TW200942221A - Rehabilitation equipment and controlling method thereof - Google Patents

Rehabilitation equipment and controlling method thereof Download PDF

Info

Publication number
TW200942221A
TW200942221A TW97112196A TW97112196A TW200942221A TW 200942221 A TW200942221 A TW 200942221A TW 97112196 A TW97112196 A TW 97112196A TW 97112196 A TW97112196 A TW 97112196A TW 200942221 A TW200942221 A TW 200942221A
Authority
TW
Taiwan
Prior art keywords
grip
preset
user
force
interference
Prior art date
Application number
TW97112196A
Other languages
Chinese (zh)
Inventor
Kao-Chi Chung
Ju-Ying Chang
Kuang-Che Liu
Yu-Sheng Chou
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97112196A priority Critical patent/TW200942221A/en
Publication of TW200942221A publication Critical patent/TW200942221A/en

Links

Abstract

A rehabilitation equipment and work settings and a controlling method thereof are disclosed. The rehabilitation equipment comprises: a grip, a multi-axis power detector, a connecting rod structure, a coder, a motor, a driving-torque controller module, a display device, a lifter, a computer operation interface, and a controller. In the controlling method, a plurality of work setting modes are provided, and action information can be provided to a user via a display device. When the user starts to do rehabilitation, the user applies predetermined force on the grip, to keep the grip to move along a predetermined trajectory. In addition, interference can be applied on the grip, when the user keeps the grip to move. Then, user's force value and the moving trajectory of the grip are detected and calculated. Thereafter, the moving trajectory recorded user's force values are calculated to provide quantitative measures for upper limb movement.

Description

200942221 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種復健系統與其工作設定及控制方 法’特別是有關於上肢復健系統與其功能設定與執行之模 式方法。 【先前技術】 在台灣每年有相當多的人因為車禍、生病或其他因素 © 而導致上肢、下肢甚至全身癱瘓。其中,上肢是人類生活 中運用最廣泛的肢體,若上肢癱瘓或受傷後沒有完全恢 復,會在生活上產生相當多的不方便。為了恢復病患肌肉 與關知的正常動作,必須施以適當的復健治療,才不會使 病患肌肉萎縮與關節僵化。 目前上肢的復健工作分為兩類:一為醫院復健師為病 患所做的臨床復健,包含各項動作評估與治療;二為病患 使用復健機台來進行復健。臨床復健通常需要家人陪同病 © 《至醫院’由復健師對病人進行復健治療。臨床復健治療 多採徒手操作動作方式,屬勞力集中復健方式且耗費大量 專業復健治療人力資源,不僅動作評估結果較主觀,徒手 治療的強度及模式也依治療師的不同而有所差異,此徒手 操作方式亦無法進行大量重複且—致性高的動作訓練治 療。 然而,徒手操作或習知的復健機無法提供較完整之客 觀量化上肢被動或主動動作特性評估指標,以至於缺乏量 化數據以輔助訂定後續治療模式與強度,也無法量化評估 200942221 復健後之治療效果。對中樞神經損傷或神經肌肉病變導致 動作控制功能障礙之患者而言’需藉由動作學習過程以訓 練適當的上肢動作控制,然而,習知的復健機多為利用動 力裝置帶動支撐機構移動或牵引上肢進行動作,患者上肢 缺少主動施力參與動作執行,無法產生有效之動作控制訓 練及施力控制訓練效果。根據相關研究發現,融合適當衍 加生物資訊回饋(如視覺、阻力等)於動作學習訓練的過 程,能明顯增強動作學習與訓練之效果❶上述復健裝置於 患者動作訓練時並無提供外加資訊回馈,對動作學習及控 制與臨床評估與治療之應用上有明顯缺失。 【發明内容】 因此,本發明之一方面係在提供一種復健系統與其功 能設定及執行模式控制方法,利用機電整合技術設計發展 提供.1.高再現性、高解析度之單側上肢主動或被動動作之 客觀量化、動作評估與生物力學評估模式;設定不同的動 作模式以量化上肢動作的運動學、動力學及生物力學特性 (利用系統中的多轴力感測器及編碼器提供數據化之評估 資料)’ 2·可程式化之不同動作路徑與外加阻力規劃之動 作模式,並可於動作執行時給予外加干擾,同時配合顯示 裝置給予生物資訊回饋於上肢動作復健訓練治療。此系統 可應用於臨床上中樞神經損傷或病變患者上肢動作功能與 生物力學特性之探討與分析比較,於復健訓練治療方面, 提供可程式化且重複性高之不同動作路徑、動作速度與外 加阻力規劃之動作模式,配合位置、速度、施力情形提供 200942221 患者適當的感覺輸入及視覺迴授,以增進高再現性動作復 . 健訓練治療之效果,進而提升上肢動作復健治療的效能與 品質。 根據本發明之一實施例,此復健系統少包含:握把、 多轴力感測器、複數個連桿機構、角度變化感測裝置、扭 力偵測器、扭力控制器、扭力回授電路、驅動裝置模組、 人機電腦控制介面、訊號傳輸處理模組、控制模組與顯示 裝置。握把係用以供使用者握住,以進行復健評估與訓練。 ® 多轴力感測器係連接至握把,以感測使用者施加於握把之 使用者力量值。連桿機構係連接至該力量感測器,其中連 桿機構包含複數個連桿。角度變化感測裝置係用以量測複 數個連桿之角度變化。 第一 /第二扭力偵測器係用以偵測第一 /第二驅動扭力 值’並將其傳至扭力回授電路,此扭力回授電路係用以將 第一 /第二驅動扭力值傳送至第一 /第二驅動扭力控制器,使 第一 /第二驅動扭力控制器根據第一 /第二預設扭力值來及 © 時迴授調整第一 /第二驅動扭力值。 第一 /第二驅動裝置模組係用以輸出第一 /第二動作角 度相關指令與第一 /第二驅動扭力至連桿機構,使握把沿著 預設方向移動。 人機電腦控制介面係為可程式化介面系統環境,用以 提供複數個工作參數選擇與輸入,含動作輸入方塊、下拉 式選單等參數輸入方式,以提供動作路徑設定、動作速度 权疋、重複次數設定、固定式或變化式干擾設定、容許誤 差量設定(係包含動作位置偏差容許量值、速度偏差容許 200942221 量值、力偏差容許量值設定)、固定式或變化式動作阻力設 定(係包含動作阻力大小、動作阻力方向或其變化組合系 列設定)、固定式或變化式施力狀態設定(係包含施力大 小、施力方向、施力變化波形或其系列變化組合設定)等。 訊號傳輸處理模組整合於主機電腦中,以動作控制卡 和《料掏取卡為主體,並包含端子臺與極限切換處理電路 等。係用以將該工作參數轉換為複數個控制訊號,並傳達 給控制模組,使達成該些連桿角度控制與扭矩輸出控制, 另外,記錄連桿角度變化與握把處施力情形,並根據該些 連才干間之角度變化來計算該握把之移動位置以提供迴授式 機構動作控制。再者,將動作量化數據,包含運動執跡、 角度、速度、加速度變化值等運動學量化數據;力量、扭 矩變化值等動力學量化數據儲存於電腦中。 控制模組係用以控制該些驅動裝置及該些扭力控制 器’使握把以預設扭矩沿著預設方向移動。 顯示裝置係連結訊號傳輸處理模組,係以程式化之聲 音、影像、圖示、色彩、亮燈等方式以於動作同時提供動 作狀態相關動作量化資訊顯示回饋。 根據本發明之又一實施例,在此復健機台之控制方法 中包含二個控制模式,分別為被動模式、主動模式和主動 施力模式’且各模式分別可提供評估與訓練治療之功能模 式方法。在被動模式中,首先利用控制模組來根據預設軌 跡來控制連桿機構,以使握把沿著預設軌跡以預設速度移 動,並帶動使用者之手臂重複預設次數,相同工作方式可 用以设定合適之動作速度以產生預設軌跡之等速度動作以 200942221 200942221 ❹ 進行大量重複之動作復健訓練。另外,可選擇於動作執行 同時利用控制模組來控制連桿機構施加不同方向與大小之 干擾位移於握把。然後,利用該感測器來感測使用者施加 於握把之使用者力量值。接著,將目標軌跡、握把位置與 施力值輸出至顯示裝置。另外,可選擇於被動狀態利用控 制模組經由連桿機構給予握把處外加干擾,該干擾方式係 包含位移與力量干擾模式,並可選擇調整期干擾強度,即 干擾力量大小、干擾位移量及位移速度等、干擾方向、干 擾波形,即方波、弦波及其變化組合。再者,於動作執行 同時紀錄握把軌跡與使用者施力值,以提供量化數據辅助 臨床量化動作評估。 在主動模式中,首先提供動作預設軌跡、預設速度和 預設阻力狀態量值,然後,利用感測器來感測使用者力量 值和握把移動軌跡。接著,將使用者力量值和握把移動軌 跡輸出至顯示裝置’並藉由顯示裝置來告知使用者預設軌 跡、速度,並使握把以預設速度執行預設軌跡。另外,當 使用者施加使用者力量值於握担上,並使握把沿著一握把 移動軌跡來移動時,可選擇利用控制模組控制連桿機構來 給予握把處外加干擾,該干擾之設以法與㈣模式中所 使用方式相同再者,相同卫作方式可用以設定合適之動 作速度以產生預設軌跡之等速度動作以進行大量重複之主 動動作復健訓練。於動作執行同時紀錄所設定之工作項 二跡與使用者施力值,以提供量化數據輔助臨床 量化主動動作評估。 ;動施力模式令,握把可設定於不同座標位置使 200942221 用者施加力量值於握把上,然後,利用感測器來感測並計 算使用者力量和握把位置,同時,藉由顯示裝置來告知使 用者施力大小與方向。另外,可選擇利用控制模組控制連 桿機構來給予握把處外加干擾,該干擾之設定方法與被動 模式中所使用方式相同。再者,相同工作方式可用以設定 合適之施力動作以進行大量重複之施力動作復健訓練並 於動作執行同時紀錄所設定之工作項目、握把軌跡與使用 者施力值,以提供量化數據輔助臨床量化動作評估,以提 供後續訓練參數設定參考。 【實施方式】 請參照第1圖,其係繪示根據本發明第一實施例之復 健機台100的結構示意圖。復健機台1〇〇包含:握把1〇2、 多軸力感測器104、連桿機構1〇6、編碼器1〇8、第一驅動 裝置110、第一驅動扭力控制模組112、第二驅動裝置114、 第一扭力控制模組116、顯示裝置118、升降裝置120、電 〇 腦操作介面122、緊急停止裝置124和主機控制模組126。 握把102係連接至多軸力感測器1〇4,當握把1〇2被施加力 量而往某一方向移動時,多轴力感測器104可偵測出此力 量之值。多轴力感測器104係連接到連桿機構1〇6,連桿機 構1〇6可帶動多轴力感測器1〇4和握把1〇2,使其在水平面 上移動第-馬達110和第二馬彡114係用以推動連桿機 構106’以移動握把102。第一驅動扭力控制模組m和第 二扭力控制模組116係用讀出扭力至連桿機構跡以控 制連捍機構⑽輸出之力。每一扭力控制模組包含有扭力 200942221 偵測器、扭力控制器和扭力回授電路(未繪示)。扭力偵測器 係用以偵測施加於連桿機構106之扭力值,接著杻力回授 電路將扭力值傳送至扭力控制器,使扭力控制器根據預設 的扭力值來調整施加於連桿機構106之扭力,使其—致。 編碼器108係用以紀錄連桿機構1〇6之動作角度以推算 連桿機構106的動作角度與握把102之動作軌跡。升降裝 置120係用以控制連桿機構1〇6的高度,以使其高度符合 使用者的需求。 σ ❹ 主機控制模組126包含馬達控制器、動作控制卡和資 料擷取卡(未繪示)。馬達控制器係用以控制第一馬達11〇、 第二馬達114和升降裝置120之馬達的轉速。動作控制卡 係用以根據使用者者設定的預設動作,來輸出動作訊息至 扭力控制器和馬達控制器,以使連桿機構1〇6做出預設動 作。資料擷取卡係用以接收多軸力感測器104與編碼器1〇8 所傳送之握把軌跡資料。當主機控制模組126接收到握把 軌跡資料後,會比較握把軌跡資料與預設動作之差異,並 將實際動作路徑與差異結果輸出至顯示裝置U8。 緊急停止裝置124係用以於連桿機構1〇6之動作執行 中之同時,遇有任何緊急情況發生或其他狀況必須及時停 止執仃動作時,輸出停止訊號至主機控制模組126,使主機 控制模組126停止連桿機構106之動作。 以下將就此三種控制 本發明之復健機台100具有三種控制模式,分別為被 動模式、主動模式和主動施力模式 模式一一做說明。 清參照第4圖,其係、♦示根據本發明第二實施例之復 200942221 健機台的控制方法200的流程示意圖,其中控制方法200 係對應至上述的主動施力模式。在控制方法200中,首先 進行目標值設定步驟202。在目標值設定步驟202中,由使 用者設定一預設握把座標位置和一預設力量值與方向,此 為使用者預期達到的訓練目標,而後,進行干擾條件設定 步驟204’以設定欲施予外加干擾’以及預設干擾力量和預 設干擾次數。接著,進行訓練步驟206。在訓練步驟206 中,使用者施加一使用者力量值於握把102,並使施力狀態 維持穩定。然後’進行判斷與紀錄步驟208。在判斷與紀錄 步驟208中,主機控制模組126判斷使用者施力狀態是否 穩定且與預設力量值相符,並提供判斷結果,同時紀錄並 顯示此判斷結果。在本實施例中,握把位置與使用者施力 情形被紀錄下來,以評估使用者施力穩定度與生物力學特 性’並透過顯示裝置118來告知使用者評估與訓練結果, 其中此結果包含判斷結果、量化的第一使用者力量變化 值、握把的移動軌跡、施力穩定度量化參數以及生物力學 量化特性參數。當判斷結果為是時,進行干擾次數檢查步 驟210,以檢查已執行之干擾次數是否達到預設干擾次數。 若已執行之干擾次數未達到預設干擾次數,則進行干擾步 驟212。在干擾步驟212中,主機控制模組126控制連桿機 構106來施加干擾位移於握把1〇2上,以訓練使用者出力 的穩定性。值得注意的是,此干擾為小位移,而施加干擾 位移的持續時間也很短。接著,回到判斷步驟2〇8,以判斷 使用者是否被干擾位移所影響,並完成預設干擾次數之訓 練。另外,本實施例之復健機台的控制方法2〇〇可訓練靜 12 200942221 ' 態單側上肢穩定度控制能力,同時記錄之手部作用力變化 及手部動作路徑,以提供後續訓練參數設定資時參考。 冑參照帛5 ®,其係緣示根據本發明之復健機台1〇〇 的控制方法300的流程示意圖,其中控制方法3〇〇係對應 • 至上述的主動模式。在控制方法300 _,首先進行目標值 設定步驟302。在目標值設定步驟3〇2中,由使用者設定一 預設握把軌跡、速度、阻力值與阻力方向、外力環境此 $使用者預期達到的評估或訓練目標,而後執行干擾條件 Ό 狀步驟3G4’以設定是否欲施予外加干擾,以及預設干擾 力量和預設干擾次數。接著,進行訓練步驟3()6。在訓練步 驟中’使用者持續施加一使用者力量值於握把1〇2,並 使施力值維持穩定,並使握把1〇2沿著一移動執跡移動。 然後,進行判斷與紀錄步驟3〇8。在判斷與紀錄步驟3〇8 中,主機控制模組U6判斷握把之移動軌跡與預設執跡之 差值是否位於可允許範圍内,並提供判斷結果同時紀錄 &判斷結果,並透過顯示裝置m來告知使用者評估與訓 ϋ Τ結果,其中此結果包含判斷結果、量化的第一使用者力 量變化值、握把的移動軌跡、動作穩定度與動態生物力學 量化特性參數。當第-判斷結果為否時,進行輔助施力步 驟31〇n判斷結果為是時進行干擾次數檢查步驟 3Π。在輔助施力步驟31。中,主機控制模組126控制連桿 機構106來施加輔助力量於握把1〇2 1,讓使用者順應此 辅助力量以訓練使用者動作的正確性,值得注意的是此 輔助力量可為固定外力環境或是變動外力環境。當辅助施 力步驟310執仃完畢後,再回到判斷與紀錄步驟⑽。在干 13 200942221 《次數檢査步驟312中’係檢查已執行之干擾次數是否達 到預設干擾次數,若否則進行干擾步驟314。在干擾步驟 314中,主機控制模組126控制連桿機構1〇6來施加干擾位 移於握把1G2 _L ’以評估或訓練使用者動作的穩定性。然 _ 後,再回到判斷與紀錄步驟308。值得注意的是,為短時間 之小量位移或力量。當第一判斷結果為否時,則進行訓練 步驟E2。在訓練步驟E2中,接著,回到判斷與紀錄步驟c, 以判斷外力干擾或輔助力量對使用者的影響,並進行預設 •人數後才結束此次訓練。另外,本實施例之復健機台的控 制方法300可訓練動態單側上肢穩定度動作正確度,同時 記錄之手部作用力變化及手部動作路徑,以提供後續訓練 參數設定資時參考。 請參考第6圖,其係繪示根據本發明復健機台1〇()的 控制方法400的流程示意圖,其中控制方法4〇〇係對應至 上述的被動模式。在控制方法4〇〇中,首先進行目標值設 定步驟402。在目標值設定步驟4〇2中,由使用者設定一預 © 設執跡與速度,此為預期達到的評估或訓練目標。而後, 進行干擾條件設定步驟404,以設定欲施予外加干擾。接 著,進行訓練步驟406。在訓練步驟400中,主機控制模組 126控制握把1〇2沿著一移動軌跡移動,以帶動使用者之上 肢。然後,進行干擾步驟408,利用主機控制模組126控制 連桿機構106來施加干擾位移於握把1〇2上,以評估使用 者被動狀態下生物力學特性。值得注意的是,此干擾為短 時間之小量位移或力量。接著,進行判斷步驟41〇。在判斷 步驟410中’判斷握把之移動軌跡是否與預設軌跡和預設 200942221 力量值相符,以判別使用者是否被干擾位移影響。接著, 執行紀錄和顯示步驟412以記錄握把位置與使用者施力情 形並透過顯示裝置η 8來告知使用者訓練結果,其_此訓 . 練結果包含判斷結果、量化的使用者力量值、握把的移動 軌跡和被動生物力學量化特性。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 Ο 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,上文特舉一較佳實施例,並配合所附圖式’作詳 細說明如下: 第1至3圖係繪示根據本發明第一實施例之復健機台 的結構示意圖 Ο 第4圖係繪示根據本發明第二實施例之復健機台的控 制方法的流程示意圖。 第5圖係繪示根據本發明第三實施例之復健機台的控 制方法的流程示意圖。 第6圖係繪示根據本發明第四實施例之復健機台的控 制方法的流程示意圖。 102 :握把 【主要元件符號說明】 100 :復健機台 15 200942221200942221 IX. Description of the Invention: [Technical Field] The present invention relates to a rehabilitation system and its operation setting and control method, particularly a mode method for the upper limb rehabilitation system and its function setting and execution. [Prior Art] A large number of people in Taiwan each year cause upper limbs, lower limbs and even general paralysis due to car accidents, illness or other factors. Among them, the upper limb is the most widely used limb in human life. If the upper limb is paralyzed or injured, it will not be completely recovered, which will cause quite a lot of inconvenience in life. In order to restore the normal movements of the patient's muscles and related knowledge, proper rehabilitation therapy must be applied to prevent the muscles from shrinking and the joints becoming rigid. At present, the rehabilitation work of upper limbs is divided into two categories: one is the clinical rehabilitation of the hospital rehabilitation staff for the patients, including various action evaluation and treatment; the second is the rehabilitation of the patient using the rehabilitation machine. Clinical rehabilitation usually requires family members to accompany the disease. © To the hospital, the rehabilitation doctor will rehabilitate the patient. The clinical rehabilitation treatment is a multi-handed operation method. It is a labor-intensive rehabilitation method and consumes a large amount of professional rehabilitation therapy. The results of the action evaluation are more subjective, and the intensity and mode of the manual treatment vary according to the therapist. This hands-on operation method is also unable to perform a large number of repeated and highly actionable exercise training treatments. However, the hands-on or conventional rehabilitation machine cannot provide a more complete objective quantitative evaluation of the passive or active motion characteristics of the upper limbs, so that there is a lack of quantitative data to assist in the formulation of subsequent treatment modes and intensity, and it is impossible to quantitatively evaluate the 200942221 after rehabilitation. The therapeutic effect. For patients with central nervous system injury or neuromuscular lesions leading to motor control dysfunction, 'the action learning process is needed to train appropriate upper limb movement control. However, the conventional rehabilitation machine mostly uses the power device to drive the support mechanism to move or Traction of the upper limbs, the patient's upper limb lacks active force to participate in the action execution, and can not produce effective action control training and force control training effect. According to relevant research findings, the integration of appropriate biological information feedback (such as vision, resistance, etc.) in the process of motion learning training can significantly enhance the effect of motion learning and training. The above-mentioned rehabilitation device does not provide additional information during patient motion training. Feedback, there is a clear lack of application of motion learning and control and clinical evaluation and treatment. SUMMARY OF THE INVENTION Accordingly, one aspect of the present invention provides a rehabilitation system and a function setting and execution mode control method thereof, which utilizes electromechanical integration technology to provide design and development. 1. High reproducibility, high resolution single-sided upper limb initiative or Objective quantification of passive actions, motion assessment and biomechanical assessment modes; setting different modes of action to quantify the kinematics, dynamics, and biomechanical properties of upper extremity movements (using multi-axis force sensors and encoders in the system to provide data Evaluation data) ' 2 · Programmable different action paths and additional resistance planning action modes, and can give additional interference during the execution of the action, and at the same time cooperate with the display device to give biological information feedback to the upper limbs action rehabilitation training. This system can be applied to the clinical analysis and analysis of the upper limb movement function and biomechanical characteristics of patients with central nervous system injury or disease. In the rehabilitation training, it provides different action paths, movement speeds and additions that can be programmed and repetitive. The action mode of resistance planning provides appropriate sensory input and visual feedback for 200942221 patients in combination with position, speed and force application to enhance the effect of high reproducible action rehabilitation and health training, thereby improving the effectiveness of upper limb exercise rehabilitation therapy. quality. According to an embodiment of the invention, the rehabilitation system includes: a grip, a multi-axis force sensor, a plurality of link mechanisms, an angle change sensing device, a torque detector, a torque controller, and a torque feedback circuit , drive module, human computer control interface, signal transmission processing module, control module and display device. The grip is for the user to hold for rehabilitation assessment and training. The ® multi-axis force sensor is attached to the grip to sense the user's force applied to the grip. A linkage mechanism is coupled to the force sensor, wherein the linkage mechanism includes a plurality of linkages. The angle change sensing device is used to measure the angular change of a plurality of links. The first/second torsion detector is configured to detect the first/second driving torque value and transmit it to the torque feedback circuit, the torque feedback circuit is configured to apply the first/second driving torque value The first/second driving torque controller is transmitted to the first/second driving torque controller to adjust the first/second driving torque value according to the first/second preset torque value and ©. The first/second driving device module is configured to output the first/second action angle related command and the first/second driving torque to the link mechanism to move the grip in a predetermined direction. The man-machine computer control interface is a programmable interface system environment, which provides multiple working parameter selection and input, including action input blocks, pull-down menus and other parameter input methods to provide action path setting, action speed weight, and repetition. Number setting, fixed or variable interference setting, allowable error amount setting (including operating position deviation allowable value, speed deviation allowable 200942221 value, force deviation allowable value setting), fixed or variable operating resistance setting (system) It includes the setting of the action resistance, the direction of the action resistance or its combination of changes, the fixed or variable force setting (including the magnitude of the force applied, the direction of the force applied, the waveform of the applied force, or a combination of changes in the series). The signal transmission processing module is integrated in the host computer, and is mainly composed of an action control card and a "material pick-up card, and includes a terminal block and a limit switching processing circuit. The utility model is configured to convert the working parameter into a plurality of control signals, and transmit the same to the control module, so as to achieve the link angle control and the torque output control, and record the change of the link angle and the force applied by the grip, and The moving position of the grip is calculated based on the change in the angle between the connectors to provide feedback mechanism motion control. Furthermore, the motion quantized data includes kinematic quantitative data such as motion obstruction, angle, velocity, and acceleration variation values; dynamic quantitative data such as force and torque variation values are stored in the computer. The control module is configured to control the drive devices and the torque controllers to move the grip in a predetermined direction with a preset torque. The display device is connected to the signal transmission processing module, and uses a stylized sound, image, graphic, color, lighting, etc. to provide an action state related action quantitative information display feedback. According to still another embodiment of the present invention, the control method of the rehabilitation machine includes two control modes, namely, a passive mode, an active mode, and an active force mode, and each mode provides a function of evaluating and training treatment respectively. Mode method. In the passive mode, the control module is first used to control the link mechanism according to the preset trajectory, so that the grip moves along the preset trajectory at a preset speed, and drives the user's arm to repeat the preset number of times, the same working mode. A number of repeated action rehabilitation exercises can be performed with 200942221 200942221 2009 to set the appropriate speed of motion to generate a preset trajectory. Alternatively, the control module can be used to control the linkage mechanism to apply different directions and sizes of interference displacement to the grip. The sensor is then used to sense the user's force value applied to the grip by the user. Next, the target trajectory, the grip position, and the urging value are output to the display device. In addition, the passive control state can be used to provide interference to the grip via the link mechanism by using the control module, and the interference mode includes a displacement and force interference mode, and can select an adjustment period interference intensity, that is, an interference force magnitude, an interference displacement amount, and Displacement speed, etc., interference direction, interference waveform, ie square wave, sine wave and its combination of changes. Furthermore, the grip trajectory and the user's force value are recorded at the same time as the action is performed to provide quantitative data to assist in clinical quantitative action evaluation. In the active mode, the motion preset trajectory, the preset tempo, and the preset resistance state magnitude are first provided, and then the sensor is used to sense the user's strength value and the grip movement trajectory. Next, the user power value and the grip movement track are output to the display device' and the user is informed by the display device of the preset track, speed, and the grip is executed at the preset speed. In addition, when the user applies the user's strength value to the grip and moves the grip along a grip movement trajectory, the control module can be selected to control the linkage mechanism to impart interference to the grip, the interference. The method of using the method is the same as that used in the (4) mode. The same mode of operation can be used to set the appropriate motion speed to generate the speed motion of the preset trajectory to perform a large number of repeated active motion rehabilitation exercises. At the same time, the action item is recorded at the same time as the set work item and the user's force value to provide quantitative data to assist the clinical quantitative active action evaluation. The dynamic force mode allows the grip to be set at different coordinate positions so that the 200942221 user applies a force value to the grip, and then the sensor is used to sense and calculate the user's strength and grip position, and by The display device is used to inform the user of the magnitude and direction of the force applied. Alternatively, the control module can be used to control the linkage mechanism to impart interference to the grip, which is set in the same manner as in the passive mode. Furthermore, the same working mode can be used to set a suitable force-applying action to perform a large number of repeated force-applying rehabilitation trainings and record the set work items, grip trajectories and user force values while performing the action to provide quantization. Data-assisted clinical quantitative action assessment to provide reference for subsequent training parameter settings. [Embodiment] Please refer to Fig. 1, which is a schematic structural view of a rehabilitation machine 100 according to a first embodiment of the present invention. The rehabilitation machine 1 includes: a grip 1, a multi-axis force sensor 104, a link mechanism 1〇6, an encoder 1〇8, a first driving device 110, and a first driving torque control module 112. The second driving device 114, the first torque control module 116, the display device 118, the lifting device 120, the electric brain operation interface 122, the emergency stop device 124, and the host control module 126. The grip 102 is coupled to the multi-axis force sensor 1〇4, and when the grip 1〇2 is applied with a force to move in a certain direction, the multi-axis force sensor 104 can detect the value of the force. The multi-axis force sensor 104 is connected to the link mechanism 1〇6, and the link mechanism 1〇6 can drive the multi-axis force sensor 1〇4 and the grip 1〇2 to move the first motor on a horizontal plane. The 110 and second stirrups 114 are used to push the linkage 106' to move the grip 102. The first drive torque control module m and the second torque control module 116 use the read torque to the link mechanism track to control the force of the output of the link mechanism (10). Each torque control module includes a torque 200942221 detector, torque controller and torque feedback circuit (not shown). The torque detector is configured to detect the torque value applied to the link mechanism 106, and then the force feedback circuit transmits the torque value to the torque controller, so that the torque controller adjusts the torque value according to the preset torque value. The torque of the mechanism 106 makes it. The encoder 108 is used to record the operating angle of the link mechanism 1 以 6 to estimate the operating angle of the link mechanism 106 and the trajectory of the grip 102. The lifting device 120 is used to control the height of the link mechanism 1〇6 so that its height meets the needs of the user. The σ 主机 host control module 126 includes a motor controller, an action control card, and a data capture card (not shown). The motor controller is used to control the rotational speed of the motors of the first motor 11, the second motor 114, and the lifting device 120. The motion control card is configured to output an action message to the torque controller and the motor controller according to a preset action set by the user, so that the link mechanism 1〇6 performs a preset action. The data capture card is used to receive the grip track data transmitted by the multi-axis force sensor 104 and the encoder 1〇8. When the host control module 126 receives the grip track data, it compares the difference between the grip track data and the preset action, and outputs the actual action path and the difference result to the display device U8. The emergency stop device 124 is configured to output a stop signal to the host control module 126 when the action of the link mechanism 1〇6 is being executed, and any emergency situation or other situation must stop the execution action in time, so that the host Control module 126 stops the action of linkage mechanism 106. In the following, the three types of control machines 100 of the present invention have three control modes, namely, a passive mode, an active mode, and an active force mode mode. Referring to Figure 4, there is shown a flow diagram of a control method 200 for a health machine in accordance with a second embodiment of the present invention, wherein the control method 200 corresponds to the active force application mode described above. In the control method 200, the target value setting step 202 is first performed. In the target value setting step 202, the user sets a preset grip coordinate position and a preset force value and direction, which is the training target that the user expects to reach, and then performs the interference condition setting step 204' to set the desire. Apply additional interference' and preset interference power and preset interference times. Next, a training step 206 is performed. In training step 206, the user applies a user strength value to the grip 102 and maintains the force applied state stable. Then, a judgment and record step 208 is performed. In the judgment and record step 208, the host control module 126 determines whether the user's force application state is stable and matches the preset power value, and provides a judgment result, and simultaneously records and displays the judgment result. In the present embodiment, the position of the grip and the force applied by the user are recorded to evaluate the stability and biomechanical characteristics of the user's force and to inform the user of the evaluation and training results through the display device 118, wherein the result includes The judgment result, the quantized first user force change value, the grip movement trajectory, the force application stability measurement parameter, and the biomechanical quantization characteristic parameter. When the result of the determination is YES, the interference number checking step 210 is performed to check whether the number of times the interference has been performed reaches the preset number of interferences. If the number of interferences that have been performed does not reach the preset number of interferences, then an interference step 212 is performed. In the interference step 212, the host control module 126 controls the linkage mechanism 106 to apply an interference displacement to the grip 1〇2 to train the stability of the user's output. It is worth noting that this interference is a small displacement and the duration of the applied disturbance displacement is also very short. Then, it returns to the judgment step 2〇8 to judge whether the user is affected by the disturbance displacement, and completes the training of the preset interference times. In addition, the control method 2 of the rehabilitation machine of the embodiment can train the unilateral upper limb stability control ability of the state, and simultaneously record the hand force change and the hand motion path to provide subsequent training parameters. Set the time reference. Referring to 帛5®, the system diagram of the control method 300 of the rehabilitation machine 1〇〇 according to the present invention is shown, wherein the control method 3 corresponds to the active mode described above. In the control method 300_, the target value setting step 302 is first performed. In the target value setting step 3〇2, the user sets a preset grip trajectory, speed, resistance value and resistance direction, external force environment, the estimated or training target expected by the user, and then performs the interference condition step. 3G4' to set whether to apply additional interference, as well as preset interference power and preset interference times. Next, training step 3 () 6 is performed. In the training step, the user continuously applies a user strength value to the grip 1〇2, and maintains the applied force value stable, and moves the grip 1〇2 along a movement track. Then, the judgment and recording step 3〇8 is performed. In the judgment and recording step 〇8, the host control module U6 determines whether the difference between the movement trajectory of the grip and the preset trajectory is within the allowable range, and provides the judgment result while recording & the judgment result, and transmitting the display The device m informs the user of the evaluation and training results, wherein the result includes the judgment result, the quantified first user force change value, the grip movement trajectory, the action stability, and the dynamic biomechanical quantization characteristic parameter. When the first-threshold result is NO, the interference-improving step 3 Π is performed when the auxiliary urging step 31 〇 n is judged to be YES. At the auxiliary force application step 31. The host control module 126 controls the linkage mechanism 106 to apply an auxiliary force to the grip 1〇2, allowing the user to conform to the auxiliary force to train the correctness of the user's motion. It is worth noting that the auxiliary force can be fixed. The external environment or the external environment. When the assisting force step 310 is completed, it returns to the judgment and recording step (10). In the dry 13 200942221 "Time check step 312", it is checked whether the number of times the interference has been performed reaches the preset number of interferences, and if otherwise, the interference step 314 is performed. In the interference step 314, the host control module 126 controls the linkage 1 〇 6 to apply the interference to the grip 1G2 _L ' to assess or train the stability of the user's motion. After _, return to decision and record step 308. It is worth noting that for a short period of time a small amount of displacement or strength. When the first judgment result is NO, the training step E2 is performed. In the training step E2, next, it returns to the judgment and recording step c to judge the influence of the external force interference or the auxiliary force on the user, and the preset number of persons is used to end the training. In addition, the control method 300 of the rehabilitation machine of the present embodiment can train the dynamic one-side upper limb stability operation accuracy, and simultaneously record the hand force change and the hand motion path to provide a reference for the subsequent training parameter setting. Please refer to Fig. 6, which is a flow chart showing a control method 400 of the rehabilitation machine 1() according to the present invention, wherein the control method 4 corresponds to the passive mode described above. In the control method 4, the target value setting step 402 is first performed. In the target value setting step 4〇2, the user sets a pre-set and speed, which is the expected evaluation or training target. Then, an interference condition setting step 404 is performed to set the additional interference to be applied. Next, a training step 406 is performed. In the training step 400, the host control module 126 controls the grip 1〇2 to move along a movement trajectory to drive the upper limb of the user. Then, an interference step 408 is performed to control the linkage 106 by the host control module 126 to apply an interference displacement to the grip 1〇2 to assess the biomechanical characteristics of the user in a passive state. It is worth noting that this disturbance is a small amount of displacement or force in a short time. Next, a decision step 41 is performed. In decision step 410, it is determined whether the movement trajectory of the grip coincides with the preset trajectory and the preset 200942221 strength value to determine whether the user is affected by the disturbance displacement. Next, the record and display step 412 is performed to record the grip position and the user's force application condition and notify the user of the training result through the display device η 8 . The training result includes the judgment result, the quantified user power value, The trajectory of the grip and the passive biomechanical quantification characteristics. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. Scope Ο The terms defined in the attached patent application shall prevail. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more apparent and understood. 3 is a schematic structural view of a rehabilitation machine according to a first embodiment of the present invention. FIG. 4 is a flow chart showing a control method of a rehabilitation machine according to a second embodiment of the present invention. Fig. 5 is a flow chart showing a control method of a rehabilitation machine according to a third embodiment of the present invention. Figure 6 is a flow chart showing a control method of a rehabilitation machine according to a fourth embodiment of the present invention. 102 : Grip [Main component symbol description] 100 : Rehabilitation machine 15 200942221

❹ 104 : 多轴力感測器 106 : 108 : 編碼器 110 : 112 : 第一驅動扭力控制模組 114 : 116 : 第二扭力控制模組 118 : 120 : 升降裝置 122 : 124 : 緊急停止裝置 126 : 200 : 控制方法 202 : 204 : 干擾條件設定步驟 206 : 208 : 判斷與紀錄步驟 210 : 212 : 干擾步驟 300 : 302 : 目標值設定步驟 304 : 306 : 訓練步驟 308 : 310 : 輔助施力步驟 312 : 314 : 干擾步驟 400 : 402 : 目標值設定步驟 404 : 406 : 訓練步驟 408 : 410 : 判斷步驟 412 : 連桿機構 第一驅動裝置 第二驅動裝置 顯示裝置 電腦操作介面 主機控制模組 目標值設定步驟 訓練步驟 干擾次數檢查步驟 控制方法 干擾條件設定步驟 判斷與紀錄步# 干擾次數檢查步驟 控制方法 干擾條件設定步驟 千擾步驟 紀錄和顯示步綠❹ 104 : Multi-axis force sensor 106 : 108 : Encoder 110 : 112 : First drive torque control module 114 : 116 : Second torque control module 118 : 120 : Lifting device 122 : 124 : Emergency stop device 126 : 200 : Control Method 202 : 204 : Interference Condition Setting Step 206 : 208 : Judgment and Recording Step 210 : 212 : Interference Step 300 : 302 : Target Value Setting Step 304 : 306 : Training Step 308 : 310 : Auxiliary Force Step 312 : 314 : Interference step 400 : 402 : Target value setting step 404 : 406 : Training step 408 : 410 : Judgment step 412 : Link mechanism first drive device second drive device display device computer operation interface host control module target value setting Step training step interference number check step control method interference condition setting step judgment and record step # interference number check step control method interference condition setting step interference step record and display step green

Claims (1)

200942221 十、申請專利範圍: 1. 一種復健系統,該系統至少包含: 一主體,其中該主體至少包含: 一握把; 一多軸力感測器,連結至握把,其中該力量感測 器係用以感測一使用者力量值; 一連桿機構,連接至該多轴力感測器,其中該連 桿機構包含複數個連桿; 一編碼器,用以紀錄該些連桿間之角度變化; 一驅動裝置,用以驅動該連桿機構,以使該連桿 機構移動該握把; 一人機電腦控制介面,提供複數個工作參數選擇 與輸入; 一扭力控制裝置,用以提供預設扭矩至該連桿機 構; 一控制模組,用以根據一預設動作設定來控制該 驅動裝置及該扭力控制裝置,使該握把沿著預設方向 移動; 一扭矩偵測器,用以偵測該扭力控制裝置輸出之 一驅動扭矩值; 一扭力控制裝置,係使用制動減速裝置如離合煞 車器等’以控制該些連桿驅動扭矩值; 一扭矩回授電路,用以將該驅動扭矩值傳送至該 扭力控制裝置’使該扭力控制裝置根據一預設扭力值 17 200942221 來調整該該驅動扭矩值;以及 一顯示裝置,用以顯示該握把移動軌跡及握把處 施力情形;以及 一升降裝置’用以控制該主體之高度。 2. 如申請專利範圍第1項所述之復健系統,其中該 升降裝置至少包含一馬達,該馬達係由該控制模組所控 制’以調整該主體之高度。 3. 如申請專利範圍第1項所述之復健系統,更包含 一訊號傳輸介面模組,該訊號傳輸介面模組係用以將該工 作參數轉換為複數個控制訊號,並記錄連桿角度變化與握 把處施力情形,傳達至控制模組與扭力控制裝置,以提供 迴授式動作控制。 4·如中請專利範圍第1項所述之復健系統,其中該 ® 顯示裝置係使用一程式化方法提供動作狀態量化資訊顯 示’該程式化方法至少包含聲音、影像、圖示、色彩、亮 燈之其中一者。 5. 如申請專利範圍第1項所述之復健系統,其中該 驅動裝置至少包含一致動器及該致動器之傳動控制裝置。 6. 如申請專利範圍第1項所述之復健系統,其中該 控制裝置更用以根據一預設干擾設定來控制該連桿機構干 200942221 擾該握把之移動。 7. 如申請專利範圍第6項所述之復健系統,其中該 預設干擾設定至少包含一干擾強度、—干擾位移量、_位 - 移速度、一干擾方向、和一干擾波形之其中一者。 8. 如申請專利範圍第1項所述之復健系統,其中該 ㈣1m組更根據-預設阻力設定來控制該連桿機構施加一 © 動作阻力於該握把,使使用者對抗該動作阻力β 9. 如申請專利範圍第8項所述之復健系統,其中該 預设阻力設定至少包含一動作阻力大小和一動作阻力方向 之其中一者。 10. 如申請專利範圍第1項所述之復健系統’其中該 預設動作設定至少包含:一使用者施力大小、一使用者施 Θ 力方向和一使用者施力變化波形之其中一者。 11. 如申請專利範圍第1項所述之復健系統,其中該 預設動作設定至少包含一動作位置偏差容許量值、一速度 偏差容許量值和一力偏差容許量值之其中一者。 12. —種復健系統之控制方法,至少包含: 進行一目標值設定步驟,以設定一预設握把位置、一 預設力量值和一預設施方向,並告知使用者施加該預設力 200942221 量值於一握把上,並使該握把沿著該預設方向動作; 當使用者施加一使用者力量值於該握把上,並使該握 把沿著一握把移動方向施力時,進行一判斷步驟,以判斷 該使用者力量值和施力方向是否與該預設力量值和該預設 施力方向相符,並提供一判斷結果; 當該判斷結果為是時,進行一干擾步驟,以施加一預 設干擾於該握把上,並使使用者改變該使用者力量值來維 持該握把之施力穩定狀態;以及 進行一紀錄步驟’以紀錄該握把之一握把最後位置和 該使用者力量值,並輸出該判斷結果。 13. 如申請專利範圍第12項所述之復健系統之控制 方法’更包含:當該預設干擾被施加於該握把上後,進行 該判斷步驟。 14. 一種復健系統之控制方法,至少包含: 進行一目標值設定步驟,以設定一预設軌跡、一預設 軌跡容許差值、一預設動作阻力值和一預設干擾; 當使用者施加一使用者力量值於該握把上,克服該預 設動作阻力以使該握把沿著該一握把移動軌跡移動時,進 行一判斷步驟,以判斷該握把移動軌跡和該预設軌跡之差 值是否小於該預設軌跡容許差值,並提供一判斷結果;以 及 紀錄該握把之一握把轨跡位置變化和該使用者力量值 變化,並輸出該判斷結果。 20 200942221 丨5.如申請專利範圍第14項所述之復健系統之控制 方法,其中當該判斷結果為否時,於該判斷結果輸出後施 加一輔助力量於該握把上,並進行該判斷步驟,其中該輔 • 助力量係用以使該握把移動軌跡和該预設軌跡之差值小於 該預設軌跡容許差值。 16. 如申請專利範圍第14項所述之復健系統之控制 © 方法’其中當該判斷結果為是時’於該判斷結果輸出後施 加該預設干擾於該握把上,並進行該判斷步驟,其中該預 設干擾係用以改變該握把之動作狀態。 17. —種復健系統之控制方法,至少包含: 進行一目標值設定步驟,以設定一预設軌跡、一預設 速度和一預設干擾; 當使用者握住該握把後,控制該握把以該預設速度沿 〇 著該预設軌跡來移動,以帶動使用者之上肢; 施加該預設干擾於該握把上;以及 紀錄該握把之一握把軌跡位置變化和該該使用者施加 於該握把之一使用者力量值變化。 21200942221 X. Patent application scope: 1. A rehabilitation system, the system at least comprising: a main body, wherein the main body comprises at least: a grip; a multi-axis force sensor coupled to the grip, wherein the force sensing The device is for sensing a user strength value; a linkage mechanism is coupled to the multi-axis force sensor, wherein the linkage mechanism includes a plurality of links; and an encoder for recording the linkages a change in angle; a driving device for driving the link mechanism to move the link mechanism; a human computer control interface providing a plurality of operating parameter selections and inputs; a torque control device for providing Presetting torque to the linkage mechanism; a control module for controlling the driving device and the torque control device according to a preset motion setting to move the grip along a preset direction; a torque detector, For detecting the driving torque value of one of the torque control device outputs; a torque control device for using a brake deceleration device such as a clutch brake, etc. to control the driving torque of the connecting rods a torque feedback circuit for transmitting the driving torque value to the torque control device 'to adjust the driving torque value according to a preset torque value 17 200942221; and a display device for displaying The handle of the grip and the force applied by the grip; and a lifting device 'for controlling the height of the body. 2. The rehabilitation system of claim 1, wherein the lifting device comprises at least a motor controlled by the control module to adjust the height of the body. 3. The rehabilitation system of claim 1, further comprising a signal transmission interface module, wherein the signal transmission interface module is configured to convert the operating parameter into a plurality of control signals and record the link angle The change and the force applied at the grip are communicated to the control module and the torque control device to provide feedback control. 4. The rehabilitation system of claim 1, wherein the ® display device provides a motion state quantitative information display using a stylized method. The stylized method includes at least sound, image, graphic, color, One of the lights. 5. The rehabilitation system of claim 1, wherein the drive device comprises at least an actuator and a transmission control device of the actuator. 6. The rehabilitation system of claim 1, wherein the control device is further configured to control the movement of the linkage according to a preset interference setting. 7. The rehabilitation system according to claim 6, wherein the preset interference setting comprises at least one of an interference intensity, an interference displacement amount, a _ bit-shift speed, an interference direction, and an interference waveform. By. 8. The rehabilitation system according to claim 1, wherein the (4) 1m group further controls the link mechanism to apply a © action resistance to the grip according to a preset resistance setting, so that the user resists the action resistance. The rehabilitation system of claim 8, wherein the preset resistance setting includes at least one of a magnitude of motion resistance and a direction of motion resistance. 10. The rehabilitation system of claim 1, wherein the preset action setting comprises at least one of a user force magnitude, a user force direction, and a user force change waveform. By. 11. The rehabilitation system of claim 1, wherein the preset action setting includes at least one of an action position deviation tolerance value, a speed deviation tolerance amount, and a force deviation tolerance amount. 12. A method for controlling a rehabilitation system, comprising: performing a target value setting step of setting a preset grip position, a preset force value, and a pre-fabrication direction, and informing the user to apply the preset Force 200942221 is measured on a grip and causes the grip to move along the predetermined direction; when the user applies a user force value to the grip and causes the grip to move along a grip When the force is applied, a judging step is performed to determine whether the user strength value and the force applying direction are consistent with the preset force value and the pre-installation force direction, and provide a judgment result; when the judgment result is yes, Performing an interference step to apply a predetermined interference to the grip, and causing the user to change the user's strength value to maintain the steady state of the grip; and performing a recording step to record the grip A grip position and the user strength value are output, and the judgment result is output. 13. The control method of the rehabilitation system according to claim 12, further comprising: performing the determining step after the predetermined disturbance is applied to the grip. A control method for a rehabilitation system, comprising: performing a target value setting step of setting a preset trajectory, a preset trajectory tolerance difference, a preset motion resistance value, and a preset interference; Applying a user strength value to the grip, and overcoming the preset motion resistance to move the grip along the grip movement trajectory, performing a determining step to determine the grip movement trajectory and the preset Whether the difference of the trajectory is smaller than the preset trajectory tolerance difference, and providing a judgment result; and recording a change in the grip position of the grip and the change in the user strength value, and outputting the judgment result. The method for controlling a rehabilitation system according to claim 14, wherein when the determination result is negative, an auxiliary force is applied to the grip after the output of the determination result, and the And a judging step, wherein the auxiliary assisting force is configured to make the difference between the grip moving track and the preset track smaller than the preset track tolerance difference. 16. The control method of the rehabilitation system described in claim 14 of the patent application method, wherein when the judgment result is YES, the preset interference is applied to the grip after the judgment result is output, and the judgment is made a step, wherein the preset interference is used to change an action state of the grip. 17. The method for controlling a rehabilitation system, comprising: performing a target value setting step to set a preset trajectory, a preset speed, and a preset interference; and after the user holds the grip, controlling the Moving the grip along the preset trajectory at the preset speed to drive the upper limb of the user; applying the preset to interfere with the grip; and recording a change in the grip position of the grip grip and the The user applies a change in the value of the user's strength to the grip. twenty one
TW97112196A 2008-04-03 2008-04-03 Rehabilitation equipment and controlling method thereof TW200942221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97112196A TW200942221A (en) 2008-04-03 2008-04-03 Rehabilitation equipment and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97112196A TW200942221A (en) 2008-04-03 2008-04-03 Rehabilitation equipment and controlling method thereof

Publications (1)

Publication Number Publication Date
TW200942221A true TW200942221A (en) 2009-10-16

Family

ID=44868574

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97112196A TW200942221A (en) 2008-04-03 2008-04-03 Rehabilitation equipment and controlling method thereof

Country Status (1)

Country Link
TW (1) TW200942221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110269775A (en) * 2018-03-15 2019-09-24 深圳市荣原科技有限公司 A kind of rehabilitation training schema control system
US20210244320A1 (en) * 2020-02-11 2021-08-12 Korea Institute Of Science And Technology Apparatus and method for evaluating force control ability of upper limb and prosthesis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110269775A (en) * 2018-03-15 2019-09-24 深圳市荣原科技有限公司 A kind of rehabilitation training schema control system
US20210244320A1 (en) * 2020-02-11 2021-08-12 Korea Institute Of Science And Technology Apparatus and method for evaluating force control ability of upper limb and prosthesis

Similar Documents

Publication Publication Date Title
WO2021243918A1 (en) Upper-limb function evaluation apparatus and method, and upper-limb rehabilitation training system and method
Oblak et al. Universal haptic drive: A robot for arm and wrist rehabilitation
Loureiro et al. Advances in upper limb stroke rehabilitation: a technology push
US8177732B2 (en) Methods and apparatuses for rehabilitation and training
Colombo et al. Design strategies to improve patient motivation during robot-aided rehabilitation
Gilliaux et al. Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients.
TWI385011B (en) System for training and evaluating of bilateral symmetric force output with upper limbs
US20170095391A1 (en) Upper limbs rehabilitating, monitoring and/or evaluating interactive device
EP1850824B1 (en) Methods and apparatuses for rehabilitation and training
WO2015041618A2 (en) Upper limb therapeutic exercise robot
CN106714685B (en) System for rehabilitation using haptic devices and brain-computer interface
US20070060445A1 (en) Method and apparatus for automating arm and grasping movement training for rehabilitation of patients with motor impairment
Reinkensmeyer et al. Design of robot assistance for arm movement therapy following stroke
WO2021184957A1 (en) Upper limb rehabilitation training system, and method for executing motion intention
KR20180058688A (en) Lower limb rehabilitation system with subject specific real time feedback
TW200942221A (en) Rehabilitation equipment and controlling method thereof
Grow et al. Haptic simulation of elbow joint spasticity
CN111166356B (en) Exercise psychology training index data acquisition device
CN108245375A (en) A kind of wire saws formula finger rehabilitation training device
Li et al. Reconfigurable muscle strength training robot with multi-mode training for 17 joint movements
Huang et al. Human adaptation to interaction forces in visuo-motor coordination
Baniasad et al. Wrist-RoboHab: A robot for treatment and evaluation of brain injury patients
CN113827920B (en) Temporomandibular joint training device and electronic equipment
Pei Development and validation of lower-and upper-extremity robotic medical education task trainers for neurologic exams
Koyanagi et al. Multi-balloon actuator for advanced hand rehabilitation after stroke