1 40.7 3,423.12 6,074 35.5 43.3 3,298.24 0.9635 11 14,366 44.1 40.8 3,298.79 6,035 35.6 43.3 3,235.05 0.9807 12 14,366 44.2 40.8 3,398.76 6,058 35.7 43.4 3,247.38 0.9555 13 14,397 44.1 40.8 3,305.91 6,095 35.7 43.3 3,224.78 0.9755 14 14,397 44.0 40.7 3,305.91 6,056 35.5 43.2 3,246.31 0.9820 15 14,305 44.0 40.7 3,284.79 6,020 35.5 43.2 3,227.01 0.9824 16 14,428 44.0 40.7 3,313.03 6,048 35.5 43.2 3,242.02 0.9786 17 14,387 43.9 40.6 3,303.61 5,997 35.4 43.1 3,214.68 0.9731 18 14,438 44.0 40.6 3,415.79 6,164 35.5 43.1 3,261.29 0.9548 19 14,371 44.0 40.7 3,299.94 6,022 35.5 43.2 3,228.08 0.9782 20 14,387 44.1 40.8 3,303.61 5,981 35.5 43.3 3,247.74 0.9831 21 14,428 44.1 40.8 3,313.03 6,041 35.6 43.3 3,238.27 0.9774 22 14,438 44.1 40.8 3,315.33 6,049 35.6 43.3 3,242.56 0.9781 23 14,407 44.1 40.8 3,308.21 6,075 35.6 43.3 3,256.49 0.9844 24 14,458 44.2 40.8 3,420.52 6,111 35.6 43.4 3,318.33 0.9701 25 14,458 44.3 41.0 3,319.92 6,016 35.7 43.5 3,266.75 0.9840 26 14,484 44.4 41.0 3,426.67 6,143 35.8 43.6 3,335.71 0.9735 27 14,443 44.4 41.0 3,416.97 6,038 35.8 43.6 3,278.69 0.9595 28 14,433 44.4 41.0 3,414.61 6,097 35.8 43.5 3,268.29 0.9571 29 14,387 44.2 40.9 3,303.61 6,052 35.7 43.4 3,244.16 0.9820 30 14,366 44.2 40.9 3,298.79 6,015 35.7 43.4 3,224.33 0.9774 31 14,392 44.2 40.9 3,304.76 6,047 35.7 43.4 3,241.48 0.9809 32 14,397 44.3 40.9 3,406.09 6,066 35.8 43.4 3,209.44 0.9423 33 14,428 44.2 41.0 3,212.63 5,842 35.8 43.5 3,131.59 0.9748 34 14,433 44.2 40.9 3,314.18 6,002 35.7 43.4 3,217.36 0.9708 35 14,448 44.2 40.9 3,317.62 6,019 35.7 43.4 3,226.47 0.9725 36 14,448 44.2 40.9 3,317.62 6,093 35.7 43.4 3,266.14 0.9845 200945741遝焱蛱 遝焱蛱 I (N GT22 electric valve off 22 P'P start 21 卩 '1> off | D • H \ fH CN 135 kg / s import \ 〇 21 PT start D • H inch Η inch CS 228 kg / s丨Import 0.45 〇22 P'P off 21PT off D 33 \ \ \ Import. \ 21 P'P start D •3Ϊ 〇οί \ 136 kg/s Import inch 〇 GT22 electric valve open 22 P'P start 21PT off DH \ Ο) — 91 kg/s import \ 0.45 21 P'P start D • 33 < Ν CN < N 173 kg / s into D inch 〇 0.55 22 P'P off 21P 'P off D 33 \ \ \ Import \ \ 21 启动»Starting Π 〇\ \ 98 kg/s Import inch 〇 · \ CN Flow 200945741 \ Mh Thin Thout Qh Me Tcin Tc out Qc Qc/Qh 1 14,340 44.1 40.7 3,392.61 6,246 35.6 43.2 3,331.13 0.9819 2 14,356 44.2 40.8 3,396.39 6,296 35.6 43.3 3,248.99 0.9566 3 14,412 44.1 40.8 3,309.36 6,061 35.7 43.3 3,206.79 0.9690 4 14,376 44.2 40.8 3,401.12 6,232 35.7 43.3 3,297.27 0.9695 5 14,387 44.2 40.8 3,403.72 6,205 35.7 43.3 3,282.98 0.9645 6 14,417 44.1 40.8 3,310.50 6,141 35.7 43.3 3,249.12 0.9815 7 14,392 44.0 40.7 3,3 04.76 6,087 35.6 43.2 3,220.55 0.9745 8 14,412 44.0 40.7 3,309.36 5,983 35.5 43.2 3,207.18 0.9691 9 14,335 43.9 40.6 3,291.67 6,021 35.4 43.1 3,227.55 0.9805 10 14,469 44.1 40.7 3,423.12 6,074 35.5 43.3 3,298.24 0.9635 11 14,366 44.1 40.8 3,298.79 6,035 35.6 43.3 3,235.05 0.9807 12 14,366 44.2 40.8 3,398.76 6,058 35.7 43.4 3,247.38 0.9555 13 14,397 44.1 40.8 3,305.91 6,095 35.7 43.3 3,224.78 0.9755 14 14,397 44.0 40.7 3,305.91 6,056 35.5 43.2 3,246.31 0.9820 15 14,305 44.0 40.7 3,284.79 6,020 35.5 43.2 3,227.01 0.9824 16 14,428 44.0 40.7 3,313.03 6,048 35.5 43.2 3,242.02 0.9786 17 14,387 43.9 40.6 3,303.61 5,997 35.4 43.1 3,214.68 0.9731 18 14,438 44.0 40.6 3,415.79 6,164 35.5 43.1 3,261.29 0.9548 19 14,371 44.0 40.7 3,299.94 6,022 35.5 43.2 3,228.08 0.9782 20 14,387 44.1 40.8 3,303.61 5,981 35.5 43.3 3,247.74 0.9831 21 14,428 44.1 40.8 3,313.03 6,041 35.6 43.3 3,238.27 0.9774 22 14,438 44.1 40.8 3,315.33 6,049 35.6 43.3 3,242.56 0.9781 23 14,407 44.1 40.8 3,308.21 6,07 5 35.6 43.3 3,256.49 0.9844 24 14,458 44.2 40.8 3,420.52 6,111 35.6 43.4 3,318.33 0.9701 25 14,458 44.3 41.0 3,319.92 6,016 35.7 43.5 3,266.75 0.9840 26 14,484 44.4 41.0 3,426.67 6,143 35.8 43.6 3,335.71 0.9735 27 14,443 44.4 41.0 3,416.97 6,038 35.8 43.6 3,278.69 0.9595 28 14,433 44.4 41.0 3,414.61 6,097 35.8 43.5 3,268.29 0.9571 29 14,387 44.2 40.9 3,303.61 6,052 35.7 43.4 3,244.16 0.9820 30 14,366 44.2 40.9 3,298.79 6,015 35.7 43.4 3,224.33 0.9774 31 14,392 44.2 40.9 3,304.76 6,047 35.7 43.4 3,241.48 0.9809 32 14,397 44.3 40.9 3,406.09 6,066 35.8 43.4 3,209.44 0.9423 33 14,428 44.2 41.0 3,212.63 5,842 35.8 43.5 3,131.59 0.9748 34 14,433 44.2 40.9 3,314.18 6,002 35.7 43.4 3,217.36 0.9708 35 14,448 44.2 40.9 3,317.62 6,019 35.7 43.4 3,226.47 0.9725 36 14,448 44.2 40.9 3,317.62 6,093 35.7 43.4 3,266.14 0.9845 200945741

❹ 37 14,438 44.3 41.0 3,315.33 6,049 35.8 43.5 3^42.56 0.9781 38 14,346 44.1 40.8 3,294.20 6,102 35.7 43.3 3,228.49 0.9801 39 14,433 44.1 40.8 3,314.18 6,079 35.6 43.3 3,258.64 0.9832 40 14,433 44.1 40.8 3,314.18 6,028 35.6 43.3 3,231.30 0.9750 41 14,433 44.0 40.7 3,314.18 6,026 35.5 43.2 3,230.23 0.9747 42 14,464 44.0 40.7 3,321.30 6,013 35.5 43.2 3,223.26 0.9705 43 14,448 44.0 40.6 3,418.16 6,187 35.5 43.1 3,273.46 0.9577 44 14,474 44.0 40.6 3,424.31 6,166 35.5 43.1 3,262.35 0.9527 45 14,422 44.0 40.6 3,412.00 6,111 35.5 43.1 3,233.25 0.9476 46 14,443 44.0 40.7 3,316.47 6,020 35.5 43.2 3,227.01 0.9730 47 14,412 43.9 40.6 3,309.36 6,148 35.5 43.1 3,252.82 0.9829 48 14,417 43.9 40.5 3,410.82 6,161 35.4 43.0 3,259.70 0.9557 49 14,392 43.8 40.4 3,404.91 6,225 35.3 42.9 3,293.56 0.9673 50 14,356 43.8 40.4 3,396.39 6,116 35.3 43.0 3,278.47 0.9653 51 14,387 43.9 40.5 3,403.72 6,184 35.3 43.0 3,314.92 0.9739 52 14,428 44.0 40.7 3,313.03 6,073 35.5 43.2 3,255.42 0.9826 53 14,402 44.0 40.6 3,407.27 6,207 35.5 43.1 3,284.04 0.9638 54 14,366 44.0 40.7 3,298.79 6,043 35.5 43.2 3,239.34 0.9820 55 14,392 43.9 40.6 3,304.76 6,079 35.5 43.1 3,216.32 0.9732 56 14,392 43.9 40.5 3,404.91 6,111 35.4 43.0 3,233.25 0.9496 57 14,366 43.9 40.5 3,398.76 6,143 35.4 43.0 3,250.18 0.9563 58 14,494 43.9 40.5 3,429.04 6,189 35.4 43.0 3,274.52 0.9549 59 14,458 43.8 40.5 3,319.92 6,078 35.3 43.0 3,258.10 0.9814 60 14,453 43.8 40.5 3,318.77 6,002 35.3 43.0 3,217.36 0.9694 61 14,392 43.9 40.5 3,404.91 6,180 35.4 43.1 3,312.78 0.9729 62 14,422 44.0 40.6 3,412.00 6,129 35.5 43.1 3,242.77 0.9504 63 14,397 44.1 40.8 3,305.91 6,068 35.6 43.3 3,252.74 0.9839 64 14,402 44.2 40.8 3,407.27 6,223 35.6 43.3 3,335.83 0.9790 65 14,351 44.1 40.8 3,295.35 6,075 35.7 43.3 3,214.20 0.9754 66 14,412 44.1 40.8 3,309.36 6,016 35.6 43.3 3,224.87 0.9745 67 14,489 44.2 40.9 3,327.04 6,034 35.7 43.4 3,234.52 0.9722 68 14,376 44.1 40.8 3,301.09 6,048 35.7 43.3 3,199.92 0.9694 69 14,428 44.1 40.8 3,313.03 6,122 35.7 43.3 3,239.07 0.9777 70 14,325 44.0 40.7 3,289.38 6,038 35.6 43.2 3,194.63 0.9712 71 14,448 44.1 40.7 3,418.16 6,166 35.5 43.2 3,305.27 0.9670 72 14,443 44.0 40.7 3,316.47 6,005 35.5 43.2 3,218.97 0.9706 73 14,458 44.0 40.6 3,420.52 6,209 35.5 43.1 3,285.10 0.9604 200945741 14,335 44.0 3,391.42 6,065 3,251.13 75 14,443 76 14,407 44.0 3,308.21 5,949 ^,981 35.5 43.2 3,188.95 3,206^1 0.9586 一· —_ 0.9615 ------- 0.9691 77 14,438 3,315.33 6,148 78 14,428 43.9 79 14,438 43.9 7ήΓ]ϊ,313.03 3,214.86 5,955 5,874 80 14,458 43.9 3,319.92 6,049 35.4 412 ΙίΤ _81_互互 ~84 壽 88 ~89 "90" 92 14,412 14,397 43J, 14,443 14.438 4¾ 14,428 14,494 14,392 43^ 14,469 43j_ 14.438 14,448] 43 14,448 43? 14,458" 14,453~ 433_ 3,205.73 3,316.47 131533" 15ΪΪ63" 3,328.18 3,204.62 3,322.44 3,315.33 3,317.62 3,117.63 6,070 5,855 6,097 ^,074 ^,891 5,984 5,827 5,902 1,949 5,913 6,092Μ60 6,007 6,007 6,205 35.4 35.3 35.3 35.3 43.0 4^〇_ ~4Ζ9 42.7❹ 37 14,438 44.3 41.0 3,315.33 6,049 35.8 43.5 3^42.56 0.9781 38 14,346 44.1 40.8 3,294.20 6,102 35.7 43.3 3,228.49 0.9801 39 14,433 44.1 40.8 3,314.18 6,079 35.6 43.3 3,258.64 0.9832 40 14,433 44.1 40.8 3,314.18 6,028 35.6 43.3 3,231.30 0.9750 41 14,433 44.0 40.7 3,314.18 6,026 35.5 43.2 3,230.23 0.9747 42 14,464 44.0 40.7 3,321.30 6,013 35.5 43.2 3,223.26 0.9705 43 14,448 44.0 40.6 3,418.16 6,187 35.5 43.1 3,273.46 0.9577 44 14,474 44.0 40.6 3,424.31 6,166 35.5 43.1 3,262.35 0.9527 45 14,422 44.0 40.6 3,412.00 6,111 35.5 43.1 3,233.25 0.9476 46 14,443 44.0 40.7 3,316.47 6,020 35.5 43.2 3,227.01 0.9730 47 14,412 43.9 40.6 3,309.36 6,148 35.5 43.1 3,252.82 0.9829 48 14,417 43.9 40.5 3,410.82 6,161 35.4 43.0 3,259.70 0.9557 49 14,392 43.8 40.4 3,404.91 6,225 35.3 42.9 3,293.56 0.9673 50 14,356 43.8 40.4 3,396.39 6,116 35.3 43.0 3,278.47 0.9653 51 14,387 43.9 40.5 3,403.72 6,184 35.3 43.0 3,314.92 0.9739 52 14,428 44.0 40.7 3,313.03 6,073 35.5 43.2 3,255.42 0.9826 53 14 , 402 44.0 40.6 3,407.27 6,207 35.5 43.1 3,284.04 0.9638 54 14,366 44.0 40.7 3,298.79 6,043 35.5 43.2 3,239.34 0.9820 55 14,392 43.9 40.6 3,304.76 6,079 35.5 43.1 3,216.32 0.9732 56 14,392 43.9 40.5 3,404.91 6,111 35.4 43.0 3,233.25 0.9496 57 14,366 43.9 40.5 3,398.76 6,143 35.4 43.0 3,250.18 0.9563 58 14,494 43.9 40.5 3,429.04 6,189 35.4 43.0 3,274.52 0.9549 59 14,458 43.8 40.5 3,319.92 6,078 35.3 43.0 3,258.10 0.9814 60 14,453 43.8 40.5 3,318.77 6,002 35.3 43.0 3,217.36 0.9694 61 14,392 43.9 40.5 3,404.91 6,180 35.4 43.1 3,312.78 0.9729 62 14,422 44.0 40.6 3,412.00 6,129 35.5 43.1 3,242.77 0.9504 63 14,397 44.1 40.8 3,305.91 6,068 35.6 43.3 3,252.74 0.9839 64 14,402 44.2 40.8 3,407.27 6,223 35.6 43.3 3,335.83 0.9790 65 14,351 44.1 40.8 3,295.35 6,075 35.7 43.3 3,214.20 0.9754 66 14,412 44.1 40.8 3,309.36 6,016 35.6 43.3 3,224.87 0.9745 67 14,489 44.2 40.9 3,327.04 6,034 35.7 43.4 3,234.52 0.9722 68 14,376 44.1 40.8 3,301.09 6,048 35.7 43.3 3,199.92 0.9694 69 14,428 44. 1 40.8 3,313.03 6,122 35.7 43.3 3,239.07 0.9777 70 14,325 44.0 40.7 3,289.38 6,038 35.6 43.2 3,194.63 0.9712 71 14,448 44.1 40.7 3,418.16 6,166 35.5 43.2 3,305.27 0.9670 72 14,443 44.0 40.7 3,316.47 6,005 35.5 43.2 3,218.97 0.9706 73 14,458 44.0 40.6 3,420.52 6,209 35.5 43.1 3,285.10 0.9604 200945741 14,335 44.0 3,391.42 6,065 3,251.13 75 14,443 76 14,407 44.0 3,308.21 5,949 ^,981 35.5 43.2 3,188.95 3,206^1 0.9586 一·——_ 0.9615 ------- 0.9691 77 14,438 3,315.33 6,148 78 14,428 43.9 79 14,438 43.9 7ήΓ]ϊ,313.03 3,214.86 5,955 5,874 80 14,458 43.9 3,319.92 6,049 35.4 412 ΙίΤ _81_ Mutual ~84 Shou 88 ~89 "90" 92 14,412 14,397 43J, 14,443 14.438 43⁄4 14,428 14,494 14,392 43^ 14,469 43j_ 14.438 14,448] 43 14,448 43? 14,458" 14,453 ~ 433_ 3,205.73 3,316.47 131533"15ΪΪ63" 3,328.18 3,204.62 3,322.44 3,315.33 3,317.62 3,117.63 6,070 5,855 6,097 ^,074 ^,891 5,984 5,827 5,902 1,949 5,913 6,092Μ60 6,007 6,007 6,205 35.4 35.3 35.3 35.3 43.0 4^〇_ ~4Ζ9 42.7

Mc(Vmin):飼水流量Mc (Vmin): feed water flow

Mh(l/min):發電機冷卻水流量& u ei^a/KC^ : 4.175發電機p水比熱 ❹ C:Pe(KJ/K(3*C〇 : 4.177 飼水=熱 Thin(C):發電機冷卻水入水溫度 Tcin(C):飼水進水溫度 Qh(KW):發電機冷卻水側散熱量 Qc(KW):飼水吸熱量 Q熱交換量=M流量xCp比熱xdT進出水溫度差 Qc/Qh :熱回收效率(。/〇) 3,252.82 3^19ΖΪ7 3,148^75 3,242^6 3,253^81 3,138.56— Υ,225Τ84 3,213.67 3,116.85 3,207.71 3,123^5? 3J63T6 3,169.65 3,223.20 3^24845 3,153.64 3^09^59 3,052.77 3,023.80 0.9811 >9635~ ~^Τ9Α ^9767 ^983?~osm^~^sr2n ^9693" 0.9702 ^9638"~09747 ~〇3522 ~〇961? ^09554 ~〇3Ϊ\5 ^978? ^9775" ^9633~ ^979? ~03733Mh(l/min): generator cooling water flow & u ei^a/KC^ : 4.175 generator p water specific heat C:Pe (KJ/K (3*C〇: 4.177 feed water = hot Thin (C ): generator cooling water into water temperature Tcin (C): feed water inlet temperature Qh (KW): generator cooling water side heat dissipation Qc (KW): feed water absorption heat Q heat exchange amount = M flow rate xCp specific heat xdT in and out Water temperature difference Qc/Qh: heat recovery efficiency (./〇) 3,252.82 3^19ΖΪ7 3,148^75 3,242^6 3,253^81 3,138.56—Υ,225Τ84 3,213.67 3,116.85 3,207.71 3,123^5? 3J63T6 3,169.65 3,223.20 3^24845 3,153.64 3 ^09^59 3,052.77 3,023.80 0.9811 >9635~ ~^Τ9Α ^9767 ^983?~osm^~^sr2n ^9693" 0.9702 ^9638"~09747 ~〇3522 ~〇961? ^09554 ~〇3Ϊ\5 ^978 ? ^9775" ^9633~ ^979? ~03733

Th out(C):發電機冷卻水出水溫度 Tc out(C):飼水出水溫度 表四:發電機冷卻水改善工作效率試驗紀錄表Th out(C): generator cooling water outlet temperature Tc out(C): feed water outlet temperature Table 4: Generator cooling water improvement work efficiency test record

Claims (1)

200945741 十、申請專利範圍: 1·一種降低發電機冷卻水溫度提升機組效率之結構,其 係包括: 一發電機冷卻系統,此發電機冷卻系統具有數以 冷卻水循環降溫之發電機冷卻器,並具有至少一亦_ 冷卻水循環降溫之潤滑油冷卻器,於該發電機冷卻胃 以及潤滑油冷卻器二者之冷卻水入口前端設有一發電 機強制冷卻風扇組,於此風扇組前端設有一可控制冷 ^ 卻水流通之控制閥; 一熱回收鍋爐飼水系統,其具有至少一提供飼水 予熱回收鍋爐之冷凝水泵,於此冷凝水泵飼水出口連 接一供飼水預熱之格蘭熱交換器,於格蘭熱交換器後 端連接一洩水熱交換器,俾供飼水於預熱後進入熱回 收鍋爐中; 一供發電機冷卻水與熱回收鍋爐飼水熱交換之熱 交換裝置,其係設於發電機冷卻系統與熱回收鍋爐赛j ❹ 水系統之間,此熱交換裝置包括一連通於該二冷卻器 流向控制閥問之冷卻水入口、一連通於該發電機強制 冷卻風扇組流向該二冷卻器間之冷卻水出口,且熱交 換裝置於前後分別具有連通於冷凝水泵流向洩水熱交 換器之間之一飼水入口以及一例水出口; 藉此,冷卻水與飼水於該熱交換裝置内進行熱交 換’俾供冷卻水於進入該二冷卻器進行冷卻前降至適 當之溫度,且供飼水於進入格蘭熱交換器前先行預熱 12 200945741 至適當溫度。 2請專利範㈣!項所述之降低發電耕卻水溫度 提升機組效率之結構,其中該熱交換裝置係一於冷卻 H内設有供冷卻水與飼水㈣時熱交換之板#式冷卻 器。 3·依申請專利範圍第1項所述之降低發電機冷卻水溫度 提升機組效率之結構,其中該熱交換裝置係一殼管式 冷卻器。 ^ 4·依申請專利範圍第1項所述之降低發電機冷卻水溫度 提升機組效率之結構,其中該發電機強制冷卻風扇組 包含四具以馬達驅動之冷卻風扇。 5.依申請專利範圍第4項所述之降低發電機冷卻水溫度 提升機組效率之結構,其中各該冷卻風扇分別具有四 具驅動馬達。 Θ.依申請專利範圍第1項所述之降低發電機冷卻水溫度 提升機組效率之結構,其中該格蘭熱交換益係連接於 ❹ 該泠凝水泵後方,飼水流經該格籣熱交換器後再進入 該熱交換裝置之飼水入口。 7·依申請專利範圍第1項所述之降低發電機冷卻水溫度 提开機組效率之、㈣,其巾該練水果之飼水先流經 該熱交換裝置之飼水入口進行熱交換後,再由飼水出 口流往格蘭熱交換器。 13200945741 X. Patent application scope: 1. A structure for reducing the temperature of the generator cooling water to improve the efficiency of the unit, comprising: a generator cooling system having a plurality of generator coolers for cooling water circulation cooling, and a lubricating oil cooler having at least one cooling water circulation cooling, wherein a generator forced cooling fan group is disposed at a front end of the cooling water inlet of the generator cooling stomach and the lubricating oil cooler, and a front end of the fan group is provided with a controllable a control valve for circulating water; a heat recovery boiler feed water system having at least one condensate pump for feeding a feed water to a heat recovery boiler, wherein the feed water outlet of the condensate pump is connected to a Gale heat exchange for feed water preheating a water discharge heat exchanger is connected to the rear end of the Glan heat exchanger, and the feed water enters the heat recovery boiler after being preheated; a heat exchange device for heat exchange between the generator cooling water and the heat recovery boiler feed water The system is disposed between the generator cooling system and the heat recovery boiler j water system, and the heat exchange device includes a communication between the two cooling systems a cooling water inlet flowing to the control valve, a cooling water outlet connected to the forced cooling fan group of the generator to the cooling cooler, and the heat exchange device has a communication between the condensing water pump and the drain heat exchanger a feed water inlet and a water outlet; thereby, the cooling water and the feed water are exchanged in the heat exchange device. 俾 The cooling water is lowered to an appropriate temperature before entering the second cooler for cooling, and is fed. The water is preheated 12 200945741 to the appropriate temperature before entering the Grand Heat Exchanger. 2 Please patent (four)! The structure for reducing the temperature of the power generation tillage water to improve the efficiency of the unit, wherein the heat exchange device is provided with a plate type cooler for cooling heat exchange between the cooling water and the feed water (4) in the cooling H. 3. The structure for reducing the temperature of the cooling water of the generator according to the first aspect of the patent application, wherein the heat exchange device is a shell-and-tube cooler. ^ 4· The structure for reducing the temperature of the generator cooling water to improve the efficiency of the unit according to the scope of claim 1 of the patent application, wherein the generator forced cooling fan group comprises four motor-driven cooling fans. 5. The structure for reducing the temperature of the generator cooling water to increase the efficiency of the unit according to the fourth aspect of the patent application, wherein each of the cooling fans has four driving motors.结构 The structure for reducing the efficiency of the cooling water of the generator to improve the efficiency of the unit according to the first aspect of the patent application, wherein the Gran Heat exchange system is connected to the rear of the condensate pump, and the feed water flows through the grid heat exchanger Then enter the feed water inlet of the heat exchange device. 7. According to the claim 1, the lowering of the cooling water temperature of the generator to improve the efficiency of the start-up group, (4), the feed water of the cooked fruit first flows through the feed inlet of the heat exchange device for heat exchange, and then From the feed water outlet to the Grand Heat Exchanger. 13
TW97114955A 2008-04-23 2008-04-23 Structure for reducing temperature of cooling water and enhancing unit efficiency for generator TW200945741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97114955A TW200945741A (en) 2008-04-23 2008-04-23 Structure for reducing temperature of cooling water and enhancing unit efficiency for generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97114955A TW200945741A (en) 2008-04-23 2008-04-23 Structure for reducing temperature of cooling water and enhancing unit efficiency for generator

Publications (2)

Publication Number Publication Date
TW200945741A true TW200945741A (en) 2009-11-01
TWI364904B TWI364904B (en) 2012-05-21

Family

ID=44869829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97114955A TW200945741A (en) 2008-04-23 2008-04-23 Structure for reducing temperature of cooling water and enhancing unit efficiency for generator

Country Status (1)

Country Link
TW (1) TW200945741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059199A (en) * 2016-07-28 2016-10-26 苏州必信空调有限公司 Generator cooling device with vertical low-resistance heat pipes
CN106230191A (en) * 2016-07-28 2016-12-14 苏州必信空调有限公司 There is the engine cooler of vertical lower resistance heat pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059199A (en) * 2016-07-28 2016-10-26 苏州必信空调有限公司 Generator cooling device with vertical low-resistance heat pipes
CN106230191A (en) * 2016-07-28 2016-12-14 苏州必信空调有限公司 There is the engine cooler of vertical lower resistance heat pipe

Also Published As

Publication number Publication date
TWI364904B (en) 2012-05-21

Similar Documents

Publication Publication Date Title
AU2007315397B2 (en) Heating system, wind turbine or wind park, method for utilizing surplus heat of one or more wind turbine components and use hereof
EP1766196B1 (en) Remote-heating plant for urban, civil, industrial and agricultural applications
KR100996279B1 (en) Solar cooling and hot-water supplying system
CN100378413C (en) Cogeneration system
CN101424472B (en) Water-cooling system for production facility
CN107155280B (en) A kind of integration ventilating and cooling heat reclamation device
CN106940033A (en) Combine high/low temperature independence storage heating system based on many equipment for abandoning wind-powered electricity generation energy
CN102052723A (en) Comprehensive cold/heat air supply system of solar air conditioner
CN201476402U (en) Combined refrigerating or heating system
CN204359196U (en) A kind of data center module rack cooling system
CN207214218U (en) Electric heat storage system
KR101587268B1 (en) Cooling/heating and hot water suppling system using geothermy heat pump
TW200945741A (en) Structure for reducing temperature of cooling water and enhancing unit efficiency for generator
CN107449012A (en) Electric heat storage system and its control method
CN207081146U (en) A kind of air-conditioning system in large-scale workshop
CN208090840U (en) A kind of loop circuit heat pipe radiator system based on air-conditioning internal-external machine
CN107044391A (en) A kind of Wind turbines cooling system
CN204187888U (en) Cogeneration cooling heating system
Ryan Driving absorption chillers using heat recovery
CN202835915U (en) Novel energy-saving four-season cooling and heating system
CN203432142U (en) System capable of supplying warm water and heat through waste heat discharged by communication machine room and other rooms
CN206942943U (en) A kind of Wind turbines cooling system
CN201903211U (en) Refrigeration system
CN201635814U (en) Air cooling equipment for wind generating set
CN217328990U (en) Heat management system for LNG (liquefied natural gas)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees