TW200945600A - Element for organic thin film solar cell and method of manufacture - Google Patents

Element for organic thin film solar cell and method of manufacture Download PDF

Info

Publication number
TW200945600A
TW200945600A TW097115741A TW97115741A TW200945600A TW 200945600 A TW200945600 A TW 200945600A TW 097115741 A TW097115741 A TW 097115741A TW 97115741 A TW97115741 A TW 97115741A TW 200945600 A TW200945600 A TW 200945600A
Authority
TW
Taiwan
Prior art keywords
derivative
layer
solar cell
thin film
organic thin
Prior art date
Application number
TW097115741A
Other languages
Chinese (zh)
Inventor
Shyh-Yeu Wang
Ping-Tsung Huang
Hsiu-Chih Hsu
Chuan-Man Lan
Original Assignee
Ritek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritek Corp filed Critical Ritek Corp
Priority to TW097115741A priority Critical patent/TW200945600A/en
Publication of TW200945600A publication Critical patent/TW200945600A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

This disclosure provides an element of an organic thin film solar cell and method for making the same. The element comprises an organic semiconductor thin film layer with a rough surface, which can be used as a P-type semiconductor layer or N-type semiconductor layer, thereby forming a rough morphology between the p-type layer and the n-type layer.

Description

200945600 九、發明說明: 【發明所屬之技術領域】 · 本發明係關於一種有機薄膜太陽能電池,且特別是關 於一種有機薄膜太陽能電池之施體層或受體層元件及其製 造方法。 【先前技術】 太陽能電池可將太陽能直接轉換成電流,是理想的可 再生能源。單晶矽和多晶矽太陽能電池佔目前仍是市場之 主流。 然而’石夕晶圓太陽能電池所面臨的最大問題乃是材料 成本太高的問題。多晶矽原料的純化過程中需要規模龐大 的廠房耗費大量的能源,所以成本高昂;再者由於物理 性質的限制’目前用矽晶圓製造太陽能電池目前最少也要 200 μιη的厚度,因此在製造大面積發電模組時對矽原料的 用量也相對龐大。 薄膜太陽電池節省材料(厚度可低於矽晶圓太陽能 電池90%以上),可在價格低廉的玻璃、塑膠或不鐵鋼基板 上製造’價錢便宜而且輕便。 -般而言,單層有機薄膜太陽能電池包括一有機聚合 物,該有機聚合物位於二電極間,該有機材料可吸收光線, 並相應地產生激子(⑽itGn)^而在此種單層結構中,光 電流很小。 S揭露了雙層結構。第j A圖閣明—雙層結構有機 200945600 太陽能電池100之剖面示意圖,在一基板1〇1上有一透明 導電(ITO)層1〇2可作為一陽極,該IT〇層1〇2上有一電 洞傳輸層103’且電洞傳輸層1〇3與一陰極1〇6之間形成— 施體層104及受體層105之雙層結構,透過電子/電洞對在 施體層104及受體層1〇5接面之分離而產生電子及電洞傳 輸。第1Β圖為此雙層結構中,施體層1〇4及受體層1〇5之 剖面示意圖,由第1Β圖可發現,施體層1〇4及受體層1〇5 魯 間之接面較為平整。 為能增加施體層與受體層間的有效接觸面積,業界提 出一種共混結構(heterojunction )»第2Α圖闡明一共混結 構有機太陽能電池200之剖面示意圖,其中基板2〇1、IT〇 層202、電洞傳輸層2〇3、及陰極206與第1圖相似,不同 之處在於共混結構中有一施體_受體層2〇4。第2Β圖為此共 混結構甲,施體-受體層204之剖面示意圖,由第2Β圖可 發現,共混結構中施體層及受體層間之接觸面積增加,因 〇 而可提升在該接面產生之電流密度。然而,此種共混結構 之形貌不穩定,在某些條件如照光、高溫中,容易出現相 刀離’而使付該裝置之使用壽年大幅降低。 此外,該共混結構之形貌與塗佈時所用溶劑高度相 關,且在形成共混結構之過程中,無法有效控制所形成之 形貌,而影響有機太陽能裝置之效率。 簡言之,雖然共混結構增加了有機薄膜太陽能電池之 施體層及受體層之接面面積,但其形貌並不穩定且所形成 之接面面積不易受控制。因此’需要一種技術以提升該施 200945600 體層及受體層之接面面積,且可控制每次所形成之該接面 具有相近之形貌。 【發明内容] • 為能有效提升施體層及受體層間的接面面積且使接面 • 具有相近之形貌,本發明一態樣中揭露一具有粗糙表面之 半導體薄膜,其令該半導體薄膜表面具有改良之粗糖度。 Φ 本發明另一態樣中揭露一具有粗糙表面之半導體薄膜 之製造方法,其係利用在形成施體層或受體層之半導體薄 膜的塗佈液中加入固型物質,並在半導體薄膜形成的步驟 中將該固型物質移除’而形成具有粗糙表面之半導體薄膜。 本發明另一種態樣係利用加熱之步驟以昇華該固型物 質’藉此移除該固型物質。 在本發明之進一步態樣中,提出一種形成一施體層/受 體層7C件之方法。根據該方法,可在形成該元件之一施體 ⑩ 層或一受體層之一者的塗佈液中加入固型物質,並在該半 導體層形成的步驟中將該固型物質移除,而形成具有粗糖 表面之半導體層,而後將另一半導體層塗佈於其上,以得 到具有較大施體層/受體層接面面積之一施體層/受體層元 件。 在本發明之又一種態樣中,係利用加熱以昇華該固型 物質’藉此移除該固型物質。 在本發明之另一態樣中,在形成該半導體元件之過程 中,退火處理該半導體結構。 200945600 在本發明之-態樣中,亦揭露了一種一有機薄膜太陽 能電池之製造方法,該方法至少包含在形成於該有機薄膜 太陽能電池之一施體層/受體層元件時,利用在形成—施體 層或一受體層之一者的塗佈液中加入固型物質,並在該半 導體層成形的步驟中將該固型物f移除,而形成具有粗链 表面之半導體層,而後將另—半導體層塗佈於其上,而使200945600 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an organic thin film solar cell, and more particularly to a donor layer or receptor layer element of an organic thin film solar cell and a method of fabricating the same. [Prior Art] Solar cells are an ideal renewable energy source for converting solar energy directly into electric current. Single crystal germanium and polycrystalline germanium solar cells are still the mainstream of the market. However, the biggest problem facing the Shixi wafer solar cell is the problem of too high material cost. In the purification process of polycrystalline germanium raw materials, a large-scale plant requires a large amount of energy, so the cost is high; in addition, due to the limitation of physical properties, the current solar cell fabricated by germanium wafers currently has a thickness of at least 200 μm, so a large area is manufactured. The amount of raw materials used in power generation modules is also relatively large. Thin-film solar cells save material (less than 90% thicker than silicon wafers) and can be manufactured on inexpensive glass, plastic or non-ferrous steel substrates. In general, a single-layer organic thin film solar cell includes an organic polymer located between two electrodes, the organic material absorbing light and correspondingly generating excitons ((10)itGn) in such a single layer structure Medium light current is small. S reveals a two-layer structure. The j-A diagram-two-layer structure organic 200945600 solar cell 100 schematic diagram, a transparent conductive (ITO) layer 1 〇 2 on a substrate 1 可 1 can be used as an anode, the IT 〇 layer 1 〇 2 The hole transport layer 103' and the hole transport layer 1〇3 and a cathode 1〇6 form a double layer structure of the donor layer 104 and the acceptor layer 105, and the electron/hole pair is applied to the donor layer 104 and the acceptor layer. The separation of the layers 1〇5 junction produces electron and hole transmission. Figure 1 is a schematic cross-sectional view of the donor layer 1〇4 and the receptor layer 1〇5 in this two-layer structure. It can be found from the first diagram that the interface between the donor layer 1〇4 and the receptor layer 1〇5 More flat. In order to increase the effective contact area between the donor layer and the acceptor layer, the industry proposes a blending structure (Hierojunction). The second figure illustrates a cross-sectional view of a blended structure organic solar cell 200, wherein the substrate 2〇1, the IT layer 202, The hole transport layer 2〇3, and the cathode 206 are similar to the first one, except that there is a donor-acceptor layer 2〇4 in the blend structure. 2 is a schematic cross-sectional view of the donor-acceptor layer 204 for this blended structure A. It can be found from the second graph that the contact area between the donor layer and the acceptor layer in the blended structure is increased, and The current density produced by the junction. However, the morphology of such a blended structure is unstable, and in some conditions, such as illumination and high temperature, the phase knives are prone to occur, and the life of the device is greatly reduced. In addition, the morphology of the blended structure is highly correlated with the solvent used for coating, and during the formation of the blended structure, the formed morphology cannot be effectively controlled, and the efficiency of the organic solar device is affected. In short, although the blend structure increases the junction area of the donor layer and the acceptor layer of the organic thin film solar cell, its morphology is not stable and the junction area formed is not easily controlled. Therefore, a technique is needed to increase the junction area of the body layer and the receptor layer of the application layer 200945600, and it is possible to control the junction surface formed each time to have a similar topography. SUMMARY OF THE INVENTION In order to effectively increase the junction area between the donor layer and the acceptor layer and to make the junctions have similar topography, a semiconductor film having a rough surface is disclosed in the aspect of the invention. The surface has an improved crude sugar content. Φ Another aspect of the invention discloses a method for fabricating a semiconductor film having a rough surface by adding a solid substance to a coating liquid of a semiconductor film forming a donor layer or an acceptor layer, and forming the semiconductor film. The solid material is removed in the step to form a semiconductor film having a rough surface. Another aspect of the invention utilizes a heating step to sublimate the solid matter' thereby removing the solid material. In a further aspect of the invention, a method of forming a donor layer/receptor layer 7C is provided. According to the method, a solid substance may be added to a coating liquid which forms one of the donor layer or one of the receptor layers, and the solid substance is removed in the step of forming the semiconductor layer, A semiconductor layer having a rough sugar surface is formed, and then another semiconductor layer is coated thereon to obtain a donor layer/acceptor layer member having a larger donor layer/acceptor layer junction area. In still another aspect of the invention, the solid material is removed by heating to thereby remove the solid matter. In another aspect of the invention, the semiconductor structure is annealed during formation of the semiconductor device. 200945600 In the aspect of the invention, a method for manufacturing an organic thin film solar cell is disclosed, which method comprises at least forming a donor layer/acceptor layer component formed on the organic thin film solar cell. a solid substance is added to a coating liquid of one of the donor layer or one of the receptor layers, and the solid matter f is removed in the step of forming the semiconductor layer to form a semiconductor layer having a thick chain surface, and then In addition, a semiconductor layer is coated thereon,

得該有機薄膜太陽能電池之施體層/受體層元件具有較大 之施體層及受體層接面面積。 在本發明之實施例中,用以製造一有機薄膜太陽能電 池之基板可包括破璃、金屬、或塑膠。 在本發明之另-態樣中,在形成該施體層/受體層元件 之過程中,退火處理該施體層/受體層元件。 综上所述,本發明之優點在於提供一種具有改良粗健 表面之半導體薄膜及其製造方法。相較於先前技藝,本發 明之半導體薄膜之表面粗糙度較大。此外,藉由控制製造 過程中加入之固型物質’所得到之半導體薄媒具有相近之 形貌。因而當運用本發明之半導體薄膜來製造一施體層/受 體層元件之施體層或受體層時,能夠提升並控制所得到之 施體層/受體層元件的施體層及受體層接面面積。 1¾ itq 脾个货切义抛體層/受體層元件運用於製造一有 機薄膜太陽能電料,财機薄膜太陽能電池之施體層及 受體層接面形成-具有相近接面面積之粗糙表面,使得截 面Γ的接面面積增加,進而提升該有機薄膜太陽能電池 之電流。 8 200945600 【實施方式】 一般而言’本發明係藉由在至少包含;於半導體材料 之塗佈液中加入固型物質;將塗佈液塗佈於一介面上;以 及在半導體薄膜形成之過程中藉由昇華移除該固型物質, 以得到一具有粗糙表面之半導體薄膜。 至目前為止在高分子薄膜中製造微孔隙(micr〇p〇r〇us) 以至於達到控制表面粗造化的方法主要有兩種,一是利用 兩種不相容高分子相分離的原理,在相分離後以加熱分 解、輻射分解或水解的方式裂解去除其中一種高分子以形 成具有微孔隙之薄膜,另外一種方法則是利用團練共聚物 (Block C〇P〇lymer)會形成不同形態加沉沖也灯),再加上利 用加熱分解、輻射分解或水解的方式裂解去除其中一種高 分子以形成具有微孔隙之薄膜。以上的方法都牵涉到分子 的斷鍊以及雜質完全去除不易的問題,並不適合應用在半 導體高分子的應用上。因此本發明所開發之相分離加上昇 華的方式,一則不會破壞半導體高分子的特性,又可以完 全的去除添加的固型物質達到應用之純度需求。 本發明所提到的固型物質必須可溶於塗佈液中以形成 均勻之溶液,在塗佈後由於塗佈液中溶劑揮發的過程中固 型物質會逐漸析出並固化,因而與塗佈液中之半導體材料 形成相分離之結構,之後再利用加熱將此固型物質去除, 即可得到表面粗造之半導體薄膜,所以本發明之固型物質 必須具有可溶性以便可以均勻的溶解在塗佈液令,另外必 200945600 須具有可昇華性以便於在之後可以利用昇華將其完全的於 半導體薄膜之中去除,又必須和半導體材料不相容以形成 相分離之結構。使用固型物質的優點在於在相分離的過程 中易於控制其大小及形貌,而且一但相分離的結構形成後 便不會再改變。 將固型物質去除主要是利用昇華的方法進行,可以在 常壓或者減壓的環境中進行,取決於使用的溶劑、固型物 φ 質以及半導體材料而定,例如一般去除固型物質的溫度會 選在半導體材料之玻璃轉化溫度(Glass transition temperature)之下,因此如果固型物質之昇華溫度高於半導 體材料之玻璃轉化溫度,那麼在減壓的環境中去除固型物 質變成了不錯的選擇。利用昇華的優點在於去除固型物質 時可以避免相分離的形態改變或遭到破壞。 在相分離的結構中,固型物質相與半導體物質相的大 小及分布非常重要,可以利用塗佈液中溶劑的選擇、固型 φ 物質與半導體材料的用量比,固型物質的選擇、固型物質 在塗佈液中的濃度,塗佈方式、塗钸溫度、除去固型物質 的昇華溫度等方法來加以控制,如此一來便可以達到將半 導體薄膜表面粗造化的效果,提高施體層/受體層間的接觸 面積,以及控制半導體薄膜表面形態的發明目的。 為讓本發明之上述目的、特徵、和優點能更明顯易懂, 下文特舉較佳實施例’作詳細說明如下。 塗佈 200945600 參照第3圖,以一示意圖闡明根據本發明之一具體實 施例,形成一具有粗糙表面之半導體薄膜方法。在本具體 實施例中,以聚 3-己基0塞吩(poly(3-hexylthiophene)’ P3HT) 作為形成施體層的材料。將P3HT溶解於甲苯中(lgP3HT 於99g甲苯中),而形成一甲苯溶液。接著,將樟腦(camphor) 粉體顆粒3g 3 03加入曱苯溶液中,樟腦粉體顆粒在此作為 本發明提到之固型物質。將溶有樟腦粉體之甲苯溶液以旋 轉塗佈之方式塗佈於一基板301上,曱苯溶液塗佈的量在 甲苯溶劑被移除後可在介面表面形成一厚度約為200 nm之 一乾膜塗層302。在旋轉塗佈的末期以高速旋轉的方式將大 部分之曱苯去除以形成一乾膜塗層302,接著將此乾膜塗層 302置入烘箱中在氮氣環境下加熱至120°C使塗層中之樟 腦303昇華而形成一 P3HT施體層304,樟腦原在塗層中因 為析出及相分離所佔據的位置因昇華而留下孔隙,藉以在 該施體層形成一粗链表面。 第4圖闡明依照本具體實施例所形成之具有粗糙表面 之P3HT施體層 400的原子力顯微鏡(Atomic Force Microscope)剖面分析圖。由4圖可以看出,具有粗縫表面 之P3HT施體層400之表面粗糙度可達±100 nm。 在本發明之另一種具體實施例中,在上述具有粗糙表 面之P3HT施體層上塗佈一 [6,6]苯基C61 丁酸甲脂 ([6,6]-phenyl C61-butyric acid methyl ester,PCBM)受體 層,其膜層厚為 1000 (l〇·10 m),以得到一改良之 P3HT/PCBM 元件。 11 200945600 在本發明之又另一種實施例中,以一退火步驟處理該 改良之P3HT/PCBM元件,並與先前技藝共混P3HT/PCBM 元件進行比較。參照第5圖,其闞明利用不同製造方法所 得之P3HT/PCBM元件在不同電壓下之電流密度。圖中所示 四種元件分別為:元件A1,先前技藝雙層結構之 P3HT/PCBM元件且未進行退火處理;元件A2,先前技藝 雙層結構之P3HT/PCBM元件且進行退火處理;元件B1, 本發明之具粗糙表面P3HT/PCBM元件且未進行退火處 W 理;以及元件B2,本發明之具粗糙表面P3HT/PCBM元件 且進行退火處理。The donor layer/acceptor layer member of the organic thin film solar cell has a larger donor layer and acceptor layer junction area. In an embodiment of the invention, the substrate used to fabricate an organic thin film solar cell may comprise glass, metal, or plastic. In another aspect of the invention, the donor layer/acceptor layer element is annealed during formation of the donor layer/acceptor layer element. In summary, it is an advantage of the present invention to provide a semiconductor film having an improved rough surface and a method of fabricating the same. Compared to the prior art, the semiconductor film of the present invention has a large surface roughness. Further, the semiconductor thin medium obtained by controlling the solid matter added during the manufacturing process has a similar morphology. Therefore, when the semiconductor film of the present invention is used to fabricate a donor layer or a receptor layer of a donor layer/acceptor layer device, the donor layer and the receptor layer interface of the obtained donor layer/acceptor layer member can be elevated and controlled. area. 13⁄4 itq spleen cut-off projectile/receptor layer component is used to manufacture an organic thin film solar energy material, the donor layer of the thin film solar cell and the receptor layer are formed - a rough surface having a similar junction area, The junction area of the cross-section 增加 increases, which in turn increases the current of the organic thin film solar cell. 8 200945600 [Embodiment] In general, the present invention is characterized in that a solid substance is added to at least a coating liquid containing a semiconductor material; a coating liquid is applied on an interface; and a semiconductor film is formed. The solid matter is removed by sublimation to obtain a semiconductor film having a rough surface. So far, there are two main methods for producing micropores (micr〇p〇r〇us) in polymer films, so as to achieve the principle of phase separation of two incompatible polymers. After phase separation, one of the macromolecules is cleaved by heat decomposition, radiation decomposition or hydrolysis to form a film having microporosity, and the other method is to form a different shape by using a block copolymer (Block C〇P〇lymer). The illuminating lamp), together with the decomposition of one of the polymers by heat decomposition, radiation decomposition or hydrolysis, forms a film having micropores. All of the above methods involve the problem of molecular chain scission and the complete removal of impurities, and are not suitable for application in semiconductor polymers. Therefore, the phase separation and sublimation method developed by the present invention does not destroy the characteristics of the semiconductor polymer, and completely removes the added solid substance to meet the purity requirement of the application. The solid substance mentioned in the present invention must be soluble in the coating liquid to form a uniform solution, and the solid substance gradually precipitates and solidifies during the process of volatilization of the solvent in the coating liquid after coating, and thus coating The semiconductor material in the liquid forms a phase-separated structure, and then the solid substance is removed by heating to obtain a semiconductor film having a rough surface. Therefore, the solid substance of the present invention must have solubility so as to be uniformly dissolved in the coating. Liquid order, in addition, 200945600 must have sublimability so that it can be completely removed from the semiconductor film by sublimation, and must be incompatible with the semiconductor material to form a phase-separated structure. The advantage of using a solid material is that it is easy to control its size and morphology during phase separation, and once the phase separated structure is formed, it will not change. The removal of the solid matter is mainly carried out by sublimation, and can be carried out in a normal pressure or a reduced pressure depending on the solvent to be used, the solid substance, and the semiconductor material, for example, the temperature at which the solid substance is generally removed. Will be selected under the glass transition temperature of the semiconductor material, so if the sublimation temperature of the solid material is higher than the glass transition temperature of the semiconductor material, then it is a good choice to remove the solid material in a decompressed environment. . The advantage of using sublimation is that it avoids morphological changes or destruction of phase separation when removing solids. In the phase-separated structure, the size and distribution of the solid phase and the semiconductor phase are very important, and the choice of the solvent in the coating liquid, the ratio of the solid type φ substance to the semiconductor material, and the selection and solidification of the solid substance can be utilized. The concentration of the substance in the coating liquid, the coating method, the coating temperature, and the sublimation temperature of the solid material are controlled, so that the effect of roughening the surface of the semiconductor film can be achieved, and the donor layer can be improved. The contact area between the acceptor layers and the object of the invention for controlling the surface morphology of the semiconductor film. The above described objects, features, and advantages of the present invention will be more apparent from the following description. Coating 200945600 Referring to Figure 3, a schematic diagram of a method of forming a semiconductor film having a rough surface in accordance with an embodiment of the present invention is illustrated. In the present embodiment, poly(3-hexylthiophene) P3HT is used as a material for forming the donor layer. P3HT was dissolved in toluene (lgP3HT in 99 g of toluene) to form a toluene solution. Next, camphor powder particles 3g 3 03 are added to the toluene solution, and the camphor powder particles are herein referred to as the solid matter of the present invention. The toluene solution in which the camphor powder is dissolved is applied to a substrate 301 by spin coating, and the amount of the toluene solution coated is one to a thickness of about 200 nm on the interface surface after the toluene solvent is removed. Film coating 302. At the end of the spin coating, most of the benzene is removed by high-speed rotation to form a dry film coating 302, and then the dry film coating 302 is placed in an oven and heated to 120 ° C under a nitrogen atmosphere to make the coating. The camphor 303 sublimates to form a P3HT donor layer 304, which in the coating leaves a void due to sublimation due to precipitation and phase separation, thereby forming a thick chain surface in the donor layer. Figure 4 illustrates an Atomic Force Microscope cross-sectional analysis of a P3HT donor layer 400 having a roughened surface formed in accordance with this embodiment. As can be seen from Fig. 4, the surface roughness of the P3HT donor layer 400 having a rough surface can be up to ±100 nm. In another embodiment of the present invention, a [6,6]phenyl C61-butyric acid methyl ester ([6,6]-phenyl C61-butyric acid methyl ester) is coated on the P3HT donor layer having a rough surface. , PCBM) Receptor layer with a film thickness of 1000 (l〇·10 m) to obtain a modified P3HT/PCBM component. 11 200945600 In yet another embodiment of the invention, the modified P3HT/PCBM component is processed in an annealing step and compared to prior art blended P3HT/PCBM components. Referring to Figure 5, the current density of the P3HT/PCBM components obtained by different manufacturing methods at different voltages is illustrated. The four components shown in the figure are: component A1, P3HT/PCBM component of the prior art double-layer structure and have not been annealed; component A2, P3HT/PCBM component of the prior art double-layer structure and annealed; component B1, The rough surface P3HT/PCBM element of the present invention is not annealed; and the element B2, the rough surface P3HT/PCBM element of the present invention is annealed.

由第5圖可以發現’先前技藝p3HT/pCBM元件A1及 A2之單位截面積之電流密度皆小於1 mA/cm2;但根據本發 明之改良之P3HT/PCBM元件B1之電流密度為4.78 mA/cm2 ’ B2 為 6.24 mA/cm2,皆優於先前技藝 P3HT/PCBM 元件A1及A2。此外,表一進一步闡明上述四種元件之特 性。 © 表—It can be seen from Fig. 5 that the current density of the unit cross-sectional area of the prior art p3HT/pCBM elements A1 and A2 is less than 1 mA/cm2; however, the current density of the improved P3HT/PCBM element B1 according to the present invention is 4.78 mA/cm2. 'B2 is 6.24 mA/cm2, which is superior to the prior art P3HT/PCBM components A1 and A2. In addition, Table 1 further clarifies the characteristics of the above four components. © Table -

Jsc(mA/cm2) V〇c(volts) PCE(°/〇) 元件A1 先見技藝元件/未經退火 處理 0.69 0.57 0.08 元件A2 先見技藝元件/經退火處 理 0.10 0.05 0.03 元件B1 改良之P3HT/PCBM元件/ 4.78 0.50 1.15 12 200945600 未經退火處理 元件B2 改良之P3HT/PCBM元件/ 經退火處理 6.24 0.55 1.68 在本發明之一種實施例中,揭露了一種一有機薄膜太 陽能電池600之製造方法。請參照第6圖,其闡明根據本 發明之一有機太陽能電池600之剖面示意圖。根據本實施 例,在一玻璃基板601上形成一氧化錫銦薄膜以作為一 ITO φ 層602且其可作為一陽極,在該ITO層602上形成一電洞 傳輸層603,且在該電洞傳輸層603上塗佈一塗佈液,該塗 佈液至少包含一 P3HT施體層材料及一曱苯溶劑、以及固 型物質樟腦;將該塗佈液塗佈於一電洞傳輸層603上;在 該P3HT施體層604定型的步驟中將該樟腦移除,而形成 具有粗糙表面之P3HT施體層604;而後將一 PCBM受體層 材料塗佈於其上以得到一 PCBM受體層605 ;在該PCBM 受體層605上形成一陰極606;最後藉由一封裝步驟得到有 0 機薄膜太陽能電池600,其中該有機薄膜太陽能電池600 之施體層/受體層元件具有較大之施體層及受體層接面面 積。 根據本發明之另一種具體實施例,可在受體層塗佈液 中加入固型物質於該塗佈液中,並利用上述實施例相似之 方法,得到具粗糙表面之受體層。 此外,根據本發明之又另一種實施例,可利用與上述 實施例相似之方法,在該具粗糙表面之受體層上塗佈一施 13 200945600 體層塗佈液,以得到一改良之施體層/受體層元件。同樣 地,根據本發明之另一實施例,可利用此種改良之施體層/ 受體層元件,製造一有機薄膜太陽能電池600。 根據本發明之另一實施例,在形成該施體層/受體層元 件之過程中,進行一退火處理。 本發明所提之施體層材料可以是一共軛聚合物,其包 括但不限於:聚嗔吩(polythiophene)衍生物,如P3HT、 聚伸苯基乙稀(poly-phenylenevinylene)衍生物,如聚[2-曱氧基,5-(30,70-二甲基-辛烷基)]-對-伸苯基乙烯 ( poly[2-methoxy,5-(30,70-dimethyl-octyloxy)] - p-phenylene-vinylene,MDM0-PPV )、及聚苐(polyfluorene ) 衍生物,如聚(9,9’_二辛蕹-雙_N,N’-(4-丁苯基)-雙-N,N’-苯 基-1,4-伸苯基-二胺)(poly(9,9’-dioctylfluorene-co-bis-N,N’ -(4-butylphenyl)-bis-N,N,-phenyl-l,4 - phenylene-diamine &gt; PFB))。 本發明所提之受體層材料可以是一共軛聚合物,其包 括但不限於:富勒烯(fullerene)衍生物,如[6,6]苯基C61 丁 酸甲脂([6,6]-phenyl C61-butyric acid methyl ester, PCBM)、以及祐(perylene)衍生物。 根據本發明之實施例,該塗佈液溶劑可以為芳香烴 類、南烷類或醚類溶劑,包括但不限於:笨、曱苯、對二 曱苯、二氣苯、三氣苯、二氯甲烷、三氣曱烷、及四氫呋 0南。 本發明所提之固型物質包括但不限於:樟腦(camphor ) 200945600 及其衍生物、蔡(naphthalene )及其衍生物、策(anthra ) 及其衍生物、根據本發明之實施例,係利用昇華的方法, 藉以移除該固型物質。 在本發明之實施例中’用以製造一有機薄膜太陽能電 池之基板包括但不限於:玻璃、金屬、及塑膠。 由上述本發明較佳實施例可知,應用本發明可得到一 種具粗糙表面之半導體薄膜。當將此一薄骐運用於一施體 Ο 層/受體層元件時,可在一施體層及受體層接面形成一改良 之粗糙表面以提升二者間之接觸面積,且可藉由控制加入 之固型物質得到具有相近形貌之粗糙表面。此外,由於施 體層及受體層之接面面積提高,本發明之施體層/受體層元 件可產生較高之電流。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 〇 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’所附圖式之詳細說明如下: 第1A圖為一剖面示意圖,闡明一雙層結構有機太陽能 電池; 第1B圖為一剖面示意圖,闡明—雙層結構之施體層及 受體層; 15 200945600 第2A圖為一剖面示意圖,闡明一共混結構有機太陽能 電池;圖 第2B圖為一剖面示意圖,闡明一共混結構之施體-受 體層; 第3圖為一示意圖,闡明根據本發明之一具體實施例, 形成一具有粗糙表面之半導體薄膜方法; 第4圖為一剖面圖,闡明根據本發明之一具體實施例, 形成之一具有粗糙表面之半導體薄膜的表面厚度; 第5圖為一圖示,闡明利用不同製造方法所得之 P3HT/PCBM元件在不同電壓下之電流密度;以及 第6圖為一剖面示意圖,闡明根據本發明之一具有較 大施體層/受體層接面面積之有機薄膜太陽能電池。 【主要元件符號說明】 100 :雙層結構有機薄膜太陽101、201、301、601 :基板 能電池 ⑩ 102、202、602 :透明導Jsc(mA/cm2) V〇c(volts) PCE(°/〇) Component A1 See the technical components / unannealed 0.69 0.57 0.08 Component A2 See the technical components / annealed 0.10 0.05 0.03 Component B1 Modified P3HT/PCBM Component / 4.78 0.50 1.15 12 200945600 Unannealed Component B2 Modified P3HT/PCBM Component / Annealed 6.24 0.55 1.68 In one embodiment of the invention, a method of fabricating an organic thin film solar cell 600 is disclosed. Referring to Figure 6, there is illustrated a schematic cross-sectional view of an organic solar cell 600 in accordance with the present invention. According to the present embodiment, an indium tin oxide film is formed on a glass substrate 601 as an ITO φ layer 602 and it can serve as an anode, and a hole transport layer 603 is formed on the ITO layer 602, and the hole is formed in the hole. The coating layer 603 is coated with a coating liquid, the coating liquid comprises at least a P3HT donor layer material and a benzene solvent, and a solid substance camphor; the coating liquid is coated on a hole transport layer 603; The camphor is removed in the step of shaping the P3HT donor layer 604 to form a P3HT donor layer 604 having a rough surface; and then a PCBM receptor layer material is coated thereon to obtain a PCBM receptor layer 605; A cathode 606 is formed on the PCBM receptor layer 605. Finally, a zero-film solar cell 600 is obtained by a packaging step, wherein the donor layer/acceptor layer component of the organic thin film solar cell 600 has a larger donor layer and is subjected to Body junction area. According to another embodiment of the present invention, a solid substance may be added to the coating liquid in the receptor layer coating liquid, and a receptor layer having a rough surface may be obtained by a method similar to that of the above embodiment. In addition, according to still another embodiment of the present invention, a 13 200945600 bulk coating liquid can be applied to the receptor layer having a rough surface by a method similar to the above embodiment to obtain a modified donor layer. /Receptor layer components. Similarly, in accordance with another embodiment of the present invention, an organic thin film solar cell 600 can be fabricated using such improved donor layer/acceptor layer components. According to another embodiment of the invention, an annealing treatment is performed during the formation of the donor layer/acceptor layer member. The donor layer material of the present invention may be a conjugated polymer including, but not limited to, polythiophene derivatives such as P3HT, poly-phenylenevinylene derivatives such as poly[ 2-methoxy, 5-(30,70-dimethyl-octyl)]-p-phenylene vinyl (poly[2-methoxy,5-(30,70-dimethyl-octyloxy)] - p -phenylene-vinylene, MDM0-PPV), and polyfluorene derivatives such as poly(9,9'-dioctyl-bis-N,N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylene-diamine) (poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N,-phenyl -l,4 - phenylene-diamine &gt; PFB)). The receptor layer material of the present invention may be a conjugated polymer including, but not limited to, fullerene derivatives such as [6,6]phenyl C61 butyric acid methyl ester ([6,6] -phenyl C61-butyric acid methyl ester, PCBM), and perylene derivatives. According to an embodiment of the present invention, the coating liquid solvent may be an aromatic hydrocarbon, a paraffin or an ether solvent, including but not limited to: stupid, indole, p-terphenyl, di-benzene, tri-benzene, and Methyl chloride, trioxane, and tetrahydrofuran. The solid materials of the present invention include, but are not limited to, camphor 200945600 and its derivatives, naphthalene and its derivatives, anthra and its derivatives, in accordance with embodiments of the present invention, utilized Sublimation method to remove the solid substance. In the embodiment of the invention, the substrate used to fabricate an organic thin film solar cell includes, but is not limited to, glass, metal, and plastic. It will be apparent from the above-described preferred embodiments of the present invention that a semiconductor film having a rough surface can be obtained by applying the present invention. When the thin layer is applied to a donor layer/acceptor layer element, a modified rough surface can be formed on the donor layer and the receptor layer to increase the contact area therebetween, and Controlling the added solid material results in a rough surface with similar morphology. In addition, the donor layer/acceptor layer member of the present invention can generate a higher current due to an increased junction area of the donor layer and the acceptor layer. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of protection of the invention is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Organic solar cell; Figure 1B is a schematic cross-sectional view illustrating the two-layer structure of the donor layer and the acceptor layer; 15 200945600 Figure 2A is a schematic cross-sectional view illustrating a blended structure of an organic solar cell; Figure 2B is a section Schematic diagram illustrating a donor-acceptor layer of a blend structure; FIG. 3 is a schematic view illustrating a method of forming a semiconductor thin film having a rough surface according to an embodiment of the present invention; and FIG. 4 is a cross-sectional view illustrating According to an embodiment of the present invention, a surface thickness of a semiconductor film having a rough surface is formed; and FIG. 5 is a diagram illustrating a current density of a P3HT/PCBM device obtained by different manufacturing methods at different voltages; Figure 6 is a schematic cross-sectional view showing an organic thin film solar cell having a larger donor layer/acceptor layer interface area according to the present invention. . [Description of main component symbols] 100: Double-layer structure organic film Sun 101, 201, 301, 601: Substrate Energy battery 10 102, 202, 602: Transparent guide

104 :施體層 106、206 :陰極 204 :施體-受體層 302 :甲苯溶液塗層 304、400、604 : P3HT 層 605 : PCBM受體層 電層103、203、603 :電洞傳輸層 105、205 :受體層 200 :共混結構有機薄膜太陽 能電池 303 :樟腦 施體600 :本發明之有機薄膜太陽 能電池 16 200945600 元件A1 :先前技藝雙層結構元件A2 :先前技藝雙層結構 之P3HT/PCBM元件且未進行之P3HT/PCBM元件且進行退 退火處理 火處理 元件B1:本發明之具粗糙表元件B2:本發明之具粗糙表 面P3HT/PCBM元件且未進行面P3HT/PCBM元件且進行退 退火處理 火處理 參 17104: donor layer 106, 206: cathode 204: donor-acceptor layer 302: toluene solution coating 304, 400, 604: P3HT layer 605: PCBM receptor layer, 103, 203, 603: hole transport layer 105 205 : Receptor layer 200 : Blend structure organic thin film solar cell 303 : camphor donor body 600 : organic thin film solar cell 16 of the invention 200945600 component A1 : prior art double layer structural component A2 : P3HT / previously technical double layer structure PCBM component and P3HT/PCBM component not processed and subjected to annealing treatment Fire treatment component B1: Rough surface component B2 of the present invention: rough surface P3HT/PCBM component of the present invention and without surface P3HT/PCBM component Annealing treatment fire treatment reference 17

Claims (1)

200945600 十、申請專利範圍·· 丄.—種有機薄膜太陽能電池半導體薄膜,其特徵在於 ’、有粗輪表面,其係藉由在至少包含一有機半導體材料 之塗佈液中加人—固型物質,再將該塗佈液塗佈於-介面 上之後,移除該塗佈液中之溶劑,並昇華該固型物質所 成。 ❹ ,2.如中請專利範圍帛1項所述之有機薄膜太陽能電池 半導體薄膜,其中所用之該半導體材料為一共輛聚合物。 、3·如申請專利範圍帛2項所述之有機薄膜太陽能電池 1導,薄膜,其中所用之該共輛聚合物為聚噻吩衍生物、 $伸苯基乙烯衍生物、聚苐衍生物、富勒烯衍生物、或芘 ❿ 4袖如巾請專利範㈣3項所述之有機薄膜太陽能電池 衍薄媒,其中所用之該聚°塞吩衍生物為聚3.己基嗟吩 丰㈣如/請專利範圍帛3項所述之有機薄膜太陽能電池 :體4媒’其中所用之該聚伸苯基乙稀衍生物為聚η 一 ,5-(30,70-二甲基•辛烷基)]-對•伸苯基乙烯衍生物。 6.如申請專利範圍第3項所述之有機薄膜太陽能電池 18 200945600 半導體薄膜,纟中所用之該聚||衍生物為聚(99,_ 雙 _N,N’_(4_ 丁苯基)_ 雙 _N,N’ _ 笨基 - ,4伸本基-二胺)衍生 物。 7.如申請專利範圍第3 半導體薄膜,其中所用之該 丁酸曱脂。 項所述之有機薄膜太陽能電池 富勒締衍生物為[6,6]苯基⑽200945600 X. Patent application scope · · Organic thin film solar cell semiconductor film, characterized by ', having a rough wheel surface, which is added by a coating liquid in a coating liquid containing at least one organic semiconductor material After the coating liquid is applied to the interface, the solvent in the coating liquid is removed, and the solid substance is sublimated. ❹ 2. The organic thin film solar cell semiconductor film according to claim 1, wherein the semiconductor material used is a total of a polymer. 3. The organic thin film solar cell according to claim 2, wherein the common polymer is a polythiophene derivative, a phenylvinyl derivative, a polyfluorene derivative, and a rich film. The olefinic derivative, or the 芘❿ 4 sleeve, such as the towel, may be used in the organic thin film solar cell derivative medium described in the above paragraph (4), wherein the polythiophene derivative used is poly 3. hexyl porphin (four) such as / please The organic thin film solar cell of the invention of claim 3, wherein the polyphenylene derivative used in the invention is poly(n-, 5-(30,70-dimethyl-octyl)] - Pair of phenylene vinyl derivatives. 6. The organic thin film solar cell 18 200945600 semiconductor film according to claim 3, wherein the poly||derivative used in the crucible is poly(99,_bis_N,N'_(4-butylphenyl) _ Double _N, N' _ stupyl-, 4-extension-based-diamine) derivatives. 7. The patented third semiconductor film, wherein the butyric acid ruthenium is used. The organic thin film solar cell described in the article is a [6,6]phenyl (10) /如申請專利範圍第1項所述之有機薄膜太陽能電池 半導體薄膜,其中所用之該溶劑為苯、甲苯、對二甲 二氣苯、三氣苯、三氣甲烷、或四氮咬喃。 9.如申請專利範圍第1項所述之有機薄膜太陽能電池 半導體薄膜’,中所用之該固型物質為棒腦及其= 萘及其衍生物或蒽及其衍生物。 、The organic thin film solar cell semiconductor film according to claim 1, wherein the solvent used is benzene, toluene, p-dimethylbenzene, tri-benzene, tri-methane or tetra-nitrogen. 9. The solid film solar cell semiconductor film as described in claim 1, wherein the solid substance is a rod brain and its naphthalene and its derivatives or anthracene and a derivative thereof. , 10. 一種形成有機薄膜太陽能 法,該方法至少包含: 電池半導體結構之方 提供一塗佈液,其至少 物質塗佈; 包含半導體材料、 溶劑及固型 塗佈該塗佈液於一介面上 移除該溶劑;以及 昇華該固型物質。 19 200945600 π.如_請專利範圍第 陽能電池半導體結構之方法 聚合物。 10項所述之形成有機薄膜太 其令該半導體材料為—共軛 11項所述之形成有機薄膜太 其中該共軛聚合物為聚噻吩 、聚第衍生物、富勒烯衍生 12'如申請專利範圍第 陽能電池半導體結構之方法,10. A method of forming an organic thin film solar energy, the method comprising: at least: a battery semiconductor structure providing a coating liquid, which is at least coated with a material; comprising a semiconductor material, a solvent, and a solid coating coating on the interface In addition to the solvent; and sublimation of the solid material. 19 200945600 π. 如 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The formation of the organic film according to item 10 is such that the semiconductor material is formed into an organic film as described in the conjugate 11 item, wherein the conjugated polymer is a polythiophene, a poly derivative, or a fullerene derivative 12' Patented method of solar cell structure of a solar cell, 衍生物、料苯基乙稀街生物 物、或芘衍生物。 13.如申凊專利範圍第 陽能電池半導體結構之方法 己基嘆吩衍生物。 12項所述之形成有機薄膜太 其中該聚噻吩衍生物為聚3· α 14,如申請專利範圍第12項所述之形成有機薄膜太 陽3b電池半導體結構之方法,其中該聚伸笨基乙稀衍生物 Φ 為聚[2·甲氧基,5-(3〇,70_二曱基-辛炫基)]_對-伸笨基乙稀衍 生物。 15·如申請專利範圍第12項所述之形成有機薄膜太 陽能電池半導體結構之方法,其中該聚苐衍生物為聚(9,9,- 一辛第-雙_n,n’_(4_丁苯基V雙_N,N,_苯基伸笨基_二胺) 衍生物。 16·如申請專利範圍第12項所述之形成有機薄膜太 20 200945600 陽能電池半導體結構之方法 苯基C61 丁酸曱脂。 其中該畐勒稀衍生物為[6,石] i /· 如 T洧專利乾圍第1〇項所述之形 陽能電池半導體結構 W膜太 體結構之、 在形成該半導 Y驟中,退火處理該半導體結構。 18.如申請專利範圍第 陽能電池半導體結構之方法 二甲苯、二氯苯、三氣苯、Derivative, phenylethyl street organism, or anthraquinone derivative. 13. A method for the semiconductor structure of a solar cell according to the patent scope of the invention. The method for forming an organic thin film according to the item 12, wherein the polythiophene derivative is a poly(III)-[14], and the method for forming an organic thin film solar 3b battery semiconductor structure according to claim 12, wherein the poly-bending base B The dilute derivative Φ is a poly[2.methoxy group, a 5-(3〇,70-didecyl-octyl)]-p-extended ethylene derivative. The method for forming a semiconductor structure of an organic thin film solar cell according to claim 12, wherein the polyfluorene derivative is poly(9,9,-one-octet-double_n, n'_(4_) Butylphenyl V bis-N,N, phenylphenyl phenylene diamine) derivative. 16 · Formation of organic thin film as described in claim 12 of the patent scope 20 200945600 cation battery semiconductor structure method phenyl C61 Butyric acid sulphate. The keele-dilute derivative is [6, stone] i /·, as described in the T 洧 patent 干 第 第 之 形 阳 电池 电池 电池 电池 电池 电池 电池 电池 电池 半导体 半导体 半导体 半导体In the semi-conductive Y step, the semiconductor structure is annealed. 18. The method of the semiconductor structure of the solar cell of the patent application range is xylene, dichlorobenzene, tri-benzene, 10項所述之形成有機薄膜太 ’其中該溶劑為苯、甲苯、對 三氯甲烧、或四氫吱喃。 9如申°月專利範圍第10項所述之形成有機薄膜太 陽能電池半導體結構之方法,其中該固型物質可以是樟腦 及其衍生物、萘及其衍生物或蒽及其衍生物。 ⑩ 2G· h中'^專利範圍第1G項所述之形成有機薄媒太 陽能電池半導體結構之方法,其中該昇華固型物質之步驟 係利用加熱。 21· 一種製造有機薄膜太陽能電池之方法,該方法至 少包含: 提供一基板; 形成一透明導電層於該基板上; 形成一電洞傳輸層於該透明導電層上; 21 200945600 形成一施體層於該電洞傳輸層上,該方法至少包含: 提供-塗佈液’其至少包含一半導體材料、一溶劑 及一固型物質塗佈; 塗佈該塗佈液於該電洞傳輸層上; 移除該溶劑;以及 昇華該固型物質; - 形成受體層於該施體層上;以及 Φ 形成—陰極於該受體層上。 22’如申請專利範圍第21項所述之方法,其中該基板 為玻璃、金屬、或塑膠。 23.如申3青專利範圍第21項所述之方法,其中該透明 導電層為金屬氧化物層。 〇 ^ 24.如申請專利範圍第23項所述之方法,其中該金屬 乳化物層為氧化錫銦薄膜。 25. 如申請專利範圍第21項所述之方法,其中該半導 體材料為共輛聚合物。 26. 如申請專利範圍第25項所述之方法,其中該共輛 聚合物為聚嘴吩衍生物、聚伸苯基乙稀衍生物、聚薄衍生 物、虽勒烯衍生物、或芘衍生物。 22 200945600 〜27·如申請專利範圍帛26項所述之方法,其中該聚嘆 为付生物為聚3 -己基〇塞吩衍生物。 Μ.如申請專利範圍第26項所述之方法,其中該聚伸 本基乙稀衍生物為聚[2_甲氧基,5_(3〇,7〇二甲基_辛烧紐 對-伸苯基乙烯衍生物。 29·如申請專利範圍第26項所述之方法,其中該聚苐 衍生物為聚(9,9、二辛第-雙-N,N,-(4-丁笨基)_雙_邮,_苯基 -1,4-伸苯基_二胺)衍生物。 30.如申請專利範圍第26項所述之方法,其中該富勒 烯衍生物為[6,6]苯基C61 丁酸甲脂衍生物。八 〇 31.如申請專利範圍第21項所述之方法,其中該施體 層溶劑係選自苯、甲苯、對二甲苯、二氣笨、三氣苯、三 氯甲烷、以及四氫呋喃所組成之一群組。 32·如申請專利範圍第21項所述之方法,其中該固型物 質為樟腦及其衍生物、萘及其衍生物或蒽及其衍生物。 33·如申請專利範圍第21項所述之方法, 型物質之步驟係利用加熱。 固 23 200945600 21項所述之方法,該方法更包含 電池之步驟中,退火處理該施體 34.如申請專利範圍第 在製造該有機薄膜太陽能 層/受體層元件。 電池之方法,該方法至少 35.—種製造有機薄膜太陽能 包含:The organic film formed by the item 10 is in which the solvent is benzene, toluene, p-trichloromethane or tetrahydrofuran. A method of forming an organic thin film solar cell semiconductor structure according to claim 10, wherein the solid substance may be camphor and its derivatives, naphthalene and its derivatives or hydrazine and derivatives thereof. The method of forming an organic thin-film solar cell semiconductor structure as described in the 1G patent of the '2 patent range, wherein the step of sublimating the solid substance is by heating. A method for manufacturing an organic thin film solar cell, the method comprising: providing a substrate; forming a transparent conductive layer on the substrate; forming a hole transport layer on the transparent conductive layer; 21 200945600 forming a donor layer on The method includes at least: providing a coating liquid comprising at least a semiconductor material, a solvent, and a solid substance coating; coating the coating liquid on the hole transport layer; In addition to the solvent; and sublimating the solid material; - forming an acceptor layer on the donor layer; and Φ forming a cathode on the acceptor layer. The method of claim 21, wherein the substrate is glass, metal, or plastic. 23. The method of claim 21, wherein the transparent conductive layer is a metal oxide layer. The method of claim 23, wherein the metal emulsion layer is a film of indium tin oxide. 25. The method of claim 21, wherein the semiconductor material is a co-host polymer. 26. The method of claim 25, wherein the co-polymer is a polynomole derivative, a polyphenylene derivative, a polythene derivative, a olefin derivative, or a hydrazine derivative. Things. 22 200945600 〜27. The method of claim 26, wherein the sigh is a poly-3-hexyl decenophene derivative. The method of claim 26, wherein the polyethylene derivative is poly[2_methoxy, 5_(3〇, 7〇 dimethyl_xin-burning-pair-extension) The method of claim 26, wherein the polyfluorene derivative is poly(9,9, dioctyl-bis-N,N,-(4-butyryl) The method of claim 26, wherein the fullerene derivative is [6, 6). The method of claim 26, wherein the fullerene derivative is [6, 6] The method of claim 21, wherein the solvent of the donor layer is selected from the group consisting of benzene, toluene, para-xylene, dioxane, tri-benzene, The method of claim 21, wherein the solid substance is camphor and its derivatives, naphthalene and its derivatives or hydrazine and its derivatives. 33. As claimed in claim 21, the step of the type of material is by heating. Solid 23 200945600 The method described in paragraph 21, the method further comprises the step of the battery In the annealing treatment of the donor 34. The first patent application in the range of manufacturing the organic thin film solar layer / acceptor layer of the cell element method, at least the method of fabricating an organic thin film solar 35.- comprising: 提供一基板; 形成一透明導電層於該基板上; 形成一電洞傳輸層於該透明導電層上; 形成一陰極; 形成—受體層於該陰極上,該方法至少包含: 提供一塗佈液,其至少包含一半導體材料、一溶劑 及一固型物質塗佈; 塗佈該塗佈液於該陰極上; 移除該溶劑;以及 昇華該固型物質;以及 形成一施體層於該受體層及該電洞傳輪層間。 36.如申請專利範圍第35項所述之方法,其中該基板 為玻璃、金屬、或塑膠。 37.如申請專利範圍第35項所述之方法,其中該透明 導電層為一金屬氧化物層。 24 200945600 38_如申請專利範圍第37項所述之方法,其中該金屬 氧化物層為氧化錫銦薄膜。 39·如申請專利範圍第35項所述之方法,其中該半導 體材料為共軛聚合物。 • 4〇.如申請專利範圍第39項所述之方法,其中該共輥 聚合物為聚噻吩衍生物、聚伸苯基乙烯衍生物、聚葬衍生 物、富勒烯衍生物、或芘衍生物。 41. 如申請專利範圍第40項所述之方法,其中該聚售 吩衍生物為聚3_己基噻吩衍生物。 42. 如申請專利範圍第4〇項所述之方法,其中該聚伸 〇 笨基乙烯衍生物為聚[2-曱氧基,5-(30,70-二甲基_辛烷基)]_ 對-伸苯基乙烯衍生物。 43·如申請專利範圍第40項所述之方法,其中該聚第 衍生物為聚(9,9’-二辛第_雙_&gt;7,&gt;1’-(4-丁苯基)_雙_队^_苯基 -1,4-伸苯基_二胺)衍生物。 44.如申請專利範圍第4〇項所述之方法,其中該富勒 稀衍生物為[6,6]笨基C61 丁酸甲脂衍生物。 25 200945600 45.如申請專利範圍第35項所述之方法,其中該施體 層溶劑係選自笨、甲苯、對二甲苯、二氣笨、三氯苯、三 氣甲烷、以及四氫呋喃所組成之一群組。Providing a substrate; forming a transparent conductive layer on the substrate; forming a hole transport layer on the transparent conductive layer; forming a cathode; forming an acceptor layer on the cathode, the method comprising at least: providing a coating a liquid comprising at least a semiconductor material, a solvent and a solid substance coated; coating the coating liquid on the cathode; removing the solvent; and sublimating the solid substance; and forming a donor layer at the receiving The body layer and the layer of the hole passing through the wheel. The method of claim 35, wherein the substrate is glass, metal, or plastic. The method of claim 35, wherein the transparent conductive layer is a metal oxide layer. The method of claim 37, wherein the metal oxide layer is a film of indium tin oxide. 39. The method of claim 35, wherein the semiconductor material is a conjugated polymer. 4. The method of claim 39, wherein the co-roller polymer is a polythiophene derivative, a polyphenylene vinyl derivative, a burial derivative, a fullerene derivative, or a hydrazine derivative. Things. The method of claim 40, wherein the polyphenylene derivative is a poly-3-hexylthiophene derivative. 42. The method of claim 4, wherein the poly(ethylene) derivative is poly[2-decyloxy, 5-(30,70-dimethyl-octyl)] _ p-Phenylethylene derivative. 43. The method of claim 40, wherein the poly-derivative is poly(9,9'-dioctyl_double_&gt;7,&gt;1'-(4-butylphenyl) _ double_team^_phenyl-1,4-phenylene-diamine) derivative. 44. The method of claim 4, wherein the fullerene derivative is a [6,6] stupid C61 butyric acid methyl ester derivative. The method of claim 35, wherein the donor layer solvent is selected from the group consisting of stupid, toluene, p-xylene, dioxane, trichlorobenzene, tri-methane, and tetrahydrofuran. group. 物質 物。 46.如申請專利範圍第35項所述之方法,其中該固型 材料為樟腦及其衍生物、萘及其料物或蒽及其衍生 含在制Ή㈣之方法,該方法更包 體層/受:Hi4膜太陽能電池之步驟中,退火處理該施Material. The method of claim 35, wherein the solid material is camphor and its derivatives, naphthalene and its materials or strontium, and a method thereof derived from the bismuth (4), which is more inclusive/receptive : in the step of Hi4 film solar cell, annealing the application 2626
TW097115741A 2008-04-29 2008-04-29 Element for organic thin film solar cell and method of manufacture TW200945600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097115741A TW200945600A (en) 2008-04-29 2008-04-29 Element for organic thin film solar cell and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097115741A TW200945600A (en) 2008-04-29 2008-04-29 Element for organic thin film solar cell and method of manufacture

Publications (1)

Publication Number Publication Date
TW200945600A true TW200945600A (en) 2009-11-01

Family

ID=44869791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097115741A TW200945600A (en) 2008-04-29 2008-04-29 Element for organic thin film solar cell and method of manufacture

Country Status (1)

Country Link
TW (1) TW200945600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201536A (en) * 2011-05-20 2011-09-28 电子科技大学 Organic thin-film solar battery and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201536A (en) * 2011-05-20 2011-09-28 电子科技大学 Organic thin-film solar battery and fabrication method thereof
CN102201536B (en) * 2011-05-20 2013-02-13 电子科技大学 Organic thin-film solar battery and fabrication method thereof

Similar Documents

Publication Publication Date Title
Huang et al. Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass
CN101609870B (en) Organic solar cells and method of manufacturing the same
Schmidt-Hansberg et al. Moving through the phase diagram: morphology formation in solution cast polymer–fullerene blend films for organic solar cells
Liu et al. Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells
Liu et al. On the morphology of polymer‐based photovoltaics
Salim et al. The role of poly (3-hexylthiophene) nanofibers in an all-polymer blend with a polyfluorene copolymer for solar cell applications
US8859423B2 (en) Nanostructured electrodes and active polymer layers
Tai et al. Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol
US8866265B2 (en) Carbon-based semiconductors
JP2008536317A (en) High efficiency polymer solar cell by polymer self-assembly
Keawprajak et al. Influence of crystallizable solvent on the morphology and performance of P3HT: PCBM bulk-heterojunction solar cells
Cheng et al. A DMF-assisted solution process boosts the efficiency in P3HT: PCBM solar cells up to 5.31%
TW200828605A (en) Active layer utilized in solar cell and fabrication method thereof
Park et al. Advanced heterojunction structure of polymer photovoltaic cell generating high photocurrent with internal quantum efficiency approaching 100%
Thao et al. Enhancement of power efficiency and stability of P3HT-based organic solar cells under elevated operating-temperatures by using a nanocomposite photoactive layer
Qin et al. Composition-dependent phase separation effects of organic solar cells using P3HT: PCBM as active layer and chromium oxide as hole transporting layer
KR101819954B1 (en) Method for manufacturing perovskite absorber layer and solar cell comprising the absorber layer prepared thereby
Park et al. Water-processable electron-collecting layers of a hybrid poly (ethylene oxide): Caesium carbonate composite for flexible inverted polymer solar cells
Yu et al. Fabrication of one-dimensional organic nanomaterials and their optoelectronic applications
Yasuda et al. Improved power conversion efficiency of bulk-heterojunction organic photovoltaic cells using neat C70 as an effective acceptor for an amorphous π-conjugated polymer
Chen et al. Inter-crosslinking through both donor and acceptor with unsaturated bonds for highly efficient and stable organic solar cells
Al-Shekaili et al. Efficiency and stability improvement of organic solar cells based on PTB7: PCBM through hot-substrate coating
TW200945600A (en) Element for organic thin film solar cell and method of manufacture
KR101399380B1 (en) Bulk heterojunction solar cell and method for the same
Lo et al. Hybrid solar cells based on poly (3-hexylthiophene) and electrospun TiO2 nanofibers modified with CdS nanoparticles