TW200944762A - High-precision absolute type encoder apparatus and method for operating the same - Google Patents

High-precision absolute type encoder apparatus and method for operating the same Download PDF

Info

Publication number
TW200944762A
TW200944762A TW97115709A TW97115709A TW200944762A TW 200944762 A TW200944762 A TW 200944762A TW 97115709 A TW97115709 A TW 97115709A TW 97115709 A TW97115709 A TW 97115709A TW 200944762 A TW200944762 A TW 200944762A
Authority
TW
Taiwan
Prior art keywords
encoder
signal
absolute
incremental
control
Prior art date
Application number
TW97115709A
Other languages
Chinese (zh)
Other versions
TWI390183B (en
Inventor
Ching-Hsiung Tsai
Cheng-Ping Lin
Po-Ming Chen
Meng-Chang Lin
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to TW97115709A priority Critical patent/TWI390183B/en
Publication of TW200944762A publication Critical patent/TW200944762A/en
Application granted granted Critical
Publication of TWI390183B publication Critical patent/TWI390183B/en

Links

Abstract

A high-precision absolute type encoder apparatus includes a controller electrically connected to an incremental type encoder and generating a control signal to the incremental type encoder, a comparator electrically connected to outputs of the incremental type encoder and generating first pulse signals, a latch unit electrically connected to outputs of the comparator and generating second pulse signals by latching the generating first pulse signals. When power failure occurs, the controller generates the control signal as successive pulses with predetermined period to drive the latch unit and the incremental type encoder. Therefore, the controller knows angular information of the incremental type encoder by counting the second pulse signals. The absolute angular information can be obtained by combining the angular information and an initial position after power failure.

Description

200944762 九、發明說明: 【發明所屬之技術領域】 、本T明係有關於一種高解析絕對型編碼裝置及其操作 法特别疋有關於一種可在斷電時提供高解析絕對型編 碼裝置及其操作方法。 【先前技術】 編满!:交流伺服馬達通常内含-個光學編碼器,該光學 9 編碼益提供轉子的肖声以_去監、* 土± 郊度獲馬達轉速資訊,該轉速資 ° &至相關速度控制單元以精確控制馬達轉速。 達習知交流飼服馬達控制系統之方塊圖,馬 ’度位置係由—光學編碼㈣制並經一作 以得到一角度資㈣。該角度資訊送; 役制态14處理以得到一吳壷 〜王 ,收該馬達估計轉速及一速度制 鲁 一絕緣栅雙極電晶體(IGBT)模組34產生控 達轉速錢,以精確控制馬達1〇轉速。I生控制馬 的位ίΓΓ言’在飼服驅動馬達中,鎖附在馬達轉勒上 的位置感測器便是弁璺媼 災C硬褥釉上 取決於編瑪哭m 飼服馬達的定位精確度 抑、化編碼益的解析度高低,光學 ㈣度 盗3 12又分為增量型編碼器細e_丨〜杨旋轉編碼 碼器(absolute encoder)。 a encoder)和絕對型編 增量型編喝器只能提供位二 所以電源中斷後,位¥的次々相對於别一位置的資訊, 認。在斷電後再重St變化必須重新歸零才可確 丨又丹置新上電的瞬間, 增置型編碼器無法立即 6 200944762 知道目前機構所在位置。絕對型 ㈣度(位置)的絕對值且不會因為電置 的資訊’因此斷電再上電後無需 零:而喪失位置 制系統的運作。 仃~零&序,簡化了控 參見第二圖,為一光學編碼器 (例如-雷射二極體LD)26G發出 & ’ 一光源 μ. ιν>ΛΛ 如的先線經過一旋轉碼盤 、()及一個固定不動的副編碼片(mask) 220到達一光感 Ο 測元件(例如一光二極體I>D)240,# rt π ΛΑ ,, 先感測元件240接收刭 的光線強度隨著旋轉碼盤2〇〇位 1个u而有不同的強度變 化’透過光感測元件240上的信號變化便可檢知位置訊 息0 九參見第三圖,為一絕對型編碼器之旋轉碼盤300之示 意圖,其中該旋轉碼盤30〇為一 6位元(6_二進位角度 碼(Graycode )的碼盤設計。該旋轉碼盤3〇〇包含一圓形 體302及夕婁丈之光柵。該光栅包含在最内圈編碼軌道且 瘳佔有1/2圓周之1個第一光栅3〇4A、在内侧第二圈編碼軌 道且各佔有1/4圓周之2個第二光柵3〇4B、第三光柵 304C、第四光栅3〇4D、第五光柵3〇4E及在最外側編碼執道 且各佔有1/64圓周之32個第六光栅3〇4F。因此沿著輻射 (radial)方向可以產生不同的明暗信號,並可沿著圓周方向 達成=64的解析度。然而在如第三圖所示之絕對型編碼器 架構,解析度每增加一個位元(bit),碼盤便必須增加一圈 的編碼執道。解析度越高編碼軌道數便越多,編碼器的體 積就越大;在一些有體積限制的場合,絕對式編碼器的精 7 200944762 度便有所限制。 參見第四Α圖,為一增量式編碼器之一旋轉碼盤4〇〇 示思圖’該旋轉碼盤4〇〇包含一圓形主體402及多數之光 柵。該些光栅包含主光柵4〇4A、第一副光柵404B及第二副 光柵4〇4C。參見第四B圖,為副編碼盤420之示意圖;該 副編碼盤420包含四排光栅42〇a。 Ο 參見第四c圖,為光感測元件44〇之示意圖,該光感 測元件440 &含對應於主光栅4〇4A之主感測單元4微, 444A’442B’444B (亦即標示為A+,B+,A_, B_之區域)。當旋轉 碼盤400旋轉時’在光感測元件44〇㈤四個單元主感測單 元樣,衡,侧,444B (A+,B+,A、B_)會產生類似弦波的信 號。這四個弦波的相位分別為㈣/18〇/27〇度,取麵信號 (AAA-)作差動放大後可得到;肖除共模雜訊⑹·n —e)的正弦信號Α ;同樣的取9〇/27〇信 ❹ 後可得到消除共模雜訊的餘弦信號Β,ΛΒ兩個 #號的相位差9G度,可㈣來判斷正轉歧轉。 ^量^碼器基本上只須处脈波信號就可以檢知位 置訊心’=於此位置訊息只提供相對於前—位置的資 :),因㈤點信號感測單元446Α,446β(ζ: Ζ-),在母二人系統上電時先回原 (, 置訊息。增量式編碼器的優點是只需六個:得到絕對位 相差距90。的正弦信號和餘弦信號進行補:可: 析度的位置訊息,其缺點則是每 =便了传到南解 點動作。此種做法不但浪”機電都須執行回原 —㈣且在某些不容相原點程 8 200944762 序的應用場合,掸晉 用絕對式編石馬器。工、、…厂…、法付合需求而需增設使 為了解決斷電時的多圈的絕 圈數的計數有兩種作法: 才目關技術中 (1) 機械齒輪式 点右1 ^數的δ十數,齒輪組的每—個齿輪互相咬合,形 成有編碼器軸心來帶叙篦 ° 形 動第二個奸(^動=齒輪,再由第一個齒輪來帶 (如第五圖所示)。 址^個齒輪上刻有絕對碼’設為—圈有n個絕對定 一成利f为散式雷射二極體LD和光二極體pD來笋 同、’這齒輪組可以記錄編碼器軸心轉動心〜圈只 (2) 單圈絕對型配合電池計數圈數 在斷電下,以電池供電給專用晶片 隔觸發雷-权ϋ* /T n f巾曰曰乃/、以間 —發雷射一極體(LD) ’使得光二極 間的一圈絕對定址的杳粗γ雜雜丄 生間IWk φ 辦㈣·X 藉由這絕狀址的資料信 號貝^可以判斷是否正轉或反轉 =電時’編碼器的晶片會讀已累積的圈數,同時也 二ί上的角度碼目前的數值,最後再做插補來得到更 門Πί值。然而在讀取角度碼時’有時會有臨界數值 蚌^者粉塵在碟片上導致與真實位置有一些偏差,此 要一些校正點來修正這些偏差。-般而言,剛上電 時’編瑪器所傳回的數值還有些偏差,等到通過一 =後,角度值才會變正確。換言之,復電時…開^得 接近角度值,·待轉至校正點後,才有正確角度值。 9 200944762 f發明内容】 因此本發明之目66 器及其操作方 、P在於鉸供一種高解析絕對型編碼 ,,可以在斷電時精確且省電地計曾旋轉角 度,以利復電後迅速啟動。 ’电也口十开旋轉角 碼铲置,係利用述目的’本發明提供-種高解析絕對型編 絕對角度量測,包含:—jr池而在斷電時進行 控制盗,係電連接到該增量式總 碼器,並產生-控制传 逆㈣私里式編 Φ ^ , 市1°號至該增I式編碼器;一比較器, 響電連接到該增量式短 平乂 @ Λ編碼态之輸出,以對該 出作操作*得到第―. 了/日Μ編媽讀 比趟nw: 琥問鎖單元,電連接到該 二脈波信號;其中作問鎖操作而得到第 斷續i H在斷電時’驅動該控制信號為 斷續導通之脈波信號,且計算 T异由第一脈波k號產生之計數 而侍知一絕對角度資訊。 致 【實施方式】 ®、告克服前述所產生的問題,本發_在斷電時如何 =。A、B脈波來計數為主要内容,而不是計數圈 、=此,斷電與復電間,對於A、b脈波計數是—致 、。’ /又有任何區別,圈數的計數也從A、B脈波計數來進 /考第六圖,為依據本發明之高解析絕對型編碼裝置 6〇之方塊圖’該高解析絕對型編碼裝置仞包含一控制器 1〇0 電力開關120、一增量式編碼器140、一比# M 閂鎖單元(latch)180及一個電池(未圖示,供應 200944762 電力vcc),該電池供應上述單狀電力。該增量式 器140為一習知之增量式編碼器,且包含一雷射二瑪 LD、-光二極體PD及對應之旋轉碼盤(未標號)。該 控制器100電連接到該電力開關12〇,並提供一控制z SW至該電力開關!20,以選擇性地控制f射二極體^ 電源為持續點亮(正常供電模式,或是類正常模式 (qUaSkl〇rmalm〇de))或是脈波式操作(電池模式)'。再者, ❹ 該控制器100亦電連接到該比較器16〇及該閂鎖單元 180 ’以提供該控制信號sw至該比較器細及該⑽ 元180。由光二極體PD接收到的趴肋信號(a+,a_ 90/270信號(Β+,Β·)經過比較器、16〇纟理後可以得到第 波信號Ai及m ;而第一脈波信號A1及則經過問鎖R 廳處理後可以得到第二脈波信號A2及犯。第二脈= 號A2及B2由控制! 100之計數_ 1〇2處理即可知道^ 角度’該控制器⑽可由斷電前之角度與斷電後 ; 加而知道目前之絕對角度。 系 第七圖所示為在第六圖之高解析絕對型編碼裝置 部份信號之波形圖,由控制器⑽的㈣設計或邏輯= 可產生如第七圖的控制信號sw。此控制信號撕在^诵 (_狀態來點亮雷射二極體LD,也因此在這同^ 極體PD也產生感光信號。感光信號由旋轉碼盤(disk)和副 編碼片(讎否遮蔽而決定。雷射二極體⑺的 號經過放大及比較後’而產生第一脈波信號^細。‘ 第-脈波信號細透過控制信號哪控制該㈣單乂 200944762 ⑽進行_ ’以得到第二脈波信號A2及B2。該第二脈 波彳虎A2及B2信號和雷射-托胁 現柙田射一極體LD —直持續開啟(0n) 所得到的信號是相同的。只是隨著轉動速度加快,間隔時 間也越短(詳見後述)。 由於a十數A1、Bi脈波,相較於計數圈數,控制信號 SW的間隔時間需要比較短。舉例而言,若旋轉石馬盤 _)之解析度為512聊,那麼轉速為6Qrpm時,第一脈波 信號A1及B1的脈波週期為咖/512 = i/5i2s=:2ms。控 信號sw的間隔時間至少需要2/5ms = 〇4ms,才能正確計 數脈波數。至於控制作铁过 市』1〇說Sw的持續開啟(On)時間由雷射 二極體LD及光二極體PD㈣反應時間測量決定。當正 供電時,控制信號sw信號一直處於持續開啟(〇n)狀離。 因此當斷電被檢測時,控制器1〇〇會依據角度計算轉速, 並等到轉速到足狗低(例如小於3Qipm )時,才切換 池模式,此時控制錢S W的間隔時間以〇 4⑽來進行。 ❹ 透過計數益102的累加,可以估算目前的轉速。當 過30rpm時,則控制信號sw作铲脾 < 认杜读s -r 彳°唬將扠於持續開啟(Qn)狀 態,讓顯可以安全計數。當轉速又 的間隔時間以o.4ms(亦即每〇.4ms導通一次)=號 行。如第七圖所示’在斷電時’一般而言編碼器旋轉速声 不會很快’因此用斷續導通之控制信號sw = 精確得知旋轉角度計數。如此圖所示,計 ^ 88,87,86,85,而控制器1〇〇即 ^ 果為 条a 〇 丨J依據δ十數器計數結果及斷 電别角度貝訊而精確得知目前之絕對位置。 12 200944762 ο 參見第八圖,為本發明之高解析絕對型編碼裝置操作 方法,首先偵測是否正常供電(S100),若是正常供電^則 由控制器100驅動控制信號SW持續導通(正常模式), 以持續偵測旋轉碼盤(disk)轉速(S102);若非為正常供電 (例如馬達的三相電力失常時),則以電池電力供電且間 隔方式供應控制信號SW,以在節電狀態下估計轉速 池模式)(S104)。隨後控制器100判斷轉速是否超過 rpm(S110),若轉速超過,則控制器1〇〇控制控制信號 持續開啟(On),以持續偵測旋轉碼盤(disk)轉速,^時雖然 係用電池電力,但是為了偵測較為高速的旋轉喝盤旋轉了 =此還是送料續開啟之控制信號sw,此模式稱為類正 常模式(quasin〇rmalmode)(S112);若轉速未超過,則由控制 器1〇〇以間隔方式供應控制信號sw,以在節電狀能;估 計轉速(電池模式)(S104)。 〜 本專利的技術特徵有下列 參 υ斷電時,不以單圈絕對位置來計數圈齡,品θ、 間隔時間來觸發雷射二極體LD,得到脈波信號a、= 计數角度位置資料,也同時包括圈數進位累計。 常連鎖方式還原間隔的脈波信號a、b成為正 吊連續的脈波,使得計數器在斷電時依然保持正常士十數 數。3)利用不同切換週期來正常計數不同轉速的脈波 上述僅為本發明之較佳實施例而 發明實施範圍。即凡依本發明申請專 2用來限定本 私τ百寻刊耗圍所做的均等變 13 200944762 化與修飾,皆為本發明專利範圍所涵蓋。 【圖式簡單說明】 第-圖為1知交流伺服馬達控制系統之方塊圖。 第二圖為光學式編碼器的基本構造。 第三圖為-習知絕對型編碼器之旋轉碼盤之示意圖。 第四A圖為一習知增量型編碼器之旋轉碼盤之示意 圖0 第四B圖為一習知副編碼盤之示意圖。 第四C圖為一習知光感測元件之示意圖。 第五圖為機械齒輪示意圖。 第六圖為依據本發明之高解析絕對型編碼裝置之方塊 第七圖所示為在第六圖之高解析絕對型編碼裝 份信號之波形圖。 °丨 第八圖為本發明之高解析絕對型編碼裝置操作方 ⑩【主要元件符號說明】 ° 【習知】 馬達10 光學編碼器12 控制器14信號處理單元2〇 速度控制器30控制器模組32 絕緣栅雙極電晶體(IGBT)模組34 旋轉碼盤200,300,40〇 副編碼片220,420 光感測元件240,440 光源260 14 200944762 圓形主體302,402 第一光柵304A 第二光栅304B 第三光柵304C 第四光栅304D 第五光柵304E 第六光柵304F 主光柵404A 第一副光栅404B 第二副光栅404C 光栅420A 主感測單元 442A, 444A,442B,444B 原點信號感測單元446A, 446B . 【本發明】 、B2 高解析絕對型編碼裝置60 控制器100 電力開關120 增量式編碼器140 比較器160 閂鎖單元180 計數器102 控制信號SW 電池電力Vcc 第一脈波信號A1 、B1 第二脈波信號A2 ^ 步驟 S100-S112 15200944762 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a high-resolution absolute type encoding device and an operation method thereof, and particularly to a high-resolution absolute type encoding device capable of providing a power-off during power-off Method of operation. [Prior Art] Compiled! : AC servo motor usually contains an optical encoder, which provides the sound of the rotor to the motor speed information, which is the speed of the motor and the speed control unit. Precise control of motor speed. A block diagram of the motor control system of the conventional AC feeding machine, the position of the horse is made by optical coding (4) and obtained by one to obtain a perspective (4). The angle information is sent; the service state 14 is processed to obtain a Wu Hao ~ Wang, which receives the estimated motor speed and a speed of the Luyi Insulated Gate Bipolar Transistor (IGBT) module 34 to generate the control speed of the money for precise control Motor 1 〇 speed. I raw control of the horse's position ΓΓ ΓΓ 』 'In the feeding drive motor, the position sensor attached to the motor reel is the disaster C C hard glaze depends on the positioning of the Ma Ma crying feeding machine motor Accuracy and resolution of the coding benefits, optical (four) degree 3 12 is divided into incremental encoder fine e_丨 ~ Yang rotary encoder (absolute encoder). a encoder) and absolute type Incremental type of drinker can only provide bit two. Therefore, after the power interruption, the bit of the bit is compared with the information of another position. After the power is turned off, the change of St must be reset to zero to confirm the moment when the new power is turned on, and the add-on type encoder cannot be immediately. 6 200944762 Know the current location of the mechanism. The absolute value of the absolute (four) degree (position) is not due to the information of the electrical installation. Therefore, there is no need for zero after the power is turned off and the power is turned off: the operation of the position system is lost.仃~零&, simplifies the control. See the second figure for an optical encoder (for example, the laser diode LD) 26G & 'a light source μ. ιν> ΛΛ such as the first line through a rotation code The disc, () and a fixed sub-code mask 220 arrive at a photo-sensing element (e.g., a photodiode I>D) 240, # rt π ΛΑ , and the sensing element 240 receives the chirped light. The intensity varies with the rotation of the rotary code wheel 2 by one u. 'The position information can be detected by the signal change on the light sensing element 240. 9 See the third figure, which is an absolute type encoder. A schematic diagram of a rotating code wheel 300, wherein the rotary code wheel 30 is a 6-bit (6-digit binary code (Graycode) code wheel design. The rotary code wheel 3〇〇 includes a circular body 302 and a sunset a grating comprising: a first grating 3〇4A occupying the innermost circumference coding track and occupying 1/2 circumference, and a second grating encoding the track on the inner second circumference and occupying 1/4 circumference each 3〇4B, third grating 304C, fourth grating 3〇4D, fifth grating 3〇4E and encoding on the outermost side and each occupying 1/6 4 of the six sixth gratings 3〇4F. Therefore, different light and dark signals can be generated along the radial direction, and the resolution of =64 can be achieved along the circumferential direction. However, in the absolute figure as shown in the third figure Type encoder architecture, each time a bit is added to the resolution, the code wheel must add a circle of code execution. The higher the resolution, the more the number of encoded tracks, the larger the size of the encoder; In the case of volume limitation, the absolute encoder's fine 7 200944762 degree is limited. See the fourth diagram for one of the incremental encoders to rotate the code wheel 4 to show the picture 'The rotary code wheel 4〇 The 〇 includes a circular body 402 and a plurality of gratings. The gratings include a main grating 4〇4A, a first sub-grating 404B, and a second sub-grating 4〇4C. See FIG. 4B, which is a schematic diagram of the sub-encoding disk 420; The sub-encoder disk 420 includes four rows of gratings 42A. Ο See FIG. 4C, which is a schematic diagram of the light sensing element 44, which includes a main sensing corresponding to the main grating 4〇4A. Unit 4 micro, 444A'442B'444B (also marked as A+, B+, A_, B_ area When the rotary code wheel 400 rotates, 'the four sensing units of the four elements of the light sensing element 44 (five), the balance, the side, 444B (A+, B+, A, B_) will produce a signal similar to the sine wave. The phase of each sine wave is (4)/18〇/27〇, and the surface signal (AAA-) is obtained after differential amplification; the sinusoidal signal of common mode noise (6)·n-e) is removed; the same After taking 9〇/27〇信❹, you can get the cosine signal that eliminates the common mode noise. The phase difference between the two ## is 9G degrees, and you can judge the forward rotation by (4). ^Quantity coder basically only needs pulse signal to detect position signal '= This position message only provides information relative to the front position:), because (5) point signal sensing unit 446Α,446β(ζ : Ζ-), when the mother two system is powered on, first return to the original (set the message. The advantage of the incremental encoder is that only six: get the absolute phase difference of 90. The sine and cosine signals are complemented: : The location information of the resolution, the shortcoming is that every = will be transmitted to the South solution point. This practice is not only the wave "mechanical and electrical must be implemented back to the original - (4) and in some applications that do not match the original point 8 200944762 order掸 用 用 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对(1) The mechanical gear type points the right δ number of δ tens, each gear of the gear set meshes with each other, forming an encoder axis to bring the 篦°° to move the second trait (^ move = gear, then It is brought by the first gear (as shown in the fifth figure). The address is marked with an absolute code set on the gears. Absolutely set a profit f for the scattered laser diode LD and the photodiode pD to shoot, 'this gear set can record the encoder axis rotation heart ~ circle only (2) single-turn absolute type with battery count The number of laps is off, and the battery is powered by a dedicated chip to trigger the lightning-power ϋ*/T nf 曰曰//, and the inter-laser one-pole (LD)' makes a circle between the light poles absolutely The addressed γ γ 杂 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I At the same time, the current value of the angle code is also used, and finally the interpolation is used to get the threshold value. However, when reading the angle code, sometimes there is a critical value 蚌^ dust on the disc leads to the real There are some deviations in the position, and some correction points are needed to correct these deviations. In general, the value returned by the coder is slightly biased when the power is turned on, and the angle value will become correct after passing one =. In other words, when the power is restored, the opening angle is close to the angle value, and the correct angle value is obtained after the calibration point is turned. 9 200944762 f SUMMARY OF THE INVENTION Therefore, the object of the present invention and its operator, P lies in a high-resolution absolute type of coding, which can accurately and power-savingly measure the angle of rotation during power-off, so that after power-on Quickly start. 'Electric also open the corners of the rotating corner code, the use of the purpose of the present invention - a high-resolution absolute type absolute angle measurement, including: - jr pool and control stolen in the event of power failure, Department Electrically connected to the incremental total coder, and generate-control reverse (4) privately-programmed Φ ^ , city 1 ° number to the increased I-type encoder; a comparator, the sound is connected to the incremental short Ping 乂 @ Λ 态 态 之 , , , 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 对该 ― ― 趟 趟 趟 趟 趟 趟 趟 趟 趟 趟 趟 趟 w w w w w w w w w w And the first interrupted i H is driven to turn off the pulse signal of the pulse signal when the power is off, and the count of the difference generated by the first pulse k is calculated to provide an absolute angle information. [Embodiment] ®, to overcome the problems caused by the above, how to = in the power failure. The A and B pulse waves are counted as the main content, not the counting circle, = this, between the power-off and the re-powering, the counting of the A and b pulse waves is -. ' / There is any difference, the count of the number of turns is also taken from the A, B pulse count to enter the sixth picture, which is a block diagram of the high resolution absolute type encoding device according to the present invention. The device 仞 includes a controller 1〇0 power switch 120, an incremental encoder 140, a #M latch unit 180, and a battery (not shown, supplying 200944762 power vcc), which supplies the above Single power. The incremental device 140 is a conventional incremental encoder and includes a laser gamma LD, a photodiode PD, and a corresponding rotary code wheel (not labeled). The controller 100 is electrically coupled to the power switch 12A and provides a control z SW to the power switch! 20, to selectively control the f-diode ^ power supply for continuous lighting (normal power supply mode, or normal mode (qUaSkl〇rmalm〇de) or pulse wave operation (battery mode)'. Furthermore, the controller 100 is also electrically coupled to the comparator 16 and the latch unit 180' to provide the control signal sw to the comparator and the (10) element 180. The rib signal received by the photodiode PD (a+, a_90/270 signal (Β+, Β·) can be obtained by the comparator 16 and the first wave signal Ai and m; and the first pulse signal A1 and then the second pulse signal A2 and the sin can be obtained after the processing of the lock lock R. The second pulse = the number A2 and B2 are controlled by the count of 100 _ 1 〇 2 to know ^ angle 'the controller (10) It can be obtained from the angle before power-off and after power-off; and the current absolute angle is added. The seventh figure shows the waveform of part of the signal of the high-resolution absolute coding device in the sixth figure, which is (4) of the controller (10). Design or Logic = can generate the control signal sw as shown in Figure 7. This control signal is torn in the _ state to illuminate the laser diode LD, and therefore also produces a sensitized signal in the same body PD. The signal is determined by rotating the disk and the sub-coded chip (not determined by the mask. The number of the laser diode (7) is amplified and compared to generate the first pulse signal.] The first pulse signal is fine. The second pulse signal A2 and B2 are obtained by the control signal which controls the (4) single 乂 200944762 (10) to obtain the second pulse signal A2 and B2. The waves of the A2 and B2 signals and the laser-to-shock are now the same as those of the LD--continuous turn-on (0n). The signal is the same as the speed of rotation increases. See later.) Since a ten number A1, Bi pulse wave, the interval time of the control signal SW needs to be relatively short compared to the number of counting turns. For example, if the resolution of the rotating stone horse disk _) is 512 chat, then When the speed is 6Qrpm, the pulse period of the first pulse signal A1 and B1 is coffee / 512 = i/5i2s =: 2ms. The interval of the control signal sw needs at least 2/5ms = 〇 4ms to correctly count the pulse wave number. As for the control of the iron market, the continuous on-time of Sw is determined by the measurement of the reaction time of the laser diode LD and the photodiode PD (four). When the power is being supplied, the control signal sw signal is continuously on ( 〇n) Dissociation. Therefore, when the power failure is detected, the controller 1〇〇 calculates the rotation speed according to the angle, and waits until the rotation speed is low to the foot dog (for example, less than 3Qipm), then the pool mode is switched, and the control SW is controlled at this time. The interval time is 〇4 (10). 累 Through the accumulation of the count benefit 102, In order to estimate the current speed. When over 30 rpm, the control signal sw is used as the spleen < 读 read s -r 彳 ° 唬 will be forked in the continuous open (Qn) state, so that the display can be safely counted. The time is o.4ms (that is, it is turned on once every .4ms) = line. As shown in the seventh figure, 'in the case of power failure', the encoder will not rotate very fast. Therefore, it is intermittently turned on. The control signal sw = accurately knows the rotation angle count. As shown in the figure, the calculation is 88, 87, 86, 85, and the controller 1 is the result of the bar a 〇丨 J according to the δ decimator count result and The electric angle is different from the original and the absolute position is known. 12 200944762 ο Referring to the eighth figure, the method for operating the high-resolution absolute encoding device of the present invention first detects whether the power is normally supplied (S100), and if the power is normal, the controller 100 drives the control signal SW to be continuously turned on (normal mode). , to continuously detect the rotation speed of the rotary disk (S102); if it is not normal power supply (for example, when the three-phase power of the motor is abnormal), the control signal SW is supplied in battery power and intervald to estimate in the power saving state. Speed cell mode) (S104). Then, the controller 100 determines whether the rotation speed exceeds the rpm (S110). If the rotation speed exceeds, the controller 1〇〇 controls the control signal to be continuously turned on (On) to continuously detect the rotation speed of the rotary code disc (disk), although the battery is used. Power, but in order to detect a relatively high-speed rotating tray rotation = this is still the feed control signal sw, this mode is called the normal mode (quasin〇rmalmode) (S112); if the speed is not exceeded, the controller 1) The control signal sw is supplied in an interval manner to enable power saving; the rotational speed (battery mode) is estimated (S104). ~ The technical features of this patent are as follows: When the power is off, the circle is not counted in the absolute position of the single circle, and the laser diode LD is triggered by the product θ and the interval time to obtain the pulse signal a, = the count angle position. The data also includes the cumulative number of rounds. The pulse wave signals a and b of the constant interlock mode reduction interval become positive continuous pulse waves, so that the counter maintains a normal tenth number when the power is turned off. 3) Normally counting pulse waves of different rotational speeds using different switching periods The above is only the preferred embodiment of the present invention and the scope of the invention. That is to say, according to the invention, the application for specialization 2 is used to limit the uniformity of the private τ 百 刊 13 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 [Simple description of the diagram] The first figure is a block diagram of the AC servo motor control system. The second picture shows the basic construction of an optical encoder. The third figure is a schematic diagram of a conventional rotary encoder with an absolute encoder. Figure 4A is a schematic diagram of a conventional rotary encoder with a rotary encoder. Figure 0 is a schematic diagram of a conventional secondary encoder disk. Figure 4C is a schematic diagram of a conventional light sensing element. The fifth picture is a schematic diagram of the mechanical gear. Figure 6 is a block diagram of a high resolution absolute type encoding apparatus according to the present invention. Fig. 7 is a waveform diagram of a high resolution absolute type coded component signal in the sixth drawing.丨The eighth figure is the high resolution absolute type encoding device of the present invention. 10 [Main component symbol description] ° [Practical] Motor 10 Optical encoder 12 Controller 14 Signal processing unit 2 〇 Speed controller 30 Controller module Group 32 Insulated Gate Bipolar Transistor (IGBT) Module 34 Rotary Code Wheel 200, 300, 40 〇 Sub-coded Chip 220, 420 Light Sensing Element 240, 440 Light Source 260 14 200944762 Circular Body 302, 402 First Grating 304A Second Grating 304B Third Grating 304C Fourth grating 304D fifth grating 304E sixth grating 304F main grating 404A first sub-grating 404B second sub-grating 404C grating 420A main sensing unit 442A, 444A, 442B, 444B origin signal sensing unit 446A, 446B. Invention, B2 High-resolution absolute type encoding device 60 Controller 100 Power switch 120 Incremental encoder 140 Comparator 160 Latch unit 180 Counter 102 Control signal SW Battery power Vcc First pulse signal A1, B1 Second pulse Signal A2 ^ Steps S100-S112 15

Claims (1)

200944762 十、申請專利範圍: L種尚解析絕對型編碼裝置,係刺^ 及-電池而在斷電時進行絕對角度量測τ:量式編碼器 -控制器’係電連接到該增量式編碼器匕:. 制信號至該增量式編碼器; 並產生一控 :比較器’電連接到該增量式編碣器之 增置式編碼器輸出操作而得到第-脈波信號;出,以對該 ⑶二’鎖單元’電連接到該比較器之輪出,: 益之輸出作問鎖操作而得到第二脈波信號;對該比較 之控制器在斷電時,驅動該控制信號為斷續導通 之脈波且計算由第二脈波信 2導通 角度資訊。 歡而侍知一 1 Φ /磁申**專利㈣第1項之高解析絕對型編碼裝置, ’、 ㈣朗鎖單元係在控制㈣為導通(High)時門 鎖該第-脈波信號。 卩1刺時問 ❹甘3.如申請專利範圍帛1項之高解析絕對型編碼裝置, ’、中該控制器在該增量式編碼器之-旋轉碼盤轉速超過 3〇RPM時’驅動該控制信號為持續開啟(On)之信號。 4.如申请專利範圍第3項之高解析絕對型編碼裝置, 其中該增量式編碼器之該旋轉碼盤解析度為512ppr,且該 控制信號的間隔時間為〇4咖。 ^ 5. 一種尚解析絕對型編碼方法,係利用一增量式編碼 器及一電池而在斷電時進行絕對角度量測,包含: 在斷電且該增量式編碼器轉速低於一轉速設定值時, 16 200944762 以一斷續導通之控制信號驅動該增量式編石馬 一脈波信號; 器,以產生 第 脈 、利用該控制#號閂鎖該第一脈波信號,以產 波信號;及 乐 度 利用該第二脈波信號計算該增量式編碼器之一旋轉角 6·如申請專利範圍第5項之高解析絕對型編碼方法 其中在斷電且轉速高於該轉速設定值時,驅動該控制 為持續開啟之信號。 〜 7. 如申請專利範圍第5項之高解析絕對型編碼方法, 其中該轉速設定值為30RPM。 8. 如申請專利範圍第5項之高解析絕對型編碼方法, 其中該該增量式編碼器之一旋轉碼盤解析度為512 ppr,且 該控制信號的間隔時間為〇.4ms。200944762 X. Patent application scope: L kinds of analytical absolute type coding devices, which are thorns and batteries, and perform absolute angle measurement when power is off. τ: The quantity encoder-controller is electrically connected to the incremental type. Encoder 匕:. signals to the incremental encoder; and generates a control: the comparator is electrically connected to the incremental encoder output operation of the incremental encoder to obtain a first-pulse signal; The second pulse signal is obtained by electrically connecting the (3) two 'lock unit' to the comparator, and the output of the control is a lock operation to obtain a second pulse signal; when the controller of the comparison is powered off, the control signal is driven The pulse wave is intermittently turned on and the angle information of the second pulse wave 2 is calculated. Happy to know 1 Φ / magnetic application ** patent (4) Item 1 of the high-resolution absolute coding device, ', (4) the lock unit is locked in the control (4) when the (High) door locks the first pulse signal.卩1 刺时问❹甘3. If you apply for a patented scope 帛1 high resolution absolute type encoding device, ', the controller in the incremental encoder - rotating code wheel speed exceeds 3 〇 RPM 'drive The control signal is a signal that is continuously on (On). 4. The high resolution absolute type encoding device of claim 3, wherein the rotary encoder has a resolution of 512 ppr and the interval of the control signal is 〇4 coffee. ^ 5. A still analytical absolute coding method, which uses an incremental encoder and a battery to perform absolute angle measurement during power failure, including: in the power failure and the incremental encoder speed is lower than one speed When the set value is set, 16 200944762 drives the incremental weaving horse-pulse signal with a discontinuous conduction control signal to generate a pulse, and latches the first pulse signal with the control ## Using the second pulse signal to calculate a rotation angle of the incremental encoder. 6. The high resolution absolute coding method according to claim 5 of the patent scope, wherein the power is off and the rotation speed is higher than the rotation speed. When the value is set, the control is driven to a signal that is continuously turned on. ~ 7. As in the high-resolution absolute encoding method of claim 5, the speed setting is 30 RPM. 8. The high resolution absolute coding method according to claim 5, wherein one of the incremental encoders has a rotary code resolution of 512 ppr, and the control signal has an interval of 〇.4 ms. 1717
TW97115709A 2008-04-29 2008-04-29 High-precision absolute type encoder apparatus and method for operating the same TWI390183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97115709A TWI390183B (en) 2008-04-29 2008-04-29 High-precision absolute type encoder apparatus and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97115709A TWI390183B (en) 2008-04-29 2008-04-29 High-precision absolute type encoder apparatus and method for operating the same

Publications (2)

Publication Number Publication Date
TW200944762A true TW200944762A (en) 2009-11-01
TWI390183B TWI390183B (en) 2013-03-21

Family

ID=44869482

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97115709A TWI390183B (en) 2008-04-29 2008-04-29 High-precision absolute type encoder apparatus and method for operating the same

Country Status (1)

Country Link
TW (1) TWI390183B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482948B (en) * 2012-04-17 2015-05-01 Mitsubishi Electric Corp Multiturn encoder
US11342818B2 (en) 2019-12-23 2022-05-24 Delta Electronics, Inc. Encoder, motor and controlling method of encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482948B (en) * 2012-04-17 2015-05-01 Mitsubishi Electric Corp Multiturn encoder
US11342818B2 (en) 2019-12-23 2022-05-24 Delta Electronics, Inc. Encoder, motor and controlling method of encoder

Also Published As

Publication number Publication date
TWI390183B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US9372481B2 (en) Encoder, motor with encoder, servo system, and signal processing method for encoder
JP5142750B2 (en) Rotary encoder and method for operating the rotary encoder
JP5480967B2 (en) Multi-period absolute position detector
US7547875B1 (en) Absolute type encoder apparatus and method for operating the same
US8154427B2 (en) Multiturn rotary encoder and method of operating a multiturn rotary encoder
EP2682716A2 (en) Encoder and motor device
JP5306468B2 (en) Multi-turn rotary encoder
TW201015054A (en) Encoder system, signal processing method, and transmission signal generation output device
TWI403699B (en) Absolute-type encoder and method for detecting absolute position
US20030222798A1 (en) Method for initializing position with an encoder
CN104677386B (en) Multiturn rotary encoder
CN108844558B (en) Method for realizing power-off position memory by using single-turn absolute value encoder
TW200944762A (en) High-precision absolute type encoder apparatus and method for operating the same
US10389283B2 (en) Motor drive apparatus for driving stepping motor and control method therefor
JP7140340B2 (en) ENCODING DEVICE, MOTOR AND ENCODING DEVICE CONTROL METHOD
CN105365882A (en) Turning control device and method of forklift and forklift
CN101586968B (en) High-resolution absolute type code device and operation method thereof
JP5006270B2 (en) Absolute encoder device and its operation method
JP2009210389A (en) Absolute optical encoder
JP7412103B2 (en) encoder device
JP4701354B2 (en) Encoder backup detection device
JP7430994B2 (en) encoder device
JP3326849B2 (en) Multi-turn absolute encoder
JP2009294117A (en) Absolute encoder and method for detecting absolute position
US20200072639A1 (en) System for detecting the position of a linear unit of a linear system