TW200944777A - Method for analyzing image from bio-detection analyzer - Google Patents

Method for analyzing image from bio-detection analyzer Download PDF

Info

Publication number
TW200944777A
TW200944777A TW97115461A TW97115461A TW200944777A TW 200944777 A TW200944777 A TW 200944777A TW 97115461 A TW97115461 A TW 97115461A TW 97115461 A TW97115461 A TW 97115461A TW 200944777 A TW200944777 A TW 200944777A
Authority
TW
Taiwan
Prior art keywords
image
detection
analysis method
biological
point
Prior art date
Application number
TW97115461A
Other languages
Chinese (zh)
Inventor
Tsung-Kai Chuang
Tzu-Chiang Wu
Jiann-Hua Wang
Original Assignee
Kaiwood Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiwood Technology Co Ltd filed Critical Kaiwood Technology Co Ltd
Priority to TW97115461A priority Critical patent/TW200944777A/en
Publication of TW200944777A publication Critical patent/TW200944777A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A method for analyzing an image from a bio-detection analyzer includes steps of: illuminating a reacted bio-detection carrier having at least one detection spot and at least one positioning spot by at least one light source; capturing a single image of the bio-detection carrier having all of detection-spot images and positioning-spot images by an image capturing unit; defining a reference coordinate location of each of the detection-spot images according to the positioning-spot image; defining an effective detection area of each of the detection-spot images according to the reference coordinate location of each of the detection-spot images; and analyzing an averaged intensity value (such as an averaged gray scale) of each of the detection-spot images, so as to output the averaged intensity value for showing a reaction result of the reacted bio-detection carrier.

Description

200944777 * 九、發明說明: - 【發明所屬之技術領域】 本發明係關於一種生物檢測儀之影像分析方法,特別是關 於一種藉由擷取一生物檢測載體之單一影像,直接進行影像定 位及影像色度分析’以利快速輸出檢測資料之生物檢測儀之影 像分析方法。 Φ 【先前技術】 按,生物晶片(biochip)係一種微面積、高密度的檢測分析 工具,且依生物晶片種類或目的不同,係可運用分子生物、分 析化學、生化反應等不同原理設計產生各種不同的檢測分析模 式。因此,在醫療或生化檢測上,生物晶片具有極大的應用潛 力及價值。再者’不同的生物晶片可能選擇不同的生物相關分 子(例如基因、蛋白質、有機化合物或細胞組織等)做為檢測探 ❹ 針,且可能選擇利用微流體、微陣列或微機電技術,將 該檢測探針精確的點製在一載體上或使其於該載體上流動。上 述載體可選自玻璃、發基板、聚石炭酸醋塑勝(pc)或聚甲基丙稀 酸曱醋(即壓克力PMMA)等。生物晶片逐漸受到大量應用的原 因在於其射在微小的賴面積τ时且快速的進行大量的 檢測程序’且僅需少量樣本或試劑。_般而言,上述樣本(檢 測對象)可選自核酸分子或蛋自質等,#樣本與該載體上之檢 測探針反應鍵結後,必需以適當呈色標幟試劑處理之,例如榮 5 200944777 光標幟(fluorescent)、化學冷光標幟(chemi· luminescent)或沈澱 呈色標幟(colorimetric)等,以便得知生物晶片内是否有發生反 應及其程度。 為了取得生物晶片與樣本反應後的檢測結果,相關業者於 是研究發展出各種生物檢測儀,以方便快速提供檢測結果資 料,俾進行後續數據化的分析比對。現今,最常見之生物檢測 儀是以一照相機分別拍攝一已反應之生物檢測晶片上的各檢 測點,以取得各檢測點之個別影像片段,再對各檢測點之個別 影像片段分別進行影像分析處理,以便得知該生物檢測晶片反 應後之生物檢測結果為何。然而,此舉造成整個檢測程序十分 繁複漫長,導致檢測效率低落。同時,必需設置移動單元,以 移動照相機或生物檢測晶片,也導致整體儀器構造複雜化。 舉例而言,中華民國專利公告第12471〇8號「生物晶片檢 測儀」揭示一種習知之光學檢測裝置,其係由一控制系統控制 雷射系統發出連續之激發光,激發光經由反射後投射至一基 座上的一陣列檢測樣本。此時,該控制系統另控制一個二維移 動平台移動,使得激發光能依序準確投射至一陣列檢測樣本。 因而,該陣列檢測樣本上之數個檢測點的檢測物質經由激發光 照射而反射產生放射光,放射光則經由投射、反射、濾光及聚 焦後,成像投射於一訊號讀取裝置上,以便讀取該陣列檢測樣 本上之各檢測點所傳回之光訊號。 200944777 • 如上所述,在該習知光學檢測裝置中具有相同之 - 題:由於在檢測時之光學掃描方式為連續且單點式的二維移動 掃描,因此需費時的進行長時間掃描。再者,該陣列檢測樣本 必需固定於該基座上,並藉由該二維移動平台之移動,才能使 激發光依序準確對位投射在該陣列檢測樣本上之每一檢測 點。同時,連續不斷投射激發光亦造成可觀的耗電問題,以及 不易將雜訊分離的問題。再者,不斷移動該陣列檢測樣本’可 瘳 顚晃動造成雜訊,亦可能造成樣本之毀損。上述因素造成該 習知光學檢測裝置之整體機構十分複雜且體積龐大。^ 再者,該第1247108號專利揭示另一種光學檢測裝置,用 以改良上述二_鱗描_題,該光學檢職置包含一光源 導光模組’其係由-陣列光源與一導光元件所組成,該陣列光 源發出-面光源,面光源藉由通過該導光元件,以形成一線光 源並輸出供掃描之用’該陣列光源可由複數發光二極體(led) 所組成,以取代上述雷射點光源。再者,用以承載陣列檢測樣 本的-基座係以-維方式移動進行掃描,進而達到取代複雜且 佔空間的傳統二維移動方式。 然而’在該光學檢測裝置中,由於在檢測時之光學掃播方 式仍為連續線形的一維移動掃描,惟其仍需費時的進行長時間 掃把’以藉由-轉動完成分:域取各含概檢麻之多個影 像。再者,該陣列檢測樣本仍需固定於該基座上,並藉由該一 7 200944777 ^動平台之鶴’僅是機錢變少,綠每 =取像仍會產生位置偏差,故必料崎柿像二 校否則無法確保檢測結果之準確性。再 列檢測樣本,不但可細絲造成影像雜訊,甚至可 :雜:題—該光學―存一 二=:Γ物檢測儀之影像分析方法, 【發明内容】 、本發明之主要目的在城供—種生物檢職之影像分析方 法’其係藉由娜生物檢峨體之單—影像,直接進行影像定 位、面積轉及色度分析,進而簡化機台構造、提高檢測效率、 降低檢測成本及增加檢測便利性。 本發明之次要目的在於提供一種生物檢測儀之影像分析方 法,其係在生物檢測載體上預設定位參考點,以便進行影像定 位處理得知該生物檢測載體之檢測點之參考座標位置,進而提 高檢測精確性。 本發明之另一目的在於提供一種生物檢測儀之影像分析方 法’其係在定位生物檢測載體之檢測點後,進行影像面積推算 處理’以得知各檢測點之有效檢測面積,進而增加檢刿可靠性。 200944777 本發Θ之再目的在於提供_種生物檢測儀之影像分析方 法’其係在得知各檢測點之有效檢測面積後,進行影像色度分 析處理,以輪出各檢測點之色度平均值,進而提升檢測客觀性。 為達上述之目的,本發明提供—種生物檢測儀之影像分析 其·藉由至少一光源照射一已反應之生物檢測载 體’其設有至少-檢測點及至少一定位參考點;利用一影像掏 取單元齡該生物檢測載體之單—影像,該影像包含所有之檢 _雜及錄㈣點雜;雜财位參相鱗定位出各 檢,點影像的參考座標位置;鱗各檢_影像的參考座標位 置定義出各檢測點影像的有效檢_積;以及,分析各檢測點 影像的色度平均值(如灰階平均值),並輸出該色度平均值。 【實施方式】 為了讓本發明之上述及其他目的、特徵、優點能更明顯易 ® 懂’下文將特舉本發明較佳實施例,並配合所附圖式,作詳細 說明如下。 明參照第1、2、3及4騎示,本個之生物檢測儀之影 像分析方法主要包含下列步驟:藉由至少_规u照射一已 反應之生物檢測載體2,其設有至少―檢測點21及至少一定 位參考點22 ;利用一影像操取單元12擷取該生物檢測載體2 之單-影像3 ’該影像3包含所有之檢測_像31及定位參 考點影像32 ;依據該粒參考點雜%粒丨各檢測點影像 9 200944777 31的參考座標位置311 ;依據各檢測點影像的參考鋪位 置311定義出各檢測點影像31的有效檢測面積;以及,分析 各檢測點影像31的色度平均值(如灰階平均值),並輸出該色 度平均值。本發明將於下文彻第-至第四實蘭之生物檢測 儀詳細說明本發明之影像分析方法,然而該生物制儀之儀器 構造並非用以限制本發明之影像分析方法。 請參照第1、2、3及4圖所示,本發明第一實施例之生物 檢測儀之影像分析方法第-步_ :藉由至少-絲u照射 一已反應之生物檢測載體2,其設有至少一檢測點 21及至少 -定位參考點22。本發明第一實施例提供一生物檢測儀i,其 包含一承載基座10、至少一光源n、一影像擁取單元12及一 影像處理H 13。該承載基座1G用財細生驗測載體2, 並可選擇設Ϊ至少-纽槽1G1(或至少—定位凸塊),以初步 定位該生物檢測載體2。在本發明第-實施射,該光源u 相對設於該承載基座10之下方,且該承載基座1〇較佳由透光 材質製成’例如玻璃或塑膠等。依據該生物檢測儀丨之種類, 該光源11可能選自日光燈、螢光燈、雷射光源或發光二極體 (LED)光源等’以提供適當頻率之光線。該影像擷取單元12 可選自電荷耦合元件(CCD)或互補金屬氧化物導體(CM〇s)之 感測器等,其相對設於該承載基座1〇之上方。該影像處理器 13係電性連接至該影像擷取單元12,該影像處理器13係選自 200944777 ’ 桌上型電腦、筆記型電腦或伺服器電腦等,其用以提供後續步 驟提及之影像定位及色度分析所需的各種影像處理功能。再 者’該生物檢測儀1在該光源11及影像擷取單元12之間另可 選擇設有數個透鏡或反射鏡(未繪示),以適當擴大、集中、透 射或反射光線。 另一方面’如第3A、3B及3C圖所示’依據該生物檢測儀 1之用途’該生物檢測載體2可選自在檢測後能產生顏色變化 β 之各種生物檢測試紙或生物檢測晶片,例如免疫墨點檢測試 紙、DNA基因晶片、蛋白質晶片、微陣列生物晶片、微流體 生物晶片或微機電生物晶片等,且其基材可能是紙類、塑膝、 玻璃、矽晶圓、金屬或其他高分子聚合材料等。該生物檢測載 體2設有至少一檢測點21及至少一定位參考點22,該檢測點 21係以適當方式排列於該生物檢測載體2上,例如以陣列方 式排列於該生物檢測載體2上。各該檢測點21皆預先點上適 ® 當之檢測探針(probe),以便在檢測後產生顏色程度變化,該檢 測探針之呈色原理可選自沈澱呈色標幡(colorimetric)、螢光標 幡(fluorescent)或化學冷光標幟(chemi-luminescent)等。再者, 該定位參考點22則設於該生物檢測載體2除該檢測點21以外 之其他適當位置上,例如選擇以高濃度染色反應點、高濃度螢 光標幟點、凸設、凹設或印刷等適當方式設於該生物檢測載體 2之至少一角隅處或至少一侧緣處等,以便提供一參考座標定 11 200944777 位各該檢測點21。200944777 * IX. Description of the Invention: - Technical Field of the Invention The present invention relates to an image analysis method for a biological detector, and more particularly to a method for directly capturing image and image by capturing a single image of a biological detection carrier Chromaticity analysis is an image analysis method for biometric detectors that facilitate rapid output of detection data. Φ [Previous technology] Biochip is a micro-area, high-density detection and analysis tool. It can be designed and produced by different principles such as molecular biology, analytical chemistry, and biochemical reaction depending on the type or purpose of the biochip. Different detection analysis modes. Therefore, biofilm has great application potential and value in medical or biochemical testing. Furthermore, 'different biochips may choose different bio-related molecules (such as genes, proteins, organic compounds or cell tissues, etc.) as detection probes, and may choose to utilize microfluidics, microarrays or microelectromechanical techniques. The detection probe is precisely spotted on a carrier or allowed to flow on the carrier. The carrier may be selected from the group consisting of glass, hair substrate, poly-carbonic acid vinegar (pc) or polymethyl methacrylate vinegar (i.e., acrylic PMMA). Biochips are increasingly being used in a large number of applications because they are shot at a small area τ and quickly perform a large number of detection procedures' and require only a small amount of sample or reagent. _ In general, the above sample (test object) may be selected from a nucleic acid molecule or an egg self-quality, etc., and after the sample is reacted with the detection probe on the carrier, it must be treated with an appropriate color-coded reagent, for example, 5 200944777 Fluorescent, chemi· luminescent or colorimetric, etc., to know if there is any reaction in the biochip and its extent. In order to obtain the test results after the reaction between the biochip and the sample, the relevant researchers have developed various biological detectors to facilitate the rapid provision of test result data and to carry out subsequent data analysis. Nowadays, the most common biodetector is to take each detection point on a reacted biological detection chip by a camera to obtain individual image segments of each detection point, and then perform image analysis on individual image segments of each detection point. Processing to know what the bioassay results after the bioassay wafer reaction. However, this has caused the entire inspection process to be lengthy and lengthy, resulting in inefficient detection. At the same time, it is necessary to set up the mobile unit to move the camera or biometric wafer, which also complicates the overall instrument construction. For example, the Republic of China Patent Publication No. 12471-8 "Biowafer Detector" discloses a conventional optical detecting device which is controlled by a control system to emit a continuous excitation light from a laser system, and the excitation light is projected through reflection to An array of samples on a susceptor detects the sample. At this time, the control system further controls the movement of a two-dimensional moving platform so that the excitation light can be accurately projected to an array of detection samples in sequence. Therefore, the detection substance of the plurality of detection points on the array detection sample is reflected by the excitation light to generate the emitted light, and the emitted light is projected, reflected, filtered, and focused, and then imaged and projected on a signal reading device for reading. Taking the optical signal returned by each detection point on the array detection sample. 200944777 • As described above, the conventional optical detecting device has the same problem: since the optical scanning mode at the time of detection is continuous and single-point two-dimensional moving scanning, it takes time to perform long-time scanning. Furthermore, the array detection sample must be fixed on the pedestal, and the movement of the two-dimensional mobile platform can cause the excitation light to be accurately and accurately aligned to each detection point on the array detection sample. At the same time, continuously projecting the excitation light also causes considerable power consumption problems and the problem of not easily separating noise. Furthermore, constantly moving the array to detect samples may cause noise and may cause damage to the sample. The above factors cause the overall mechanism of the conventional optical detecting device to be very complicated and bulky. Further, the No. 1247108 discloses another optical detecting device for improving the above-mentioned two-scale drawing, the optical inspection device comprising a light source light guiding module, which is an array light source and a light guiding device. The component light source emits a surface light source, and the surface light source passes through the light guiding component to form a line light source and outputs for scanning. The array light source may be composed of a plurality of light emitting diodes (LEDs) to replace The above laser point source. Furthermore, the pedestal for carrying the array detection samples is scanned in a dimensionally-oriented manner to achieve a conventional two-dimensional movement that replaces the complex and space-consuming. However, in the optical detecting device, since the optical scanning mode at the time of detection is still a continuous linear one-dimensional moving scan, it still takes a long time to perform a long-time sweeping 'by using - rotating to complete the sub-domain: A review of multiple images of Ma. Furthermore, the array detection sample still needs to be fixed on the pedestal, and by the 7 200944777 ^ moving platform crane 'only the machine money is reduced, the green per = image still produces positional deviation, so it is expected Saki Kaki is like the second school, otherwise it is impossible to ensure the accuracy of the test results. Re-inspection of the sample, not only can cause image noise, but also: Miscellaneous: The problem - the optical - save one two =: image analysis method of the object detector, [invention content], the main purpose of the invention is in the city The image analysis method for the bio-inspection is based on the single-image of the bio-detection body, which directly performs image localization, area conversion and colorimetric analysis, thereby simplifying the structure of the machine, improving the detection efficiency, and reducing the detection cost. And increase the convenience of detection. A secondary object of the present invention is to provide an image analysis method for a biological detector, which is to preset a positioning reference point on a biological detection carrier, so as to perform image localization processing to obtain a reference coordinate position of a detection point of the biological detection carrier, and further Improve detection accuracy. Another object of the present invention is to provide a method for image analysis of a biological detector, which performs image area estimation processing after positioning a detection point of a biological detection carrier to know the effective detection area of each detection point, thereby increasing inspection. reliability. 200944777 The second objective of this hairpin is to provide an image analysis method for a biological detector. After learning the effective detection area of each detection point, the image color analysis processing is performed to rotate the chromatic average of each detection point. Value, which in turn improves the objectivity of detection. In order to achieve the above object, the present invention provides an image analysis of a biodetector, which comprises irradiating a reacted biological detection carrier by at least one light source, which is provided with at least a detection point and at least one positioning reference point; The image capture unit is a single-image of the biological detection carrier, and the image includes all the detections and miscellaneous records (four) points; the miscellaneous financial position and the scales are located to locate each reference, the reference coordinate position of the point image; The reference coordinate position of the image defines the effective detection_product of each detection point image; and, the chromaticity average value (such as the grayscale average value) of each detection point image is analyzed, and the average value of the chromaticity is output. The above and other objects, features, and advantages of the present invention will become more apparent and <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Referring to the first, second, third and fourth riding instructions, the image analysis method of the biodetector mainly comprises the following steps: irradiating a reacted biological detection carrier 2 by at least _ regulation u, which is provided with at least "detection" Point 21 and at least one positioning reference point 22; using a video manipulation unit 12 to capture the single-image 3 of the biological detection carrier 2', the image 3 includes all of the detection image 31 and the positioning reference image 32; Reference point %% 丨 丨 each detection point image 9 200944777 31 reference coordinate position 311; the reference detection position 311 of each detection point image defines the effective detection area of each detection point image 31; and, analyzes each detection point image 31 The chromaticity average (such as the grayscale average) and the chromatic average is output. The present invention will be described in detail below with respect to the image analysis method of the present invention, but the instrument configuration of the biometric apparatus is not intended to limit the image analysis method of the present invention. Referring to Figures 1, 2, 3 and 4, the image analysis method of the biological detector according to the first embodiment of the present invention is a step-by-step: irradiating a reacted biological detection carrier 2 by at least - silk u, At least one detection point 21 and at least a positioning reference point 22 are provided. A first embodiment of the present invention provides a biometric detector i including a carrier base 10, at least one light source n, an image capturing unit 12, and an image processing unit H13. The carrier base 1G uses the financial test carrier 2 and optionally has at least a button slot 1G1 (or at least a positioning bump) to initially position the biometric carrier 2. In the first embodiment of the present invention, the light source u is disposed opposite to the carrier base 10, and the carrier base 1 is preferably made of a light transmissive material such as glass or plastic. Depending on the type of biodetector, the source 11 may be selected from the group consisting of a fluorescent lamp, a fluorescent lamp, a laser source, or a light emitting diode (LED) source to provide light of a suitable frequency. The image capturing unit 12 may be selected from a charge coupled device (CCD) or a complementary metal oxide conductor (CM〇s) sensor or the like, which is disposed opposite to the carrier base 1〇. The image processor 13 is electrically connected to the image capturing unit 12, and the image processor 13 is selected from a 200944777 'desktop computer, a notebook computer or a server computer, etc., which is used to provide the subsequent steps mentioned. Various image processing functions required for image localization and colorimetric analysis. Further, the biometric detector 1 may alternatively be provided with a plurality of lenses or mirrors (not shown) between the light source 11 and the image capturing unit 12 to appropriately enlarge, concentrate, transmit or reflect light. On the other hand, 'the biodetection carrier 2 according to the use of the biodetector 1 as shown in Figs. 3A, 3B and 3C' can be selected from various bioassay test strips or biodetection wafers which can produce a color change β after detection, for example Immune dot test strips, DNA gene wafers, protein wafers, microarray biochips, microfluidic biochips or microelectromechanical biochips, etc., and the substrate may be paper, plastic knee, glass, germanium wafer, metal or other Polymeric materials, etc. The biodetection carrier 2 is provided with at least one detection point 21 and at least one positioning reference point 22, which are arranged in an appropriate manner on the biodetection carrier 2, for example in an array on the biodetection carrier 2. Each of the detection points 21 is pre-pointed with a detection probe to generate a color change after the detection. The coloration principle of the detection probe may be selected from a colorimetric, a fluorescent color. Cursor or chemical chemi-luminescent. Furthermore, the positioning reference point 22 is disposed at a suitable position other than the detection point 21 of the biological detection carrier 2, for example, selecting a dyeing reaction point with a high concentration, a high-concentration highlighting point, a convex, a recess or A suitable manner, such as printing, is provided at at least one corner of the biodetection carrier 2 or at least one side edge, etc., so as to provide a reference coordinate for each of the detection points 21 of 200944777.

參 另外如第3A犯及%圖所示,依實際需求,該定位參 考點22之數量触為二個或二敏上,錄個粒參考點η 之間係可選擇形斜字定位、q定位或三點定位的排列關 係’以利賴進仃德分析^如第Μ圖所示,二個該定位參 考點22 _當枝分顺_錄__ 2之-對角線之 二個角隅處,以便進行十字定位。如第3B_示,三個該定 位參考點22以適當方式分別設於該生物檢職體2之三個角 隅處’以便進行三狀位。如第3C _*,三個該定位參考 點22以適田方式相鄰設置於該生物檢測載體2之同一行或同 -列的三個連續點位置處,以便進行三點定位。本發明下文之 各實施例將以第3A圖之生物檢_體2為例,以說明本發明 之生物檢賴之雜分射法。絲,上較财式僅為本發 明之生物檢峨體2的可能實施方式,其並_嫌制本發 明,本發明之生物檢測儀之影像分析方法同樣可應用實施在具 不同定位構造之其他生物檢測載體2上。 凊參照第1、2、3及4圖所示,本發明第—實施例之生物 檢測儀之W像分析方法第二步驟係:彻該影像齡單元Η 擷⑽生__體2之單—影像3 ’該影像3包含所有之檢 測點影㈣及定位參考_像32。在本無巾,_該影像 獅單元12收絲自該承餘座1(^之钱制載體2的光 12 200944777 線’以摘取該生物檢測載體2之單一影像3,並將該影像3傳 送至該影像處理器13。該影像3至少包含所有之檢測點影像 31及定位參考點影像32,其分別對應於該生物檢測載體2之 檢測點21及定位參考點22。再者,為減少影像中之雜訊,該 影像操取單元12可選擇僅擷取該生物檢測載體2範圍内之影 像,而不擷取該生物檢測載體2之邊緣影像及其範圍外之影 像。或者,以其他手段減少影像中之雜訊,例如在該光源11 上裝设一擴散板(未緣示),以增加光線之均勻度。 凊參照第1、2、3及4圖所示,本發明第一實施例之生物 檢測儀之影像分析方法第三步驟係:依據該定位參考點影像 32定位出各檢測點影像31的參考座標位置311。在本步驟中, 該生物檢測儀1之影像處理器13可提供影像定位處理功能, /、係利用預先儲存的比對範本影像(未繪示),以供與該影像 3進行比對。該預先儲存的比對範本影像包含該定位參考點影 像32及檢測點影像31之範本。因此,一旦該影像處理器u 依據該比雜本雜正確職㈣雜3之定位參考點影像 32的參考座標位置32卜即可據此進一步正確辨識出該影像3 之各檢測點影像31的參考座標位置31卜若該影像3之定位 參考點影像32的實際位置與該比對範本影像的預蚊位參考 點位置之間存在誤⑽找郷像巾之顧設定位參考點 位置的鄰近區域’吨出鄉像之定位參考师像的實際位 13 200944777 ^絲_輝31奴位參相縣%之參相標位置 則面籍21較佳係代表—職物中&quot;之位置^預設最大檢 測面積之範圍。 明參照第1、2、3及4圖所示,本發明第—實施例之生物 ^測儀之f彡縣析雜第四步_ ••依據各檢測师像^的 考座標位置311定義出各檢測點影像31的有效檢測面積。 在各檢測點影像31的參考座標位置311提供預設幾何中心之 位置或預設最大檢測面積之範圍後,該生物檢測儀1之影像處 理器13提供爾面積處理魏,叹㈣各檢_影像%的 實際有效檢測面積。由於各檢測點21 _探針对料㈣㈣行μ域,a此其雜 面積可食b等於或小於預設最大檢測面積。依據一預定色度差異 標準,該影像處理胃13可定義出各檢測點21之最外圍邊界 線,進而推導其實際有效檢測面積。 | 明參照第1、2、3及4圖所示,本發明第一實施例之生物 檢測儀之影像分析方法第五步_ :分析各__像31的 色度平均值〇細平均值),並輸㈣色度平均值。在本步驟 中,該生物檢測儀丨之影像處理H π提供色度計算處理功能, 其係在一預設單位面積中取出一預定數量的採樣點,以得到數 個色度值,例如灰階值。亦即,該影像處理器13可由各檢測 點21之有效檢測面積取出數個或全部採樣點,以得到數個色 200944777 度值’例如將全黑至全白分為256 _階至255階)。接著, 該影像處理ϋ 13再對該數觀度值進行平均計算,以產生各 該檢測點21之_雜。該_魏可付拼該影像處 理器13(如硬辨)内’或經_路等適當方式輸 出至其他外雜置(如另—台電腦卜如此,該外部裝置即可依 據各檢測點21之色縣,進行騎該錄酬載體2之 生物檢測結果。 藉由上述第-至第五步驟,本發㈣—實施例即可藉由榻 取該生物_健2之單-娜3,錄進行觀定位、面積 推算及色度分鮮處理程序,有觀簡化機台構造、提高檢測 效率、降低制成本輯加檢測便利性。其巾,在該生物檢測 讎2上預設定位參考點Μ,方便進行影像定位處理得知該 生物檢測_ 2之檢_ 21之參考座餘置,進喊高檢測 精確性。在定位該生物檢測載體2之檢測點21後,進行影像 面積推算處理,方便得知各檢_ 21之魏檢測面積,進而 增加檢測可靠性。在得知各檢_ 21之有效檢測面積後,進 仃影像色度分析處理’以輸出各檢測點h之色度平均值,則 可提升檢測客觀性。 請參照第5圖所示’本發明第二實施例之生物檢測儀之影 像分析方法係;_於本發明第—實施例,但該第二實施例之生 物檢測儀1係不同於本發明第一實施例,其差異在於··雖然該 15 200944777 第二實施例之生物檢測儀1同樣包含一承載基座10、至少一 光源11、一影像擷取單元12及一影像處理器13,但該光源 η係以傾斜方式相對設於該承載基座10之上方的至少一側。 再者,該影像擷取單元12相對設於該承載基座10之上方。該 光源11之光線將傾斜投射至該承載基座10上之生物檢測載體 2。同時,由該生物檢測載體2反射之影像光線則向上投射至 該影像擷取單元12。再者,該光源η及影像擷取單元12另 可分別選擇設有數個透鏡或反射鏡(未繪示),以適當擴大、集 中、透射或反射光線。藉此,本發明之生物檢測儀之影像分析 方法同樣可應用實施在具不同構造之第二實施例之生物檢測 儀1上。 請參照第6圖所示,本發明第三實施例之生物檢測儀之影 像分析方法係相同於本發明第一實施例,但該第三實施例之生 物檢測儀1係不同於本發明第一實施例,其差異在於:該第三 實施例之生物檢測儀1包含一承載基座1〇、至少一光源u、 一影像擷取單元12、一影像處理器及一分光鏡14,其中該 光源11相對設於該承載基座1〇之上方的一侧。該影像擷取單 元12相對設於該承載基座1〇之上方。該分光鏡14係一半透 鏡’由該光源Π水平投射至該分光鏡14之光線將折射並投影 至該承載基座10上之生物檢測載體2。同時,由該生物檢測 載體2反射之影像光線則穿透該分光鏡14,並投射至該影像 16 200944777 擷取單元12。再者,該光源u及影像擷取單元12另可分別 . 選擇設有數個透鏡或反射鏡(未繪示),以適當擴大、集中、透 射或反射光線。藉此,本發明之生物檢測儀之影像分析方法同 樣可應用實施在具不同構造之第三實施例之生物檢測儀丨上。 請參照第7圖所示,本發明第四實施例之生物檢測儀之影 像分析方法係相同於本發明第一實施例,但該第四實施例之生 物檢測儀1係不同於本發明第一至三實施例,其差異在於:該 ❹第四實施例之生物檢測儀i包含一承載基座1〇、至少一環形 光源11’、一影像擷取單元12及一影像處理器13,其中該環 形光源11’相對設於該承載基座10之上方,並環繞該影像掏取 單元12。藉此,該環形光源u’可提供均勻光線投射至該承載 基座10上之生物檢測載體2。再者,該環形光源u,及影像擁 取單το 12另可分別選擇設有數個透鏡或反射鏡(未繪示),以 適當擴大、集中、透射或反射光線。藉此,本發明之生物檢測 ® 儀之影像分析方法同樣可應用實施在具不同構造之第四實施 例之生物檢測儀1上。上述第2、5、6及7圖所示之生物檢測 儀1僅為本發明之可能實施方式,其並非用以限制本發明,本 發明之生物檢測儀之影像分析方法同樣可應用實施在具不同 構造之其他生物檢測儀1上。 如上所述,相較於習用生物檢測儀之影像分析方法係分別 拍攝各檢測點之個別影像片段,並分別進行影像分析處理,此 17 200944777 舉造成檢測效率低落’及整體構造過於複雜等缺點,第1圖之 本發明藉由擷取該生物檢測載體2之單一影像3,直接進行影 像疋位、面積推算及色度分析等處理程序,確實有利於簡化機 台構造、提高檢測效率、降低檢測成本、增加檢測便利性、提 高檢測精確性、增加檢測可靠性,並提升檢測客觀性。 雖然本發明已以較佳實施例揭露,然其並非用以限制本發 明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍 内,當可作各種更動與修飾,因此本發明之保護範圍當視後附 之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖:本發明第一實施例之生物檢測儀之影像分析方法之流 程方塊圖》 第2圖.本發明第一實施例之生物檢測儀之示意圖。 第3A、3B及3C圖:本發明第一實施例之各種生物檢測載體 之示意圖。 第4圖:本發明第一實施例之生物檢測儀之單一影像之示意 圖。 ' 第s圖:本發明第二實施例之生物檢測儀之示意圖。 第6圖:本發明第三實施例之生物檢測儀之示意圖。 第7圖:本發明第四實施例之生物檢測儀之示意圖。 200944777 【主要元件符號說明】 1 生物檢測儀 10 101定位槽 11 11’環形光源 12 13影像處理器 2 21檢測點 22 3 影像 31 311參考座標位置 32 321參考座標位置 承載基座 光源 影像擷取單元 生物檢測載體 定位參考點 檢測點影像 定位參考點影像In addition, as shown in the 3A and % graphs, according to the actual demand, the number of the positioning reference points 22 is touched on two or two sensitive points, and the recorded reference point η is selected to be an oblique shape positioning and q positioning. Or the arrangement of the three-point positioning 'Eli- yin 仃 分析 analysis ^ As shown in the figure, the two positioning reference points 22 _ when the branches are _ _ _ _ 2 - the two corners of the diagonal 隅For the purpose of cross positioning. As shown in Fig. 3B_, three of the positioning reference points 22 are respectively disposed at three corners of the biopsy body 2 in a suitable manner to perform a trigonometric position. As for the 3C_*, the three positioning reference points 22 are disposed adjacent to each other in the same row or the same column of the biological detection carrier 2 in an appropriate manner for three-point positioning. The following embodiments of the present invention will take the biopsy body 2 of Fig. 3A as an example to illustrate the hybrid detection method of the biological detection of the present invention. The wire and the upper formula are only possible embodiments of the biopsy body 2 of the present invention, and the image analysis method of the biodetector of the present invention can also be applied to other methods with different positioning structures. Bioassay on carrier 2. Referring to Figures 1, 2, 3 and 4, the second step of the W image analysis method of the biological detector of the first embodiment of the present invention is: the image age unit Η 撷 (10) __ body 2 single - Image 3 'This image 3 contains all the detected points (4) and the positioning reference_32. In the present no towel, the image lion unit 12 is taken up from the bearing seat 1 (the light of the carrier 2 of the light 2 200944777 line) to extract a single image 3 of the biological detection carrier 2, and the image 3 The image 3 is transmitted to at least the detection point image 31 and the positioning reference point image 32, which respectively correspond to the detection point 21 and the positioning reference point 22 of the biological detection carrier 2. Further, for reducing For the noise in the image, the image capturing unit 12 can select only the image within the range of the biological detection carrier 2, and does not capture the image of the edge of the biological detection carrier 2 and the image outside the range. The method reduces noise in the image, for example, a diffusing plate (not shown) is disposed on the light source 11 to increase the uniformity of the light. 凊 Referring to Figures 1, 2, 3 and 4, the first aspect of the present invention The third step of the image analysis method of the biometric detector of the embodiment is: positioning the reference coordinate position 311 of each detection point image 31 according to the positioning reference point image 32. In this step, the image processor 13 of the biological detector 1 Image positioning processing /, using a pre-stored comparison template image (not shown) for comparison with the image 3. The pre-stored comparison template image includes a template of the positioning reference point image 32 and the detection point image 31. Therefore, once the image processor u is based on the reference coordinate position 32 of the positioning reference point image 32 of the miscellaneous miscellaneous (4) miscellaneous 3, the reference of each detection point image 31 of the image 3 can be further correctly recognized. Coordinate position 31 If there is an error between the actual position of the positioning reference point image 32 of the image 3 and the position of the pre-mosquito reference point of the comparison template image (10) Find the adjacent area of the position reference point position of the image towel Tons of the local like the position of the reference teacher like the actual position 13 200944777 ^ silk _ hui 31 slave position ginseng county% of the reference position is the face of the 21 better department representative - the position of the job "quote ^ preset maximum The range of the detection area. Referring to Figures 1, 2, 3 and 4, the fourth step of the f彡 county analysis of the biological measuring instrument of the first embodiment of the present invention _ •• According to the test of each examiner The coordinate position 311 defines the validity of each detection point image 31. After the reference coordinate position 311 of each detection point image 31 provides the position of the preset geometric center or the range of the preset maximum detection area, the image processor 13 of the biological detector 1 provides the area treatment Wei, sigh (4) Check the actual effective detection area of image %. Since each detection point 21 _ probe is the material (4) (four) line μ domain, a heterogeneous area b is equal to or less than the preset maximum detection area. According to a predetermined chromaticity difference standard, The image processing stomach 13 can define the outermost boundary line of each detection point 21, thereby deriving the actual effective detection area thereof. | Referring to Figures 1, 2, 3 and 4, the biological detection of the first embodiment of the present invention The image analysis method of the instrument is the fifth step _: analyzing the average value of the chromaticity of each __image 31, and the average value of the chromaticity. In this step, the image processing H π of the biometric detector provides a chromaticity calculation processing function, which takes a predetermined number of sampling points in a predetermined unit area to obtain a plurality of chromaticity values, such as gray scales. value. That is, the image processor 13 can take out a plurality of or all of the sampling points by the effective detection area of each detection point 21 to obtain a plurality of colors of 200944777 degrees, for example, dividing all black to all white into 256 _ steps to 255 steps. . Then, the image processing unit 13 performs an average calculation on the number of viewpoint values to generate a hash of each of the detection points 21. The _Wei can pay for the image processor 13 (such as hard-coded) to output to other external miscellaneous (such as another way) (such as another computer, so the external device can be based on each detection point 21 In the county, the biometric test result of riding the recording carrier 2 is carried out. With the above-mentioned first to fifth steps, the present invention (4) - the embodiment can be taken by taking the bio-jian 2 single-na 3, recorded Performing observation positioning, area estimation and chroma separation processing procedures, simplifying the structure of the machine, improving the detection efficiency, and reducing the convenience of making the series and detecting. The towel, the positioning reference point is preset on the biological detection 雠2 Μ, it is convenient to perform image localization processing to know that the reference position of the biological detection _ 2 _ 21 is reserved, and the detection accuracy is high. After the detection point 21 of the biological detection carrier 2 is located, the image area estimation processing is performed. It is convenient to know the detection area of each inspection _ 21, and thus increase the detection reliability. After knowing the effective detection area of each inspection _ 21, the image chromaticity analysis processing is performed to output the chromatic average value of each detection point h. , can improve the objectivity of detection. Please refer to Figure 5. The image analysis method of the biodetector according to the second embodiment of the present invention is shown in the first embodiment of the present invention, but the biodetector 1 of the second embodiment is different from the first embodiment of the present invention, and the difference is In addition, the biosensor 1 of the second embodiment includes a carrier base 10, at least one light source 11, an image capturing unit 12, and an image processor 13, but the light source η is tilted. The image capturing unit 12 is disposed opposite to the upper side of the carrying base 10. The light of the light source 11 is obliquely projected onto the carrying base 10. The biological detection carrier 2, at the same time, the image light reflected by the biological detection carrier 2 is projected upward to the image capturing unit 12. Further, the light source η and the image capturing unit 12 may be separately provided with a plurality of lenses or a mirror (not shown) for appropriately expanding, concentrating, transmitting or reflecting light. Thereby, the image analysis method of the biodetector of the present invention can also be applied to a living body of the second embodiment having different configurations. Referring to FIG. 6, the image analysis method of the biodetector according to the third embodiment of the present invention is the same as the first embodiment of the present invention, but the biodetector 1 of the third embodiment is different. In the first embodiment of the present invention, the difference is that the biodetector 1 of the third embodiment includes a carrier base 1 , at least one light source u , an image capturing unit 12 , an image processor and a beam splitter. The light source 11 is opposite to the upper side of the carrier base 1 . The image capturing unit 12 is opposite to the top of the carrier base 1 . The beam splitter 14 is a half lens 'by the light source The light that is horizontally projected onto the beam splitter 14 will be refracted and projected onto the biodetection carrier 2 on the carrier base 10. At the same time, the image light reflected by the biodetection carrier 2 penetrates the beam splitter 14 and is projected to The image 16 200944777 capture unit 12. Furthermore, the light source u and the image capturing unit 12 can be separately provided with a plurality of lenses or mirrors (not shown) for appropriately expanding, concentrating, transmitting or reflecting light. Thereby, the image analysis method of the biodetector of the present invention can be applied to the biodetector of the third embodiment having different configurations. Referring to FIG. 7, the image analysis method of the biological detector according to the fourth embodiment of the present invention is the same as the first embodiment of the present invention, but the biological detector 1 of the fourth embodiment is different from the first embodiment of the present invention. In the third embodiment, the difference is that the biometric detector i of the fourth embodiment includes a carrier base 1 , at least one annular light source 11 ′, an image capturing unit 12 and an image processor 13 . The annular light source 11 ′ is oppositely disposed above the carrier base 10 and surrounds the image capturing unit 12 . Thereby, the annular light source u' can provide a biological detection carrier 2 for uniform light projection onto the carrier base 10. Furthermore, the ring light source u and the image capturing unit το 12 may be separately provided with a plurality of lenses or mirrors (not shown) to appropriately enlarge, concentrate, transmit or reflect light. Thereby, the image analysis method of the bioassay ® instrument of the present invention can also be applied to the biodetector 1 of the fourth embodiment having different configurations. The biodetector 1 shown in the above 2nd, 5th, 6th and 7th drawings is only a possible embodiment of the present invention, and is not intended to limit the present invention. The image analysis method of the biodetector of the present invention can also be applied to implement the same. Other bioassays 1 of different configurations. As described above, the image analysis method of the conventional biological detector separately captures individual image segments of each detection point and separately performs image analysis processing, and this 17 200944777 causes the detection efficiency to be low and the overall structure is too complicated. The invention of FIG. 1 directly captures a single image 3 of the biological detection carrier 2, and directly performs processing procedures such as image clamping, area estimation, and colorimetric analysis, which is advantageous for simplifying the structure of the machine, improving the detection efficiency, and reducing the detection. Cost, increase detection convenience, improve detection accuracy, increase detection reliability, and improve detection objectivity. The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing an image analysis method of a biodetector according to a first embodiment of the present invention. Fig. 2 is a schematic view showing a biodetector according to a first embodiment of the present invention. Figures 3A, 3B and 3C are schematic views of various biological detection carriers of the first embodiment of the present invention. Fig. 4 is a schematic view showing a single image of the biodetector of the first embodiment of the present invention. 'S s diagram: Schematic diagram of the biodetector of the second embodiment of the present invention. Figure 6 is a schematic view of a biodetector of a third embodiment of the present invention. Figure 7 is a schematic view of a biological detector of a fourth embodiment of the present invention. 200944777 [Description of main component symbols] 1 Biodetector 10 101 positioning slot 11 11' ring light source 12 13 image processor 2 21 detection point 22 3 image 31 311 reference coordinate position 32 321 reference coordinate position bearing base light source image capturing unit Biodetection carrier positioning reference point detection point image positioning reference point image

Claims (1)

200944777 十、申請專利範圍: , 一種生物檢測儀之影像分析方法,其包含·· 藉由至少一光源照射一已反應之生物檢測載體,其設有至少 一檢測點及至少一定位參考點; 利用一影像擷取單元擷取該生物檢測載體之單一影像,該影 像包含所有之檢測點影像及定位參考點影像; 依據該定位參考點影像定位出各檢測點影像的參考座標位 龜置; 、 w 依據各檢_影像的參考座餘置定義&amp;各檢測點影像的 有效檢測面積;及 分析各檢測點影像的色度平均值,並輸出該色度平均值。 2. 如申請專利範圍第!項所述之生物檢測儀之影像分析方 法,其中該色度平均值係為灰階平均值。 3. 如申請專利範圍第丨項所述之生物檢測儀之影像分析方 ❹ 法’其巾預先儲存的崎範本影像触影像進行比 對,以辨識出該影像之定位參考點影像的參考座標位置,及 進步辨識出各檢測點影像的參考座標位置。 4. 如申請專利範圍第3項所述之生物檢測儀之影像分析方 法,其中若該影冑之定位參考點影像的冑際位置與該比對範 本影像的職定位參考齡置之間存錢差時,尋找該影像 中之原預設定位參考點位置的鄰近區域,以找出該影像^定 位參考點影像的實際位置。 20 200944777 5·如中請專利範圍第1項所述之生物檢測儀之影像分析方 .法,射各檢咖縣之參考座餘置係似1設幾何令 心之位置或一預設最大檢測面積之範圍。 6. 如申請專利範㈣1項所述之生物制儀之影像分析方 法’其中依據—預定色度差異標準,蚊義出各檢測點之最 外圍邊界線,進而推導其有效檢測面積。 7. 如申請專利範㈣1項所述之生物檢測儀之影像分析方 Β 法,其中由各檢測點之有效檢測面積取出數個或全部採樣 點,以得到數個色度值,再對該數個色度值進行平均計算, 以產生各該檢測點的色度平均值。 8·如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’另包含一承載基座,用以承載該生物檢測載體。 9.如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’其中該承載基座設置至少一定位槽或至少一定位凸塊, ® 以初步定位該生物檢測載體。 10·如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’其中該光源選自日光燈、螢光燈、雷射光源或發光二極 體(LED)光源。 11.如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’其中該影像擷取單元選自電荷耦合元件(CCD)或互補金 屬氧化物導體(CMOS)之感測器。 21 200944777 12.如申凊專利範圍第1項所述之生物檢測儀之影像分析方 法,其中該生物檢測載體選自在檢測後能產生顏色變化之生 #檢測試紙或生物檢測晶片。 1 •如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’其中該生物檢測載體之檢測點預先點上檢測探針,該檢 剛探針之呈色原理選自沈澱呈色標幟、螢光標幟或化學冷光 鲁 樑織。 14·如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’其中該定位參考點選擇以高濃度染色反應點、高濃度營 光標幟點、凸設、凹設或印刷之方式設於該生物檢測載體上。 1 ^ •如申請專利範圍第1項所述之生物檢測儀之影像分析方 法’其中該定位參考點設於該生物檢測載體之至少一角隅處 或至少一侧緣處。 魯 16.如申請專利範圍第ί5項所述之生物檢測儀之影像分析方 决’其中該定位參考點之數量為二個’其分別設於該生物檢 剛載體之一對角線之二個角隅處’以便進行十字定位。 17. 如申請專利範圍第15項所述之生物檢測儀之影像分析方 法,其中該定位參考點之數量為三個,其分別設於該生物檢 測載體之三個角隅處,以便進行三角定位。 18. 如申請專利範圍第15項所述之生物檢測儀之影像分析方 法’其中該定位參考點之數量為三個,其相鄰設置於該生物 22 200944777 檢測載體之同一行或同一列的三個連續點位置處,以便進行 三點定位。200944777 X. Patent application scope: A method for image analysis of a biological detector, comprising: irradiating a reacted biological detection carrier by at least one light source, wherein at least one detection point and at least one positioning reference point are provided; An image capturing unit captures a single image of the biological detection carrier, the image includes all of the detection point images and the positioning reference point image; and the reference coordinate position of each detection point image is located according to the positioning reference point image; The effective detection area of each detection point image is defined according to the reference position of each inspection_image; and the average value of the chromaticity of each detection point image is analyzed, and the average value of the chromaticity is output. 2. If you apply for a patent scope! The image analysis method of the biological detector according to the item, wherein the chromaticity average value is a gray scale average value. 3. If the image analysis method of the biometric detector described in the scope of the patent application is used, the image of the image of the image of the image is referenced to identify the reference coordinate position of the image of the reference image of the image. And progress to identify the reference coordinate position of each detection point image. 4. The image analysis method of the biometric detector according to claim 3, wherein if the position of the image of the reference point image of the image is saved between the position of the reference image and the reference position of the sample image, When the difference is poor, find the adjacent area of the original preset positioning reference point position in the image to find the actual position of the image ^ positioning reference point image. 20 200944777 5·For example, please refer to the image analysis method of the biological detector mentioned in the first paragraph of the patent scope, and the reference seat of each inspection county is like 1 set geometric position or a preset maximum detection. The range of areas. 6. If the image analysis method of the biological instrument described in the application of the patent (4) 1 is based on the predetermined chromaticity difference standard, the mosquitoes will determine the outer boundary line of each detection point, and then derive the effective detection area. 7. For example, the image analysis method of the biodetector described in the patent specification (4), wherein a plurality of or all sampling points are taken from the effective detection area of each detection point to obtain a plurality of chromaticity values, and then the number is obtained. The chromaticity values are averaged to produce an average of the chromaticities for each of the detected points. 8. The image analysis method of the biometric detector according to claim 1 further comprising a carrier base for carrying the biological detection carrier. 9. The image analysis method of the biometric detector according to claim 1, wherein the carrier base is provided with at least one positioning groove or at least one positioning protrusion, to initially position the biological detection carrier. 10. The image analysis method of the biodetector according to claim 1, wherein the light source is selected from the group consisting of a fluorescent lamp, a fluorescent lamp, a laser light source, or a light emitting diode (LED) light source. 11. The image analysis method of the biodetector according to claim 1, wherein the image capturing unit is selected from a charge coupled device (CCD) or a complementary metal oxide conductor (CMOS) sensor. The method of image analysis of a biodetector according to claim 1, wherein the bioassay carrier is selected from the group consisting of a test strip or a bioassay wafer that produces a color change after the test. 1) The image analysis method of the biodetector according to claim 1, wherein the detection point of the biological detection carrier is pre-pointed with a detection probe, and the principle of coloration of the detection probe is selected from the group consisting of a precipitated color scale Flags, fluorescent flags or chemical cold light Luliang weaving. 14. The image analysis method of the biological detector according to claim 1 of the patent application, wherein the positioning reference point is selected by a high concentration dyeing reaction point, a high concentration camping point, a convex setting, a concave setting or a printing method. On the bioassay vector. 1 ^ • The image analysis method of the biometric detector according to claim 1, wherein the positioning reference point is provided at at least one corner of the biological detection carrier or at least one side edge. Lu 16. The image analysis method of the biometric detector according to claim 5, wherein the number of the positioning reference points is two, which are respectively set on the diagonal of one of the biological detection carriers. Corner corners for cross positioning. 17. The image analysis method of the biological detector according to claim 15, wherein the number of the positioning reference points is three, which are respectively disposed at three corners of the biological detection carrier for triangulation. . 18. The image analysis method of the biometric detector according to claim 15 wherein the number of the positioning reference points is three, and the adjacent ones of the detection targets are located in the same row or the same column of the biological 22 200944777 At successive points, for three-point positioning. 23twenty three
TW97115461A 2008-04-25 2008-04-25 Method for analyzing image from bio-detection analyzer TW200944777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97115461A TW200944777A (en) 2008-04-25 2008-04-25 Method for analyzing image from bio-detection analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97115461A TW200944777A (en) 2008-04-25 2008-04-25 Method for analyzing image from bio-detection analyzer

Publications (1)

Publication Number Publication Date
TW200944777A true TW200944777A (en) 2009-11-01

Family

ID=44869488

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97115461A TW200944777A (en) 2008-04-25 2008-04-25 Method for analyzing image from bio-detection analyzer

Country Status (1)

Country Link
TW (1) TW200944777A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475213B (en) * 2012-06-06 2015-03-01 Genereach Biotechnology Corp A method for detecting the fluorescent
TWI496111B (en) * 2013-06-19 2015-08-11 Inventec Corp Bent pin inspection method
US10852237B2 (en) 2018-03-26 2020-12-01 Centrillion Technologies Taiwan Co., Ltd. Microarray, imaging system and method for microarray imaging
CN113155755A (en) * 2021-03-31 2021-07-23 中国科学院长春光学精密机械与物理研究所 On-line calibration method for micro-lens array type imaging spectrometer
EP3859337A4 (en) * 2018-09-28 2022-06-22 Denka Company Limited Assay determination device and assay determination method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475213B (en) * 2012-06-06 2015-03-01 Genereach Biotechnology Corp A method for detecting the fluorescent
TWI496111B (en) * 2013-06-19 2015-08-11 Inventec Corp Bent pin inspection method
US10852237B2 (en) 2018-03-26 2020-12-01 Centrillion Technologies Taiwan Co., Ltd. Microarray, imaging system and method for microarray imaging
EP3859337A4 (en) * 2018-09-28 2022-06-22 Denka Company Limited Assay determination device and assay determination method
CN113155755A (en) * 2021-03-31 2021-07-23 中国科学院长春光学精密机械与物理研究所 On-line calibration method for micro-lens array type imaging spectrometer
CN113155755B (en) * 2021-03-31 2022-05-24 中国科学院长春光学精密机械与物理研究所 On-line calibration method for micro-lens array type imaging spectrometer

Similar Documents

Publication Publication Date Title
US6309601B1 (en) Scanning optical detection system
US7305112B2 (en) Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
JP4381122B2 (en) Micro-array biochip reflective image access and analysis device with sidewall and method thereof
KR102136648B1 (en) Detection method, microarray analysis method and fluorescence reading device
US20030215791A1 (en) Method of and system for multiplexed analysis by spectral imaging
JP2006208294A (en) Device and method for concurrently imaging plasmon resonance and fluorescence
JP2006515065A (en) Fluorescence sequence reading
JP2002526773A (en) Biochip provided with a plurality of molecular recognition regions and a reading device for such a biochip
JP2010530069A (en) Lattice-type sensor having both label detection-free binding detection function and fluorescence amplification function, and sensor reading system
CN100557417C (en) Imaging device
US20230280274A1 (en) Systems and methods for multicolor imaging
TWI233487B (en) Apparatus and method for accessing and processing reflection image from microwell-plate-based biochip
WO2007067819A2 (en) Optical molecular detection
JP5078920B2 (en) Liquid level detection apparatus and method
CN101592654A (en) The image analysis method of bio-detector
TW200944777A (en) Method for analyzing image from bio-detection analyzer
JP2006337245A (en) Fluorescence reading device
EP1845366A8 (en) Analysis processing method and device
TW201018907A (en) Handheld biological specimen examination apparatus and method thereof
Sengar et al. Deep learning aided small-sized portable fluorescence biochip reader
US7173701B2 (en) CCD-based biochip reader
US7732217B2 (en) Apparatus and method for reading fluorescence from bead arrays
JP2007046933A (en) Fluorescent image-detecting method, fluorescent image-detecting substrate, fluorescent image detector, program and recording medium
US20220082491A1 (en) Devices and systems for data-based analysis of objects
Kurzbuch et al. A biochip reader using super critical angle fluorescence