TW200940155A - Flameless thermal oxidation apparatus and methods - Google Patents

Flameless thermal oxidation apparatus and methods Download PDF

Info

Publication number
TW200940155A
TW200940155A TW097145644A TW97145644A TW200940155A TW 200940155 A TW200940155 A TW 200940155A TW 097145644 A TW097145644 A TW 097145644A TW 97145644 A TW97145644 A TW 97145644A TW 200940155 A TW200940155 A TW 200940155A
Authority
TW
Taiwan
Prior art keywords
fluid stream
fuels
chamber
fuel
oxidation
Prior art date
Application number
TW097145644A
Other languages
Chinese (zh)
Inventor
Bruce Carlyle Johnson
Nathan Steneck Petersen
Original Assignee
John Zink Co Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/945,775 external-priority patent/US20090136406A1/en
Application filed by John Zink Co Llc filed Critical John Zink Co Llc
Publication of TW200940155A publication Critical patent/TW200940155A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99001Cold flame combustion or flameless oxidation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Tunnel Furnaces (AREA)

Abstract

A thermal oxidizer is provided in which off-gases in a process stream are thermally oxidized within substantially the entire interior volume of an oxidation chamber. The thermal oxidation is conducted without the presence of a frame or with only a minor portion of one or more fuels being combusted in a flame.

Description

200940155 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於熱氧化爐’用以氧化處理流(pr0Cess stream)中的有機化合物,而且本發明更特別地係關於一種 利用無焰熱氧化法而操作此種熱氧化爐之設備與方法,藉 此分解有機化合物。 【先前技術】 Ο200940155 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to organic compounds in a thermal oxidation furnace for use in a oxidizing process stream, and more particularly to the use of flameless thermal oxidation. The apparatus and method of operating such a thermal oxidation furnace thereby decomposing organic compounds. [Prior Art] Ο

熱氧化爐一般係用於氧化處理流中的一個或多個氣體 或蒸氣’其作法乃是在該處理流被釋放於大氣之前,使這 些氣體或蒸氣受到高溫。處理流中的氣體一般被稱之為廢 氣(off-gas),且一般包含揮發性有機化合物(v〇c)、半揮發 性有機化合物(svoc)、及/或有害空氣污染物(ΗΑρ)β含有 廢氣的處理流通常是工業製造或發電過程等的副產品。 在習知的熱氧化爐中,藉由組合處理流與含有氧的氣 流,且使此組合過的氣流通過例如天然氣㈣料供應源揪 燒時所產生的火焰或燃燒氣體,使得廢氣被氧化成二氧化 碳與水。以此方式’熱氧化爐將對於環境因素不利的有機 化合物轉換成可以安全排放到大氣的無害化合物。 ,叩座生化合物熱分解之 方式,通常會導致產生例如叫與C0等空氣污染物到達八 人反對的程度。Ν0χ是由於局部區域的高溫所產生的,: CO則是由於熱氧化爐中的燃燒滿 麂過程期間可能發生燃料 完全燃燒所引起的。 个 為了降低化合物的熱分解期間所產 生的Ν0Χ與C0 的 5 200940155 程度’已知可以在熱氧化爐中使用一種無焰氧化過程。這 類的無蹈氧化過程之一個範例係揭示於美國專利第 5,1 65,884號。在此專利文件中,氣體或蒸氣與空氣(及/或 氧氣)的混合物,係流入一個堅固耐熱材質製成的床基體 (bed matrix)内,而此床基體已經被預先加熱至該混合物的 自燃溫度以上。此混合物在床基體中開始燃燒並產生放熱 反應,而在此床基體中形成一個自行持續的反應波。此項 過程係用以在釋放處理流至大氣之前,在破壞處理流中的 特殊氣體或蒸氣的期間由於燃燒不完全所產生的Ν〇χ、C〇 與其他產物降至最小。使用此上述方法,可以獲得將每一 百萬的BTU中ΝΟχ(例如Ν〇2)小於〇 〇〇71b之熱Ν〇χ的排放 程度,且co的排放程度可以低於1〇ppm。 上述美國專利第5,165,884號中的床基體其優點在於: 它能夠在燃燒過程期間固定並穩定反應波。然而,此床基 質佔據了處理反應器中絕大部分的内部體積,如此一來, 降低了可用於處理流流動的開放體積。反應器中的開放體 積減少也會降低在指定處理流的處理量與指定反應器尺寸 之條件下所旎獲得的停留時間(residence ,因此會降低 破壞有害廢棄物所能獲得的時間。此外,床基質產生很大 的壓力降’如此一來會增加處理過程的操作成本,這是因 為在處理流進入處理反應器内之冑會受到增多㈣力。當 來自處理流的特殊物質累積於床基體内,或者床基體由於 熱震(thermal Sh〇Ck)而導致降級時,此壓力降會傾向隨著時 間增加。最後,橫跨此床基體的麼力降之增加可能會導致 200940155 需要更換床材質。 因此,確實需要研發一種埶4 徑…氧化爐,其能夠產生很低 程度的NOx與CO,而不會產生上补认从 ”宵度玍上述的缺點。 【發明内容】 、本發明提出-種在氧化室内熱氧化一流體流中所含的 成刀之方法jtb氧化室具有一個内襯,其能夠傳遞足夠的 熱量而使得流體流中的成分產生熱氧化。此方法包含以下 ❹步驟:起初加熱此氧化室的内襯,且然後在一些條件下將 該等成分輸送至氧化室内,以便藉由來自氧化室内襯的熱 傳導之緣故而引發該等成分的熱氧化。起初加熱氧化室内 襯之步驟包含將該内襯加熱至一個預先選定的溫度,此溫 f足以輻射或以其他方式傳遞熱能,而引發流體流中的成 分之熱氧化。在耐火内襯被加熱至預先選定的溫度之後, 可能3有一個或多個燃料的這些成分以流體流的方式輸送 至氧化室。此流體流中的各項條件經控制後,使得此流體 φ 流中的成分藉由來自耐火内襯的熱傳導之影響而產生無焰 熱氧化。因此,本方法的方法係依賴來自耐火内襯的熱傳 導作用,藉此引發並持續無焰熱氧化,因而不需要如習知 的無焰氧化過程中所需之床基體、預先加熱燃料流及/或燃 燒空氣流、或煙氣再循環等步驟。 在一個實施例中,流體流中的一個或多個燃料成分是 以有燄方式燃燒,而使得該耐火内襯起先能夠被加熱至預 先選定的溫度。流體流中的燃料成分之整體濃度在開始模 式期間可以位於易燃性的範圍内。另一方面,燃料成分的 7 200940155 整體濃度超過易燃性的範圍夕卜,但是藉由將燃料成分虚存 在於流體流中的燃燒空氣不完全混合而產生一個易舞的混 合物,如此—來便產生一個擴散或局部事先混合好的火 焰。在過渡到無焰熱氧化模式的期間,例如藉由增加燃料 與燃燒空氣的混合而使得燃料成分的局部濃度脫離易燁性 範圍,可㈣㈣料的火焰,藉此防幻&合物在燃燒器 内以有焰方式燃燒。可以使用其他方法,卩改變燃料成分 的局部濃度,使其超出易燃性範圍外。 揮發性有機化合物、半揮發性有機化合物、及/或有害 空氣污染物可以作為額外的成分而存在於流體流中,而: 在無媳熱氧化過程期間被氧化。這些額外成分一般係引源 於工業製造或發電過程的處理流中,且必須在處理流被釋 放到大氣之前去除掉。處理流可以供應此項處理過程中所 需要的-些或所有燃燒氣體,或者完全不供應燃燒氣體。 假如需要的話,可以將補充熱能添加至氧化室,以補 償由於氧化至的外忒或流體流的冷卻效應所導致的熱損 失。例如可藉由將氧化室内另一個流體流中的一個或多'個 燃料以有焰方式燃燒,而持續添加此補充熱能。另一方面, 例如藉由定期以起初加熱模式操作熱氧化爐,而斷斷續續 地添加此補充熱量。 當本發明的過程在無焰氧化模式下操作時,可以達到 小於5PPm(dry)的N〇x程度,小於2ppm(dry),且甚至小於 lppm(dry),以及小於lppm(dry)的c〇程度。如以下文中所 使用,NOx與CO的程度被表示成以乾燥為基礎,每體積中 200940155 的百萬分之一。甚至當補充熱能被添加至氧化室内時,也 可以獲得介於1與12ppm(dry)的ΝΟχ程度,以及低於 lppm(dry)的 CO 程度。 【實施方式】 Ο 現在詳細地參考圖式’首先參考圖1,用於對流體流中 的成分實施無焰熱氧化之熱氧化爐的一個實施例,整個是 以元件符號1 〇標示出來。流體流是以箭頭丨1表示,且一 般為以連續或間斷方式在熱氧化爐1〇内流動之氣體或蒸氣 流。流體流11中的可氧化成分可以是氣體、液體、及/或固 態微粒形式。這些成分的範例包括:燃料、廢棄產物、及 有機化合物。此有機化合物包括揮發性有機化合物、半揮 發性有機化合物、及/或有害空氣污染物。 熱氧化爐10包含一個熱氧化室12,其具有一外部殼體 14,此殼體内設置有一或多層的耐火内槪…這些耐火内 襯是由任何耐火材質所形成’且具有承受高操作溫度與熱 氧化室12内存在的其他條件所需要之物理與化學特性。耐 火内襯16是可以鑄造的、具有可塑性、碑塊、覆蓋毯、纖 維、❹何其他適合的形式,且一般主要包含陶究材質’ 陶竞材質是由氧化紹、二氧化石夕或氧化鎮等高熔 =物之組合所製成。耐火内襯16也可以由例如耐火金 屬等其他材質所形成,適當的耐火材質之範 及這些金屬的合金,地,耐火二 17,以#」之後面襯上一層較低熱傳導性的内襯 便進—步降低透過外部殼體14所產生的熱損失。 9 200940155 在具有内襯的殼體14中之内部區域,界定出一個開放 :内部體# 18,而無焰熱氧化就是發生在此内部體積中, C點稍後將加以說明。此開放性内部體積Μ之尺寸被製 作成U使流體流Π獲得想要的停留時間,而此流體流是 針對=執行的特定處理,依照想要的體積流速而流過此熱 氧化室12。正常情形下,可選擇停留時間,致使對於處理 流中的可氧化成分來說,能夠獲得完全燃燒及/或想要的破 壞移除效率。 較佳地,殼體14是圓柱形且處於水平定向,但是也可 以具有多角形或其他結構的剖面’且/或它可以被垂直定向 或者以-個中間的角度^向。殼體14具有—個至少局部打 開的上游端20’及一個相向並至少局部打開的下游端& 使用「上游」與「下游」等詞,係相對於熱氧化爐1〇的操 作期間流體流11通過氧化爐12的流動之想要方向而士。 熱氧化爐K)另外包括一燃燒器24,係藉由一個選擇性 的過渡區26而連接到熱氧化室12的上游端2〇。熱氧化室 12的下游端22係藉由一個類似的選擇性過渡區而連接 至-排氣f 30。透過此排氣管,熱氧化過程所產生 反應產物可以被釋放至大氣。另一方面,埶氧、 游端可以與下游設備31流體相通,此下游設備Η可能I 從低NOx、低CG、高溫的流體流中獲得益處q類的;游 設備3i之範例包括但不侷限於處理加熱器、鍋爐、 (例如:乙稀裂解單元、氫重新形成器等)、空氣加熱器、挺 乾機、氣艎滿輪、及熱交換器。因此,熱氧化爐1〇可以被 200940155 用來提供一個NOx與c〇程度很低的熱煙氣流,藉此取代一 部分用於點燃下游設備的傳統方法。 燃燒器24是一種鼓風燃燒器,其能夠產生強大的旋 風’藉此確保燃燒空氣與燃料氣體徹底的事先混合。較佳 地,燃燒器24的燃料為氣體,一般為天燃氣或精煉燃料氣 體,但也可以使用其他燃料氣體,例如:氫氣、甲烷、乙 烷、丙烷、丁烷、或其他碳氫化合物、一氧化碳、及其各 種混合物。各種添加劑與稀釋液(例如:氮氣、二氧化碳、 及/或水蒸氣)也可以被添加至此氣體内或存在於此氣體 内。一些或全部的燃料可以是液體或固體微粒形式。也可 以使用其他種類的燃燒器,例如:感應通風式燃燒器、自 然通風式燃燒器、預先混合式燃燒器、及局部預先混合式 燃燒器等。 從圖2可以看出,在所顯示的實施例中,燃燒器24包 3個外。p威體32,其中設有一層或多層上述種類的耐火 ❹内襯34。也可以將—層絕緣内襯%設置於熱面耐火内概 34 ’、外殼體32的内表面之間。較佳地’此殼體32是圓 柱形可以具有多角形或其他結構的$ & 1 U 具有一側壁36以及相反的上游端38與下游端4〇。具有内 襯的殼體32界定出-個開放性内部前室(崎咖_)42, 此前室與位於燃燒器24下游處的氧化室12流體相通。由 财火材質製成的阻塞氣門44可以位於燃燒器殼體η的下 游端4〇,以便從前室42到下游的氧化室12產卜個❹ 減少的通道45。阻塞氣門44可以具有如圖式所示的矩” 11 200940155 面’或者它也可以由朝内傾斜的入口端與出口端所形成 以形成-個更具有流體力學的結構。在一些應用情形中 可以省略阻塞氣門44 » / -個喷嘴總成46係被定位於燃燒器殼體32的上游端 38,以便將可燃燒的燃料與空氣之混合物輸送至前室42。 在-個實施例中,噴嘴總成46包含—個細長且位於中央的 燃料槍48’從-個燃料源5()透過導管52而供應燃料至此 燃料搶。適當的流量調節器54調整進入燃料搶Μ的體積 流速。燃料搶48終止於一個燃料尖端件%中此燃料尖 端件具有多個細孔(未顯示),通過這些細孔’箭頭所示 的燃料流被排放到前室42内。燃料搶48可以在軸向方向Thermal oxidation furnaces are typically used to oxidize one or more gases or vapors in a stream. This is done by subjecting the gases or vapors to elevated temperatures prior to being released into the atmosphere. The gas in the treatment stream is generally referred to as off-gas and generally contains volatile organic compounds (v〇c), semi-volatile organic compounds (svoc), and/or hazardous air pollutants (ΗΑρ) β. Process streams containing exhaust gases are typically by-products of industrial manufacturing or power generation processes. In a conventional thermal oxidizing furnace, the exhaust gas is oxidized by combining a treatment stream with a gas stream containing oxygen, and passing the combined gas stream through a flame or a combustion gas generated by, for example, a natural gas (four) material supply source. Carbon dioxide and water. In this way, the thermal oxidizer converts organic compounds that are unfavorable to environmental factors into harmless compounds that can be safely discharged to the atmosphere. The way in which the compound of the scorpion is thermally decomposed usually results in the generation of, for example, air pollutants such as C0 reaching the level of opposition of eight people. Ν0χ is due to the high temperature in the local area: CO is caused by complete combustion of the fuel during the combustion process in the thermal oxidation furnace. In order to reduce the degree of Ν0Χ and C0 generated during the thermal decomposition of the compound, it is known that a flameless oxidation process can be used in the thermal oxidation furnace. An example of such a process without oxidation is disclosed in U.S. Patent No. 5,1,65,884. In this patent document, a mixture of gas or vapor and air (and/or oxygen) flows into a bed matrix made of a strong heat resistant material, and the bed substrate has been preheated to spontaneous combustion of the mixture. Above temperature. This mixture begins to burn in the bed matrix and produces an exothermic reaction, forming a self-sustaining reaction wave in the bed matrix. This process is used to minimize enthalpy, C 〇 and other products due to incomplete combustion during the destruction of a particular gas or vapor in the process stream before the process stream is released to the atmosphere. Using this method, it is possible to obtain a degree of enthalpy of enthalpy of enthalpy (e.g., Ν〇2) of less than 〇 b 71b per million BTU, and the degree of co emission can be less than 1 〇 ppm. The bed substrate of the above-mentioned U.S. Patent No. 5,165,884 has the advantage that it can fix and stabilize the reaction wave during the combustion process. However, the bed substrate occupies most of the internal volume of the processing reactor, thus reducing the open volume available for processing the flow. The reduction in open volume in the reactor also reduces the residence time (residence) obtained under the conditions of the specified treatment stream and the specified reactor size, thus reducing the time available to destroy hazardous waste. The matrix produces a large pressure drop. This increases the operating cost of the process because the enthalpy of the process stream entering the process reactor is subject to increased (four) forces. When special materials from the process stream accumulate in the bed matrix When the bed base is degraded due to thermal shock (thermal Sh〇Ck), the pressure drop tends to increase with time. Finally, the increase in the force across the bed base may result in the need to change the bed material for 200940155. Therefore, there is a real need to develop a 埶4 diameter... oxidizing furnace capable of producing a very low degree of NOx and CO without causing the above-mentioned disadvantages from the above-mentioned defects. [Summary of the Invention] The method of forming a knife contained in a thermal fluid in an oxidation chamber. The jtb oxidation chamber has an inner liner capable of transferring sufficient heat to cause flow. The components in the stream are thermally oxidized. The method comprises the steps of initially heating the lining of the oxidation chamber and then, under some conditions, delivering the components to the oxidation chamber for heat transfer from the lining of the oxidation chamber. Initiating thermal oxidation of the components. The step of initially heating the oxidizing chamber liner comprises heating the liner to a preselected temperature sufficient to radiate or otherwise transfer thermal energy to initiate heat in the fluid stream. Oxidation. After the refractory lining is heated to a preselected temperature, it is possible that these components of one or more fuels are delivered to the oxidation chamber as a fluid stream. The conditions in the fluid stream are controlled such that The composition of the fluid φ stream produces flameless thermal oxidation by the effect of heat transfer from the refractory lining. Thus, the method of the method relies on thermal conduction from the refractory lining to initiate and sustain flameless thermal oxidation, thereby There is no need for a bed substrate, a preheated fuel stream and/or a combustion air stream, or a flue gas, as is required in conventional flameless oxidation processes. Steps. In one embodiment, one or more of the fuel components in the fluid stream are combusted such that the refractory lining can be initially heated to a preselected temperature. The fuel component of the fluid stream The overall concentration may be within the flammability range during the start mode. On the other hand, the overall concentration of the fuel component 7 200940155 exceeds the range of flammability, but the combustion air is present in the fluid stream by imaginary fuel components. Incomplete mixing produces an easy-to-dancing mixture, thus producing a diffused or partially pre-mixed flame. During the transition to the flameless thermal oxidation mode, for example by increasing the mixing of fuel and combustion air The local concentration of the component deviates from the range of susceptibility, and the flame of the material can be (iv) (4), whereby the anti-magic compound is burned in a flame in the burner. Other methods can be used to change the local concentration of the fuel component beyond the flammability range. Volatile organic compounds, semi-volatile organic compounds, and/or hazardous air pollutants may be present in the fluid stream as an additional component: while being oxidized during the innocent thermal oxidation process. These additional components are typically sourced from the process stream of an industrial manufacturing or power generation process and must be removed before the process stream is released to the atmosphere. The process stream can supply some or all of the combustion gases required for this process, or no combustion gases at all. If necessary, supplemental heat can be added to the oxidation chamber to compensate for heat loss due to the cooling effect of the enthalpy or fluid flow. This supplemental thermal energy can be continuously added, for example, by burning one or more fuels in another fluid stream in the oxidation chamber in a flamed manner. On the other hand, this supplementary heat is intermittently added, for example, by periodically operating the thermal oxidation furnace in the initial heating mode. When the process of the present invention is operated in a flameless oxidation mode, it is possible to achieve a degree of N〇x of less than 5 ppm (dry), less than 2 ppm (dry), and even less than 1 ppm (dry), and less than 1 ppm (dry) of c〇 degree. As used hereinafter, the extent of NOx and CO is expressed as a dry basis based on one millionth of each of 200940155. Even when supplemental heat energy is added to the oxidation chamber, a degree of enthalpy of between 1 and 12 ppm (dry) and a degree of CO of less than 1 ppm (dry) can be obtained. [Embodiment] Ο Referring now in detail to the drawings, first referring to Fig. 1, an embodiment of a thermal oxidizing furnace for performing flameless thermal oxidation of components in a fluid stream is indicated generally by the symbol 1 〇. The fluid flow is indicated by arrow 丨1 and is generally a gas or vapor stream that flows in a continuous or intermittent manner within the thermal oxidation furnace. The oxidizable component of fluid stream 11 can be in the form of a gas, a liquid, and/or a solid particulate. Examples of such ingredients include: fuels, waste products, and organic compounds. The organic compound includes volatile organic compounds, semi-volatile organic compounds, and/or harmful air pollutants. The thermal oxidation furnace 10 comprises a thermal oxidation chamber 12 having an outer casing 14 in which one or more layers of refractory linings are provided. These refractory linings are formed of any refractory material and have a high operating temperature. The physical and chemical properties required for other conditions present in the thermal oxidation chamber 12. The refractory lining 16 is castable, has plasticity, monuments, blankets, fibers, and other suitable forms, and generally contains ceramic materials. The material is made from oxidized sulphur, sulphur dioxide or oxidized town. Conformation is made by a combination of substances. The refractory lining 16 may also be formed of other materials such as refractory metal, a suitable refractory material and an alloy of these metals, and a refractory lining, followed by a lower thermal conductivity lining. The heat loss generated by the outer casing 14 is further reduced. 9 200940155 In the inner region of the inner casing 14 of the liner, an open: inner body #18 is defined, and the flameless thermal oxidation occurs in this inner volume, which will be described later. The size of this open internal volume is created such that U flows the fluid to achieve the desired residence time, and this fluid flow is directed to the particular treatment performed = flowing through the thermal oxidation chamber 12 in accordance with the desired volumetric flow rate. Under normal conditions, the residence time can be selected such that for oxidizable components in the process stream, complete combustion and/or desired damage removal efficiency can be obtained. Preferably, the housing 14 is cylindrical and oriented in a horizontal orientation, but may also have a cross-section of a polygonal or other configuration' and/or it may be oriented vertically or at an intermediate angle. The housing 14 has an at least partially open upstream end 20' and a downstream end that is at least partially open & using the terms "upstream" and "downstream" for fluid flow during operation relative to the thermal oxidation furnace 11 passes through the desired direction of the flow of the oxidation furnace 12. The thermal oxidation furnace K) additionally includes a burner 24 connected to the upstream end 2 of the thermal oxidation chamber 12 by a selective transition zone 26. The downstream end 22 of the thermal oxidation chamber 12 is connected to the exhaust gas f 30 by a similar selective transition zone. Through this exhaust pipe, the reaction product produced by the thermal oxidation process can be released to the atmosphere. On the other hand, the helium oxygen, the swim end can be in fluid communication with the downstream device 31, which may benefit from the low NOx, low CG, high temperature fluid flow of the class q; examples of the swim device 3i include but are not limited For processing heaters, boilers, (eg, ethylene cracking unit, hydrogen reformer, etc.), air heaters, dryers, gas full wheels, and heat exchangers. Therefore, the thermal oxidation furnace 1 can be used by 200940155 to provide a hot flue gas stream with a low degree of NOx and c〇, thereby replacing a part of the conventional method for igniting downstream equipment. The burner 24 is a blast burner capable of generating a strong whirlwind ' thereby ensuring thorough premixing of the combustion air with the fuel gas. Preferably, the fuel of the burner 24 is a gas, generally natural gas or refined fuel gas, but other fuel gases such as hydrogen, methane, ethane, propane, butane, or other hydrocarbons may also be used, Carbon monoxide, and various mixtures thereof. Various additives and diluents (e.g., nitrogen, carbon dioxide, and/or water vapor) may also be added to or present in the gas. Some or all of the fuel may be in the form of liquid or solid particulates. Other types of burners can also be used, such as induction vented burners, natural vented burners, premixed burners, and partially premixed burners. As can be seen from Figure 2, in the embodiment shown, the burners 24 are packaged in three. The p-body 32 is provided with one or more layers of the refractory lining 34 of the above type. It is also possible to arrange the layer insulating lining % between the hot surface refractory inner portion and the inner surface of the outer casing 32. Preferably, the housing 32 is cylindrical and may have a polygonal or other configuration. The <1 U has a side wall 36 and an opposite upstream end 38 and downstream end 4''. The inner casing 32 defines an open interior anterior chamber (sand _) 42 that is in fluid communication with the oxidizing chamber 12 located downstream of the combustor 24. An obstructing valve 44 made of a fossil material may be located at the downstream end 4 of the combustor casing n to produce a reduced passage 45 from the front chamber 42 to the downstream oxidation chamber 12. The blocking valve 44 may have a moment "11 200940155 face" as shown in the figure or it may also be formed by an inwardly directed inlet end and an outlet end to form a more hydrodynamic structure. In some applications, The occlusion valve 44 » / - nozzle assembly 46 is positioned at the upstream end 38 of the combustor casing 32 to deliver a combustible mixture of fuel and air to the anterior chamber 42. In one embodiment, the nozzle Assembly 46 includes an elongated and centrally located fuel gun 48' from a fuel source 5 () that supplies fuel to the fuel rush through conduit 52. A suitable flow regulator 54 adjusts the volumetric flow rate into the fuel rush. 48 terminates in a fuel tip piece %. The fuel tip member has a plurality of fine holes (not shown) through which the fuel flow indicated by the arrow 'arrows is discharged into the front chamber 42. The fuel grab 48 can be in the axial direction

上移動,致使燃料尖端件56的定位可以相對於—個圍繞的 咽喉結構58❿改變,此咽喉結構具有一個縮減剖面的區 域,這-點稍後會更加詳細地說明。另一方面,與燃料搶 48或另一個燃料槍(未顯示)相結合的第二燃料尖端件,可 以與第一燃料尖端件56相隔一段距離,如此一來,燃料可 以相對於此咽喉結構58而在不同的位置注射。 *燃料搶48被一罐子59所包圍,在此罐子中有很多旋 轉葉片60被定位於一個延伸於該罐子59周圍的環狀開口 内。旋轉葉片60被安裝於隔開的環件03a與03b上,這些 裒件被固定至此環狀開口附近的罐子59。最接近燃料尖端 件56的環件63a具有一内徑,此内徑實質上等於罐子59 的内僅,致使它不會阻擋罐子59内的流體朝向燃料尖端件 56流動。箭頭61所顯示的含氧燃燒空氣流或其他氧化劑係 12 200940155 透過旋轉葉片60而流入罐子59内,且接著流到前室42内。 旋轉葉片60可以使燃燒空氣流產生強烈的旋轉動作,藉此 協助燃燒空氣與燃料尖端件56所排放出來的燃料流之混 合。藉由一導管62而從一個燃燒空氣源64供應燃燒空氣 至罐子59而且藉由一流量調節器65而調節體積流速。可 以使用其他機構而實施燃料流57與燃燒空氣流61的想要 混0。作為這類機構的其中一範例,燃燒空氣流61可以透 ❹過一個或多個稜角狀的排放噴嘴而輸送至罐子59内,這些 排放喷嘴可以使燃燒空氣產生旋轉動作。要知道的是並不 一定需要使燃料流57或燃燒空氣流61產生旋轉動作只 要能夠產生足夠的紊流而使燃料流57與燃燒空氣流61產 生深入混合即可。 燃燒空氣流61及/或燃料流57可以在周圍溫度下被供 應至燃燒器24。另一方面,燃燒空氣流61及/或燃料流57The upward movement causes the positioning of the fuel tip member 56 to be changed relative to a surrounding throat structure 58 having a region of reduced profile, as will be explained in more detail later. Alternatively, the second fuel tip member in combination with the fuel grab 48 or another fuel gun (not shown) may be spaced from the first fuel tip member 56 such that the fuel may be opposite the throat structure 58. And injection at different locations. * The fuel grab 48 is surrounded by a can 59 in which a plurality of rotating blades 60 are positioned in an annular opening extending around the can 59. The rotary vane 60 is mounted to the spaced apart ring members 03a and 03b which are fixed to the canister 59 near the annular opening. The ring member 63a closest to the fuel tip member 56 has an inner diameter that is substantially equal to the inner portion of the can 59 so that it does not block the flow of fluid within the can 59 toward the fuel tip member 56. The oxy-combustion air stream or other oxidant system 12 200940155 shown by arrow 61 flows into the canister 59 through the rotating blades 60 and then flows into the front chamber 42. The rotating blades 60 can cause a strong rotational motion of the combustion air flow, thereby assisting in the mixing of the combustion air with the fuel flow discharged from the fuel tip member 56. Combustion air is supplied from a source of combustion air 64 to the canister 59 via a conduit 62 and the volumetric flow rate is adjusted by a flow regulator 65. The desired mixing of the fuel stream 57 with the combustion air stream 61 can be performed using other mechanisms. As an example of such a mechanism, the combustion air stream 61 can be delivered to the canister 59 through one or more angular discharge nozzles that can cause the combustion air to rotate. It is to be understood that it is not necessary to cause the fuel stream 57 or the combustion air stream 61 to rotate as long as sufficient turbulence is generated to cause the fuel stream 57 to be deeply mixed with the combustion air stream 61. Combustion air stream 61 and/or fuel stream 57 may be supplied to combustor 24 at ambient temperature. On the other hand, the combustion air stream 61 and/or the fuel stream 57

可以被一個熱交換器66所預先加熱,在此熱交換器 & I 〇 里疋由熱氧化爐10中所產生的燃燒過程或者來自適當的熱 源所提供。較佳地,燃燒空氣流61與燃料流57以足夠的 壓力而供應至燃燒器24,以迫使流體流u朝前流經氧化室 12 ’而不需要再循環。 燃燒空氣流6 1的供應源64可以包含一部分或所有的 處理流68,此處理流含有水產物、有機化合物(包括:揮發 性有機化合物與半揮發性有機化合物、及/或有害空氣污染 =)。這些化合物與污染物的範例包括碳氫化合物、硫磺化 、氯化溶劑、鹵化碳氫化合物液體、戴奥辛、及多氣 13 200940155 〇 聯苯:因此’處理流68可以是-廢氣或工業製造或發電過 程的副產品。根據處理流68的特性與氧氣含量而定燃在 空氣流的供應源64也可以包含大氣或一些額外的氧氣$ 源。此外,一個或多個部分(甚至所有)的處理流68可=繞 過具有燃燒空氣的空間59’且可以被輸送至一個或多個下 游位置的前室42及/或氧化室12,例如通過注射璋7〇、η 及/或〜可改變注射痒70、71'72的數量與位置以適入 特殊的應用情形。設有流動調節器73a至73c,用以調節二 理流68的不同部位之流速。使用適當的處理控制器 監控並調節不同燃料、燃燒空氣、及處理流57、61與 :體積流速。處理控制器74可以藉由自動方式控制一個或 多個流動調節器54、65及^至73c而調節流速。另—方 面,可以手動方式調整一個或多個流動調節器$ 至 73c。 』/3a =構58係被定位於前室42的上游端%,而且, :一:實施例中包含一環㈣%,此環狀壁從 有縮減剖面區域的咽喉 白一 58被定位於始絲# 收縮或逐漸變尖。此咽喉結構 58被疋位於故轉葉片6〇的 冓 所排放的燃燒空氣流6 遗過旋轉葉片60 結構58。咽喉78的肉4屬在進入則至42之前通過咽喉 件63b之内徑\ 至實質上等於安裝旋轉葉片60的環 在開始模式期間,定 從咽喉78的中心線下:燃料尖端件56,使得燃料流57 排放出來,而燃燒空=處的第—位置上之燃料尖端件% 成61從第二位置上的旋轉葉片6〇 14 200940155 排放出.來,其中第二位置是位於燃料流57的第一排放位置 上游處一段預先選定好的距離,致使兩股氣流可以在咽喉 78或在其下游處首次混合。在預先選定好的燃燒空氣對燃 料之比例的條件下,將燃料尖端件50定位於咽喉78的下 游處,可以限制燃料與燃燒空氣的完全混合,且允許局部 的燃料濃度位於易燃性範圍内,如此一來,燃料便可以在 刖室42内以有焰方式燃燒起來。根據流動條件而定,火焰 mk 了 乂攸月』至4 2延伸到氧化室12的上游部位中。當敎辦-燒 β氣體流經氧化室12時,氧化室12的防火内襯16被:熱至堯 個預先選定好的溫度,藉此能夠使流經氧化室12的燃料 與空氣混合物持續其無焰熱氧化。當使用天然氣作為燃料 源時,本發明的方法已經證明能夠成功地在預先選定的溫 度範圍内(大約1900印到2400〇F)進行操作。藉由使本設備 與方法進一步達到最佳化,相信此預先選定好的溫度可以 從大約1700°F擴大到大約30004。 © 在耐火内襯16到達預先選定的溫度之後,處理流程從 開始模式切換至無焰熱氧化模式,在此模式中使得輸送至 氧化室12内的流體流u之成分被氧化。在開始模式到無 2氧化模式的過渡階段期間,可以使用不同的方法去撲滅 爪體/爪1 1中的火焰。在所顯示的實施例中,藉由移動咽喉 上游處的燃料尖端件%,可以達到從開始模式切換到無 h熱氧化模式。燃料尖端件56的移動能夠使燃料流57從 處於第二位置的燃料尖端件56開始排放,如此一來使得離 開燃料尖端件56的燃料撞擊於燃燒器咽喉Μ上。因此, 15 200940155 燃料流57與旋轉中的燃燒空氣流61在咽喉78上游的一個 位置上彼此接觸,以便在混合物通過咽喉78之前,允許燃 料流5 7與燃燒空氣流6 i產生更加完全的混合。由於燃料 與燃燒空氣流57肖61的更完全混合,所以在整個混合物 中空氣對燃料的比例將會低於易燃性的下限,而且撲滅了 月J至42中看得見的火焰。作為另一方法,經由注射埠 所輸送的燃料可用於開始模式。在此實施例中,燃料尖端 件56被固定於咽喉78上游處的一個位置上,而且在到達 預先選定好的溫度之後,一個燃料閥(未顯示)將燃料從注射 〇 埤· 70切換至燃料尖端件56。在任何一種情形中,由於氧化 室12内的耐火内襯16所傳送的熱量之緣故,燃料與燃燒 空氣混合物持續熱氧化,而在氧化室12内沒有火焰。而且, 不需要如同先前技術的處理過程中需要煙氣再循環,預先 加熱燃料、燃燒空氣 '及/或處理流57、61或68,及/或使 用氧化室12内的床基體等步驟。在撲滅了看得見的火焰之 後,煙氣中的NOx程度急速地下降,包括小於5ppm(dry)、 小於2Ppm(dry),且甚至小於lppm(dry)的程度,而且還不 〇 會增加CO程度。當並未使用階段燃燒時,可以在高達 2380°F的操作溫度下一致地達成小於2ppm(dry)的Ν〇χ程度 及小於lppm(dry)的CO程度。甚至藉由以有焰方式實施 14.4%的燃料之階段燃燒,在i99〇〇f的操作溫度下,可以達 到介於6與12PPm(dry)之間的NOx程度以及小於lppm(dry) 的CO程度》流體流11中的燃料與其他成分之熱氧化釋放 熱能’而且接著繼續加熱对火内襯16。根據特殊的處理條 16 200940155 :釋放的熱量可延長處理流程在盈焰敎氧 化模式下所能繼績操作的 你…焰熱軋 要知道的是:可以藉由其他 办氣故入 方式利用增加燃料流57與 燃燒㈣合m局部 内,藉此達成從開始模式切換到無焰氧易錄的範園 先前所述,除了使用一個軸向動、 、工列如,如 移動式的燃料搶48之外,-p 以使用一個從第一燃料尖端件56軸向 可 件,致使燃料流57可α ^ 、—燃料尖端 …排放位置而注:二 /射於不Μ轴向位置上。在開始禮十 ::料流57透過最接近咽嘴結構58的燃料尖二 =Γ=流57與燃燒空氣流61的徹底混合。 饮‘、、、路線而輸送至另一個燃 ❿ 在無焰熱氧化模式期間使燃料流57與燃料空氣流二: 更完全的混合。 遂^生 另-方面,除了增加燃料流57與燃燒空氣流6ι的現 口之外’可以在開始模式到無焰熱氧化模式的過渡 藉由改變燃料流57相對於燃燒空氣流61之相對流速 改變局部的燃燒空氣對燃料之比例。在開始模式二二 度的燃燒空氣對燃料之比例是位於易燃性範圍内。為了堝 渡至無焰熱氧化模式,可以調整燃燒空氣對燃料的比例, 致使局部的比例充分地位於易燃性範圍外,以便撲 始模式期間所使用的看得見的火焰。 17 200940155 超過资流火焰速度是一般用於撲滅掉過渡至無焰熱氧 化模式期間的看得見火焰之方法。在開始模式,燃料流57 與燃燒空氣流61的流動比例被維持於资流火媳速度的上限 底下。在無焰氧化模式㈣’增加燃料流57與燃燒空氣流 61其中之-或兩個的流速,致使混合物以大於紊流火焰速 度的抓速流動,藉此撲滅火焰,且由於耐火内襯“的熱傳 導之緣故’使得氧化室12内的燃料與燃燒空氣混合物產生 熱氧化。作為另一個範例’除了將燃料與燃燒空氣混合物 =流速增加至紊流火料度以上的速度之外,可崎歸 〇 ,火焰速度,而到達低於燃料與燃燒空氣混合物的速度。 這-點可以藉由許多方式達成。例如,可以改變婵燒器Μ 的内部流動幾何形狀,例如在從開始模式到無焰熱氧化模 式的過渡期間’藉由先前提及的方式而移動注射燃料的位 $作為另-個範例,可以將一個火焰固持結構(未顯示) «又置於前至42内’以便在開始模式期間固定火焰。然後, 可以移動或改變火焰固持結構’以便在過渡至無焰氧化模 式期間降低资流火焰速度,致使它不再@定火焰。 〇 此處理過程可以利用預先選定的間隔而在開始模式與 無焰氧化模式之間循環,例如在其中耐火内襯16冷卻而低 於持續流體流η中的成分之無焰熱氧化所需之溫度的情形 下,氧化t 12内需要額外熱能的時候。此冷卻可以起因= 透過氧化室12的外部殼體14,或者燃料、燃燒空氣、及/ 或處理流57、61與68的冷卻效應所造成的熱損失。 根據所使用的特定處理流程與設備之條件而定,無焰 18 200940155 熱氧化可以自行持續_段時間,例如一小時或更長(包括無 限期)。在其他應用情形中,如上所述,可能需要將補充熱 添加至氧化室12,以補償透過外部殼體14與燃料、燃燒空It may be preheated by a heat exchanger 66 where the heat exchanger & I 疋 is supplied by the combustion process produced in the thermal oxidation furnace 10 or from a suitable heat source. Preferably, combustion air stream 61 and fuel stream 57 are supplied to combustor 24 at a sufficient pressure to force fluid stream u to flow forward through oxidation chamber 12' without recirculation. The supply stream 64 of the combustion air stream 61 may contain some or all of the process stream 68 containing water products, organic compounds (including: volatile organic compounds and semi-volatile organic compounds, and/or harmful air pollution =) . Examples of such compounds and contaminants include hydrocarbons, sulfonation, chlorinated solvents, halogenated hydrocarbon liquids, dioxin, and polygas 13 200940155 bis biphenyl: thus 'treatment stream 68 can be - waste gas or industrial manufacturing or power generation A by-product of the process. The supply source 64 that ignites the flow of air based on the characteristics of the process stream 68 and the oxygen content may also contain atmospheric or some additional source of oxygen. Additionally, one or more portions (or even all) of the process stream 68 may = bypass the space 59' having combustion air and may be delivered to the front chamber 42 and/or the oxidation chamber 12 at one or more downstream locations, such as by Injections of 〇7〇, η and/or ~ can change the number and location of injections of itch 70, 71'72 to suit a particular application. Flow regulators 73a through 73c are provided for regulating the flow rates of different portions of the secondary stream 68. The different fuels, combustion air, and process streams 57, 61 and : volumetric flow rates are monitored and adjusted using appropriate process controllers. The process controller 74 can adjust the flow rate by automatically controlling one or more flow regulators 54, 65 and ^ to 73c. Alternatively, one or more flow regulators $ to 73c can be manually adjusted. 』 / 3a = structure 58 is positioned at the upstream end % of the anterior chamber 42, and, a: the embodiment includes a ring (four)%, the annular wall is positioned from the throat white 58 with the reduced profile area # Shrink or gradually sharpen. This throat structure 58 is passed through the rotating blade 60 structure 58 by the combustion air stream 6 discharged from the crucible 6 turns. The meat 4 of the throat 78 passes through the inner diameter of the throat member 63b before entering 42 to substantially equal to the ring in which the rotating blade 60 is mounted. During the start mode, it is positioned below the centerline of the throat 78: the fuel tip member 56, such that The fuel stream 57 is discharged, and the fuel tip member % at the first position at the combustion air = 61 is discharged from the rotating blades 6 〇 14 2009 40155 at the second position. The second position is located at the fuel stream 57. A preselected distance upstream of the first discharge location causes the two streams to first mix at the throat 78 or downstream thereof. Positioning the fuel tip 50 downstream of the throat 78 under pre-selected combustion air to fuel ratio limits the complete mixing of fuel and combustion air and allows local fuel concentrations to be within flammability In this way, the fuel can be burnt in the chamber 42 in a flamed manner. Depending on the flow conditions, the flame mk extends to the upstream portion of the oxidation chamber 12 from the next month to 42. When the ?-burning beta gas flows through the oxidation chamber 12, the fire resistant liner 16 of the oxidation chamber 12 is heated to a preselected temperature whereby the fuel and air mixture flowing through the oxidation chamber 12 can continue. Flameless thermal oxidation. When natural gas is used as the fuel source, the method of the present invention has proven successful in operating in a preselected temperature range (approximately 1900 to 2400 〇F). By further optimizing the apparatus and method, it is believed that this pre-selected temperature can be expanded from about 1700 °F to about 30004. © After the refractory lining 16 reaches a pre-selected temperature, the process flow switches from the start mode to the flameless thermal oxidation mode, in which the components of the fluid stream u delivered to the oxidation chamber 12 are oxidized. Different methods can be used to extinguish the flame in the pawl/claw 1 1 during the transition phase from the start mode to the 2 oxidation mode. In the embodiment shown, switching from the start mode to the h-free thermal oxidation mode can be achieved by moving the fuel tip member % upstream of the throat. Movement of the fuel tip member 56 enables the fuel stream 57 to be discharged from the fuel tip member 56 in the second position such that fuel exiting the fuel tip member 56 impinges on the throat of the burner. Thus, 15 200940155 fuel stream 57 and rotating combustion air stream 61 contact each other at a location upstream of throat 78 to allow for a more complete mixing of fuel stream 57 with combustion air stream 6 i before the mixture passes through throat 78. . Due to the more complete mixing of the fuel with the combustion air stream 57, the air to fuel ratio will be below the lower limit of flammability throughout the mixture and extinguish the visible flames of months J to 42. As another method, the fuel delivered via injection 埠 can be used in the start mode. In this embodiment, the fuel tip member 56 is secured to a location upstream of the throat 78, and after reaching a preselected temperature, a fuel valve (not shown) switches the fuel from the injection port to the fuel. Tip member 56. In either case, the fuel and combustion air mixture continues to be thermally oxidized due to the heat transferred by the refractory lining 16 within the oxidation chamber 12, while there is no flame in the oxidation chamber 12. Moreover, there is no need for steps such as requiring recirculation of flue gas as in prior art processes, preheating fuel, combustion air 'and/or process stream 57, 61 or 68, and/or using a bed substrate within oxidation chamber 12. After extinguishing the visible flame, the degree of NOx in the flue gas drops rapidly, including less than 5 ppm (dry), less than 2 Ppm (dry), and even less than 1 ppm (dry), and does not increase CO degree. When stage combustion is not used, a degree of enthalpy of less than 2 ppm (dry) and a degree of CO of less than 1 ppm (dry) can be consistently achieved at operating temperatures up to 2380 °F. Even with a staged combustion of 14.4% fuel in a flamed manner, at the operating temperature of i99〇〇f, a degree of NOx between 6 and 12 ppm (dry) and a degree of CO less than 1 ppm (dry) can be achieved. The thermal oxidation of fuel and other components in fluid stream 11 releases thermal energy' and then continues to heat the fire lining 16. According to the special treatment strip 16 200940155: The heat released can extend the processing flow in the Yingyan 敎 oxidation mode. You can know that the hot rolling can be used to increase the fuel by other methods. The flow 57 is combined with the combustion (four) and the m part, thereby achieving the switch from the start mode to the fanless oxygen easy to record, as described previously, except that an axial movement, a work such as, for example, a mobile fuel grab is used. In addition, -p is used to axially pass from the first fuel tip member 56, causing the fuel stream 57 to be at a position to be discharged from the axial position. At the beginning of the circumstance, the stream 57 is thoroughly mixed with the fuel stream 61 through the fuel tip 2 = Γ = stream 57 closest to the throat structure 58. Drinking the ',, and route to another fuel's fuel stream 57 and fuel air stream two during the flameless thermal oxidation mode: more complete mixing. In addition to increasing the flow of fuel 57 and the flow of combustion air 6 ', the transition from the start mode to the flameless thermal oxidation mode can be varied by varying the relative flow rate of fuel flow 57 relative to combustion air flow 61. Change the proportion of local combustion air to fuel. In the start mode, the ratio of combustion air to fuel is within the flammability range. In order to transition to the flameless thermal oxidation mode, the ratio of combustion air to fuel can be adjusted such that the local ratio is sufficiently outside the flammability range to allow for the visible flame used during the mode. 17 200940155 Exceeding the current flame speed is a common method used to extinguish the visible flame during the transition to the flameless thermal oxidation mode. In the start mode, the flow ratio of fuel flow 57 to combustion air flow 61 is maintained below the upper limit of the flow rate. In the flameless oxidation mode (4) 'increasing the flow rate of the fuel stream 57 and the combustion air stream 61 - or both, causing the mixture to flow at a grip speed greater than the turbulent flame speed, thereby extinguishing the flame, and due to the refractory lining" The reason for heat conduction is to cause thermal oxidation of the fuel in the oxidation chamber 12 with the combustion air mixture. As another example, in addition to increasing the velocity of the fuel and combustion air mixture = flow rate above the turbulent intensity, it is blameless. The speed of the flame reaches a speed below the mixture of fuel and combustion air. This point can be achieved in many ways. For example, the internal flow geometry of the burner Μ can be changed, for example, from the start mode to the flameless thermal oxidation mode. During the transition period, by moving the position of the injected fuel by the previously mentioned method, as another example, a flame holding structure (not shown) can be placed in the front to 42 to fix the flame during the start mode. Then, the flame holding structure can be moved or changed to reduce the velocity of the stream during the transition to the flameless oxidation mode, resulting in It no longer settles the flame. This process can be cycled between the start mode and the flameless oxidation mode using pre-selected intervals, for example, where the refractory lining 16 cools below the continuous fluid flow η. In the case of temperatures required for the thermal oxidation of the flame, additional heat energy is required during oxidation t 12. This cooling may occur as a result of passing through the outer casing 14 of the oxidation chamber 12, or fuel, combustion air, and/or process streams 57, 61. Heat loss due to cooling effect with 68. Flameless 18 200940155 Thermal oxidation can last for a period of time, such as one hour or longer (including indefinite periods), depending on the specific process flow and equipment conditions used. In other applications, as described above, it may be desirable to add supplemental heat to the oxidation chamber 12 to compensate for the passage of the outer casing 14 with fuel, combustion

氣、或處㈣57、61肖68其巾之—的冷卻效果所導致 的熱扣耗。這些燃料、燃燒空氣、及/或處理流57、61與 68疋以低於發生無焰氧化的溫度而被輸送至燃燒器μ或氧 化室12。例如’可以藉由連續或間斷地預先加熱燃料、燃 燒空氣及/或處理流;將補充燃料透m多個注射璋(例 如具有或不具有一部分處理流68的注射埠71,及/或注射 槔72)而引進到氧化室12内;藉由以火焰模式燃燒此補充 燃料;藉由使用電阻式加埶湄侔. 、刀热/厚件,及/或以起初加熱模式操 作燃燒器24’而添加補充熱。藉由以有焰方式燃燒燃料而 添加此補充熱,可以增加1^化與c〇的程度,但是整體的程 度仍然顯著地低於以㈣方式繼續燃燒所有燃料操作熱氧 化爐10所可能產生之程度。 在以無焰氧化模式操作熱氧化爐1G的期間,含有姆料 及燃燒空氣流57肖心流體^,以及選擇性地處理流 68,係被輸送至氧化室12内以作為預先混合好的混合物, 其燃燒空氣與燃料的比例係根據所實施的特定應用情形中 之想要的操作條件而敎的。由於流體流u的燃料與其他 成分之熱氧化而持續熱氧化過程大到一段想要的時間 以燃燒空氣與燃料的比例以及燃燒空氣流Η與燃料 的個別流動速率’大致上被調㈣㈣供應足夠的執能。 此外,局部的燃燒空氣與燃料的比例或者流雜流u中的局 200940155 部燃料濃度,應該要低於所運用的特殊燃料或燃料混合物The heat deduction caused by the cooling effect of gas or (4) 57, 61 Xiao 68 and its towel. These fuel, combustion air, and/or process streams 57, 61 and 68 are delivered to the burner μ or oxidation chamber 12 at a temperature below that at which flameless oxidation occurs. For example, 'the fuel, combustion air, and/or process stream may be preheated continuously or intermittently; the supplemental fuel may be passed through a plurality of injection ports (eg, injection port 71 with or without a portion of process stream 68, and/or injection 槔) 72) introduced into the oxidation chamber 12; by burning the supplemental fuel in a flame mode; by using a resistive twist, a knife heat/thickness, and/or operating the burner 24' in an initial heating mode Add supplemental heat. By adding this supplemental heat by burning the fuel in a flame-like manner, the degree of enthalpy and c〇 can be increased, but the overall degree is still significantly lower than that of the fourth embodiment of continuing to burn all of the fuel to operate the thermal oxidizer 10. degree. During operation of the thermal oxidizer 1G in the flameless oxidation mode, a mixture of the reactants and the combustion air stream 57 and the selectively treated stream 68 are delivered to the oxidation chamber 12 as a premixed mixture. Its combustion air to fuel ratio is based on the desired operating conditions in the particular application scenario being implemented. The thermal oxidation process continues for a desired period of time due to the thermal oxidation of the fuel and other components of the fluid stream to a desired ratio of combustion air to fuel and the individual flow rates of the combustion air stream and fuel are substantially adjusted (4) (4) supply is sufficient The ability to perform. In addition, the local combustion air to fuel ratio or the flow in the flow stream u should be lower than the specific fuel or fuel mixture used.

之易燃性下限,或者流體流n、燃燒空氣流61 '及燃料流 5 7的其中之或多個的流速被調節成使得流體流丨丨的流速 大於流體流11中的燃料與其他可燃成分之紊流火焰速度。 例如’當使用含有大約95%甲烷的天然氣作為燃料時,燃 燒空氣與燃料的比例大約是2〇 : 1或更大。只要燃燒空氣 與燃料濃度在前室42㈣混合溫度位於易燃性範圍外,且 在流經氧化冑12㈣流體流11巾徹底預先混合好,在氧 化至12内所產生的熱氧化將會是無焰的。例如氮氣、二氧 化碳、及/或水蒸氣等過量空氣及/或稀釋液可以被注射到前 室42内,崎低燃料濃度,且藉此繼續保持在易燃性下限 底下,以減少進入前室42中不必要的逆燃現象The lower limit of flammability, or the flow rate of one or more of the fluid stream n, the combustion air stream 61', and the fuel stream 57 is adjusted such that the flow rate of the fluid stream is greater than the fuel and other combustible components in the fluid stream 11. Turbulent flame speed. For example, when natural gas containing about 95% methane is used as a fuel, the ratio of combustion air to fuel is about 2 〇 : 1 or more. As long as the combustion air and fuel concentration are outside the flammability range of the mixing temperature of the front chamber 42 (four), and the fluid flow through the yttrium oxide 12 (four) fluid is thoroughly pre-mixed, the thermal oxidation generated in the oxidation to 12 will be flameless. of. Excess air and/or diluent, such as nitrogen, carbon dioxide, and/or water vapor, can be injected into the anterior chamber 42 to lower the fuel concentration and thereby remain below the lower flammability limit to reduce access to the anterior chamber 42. Unnecessary flashback phenomenon

假如存在的話,藉由增加從前室42流入氧化室12内的流 體流11之速度,且遮蔽前室42免受氧化室12所發射出來 的輻射’内阻塞氣門44另外可降低逆燃現象的機率。稀釋 劑的存在可以增進燃料效率,這是因為無焰過程能夠以燃 燒空氣流巾較低的氧含量進行操作之緣故。 在上述無過程中被熱氧化的流體流11之成分可以』 :何能夠承受熱氧化的化合物,例如:燃料、廢棄材質、 機化w物(包括揮發性有機化合物與半揮發性有機化名 燒),二Γ有:空氣污染物。在其中熱氧化爐10僅作為賴If present, by increasing the velocity of the fluid stream 11 flowing from the front chamber 42 into the oxidation chamber 12, and shielding the front chamber 42 from the radiation emitted by the oxidation chamber 12, the internal blocking valve 44 may additionally reduce the chance of flashback. . The presence of a diluent enhances fuel efficiency because the flameless process can operate at a lower oxygen content of the combustion air streamer. The composition of the fluid stream 11 that is thermally oxidized in the above-mentioned no process can be: a compound that can withstand thermal oxidation, such as: fuel, waste materials, machined materials (including volatile organic compounds and semi-volatile organic chemical burns) Second, there are: air pollutants. In which the thermal oxidation furnace 10 is only used as a Lai

麂器的操作之情形中,_ Μ 4 e U 個或多個燃料可以是流體流u :到熱氧化的成分。換句話說,本發明包含有其 爐10並未將污染物從處理流中移除之過程,但卻作^ 20 200940155 低>?(^與co的燃燒器之用,藉此防止熱煙氣體作為在例如 下游設備31中的其他用途。In the case of operation of the vessel, _ Μ 4 e U or more fuels may be fluid stream u: to thermally oxidized components. In other words, the present invention encompasses the process in which the furnace 10 does not remove contaminants from the process stream, but does so as to prevent hot smoke from the burners of the <20200940155> The gas acts as other uses in, for example, the downstream device 31.

燃燒器24提供一種很方便的機構,用以預先加熱氧化 爐12且接著將燃料與燃燒氣體在輸送至氧化室12之前預 先混合好。然而,要知道的是可以藉由燃燒器24以外的其 他熱源而預先加熱氧化t 12。此外,可以在燃料與燃燒空 氡進入氧化至12之則,藉由其他機構而預先混合燃料與燃 燒空氣。因此’本發明包含不需要使用燃燒器24且以其他 方式供應熱能之處理過程,或者包含其中燃燒器24是感應 通風燃燒器、自然通風燃燒器、或局部預先混合式燃燒器。 本發明的處理固成並不需要使用如美國專利第 5’165’884號中所運用的該種床基體。因此,氧化室12中實 質上所有的内部體積均可以用作為受到無焰熱氧化的流體 流11之流動。因此,在本發明的方法中,可以避免掉先前 所提到關於床基體的缺點,卻仍能夠達到非常低的N〇x與 C〇程度。雖然在本發明的無焰熱氧化過程中不需要床基 體,但是最好在一些應用情形中可以在氧化室12内包括— 個垂直本體或其他混合褒置,用以促進流體流u的混合及 /或固定火焰,藉此供應補充熱。也可以使用__個垂直本體 或其他混合裝置’以作為前室42内的火焰維持結構。如前 所述,改變或移動此火焰維持結構,可能會改變流體流U 中的燃料之|流火焰速度,以促進燃料以有焰方式燃燒而 起初加熱或重新加熱氧化室对火内m 16之模式,以及藉由 來自耐火内襯16的熱傳導使燃料以無焰方式熱氧化之模式 21 200940155 之間進行過渡轉換。 離開氧化至12的煙氣反應產物可以被輸送至排氣管3〇 以排放至大氣,煙氣也可以被用作為熱交換媒介,以便在 輸送至氧化至12之前預先加熱流體流u的一個或多個成 分。此外,熱煙氣可以被用於下游設備3丨上,例如:處理 加熱器、鍋爐、反應爐(例如:乙烯裂解單元、氫重新成形 器等)。 以下所提供的範例僅作為說明用途,並非用以侷限本 發明的範圍》 〇 範例1 在室溫下具有空氣形式的燃燒空氣係透過旋轉葉片6〇 而以1140〇〇scf/hr的流速輸送至前室42内,在室溫下具有 天然氣形式的燃料係透過燃料尖端件56而以555〇scf/hr的 流速注入前室42内。點燃且以有焰方式燃燒燃料與燃燒空 氣氧化物’直到氧化室12到達188〇。?的溫度為止。一旦氧 化室12以此方式被預先加熱時,藉由將燃料尖端件56從 燃燒器咽喉78的中心線往回拉大約3.5英吋,而使得燃料 〇 與燃燒空氣的混合物通過燃燒器咽喉78之前產生了更加完 全的混合,因此可以撲滅燃燒器的火焰。燃料與燃燒空氣 流速被維持成幾乎沒有改變,而且燃料與燃燒空氣的預先 混合流透過燃燒器咽喉78而進入前室42内,而沒有存在 看得見的火焰,而且,因為有焰方式燃燒燃料所產生的燃 燒轟鳴聲便不復存在。由於氧化室12中預先加熱好的耐火 内襯16之熱傳導的緣故,燃料繼續以穩定無焰的氧化過程 22 •200940155 · 進行氧化。無焰氧化過程實質上處於平衡狀態,而且測量 出NOx的程度小於ippm(dry),且CO程度小於lppm(dry)。 處理過程持續8.5個小時,而且當透過氧化室12的外部殼 體14以及室溫下被輸送至燃燒器24的燃料與燃燒空氣之 冷卻效果所產生的熱損耗之緣故,使得燃燒器24下游處氧 化室12内的溫度冷卻至1500cF的溫度時就停止。當此處理 過程停止時’氧化室12的出口溫度仍舊為i88〇〇F。 範例2 〇 利用以下參數的改變’而重複範例1的測試。(丨)燃燒 空氣流速降低至100200scf/hr,以及(2)藉由使燃料分段燃 燒,而降低通過前室42的燃料流速》總燃料流速是 550〇SCf/hr,而且經分裂後使得85·6%的燃料在注入前室42 之前與所有燃燒空氣預先混合好,而使得剩餘14 4%的燃料 透過燃燒器24下游處的氧化室12内之兩個燃料尖端件π 而注入。透過燃料氣體尖端件而注入氧化室12内之燃料是 φ 以有焰方式燃燒,且直接加熱耐火内襯16,以便穩定氧化 室12内的無焰氧化過程。由於增加熱輸入之緣故,氧化室 12的出口温度是1990°F。因為一部分的燃料是以有焰方式 進行燃燒,所以NOx程度會增加,且從外口爪改變成 12ppm(dry)。CO程度仍舊低於lppm(dry)。此測試打算以 44_5個操作小時結束,因此看起來此處理過程是可以自行 持續的。 以下的測試顯示出藉由分階段供應燃料至燃燒器24下 游處的氣體尖端件,在不超過前室42内的易燃性極限之情 23 200940155 形下’可以達到甚至大約2000°F、2100°F、2200°F、2300〇F 與2400 F等更高的操作溫度。藉由能夠使流體流11與氧化 至12内的階段供應的燃料深入混合之流速,甚至在大約 2000 F’也已經可以獲得低於ippm(dry)的Ν〇χ與c〇程度。 相信也可以達到更高的溫度。 範例3 範例3的測試條件表現出一種範例,其中在耐火内襯 16的充分預先加熱之前,超過紊流火焰速度,而使得無焰 操作向過前室42内的空氣/燃料混合物之易燃性下限。燃燒 〇 空氣流速是245640scf/hr,天然氣流速是18357scf/hr,且埶 氧化爐的操作溫度是238pF。燃燒空氣與天然氣在前室42 内被預先混合好’而產生5.87%體積百分比的預先混合好的 燃料成分,係超過周圍溫度的易燃性下限(5%體積百分 比)。氧化過程並不會逆燃於前室42内,代表超過了通過縮 減直徑通道45的紊流火焰速度。用於此處理流程的Ν〇χ排 放濃度是1.3ppm(dry),且CO排放量低到無法測出(小於 lppm(dry))。 ❹ 範例4 藉由組合20820scf/lir的C02以及62280scf/hr的新鮮空 氣導致14.5%體積百分比的氧氣含量,而產生低氧燃燒空氣 之混合物,此低氧燃燒空氣透過旋轉葉片60而輪送至前室 42内。具有室溫下天然氣形式的燃料,係透過燃料尖端件 56而以5475scf/hr的流速而注入前室42内。燃料與低氧燃 燒空氣在前室42内被混合,且進入熱氧化室12内而在其 24 200940155 2料以無焰方式進行氧化。由於所產生的煙氣中氧氣的 含量為2%體積百分比(dry),所以c〇的濃度低到無法測 出,煙氣中的Ν〇χ濃度是i 2ppm(dry),且操作溫度是 ⑼1°F。此測試範例顯示熱氧化爐1〇能夠藉由低氧燃燒2 氣流、煙氣再循環流、及/或低加熱值廢物流而進行操作。 此測試結果亦顯示相較於習知具有火焰形式的燃燒器,無 焰處理能夠以燃燒空氣中更低的氧含量進行操作。當使用 e 低氧含量的燃燒空氣源時,可以獲得熱效率,這是因為僅 需要增加較少的新鮮空氣到此低氧含量流内,以維持穩定 性。典型地,習知的燃燒器需要室溫下燃燒空氣内超過18% 體積百分比的氧氣,以產生敎的操作,但是此測試展現 出藉由燃燒空氣中14_5%體積百分比的氧氣而產生出穩定 的操作。 從 '上的說明中,可以清楚看出本發明仍可經由調整 與改變就可獲得上述所有目的與此種結構中本身具有的優 ❹‘點。 要知道的是可以使用一些特點與再組合,且可以不運 用其他特色與再組合而實施出本發明。在本發明的範圍 内,這一點是可以構思出來的。 由於在不違背本發明的範圍之前提下,仍可以產生出 許多可能的其他實施例。要知道的是文中所述及圖式所顯 的所有内今均被解讀成說明用途而非限制用途。 【圖式簡單說明】 以下的圖式構成一部分的本發明說明t,參考圖式與 25 200940155 書將 更此了解本發明,圖式 圖形 中的類似部位。 圖1 是依據本發明實施例的 熱氧化爐的一些部位以顯示 圖2 疋熱氧化爐的燃燒部以 用以 示意地顯示熱氧化爐的 【主 要元件符號說明】 10 熱氧化爐 11 流體流 12 熱氧化室 U 殼體 16 耐火内襯 17 較小的熱傳導性 18 開放式内部體積 20 上游端 22 下游端 24 燃燒器 26 過渡區 28 過渡區 30 排氣管 31 下游設備 32 外殼 34 耐火内襯 35 絕緣内襯 些部位。 Ο 〇 26 200940155 側壁 下游端 下游端 前室 阻塞氣門 通道 〇 喷嘴總成 燃料槍 燃料源 導管 流動調節器 燃料尖端件 燃料流 咽喉結構 罐子 旋轉葉片 空氣流 導管 環件 環件 供應源 流動調節器 熱交換器 處理流 27 200940155The burner 24 provides a convenient mechanism for preheating the oxidation furnace 12 and then premixing the fuel and combustion gases prior to delivery to the oxidation chamber 12. However, it is to be understood that the oxidation of t 12 can be preheated by other heat sources other than the burner 24. In addition, the fuel and combustion air may be premixed by other mechanisms after the fuel and combustion air enter oxidation to 12. Thus, the present invention encompasses a process that does not require the use of burner 24 and otherwise supplies thermal energy, or includes where burner 24 is an induction ventilator, a natural ventilator, or a partially premixed burner. The treatment of the present invention does not require the use of such a bed substrate as used in U.S. Patent No. 5,165,884. Therefore, substantially all of the internal volume in the oxidation chamber 12 can be used as the flow of the fluid stream 11 subjected to the flameless thermal oxidation. Therefore, in the method of the present invention, the disadvantages mentioned above with respect to the bed substrate can be avoided, but still a very low degree of N〇x and C〇 can be achieved. Although a bed substrate is not required in the flameless thermal oxidation process of the present invention, it may be desirable in some applications to include a vertical body or other mixing device within the oxidation chamber 12 to promote mixing of the fluid stream u and / or fixed flame, to supply supplemental heat. It is also possible to use __ vertical bodies or other mixing devices as the flame holding structure in the front chamber 42. As previously mentioned, changing or moving the flame maintaining structure may change the velocity of the fuel in the fluid stream U to promote combustion of the fuel in a flamed manner to initially heat or reheat the oxidation chamber to the fire. The mode, as well as the transition between modes 21 200940155, which thermally oxidize the fuel in a flameless manner by heat conduction from the refractory lining 16 is performed. The flue gas reaction product leaving the oxidation to 12 can be sent to the exhaust pipe 3 to be discharged to the atmosphere, and the flue gas can also be used as a heat exchange medium to preheat one of the fluid streams u before being transported to oxidation to 12. Multiple ingredients. In addition, hot flue gas can be used in downstream equipment such as treatment heaters, boilers, reactors (e.g., ethylene cracking units, hydrogen reformers, etc.). The following examples are provided for illustrative purposes only and are not intended to limit the scope of the invention. 〇 Example 1 At room temperature, combustion air having an air form is delivered through a rotating blade 6〇 at a flow rate of 1140 〇〇scf/hr. In the front chamber 42, a fuel having a natural gas form at room temperature is injected into the front chamber 42 through the fuel tip member 56 at a flow rate of 555 〇scf/hr. Ignite and combust the fuel and combustion of the air oxides ' until the oxidation chamber 12 reaches 188 Torr. ? The temperature is up. Once the oxidation chamber 12 is preheated in this manner, the fuel tip member 56 is pulled back about 3.5 inches from the centerline of the burner throat 78 such that the mixture of fuel helium and combustion air passes through the burner throat 78. A more complete mixing is produced, so the flame of the burner can be extinguished. The flow rate of fuel and combustion air is maintained to be almost unchanged, and a premixed flow of fuel and combustion air passes through the burner throat 78 into the front chamber 42 without visible flames, and because of the flame-burning fuel The resulting burning roar ceases to exist. Due to the heat transfer of the preheated refractory lining 16 in the oxidation chamber 12, the fuel continues to oxidize in a stable, flameless oxidation process 22 • 200940155 . The flameless oxidation process is substantially in equilibrium and the degree of NOx is measured to be less than ippm (dry) and the degree of CO is less than 1 ppm (dry). The process lasts for 8.5 hours and causes heat loss through the outer casing 14 of the oxidation chamber 12 and the cooling effect of the fuel and combustion air delivered to the burner 24 at room temperature, such that the burner 24 is downstream When the temperature in the oxidation chamber 12 is cooled to a temperature of 1500 cF, it is stopped. When this process is stopped, the exit temperature of the oxidation chamber 12 is still i88 〇〇F. Example 2 重复 Repeat the test of Example 1 with the following changes in parameters. (丨) the combustion air flow rate is reduced to 100200 scf/hr, and (2) the fuel flow rate through the front chamber 42 is reduced by burning the fuel in sections. The total fuel flow rate is 550 〇 SCf/hr, and after splitting, 85 • 6% of the fuel is premixed with all of the combustion air prior to injection into the front chamber 42 such that the remaining 14% of the fuel is injected through the two fuel tip pieces π in the oxidation chamber 12 downstream of the combustor 24. The fuel injected into the oxidation chamber 12 through the fuel gas tip member is φ in a flame-like manner and directly heats the refractory lining 16 to stabilize the flameless oxidation process in the oxidation chamber 12. The outlet temperature of the oxidation chamber 12 is 1990 °F due to the increase in heat input. Since a part of the fuel is burned in a flamed manner, the degree of NOx increases and changes from the outer jaw to 12 ppm (dry). The CO level is still below 1 ppm (dry). This test is intended to end in 44_5 operating hours, so it seems that this process is self-sustaining. The following test shows that the gas tip member downstream of the burner 24 is supplied in stages, not exceeding the flammability limit in the front chamber 42, which can reach even about 2000 °F, 2100. Higher operating temperatures of °F, 2200°F, 2300〇F and 2400 F. By the ability to intimately mix the fluid stream 11 with the fuel supplied to the stage oxidized to 12, a degree of enthalpy and c〇 below ippm can be obtained even at about 2000 F'. I believe that higher temperatures can also be achieved. Example 3 The test conditions of Example 3 demonstrate an example in which the turbulent flame speed is exceeded before the refractory lining 16 is sufficiently preheated, thereby rendering the flameless operation flammable to the air/fuel mixture in the anterior chamber 42. Lower limit. The combustion 〇 air flow rate was 245,640 scf/hr, the natural gas flow rate was 18,357 scf/hr, and the enthalpy oxidation furnace operating temperature was 238 pF. The combustion air and natural gas are premixed in the front chamber 42 to produce 5.87% by volume of the premixed fuel component, which is the lower flammability limit (5% by volume) above the ambient temperature. The oxidation process does not flash back into the front chamber 42 and represents a turbulent flame velocity that passes through the reduced diameter passage 45. The enthalpy concentration for this process was 1.3 ppm (dry) and the CO emissions were too low to measure (less than 1 ppm (dry)).范例 Example 4 By combining 2002scf/lir of C02 and 62280scf/hr of fresh air to produce 14.5% by volume of oxygen, a mixture of low-oxygen combustion air is produced, which is sent through the rotating blades 60. Inside the chamber 42. A fuel having the form of natural gas at room temperature is injected into the front chamber 42 through the fuel tip member 56 at a flow rate of 5475 scf/hr. The fuel and low oxy-combustion air are mixed in the front chamber 42 and enter the thermal oxidation chamber 12 to be oxidized in a flameless manner. Since the content of oxygen in the generated flue gas is 2% by volume (dry), the concentration of c〇 is too low to be measured, the concentration of antimony in the flue gas is i 2 ppm (dry), and the operating temperature is (9) 1 °F. This test example shows that the thermal oxidation furnace can be operated by a low oxygen combustion 2 gas stream, a flue gas recycle stream, and/or a low heating value waste stream. The results of this test also show that the flameless treatment can operate at a lower oxygen content in the combustion air than in a conventional burner with a flame form. Thermal efficiency can be obtained when using a low oxygen content combustion air source because only a small amount of fresh air needs to be added to this low oxygen content stream to maintain stability. Typically, conventional burners require more than 18% by volume of oxygen in the combustion air at room temperature to produce helium operation, but this test exhibits a steady state by burning 14-5% by volume of oxygen in the air. operating. From the above description, it is apparent that the present invention can still achieve all of the above objects and the advantages of the structure itself by adjustment and change. It will be appreciated that some features and combinations may be utilized and the invention may be practiced without other features and combinations. This is conceivable within the scope of the invention. Many other possible embodiments are possible without departing from the scope of the invention. It is to be understood that all of the present invention and the drawings are described as illustrative and not limiting. BRIEF DESCRIPTION OF THE DRAWINGS The following drawings form part of the description of the present invention, and reference is made to the drawings and 25 200940155 for a more detailed description of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a portion of a thermal oxidation furnace according to an embodiment of the present invention to show the combustion portion of the thermal oxidation furnace of Fig. 2 for schematically showing the thermal oxidation furnace. [Main component symbol description] 10 Thermal oxidation furnace 11 Fluid flow 12 Thermal oxidation chamber U Housing 16 Refractory lining 17 Small thermal conductivity 18 Open internal volume 20 Upstream end 22 Downstream end 24 Burner 26 Transition zone 28 Transition zone 30 Exhaust pipe 31 Downstream equipment 32 Enclosure 34 Refractory lining 35 The insulation is lined with some parts. Ο 〇26 200940155 Side wall downstream end downstream end front chamber blocked valve channel 〇 nozzle assembly fuel gun fuel source conduit flow regulator fuel tip fuel flow throat structure tank rotating blade air flow conduit ring ring supply source flow regulator heat exchange Processing stream 27 200940155

70 注 射 埠 71 注 射 埠 72 注 射 埠 73a 流動 調 々/r 即 器 73b 流 動 調 節 器 73c 流 動 調 節 器 74 處 理 控 制 76 環 狀壁 78 咽 喉70 Injection 埠 71 Injection 埠 72 Injection 埠 73a Flow 々 /r Instant 73b Flow Adjuster 73c Flow Adjuster 74 Process Control 76 Ring Wall 78 Throat

2828

Claims (1)

,200940155 十、申請專利範圍: i. 一種用於熱氧化一氧化室内的成分之方法,該氧化室 具有一内襯,該方法包含以下步驟: 起初加熱該氧化室的内襯;以及 然後在一些條件下,將該成分輸送至該氧化室,由於 來自該加熱過的氧化室内襯的熱傳導,使該等成 献 氧化。 。…、 /.如中請專利範圍第1項之方法’其中,輸送該等成分 至氧化室内之步驟包含將該等成分以一流體流 氧化室内。 、琢 3. 如申請專利範圍第2項之方法’包含以下步驟:在該 等成分的熱氧化期間或之後,使該流體流流經該氧化室/ 4. 如申請專利範圍第3項之方法,包含以下步驟^該 流體流中的該等成分之間提供一或多個燃料,且維持該氧 化室内的條件,致使能藉由來自該氧化室内襯的熱傳;: ❹ 緣故,使該流體流内的一或多個燃料產生熱氧化 hit·體流通過該氧化室。 1 哗狩琢氧化室 内的條件使該流體流内的一或多個燃料產生熱氧化之步 驟’包含以低於易燃性下限的局部濃度而在該流體流内提 供一或多個燃料,同時該流體流通過該氧化室。 :藉由 而使得 6.如申請專利範圍第5項之方法,包含以下步驟 改變該氧化室内的條件而重新加熱該氧化室㈣, 該流體流中的一或多個燃料產生燃燒。 29 200940155 7·如申請專利範圍第6項之方法其 :的條件之步驟包含改變該一或多個燃料的=化: 其高於易燃性下限。 P /農度’使 8. 如申請專利範圍帛4項之方法 内的條侔佶兮、·*种ά〜 、T維持該氧化室 I:::一或多個燃料產生熱氧化之步 ^包3以一個大於該一或多個燃料的齋流火 速,使該流體流流過一個縮減直徑通道。 疋X之μ 9. 如申請專利範圍第8項之方法,包含以下步驟:藉由 改變該氧化室内的條件而重新加熱該氧化室内冑 該流體流中的一或多個燃料產生燃燒。 付 10·如申請專利範圍第9項之方法,其中改變該氧化室 内的條件之步驟包含改變該流體流的流速,使其低於該一 或多個燃料的紊流火焰速度。 、Μ 如申請專利範圍第Μ之方法,其中,起初加熱該 氧化至内襯之步驟包含在—些條件下輪送該等成分至 化室,以便使該等成分產生燃燒。 ❹ 12.如申請專利範圍第&quot;項之方法,其中,起初加教該 ^化室内襯之步驟包含以一流體流輪送該等成分至該氧化 室0 # 13.如申請專利範圍帛12項之方法,其中,起初加熱該 乳化室内襯之步驟包含在該流體流内的該等成分中提供一 或多個燃料。 14.如申請專利範 起初條件下使含有一 圍第1項之方法,包含以下步驟:在 或多個燃料的~個流體流流經該氧化 30 '200940155 室,以便使該-或多個燃料產生燃 内襯的起初加熱;以及然後改變該等條:導致該氧化室 由於該氧化室内襯的熱傳導之緣故而產生執=該等成分 15.如申請專利範圍第14項之方法,:。 至氧化室内之”包含輸 心輸送該等成分 分。 輸送3有-或多個燃料的該等成, 200940155 X. Patent application scope: i. A method for thermally oxidizing a component in an oxidation chamber, the oxidation chamber having an inner liner, the method comprising the steps of: initially heating the lining of the oxidation chamber; and then at some Under conditions, the component is delivered to the oxidation chamber, which is oxidized by heat transfer from the heated oxidation chamber liner. . The method of claim 1, wherein the step of transporting the components into the oxidation chamber comprises oxidizing the components in a fluid stream.琢3. The method of claim 2, wherein the method comprises the steps of: flowing the fluid stream through the oxidation chamber during or after thermal oxidation of the components/4, as in the method of claim 3 Included in the steps of: providing one or more fuels between the components in the fluid stream, and maintaining conditions within the oxidation chamber such that the fluid is passed through the heat transfer from the oxidizing chamber; One or more fuels within the stream produce a thermally oxidized hit body stream through the oxidation chamber. 1 a step of oxidizing a chamber to cause thermal oxidation of one or more fuels within the fluid stream to include providing one or more fuels within the fluid stream at a local concentration below the lower flammability limit, The fluid stream passes through the oxidation chamber. 6. The method of claim 5, comprising the step of reheating the oxidation chamber (4) by changing the conditions in the oxidation chamber, the one or more fuels in the fluid stream being combusted. 29 200940155 7. The method of claim 6, wherein the conditional step comprises changing the chemical conversion of the one or more fuels: it is above the lower limit of flammability. P / Farming' makes 8. For example, in the method of applying for patent scope 帛 4, * * species ά ~, T maintains the oxidation chamber I::: one or more fuels to produce thermal oxidation step ^ The packet 3 is caused to flow through a reduced diameter passage at a firing rate greater than the one or more fuels.疋Xμ 9. The method of claim 8, comprising the steps of: reheating the oxidation chamber by changing conditions in the oxidation chamber. One or more fuels in the fluid stream produce combustion. The method of claim 9, wherein the step of varying the conditions in the oxidation chamber comprises varying the flow rate of the fluid stream below a turbulent flame velocity of the one or more fuels. The method of claim </ RTI> </ RTI> wherein the step of initially heating the oxidized to the inner liner comprises, under conditions, transferring the components to the chemical chamber to cause combustion of the components. ❹ 12. The method of claim 2, wherein the step of initially lining the interior lining comprises transferring the components to the oxidation chamber by a fluid stream. # # 13. The method of claim 1, wherein the step of initially heating the emulsified chamber liner comprises providing one or more fuels in the components of the fluid stream. 14. The method of claim 1, wherein the method comprises the steps of: flowing one or more fluids through the 30 '200940155 chamber to make the fuel or fuels Producing the initial heating of the lining; and then changing the strips: causing the oxidizing chamber to produce the composition due to the heat transfer of the oxidizing chamber lining. 15. The method of claim 14 is as follows: "To the oxidation chamber" includes the transport of the components. The delivery of 3 has - or a plurality of fuels 16.如申請專利範 驟:改變該等條件, 加熱該氧化室内襯。 圍第15項之方法,另 而使該一或多個燃料產 外包含以下步 生燃燒並重新 17.如申請專利範圍 熱氧化s亥等成分的步驟 之間循環。 第16項之方法,包含以下步驟在 以及重新加熱該氧化室内襯的步驟 ^如中請專㈣圍第14項之方法,其卜改變該等條 牛之步驟包含對該一或多個燃料從易燃性範圍内改變其局 部濃度至超過易燃性範圍外。 ❹ Μ.如中請專利範圍第18項之方法’包含以下步驟:混 合該一或多個燃料於該流體流内,而產生出對該一或多個 燃料從易燃性範圍内改變其局部濃度至超出易燃性範圍 外〇 20. 如申叫專利範圍第14項之方法,其中改變該等條件 之步驟包含改變該流體流的流速’使其從低於紊流火焰速 度到高於該一或多個燃料的紊流火焰速度。 21. 如申5青專利範圍第4項之方法’包含以下步驟:將 揮發性有機化合物、半揮發性有機化合物、及/或有害空氣 31 200940155 π染物包含起來而作為該鍾流巾的該等成分。 22. 如申请專利範圍第21項之方法包含以下步驟:將 揮發性有機化合物、半揮發性有機化合物、及/或有害空氣 /亏染物從一處理流添加至該流體流。 23. 如申凊專利範圍第22項之方法,包含以下步驟:將 至少一部分的該處理流在該氧化室内的—位置上添加至該 流體流。 24·如申請專利範圍第22項之方法,包含以下步驟:在 將該流體流輸送至該董/{卜玄夕访 疋王邊氧化至之刖,將至少一部分的處理流 添加至該流體流。 25. 如申請專利範圍帛5項之方法,包含以下步驟:在 將該流體流輸送至該氧化室之前,將至少—部分的該一或 多個燃料與燃燒空氣在該流體流内預先混合。 26. 如申明專利範圍第25項之方法,包含以下步驟:將 含有-或多個燃料的另_•個燃料流引進到該氧化室,且該 另-流體流中的-或多個燃料在該氧化室燃燒,以添加補 充熱到氧化室。 27. 如申請專利範圍第1 ,. τ』祀固乐之方法,包含以下步驟:維 持該熱氧化持續超過一小時的時間。 28. 如申請專利範圍第4項之方法,其中,在該流體流 中的該等成分内提供一或多個燁祖 人,1回傺科之步驟,包含從天然 氣、精煉燃料氣、氫氣 甲烷、乙烷、丙烷、丁烷 '其他16. As claimed in the patent specification: changing the conditions, heating the oxidizing chamber lining. In accordance with the method of item 15, the one or more fuels are additionally contained in the following step of combustion and re-circulated as in the patented range of steps of thermally oxidizing shai and other components. The method of item 16, comprising the steps of: and reheating the lining of the oxidizing chamber, such as the method of the fourth item, wherein the step of changing the cattle comprises the one or more fuels Change the local concentration within the flammability range beyond the flammability range.方法 Μ. The method of claim 18, wherein the method comprises the steps of: mixing the one or more fuels in the fluid stream to produce a change in the flammability range of the one or more fuels. The concentration is outside the range of flammability. 20. The method of claim 14, wherein the step of changing the conditions comprises changing the flow rate of the fluid stream from below the turbulent flame speed to above Turbulent flame velocity of one or more fuels. 21. The method of claim 4 of the claim 5 includes the following steps: including volatile organic compounds, semi-volatile organic compounds, and/or hazardous air 31 200940155 π dyes as the clock towel ingredient. 22. The method of claim 21, comprising the step of adding a volatile organic compound, a semi-volatile organic compound, and/or a hazardous air/loss material from a treatment stream to the fluid stream. 23. The method of claim 22, comprising the step of adding at least a portion of the process stream to the fluid stream at a location within the oxidation chamber. 24. The method of claim 22, comprising the step of: adding at least a portion of the treatment stream to the fluid stream after transporting the fluid stream to the oxidized to the side of the host . 25. The method of claim 5, comprising the step of premixing at least a portion of the one or more fuels with combustion air in the fluid stream prior to delivering the fluid stream to the oxidation chamber. 26. The method of claim 25, comprising the step of introducing another fuel stream containing - or a plurality of fuels into the oxidation chamber, and wherein - or more of the fuel in the another fluid stream The oxidation chamber is burned to add supplemental heat to the oxidation chamber. 27. The method of applying for patent scope No. 1, τ 祀 乐 , includes the following steps: maintaining the thermal oxidation for more than one hour. 28. The method of claim 4, wherein the step of providing one or more ancestors in the component of the fluid stream comprises the steps of: removing natural gas, refining fuel gas, and hydrogen methane. , ethane, propane, butane 'other 碳氫化合物、-氧化碳、及其混合物所構成的群組的其中 之一或多個氣體中選出一燃料。 32 ,200940155 申叫專利範圍第28項之方法,包含以下步驟:添 加一或多個稀釋劑至該流體流内。 3如申明專利轭圍第4項之方法’其中,在該流體流 内的該等成分之間提供一或多個燃料之步驟,包含將天然 氣包3在内以作為該一或多個燃料的其中之一燃料。 Ο ❹ 31·如申請專利範圍第3項之方法,包含以下步驟:在 使該流體流過該氧化室之㈣前,預先卩μ 該流體流。 ::如申請專利範圍第4項之方法,其中,起初加熱該 之步驟包含將該氧化室内襯加熱至1800到3000oF 之間的溫度範圍内。 伽j如申身專利範圍第32項之方法,其令,提供一或多 /、、;:之步驟包含在該燃料流中的該等成分内包括天然 氣。 氣化3内4:申請專利範圍第1項之方法,其中,起初加熱該 : = 螺包含:藉由燃燒-個與該氧化室流體相通 輸送=氧二I多個燃料而產生熱煙氣,且將該熱煙氣 内,以加熱該内襯至一預先選定好的溫度。 35.如申請專利範圍第34瑁之古、土 ^ ^ 起勒加熱該氧化室中的法’包含以下步驟:在 燃料在第-位^ 驟期間,將該一或多個 燒空氣或其他氧# ]該燃燒器的-内部容室中’且將燃 第二位置係第二位置引進到該内部容室中,該 Μ ' 位置上游處—段預定的距離。 專利範圍第35項之方法,包含以下步驟:使 33 200940155 該-或,多個燃料與該燃燒空氣產生更加完全的混合,藉此 使該等成分在該氧化室内產生熱氧化。 37·如申請專利範圍帛2帛之方法,&amp;含以下步驟:防 止該流體流的再循環。 38.—種用於在一氧化室内熱氧化一流體流的成分之 法,該流體流含有一或多個燃料,該氧化室具有一内部而于 火内襯’該方法包含以下步驟: (a) 提供一個含有可熱氧化化合物之流體流,包含一 &lt; 多個燃料及燃燒空氣; (b) 加熱該氧化室内的耐火内襯至一預先選定好的&amp; 度;以及 (c) 在一些條件下,使該流體流通過該氧化室,而使言衾: 等成分由於該耐火内襯的熱傳導之緣故產生熱氧化,而 需要再循環該流體流。 39_如申叫專利範圍第38項之方法,包含以下步驟:你ι 序重複步驟(b)與(c)。 40·如申請專利範圍第38項之方法,包含以下步驟:法是 供一流體流,包含提供一個含有甲烷與燃燒空氣的流體贫^ 。 41. 如申請專利範圍第38項之方法,其中,加熱該氧彳匕 至的耐火内襯之步驟,包含藉由燃燒一個與該氧化室流^ 相通的燃燒器中之一或多個燃料而產生熱煙氣,且將铖^ 煙氣輸送至該氧化室内,藉此加熱該内襯至—預先選炙女子 的溫度。 42. 如申請專利範圍第41項之方法,包含以下步驟:β 34 ,200940155 加熱該氧化室中的該内襯 如咕 * 呵极—取夕個燃料 在第一位置引進到該燃燒器的一内部 „ ^ 丨谷至中,且將燃燒空 氣在第二位置引進到該内部容室中, 項第一位置係位於該 第一位置上游處一段預定的距離。 w 43.如申請專利範圍第42項之方法,包含以下步驟:使 該一或多個燃料與該燃燒空氣產生更加完全的混合,以停 止該燃燒器内的該一或多個燃料之燃燒,㈣藉由該氧: 室内的財火内襯之熱傳導而允許該—或多個燃料 化0 44. 如申請專利範圍第41項之方法,其中,在一些條件 下,使該流體流通過氧化室而使該等成分產生熱氧化^步 2 ’包含使該流體流中的一或多個燃料之局部濃度超過該 一或多個燃料的易燃性範圍外。 ° 45. 如申請專利範圍第44項之方法,包含以下步驟:藉 由改變該流體流中的一或多個燃料之局部濃度,使其位於 ©該-或多個燃料的易燃性範圍内,而燃燒該一或多個燃 料’因而重新加熱該耐火内襯之步驟。 6·如申凊專利範圍第41項之方法,包含以下步驟:在 一些條件下,使該流體流通過氧化室而使該等成分產生熱 氧化之步驟,包含使該流體流的流速高於該流體流内的一 或多個燃料之紊流火焰速度。 47·如申凊專利範圍第46項之方法,包含以下步驟··藉 —降低該流體流的流速而低於該紊流火焰速度,藉此使該 或多個燃料得以燃燒而重新加熱該耐火内襯。 35 200940155 48. 如申請專利範圍第38項之方法,包含以下步驟:在 熱氧化該等成分且輸送該流體流至下游設備之後,從該氧 化室去除該流體流。 49. 如申請專利範圍第48項之方法其中,該下游設備 係選自處理加熱器、鍋爐、反應爐、空氣加熱器、烘乾機、 氣體滿輪、及熱交換器所構成之群組。 50. —種熱氧化爐,包含: 一氧化室,具有一殼體及一内襯,該殼體界定出一開 放性内部體積及上游端與下游端;以及 ❹ 加熱機構,用以加熱該内襯且在一流體流存在於該開 放性内部體積中時使該流體流的成分產生熱氧化,該熱氧 化是由於該内襯的熱傳導所造成的。 51·如申請專利範圍第50項之熱氧化爐,其中,該加熱 機構在該殼體的上游端包含一燃燒器,用以使該流體流中 的一或多個燃料起先產生燃燒而加熱該内襯,且使該一或 多個成分熱氧化。 52.如申請專利範圍第!項之方法,包含以下步驟:在 ◎ 該等成分的熱氧化期間維持其條件,以便使Ν〇χ程度維持 於12PPm(dry)以下,且使c〇程度維持於lppm(dry)以下。 53·如申請專利範圍第丨項之方法包含以下步驟··在 該等成分的熱氧化期間維持其條件,以便使Ν〇χ程度維持 於5PPm(dry)以下,且使c〇程度維持於lppm(dry)以下。 54·如申請專利範圍第丨項之方法包含以下步驟:在 該等成分的熱氧化期間維持其條件,以便使Ν〇χ程度維持 36 200940155 於lppm(dry)以下,且使CO程度維持於lppm(dry)以下。 Η 、圖式: 如次頁A fuel is selected from one or more of the group consisting of hydrocarbons, carbon monoxide, and mixtures thereof. 32,200940155 A method of claim 28, comprising the step of adding one or more diluents to the fluid stream. 3. The method of claim 4, wherein the step of providing one or more fuels between the components in the fluid stream comprises including the natural gas package 3 as the one or more fuels. One of the fuels. Ο ❹ 31. The method of claim 3, comprising the step of pre-pulsing the fluid stream before flowing the fluid through the oxidation chamber. The method of claim 4, wherein the step of initially heating comprises heating the oxidized inner lining to a temperature range between 1800 and 3000 oF. The method of claim 32, wherein the step of providing one or more /, :: comprises the inclusion of natural gas in the components of the fuel stream. The method of claim 3, wherein the method of heating the first: = snail comprises: generating a hot flue gas by combusting a fluid that is in fluid communication with the oxidizing chamber; The hot flue gas is then heated to heat the liner to a preselected temperature. 35. The method of heating the oxidation chamber according to the application of the patent application No. 34, the method of heating the chamber includes the following steps: during the first stage of the fuel, the one or more air or other oxygen is burned. # ] The burner - in the inner chamber 'and introduces the second position in the second position into the interior chamber, the upstream portion of the Μ ' position - a predetermined distance. The method of claim 35, comprising the step of: or making a more complete mixing of the plurality of fuels with the combustion air, thereby causing the components to thermally oxidize within the oxidation chamber. 37. The method of claim 2, & includes the following steps: preventing recirculation of the fluid stream. 38. A method for thermally oxidizing a component of a fluid stream in an oxidation chamber, the fluid stream comprising one or more fuels, the oxidation chamber having an interior and lining the fire. The method comprises the steps of: Providing a fluid stream containing a thermally oxidizable compound comprising a &lt;multiple fuel and combustion air; (b) heating the refractory lining of the oxidation chamber to a preselected &amp;degree; and (c) Under conditions, the fluid stream is passed through the oxidation chamber, causing the composition to be thermally oxidized due to the heat transfer of the refractory lining, and the fluid stream needs to be recycled. 39_ The method of claim 38, which includes the following steps: Repeat steps (b) and (c) in your order. 40. The method of claim 38, comprising the step of providing a fluid stream comprising providing a fluid containing methane and combustion air. 41. The method of claim 38, wherein the step of heating the oxyhydrazine to the refractory lining comprises burning one or more fuels in a combustor in communication with the oxidizing chamber A hot flue gas is generated and the flue gas is delivered to the oxidation chamber, thereby heating the liner to pre-select the temperature of the woman. 42. The method of claim 41, comprising the steps of: β 34 , 200940155 heating the lining in the oxidation chamber, such as 咕* 呵 — - a fuel introduced to the burner at a first location The inner „ ^ 丨谷至中, and the combustion air is introduced into the inner chamber in the second position, the first position is located at a predetermined distance upstream of the first position. w 43. The method of the invention comprises the steps of: making the one or more fuels more completely mixed with the combustion air to stop the combustion of the one or more fuels in the burner, and (iv) by the oxygen: The heat conduction of the fire lining allows the fuel to be oxidized. The method of claim 41, wherein, under some conditions, the fluid stream is passed through the oxidation chamber to cause thermal oxidation of the components. Step 2 'contains that the local concentration of one or more fuels in the fluid stream exceeds the flammability range of the one or more fuels. 45. The method of claim 44, comprising the steps of: Varying the local concentration of one or more fuels in the fluid stream to lie within the flammability range of the one or more fuels, thereby combusting the one or more fuels' thereby reheating the refractory lining The method of claim 41, comprising the step of: subjecting the fluid stream to the oxidation chamber to cause thermal oxidation of the components, including the high flow rate of the fluid stream, under some conditions The turbulent flame velocity of one or more fuels in the fluid stream. 47. The method of claim 46, comprising the steps of: reducing the flow rate of the fluid stream below the turbulent flame Speed, whereby the one or more fuels are combusted to reheat the refractory lining. 35 200940155 48. The method of claim 38, comprising the steps of: thermally oxidizing the components and delivering the fluid to the After the downstream device, the fluid stream is removed from the oxidation chamber. 49. The method of claim 48, wherein the downstream device is selected from the group consisting of a processing heater, a boiler, a reaction furnace, an air heater, a group of dryers, gas full wheels, and heat exchangers. 50. A thermal oxidation furnace comprising: an oxidation chamber having a housing and an inner liner defining an open interior a volume and an upstream end and a downstream end; and a heating mechanism for heating the liner and causing thermal oxidation of a component of the fluid stream when a fluid stream is present in the open interior volume, the thermal oxidation being due to the internal The thermal oxidation furnace of claim 50, wherein the heating mechanism includes a burner at an upstream end of the housing for causing one or more of the fluid flow The fuel initially generates combustion to heat the liner and thermally oxidize the one or more components. 52. If you apply for a patent scope! The method of the present invention comprises the steps of: maintaining the conditions during the thermal oxidation of the components such that the degree of enthalpy is maintained below 12 ppm (dry) and the degree of c 维持 is maintained below 1 ppm (dry). 53. The method of claim 3, comprising the steps of: maintaining the conditions during thermal oxidation of the components to maintain the degree of enthalpy below 5 ppm (dry) and maintaining the degree of c 于 at 1 ppm (dry) below. 54. The method of claim 3, comprising the step of maintaining conditions during thermal oxidation of the components such that the degree of helium is maintained at 36 200940155 below 1 ppm (dry) and the CO level is maintained at 1 ppm (dry) below. Η , schema: as the next page 3737
TW097145644A 2007-11-27 2008-11-26 Flameless thermal oxidation apparatus and methods TW200940155A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/945,775 US20090136406A1 (en) 2007-11-27 2007-11-27 Flameless thermal oxidation method
US12/273,367 US20090133854A1 (en) 2007-11-27 2008-11-18 Flameless thermal oxidation apparatus and methods

Publications (1)

Publication Number Publication Date
TW200940155A true TW200940155A (en) 2009-10-01

Family

ID=40668727

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097145644A TW200940155A (en) 2007-11-27 2008-11-26 Flameless thermal oxidation apparatus and methods

Country Status (12)

Country Link
US (1) US20090133854A1 (en)
EP (1) EP2227654A1 (en)
JP (1) JP2011508864A (en)
KR (1) KR20100098632A (en)
CN (1) CN101874180B (en)
AR (1) AR069751A1 (en)
BR (1) BRPI0820661A2 (en)
CA (1) CA2705773A1 (en)
CL (1) CL2008003517A1 (en)
MX (1) MX2010005194A (en)
TW (1) TW200940155A (en)
WO (1) WO2009070563A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136406A1 (en) * 2007-11-27 2009-05-28 John Zink Company, L.L.C Flameless thermal oxidation method
KR101774630B1 (en) * 2011-08-22 2017-09-19 마제드 토칸 Tangential annular combustor with premixed fuel and air for use on gas turbine engines
CN102809162B (en) * 2012-08-08 2016-03-30 陈汉笙 The two-way thermal oxidizer of a kind of nonflame
US9476589B2 (en) 2013-03-13 2016-10-25 Fives North American Combustion, Inc. Diffuse combustion method and apparatus
US10215408B2 (en) 2015-12-09 2019-02-26 Fives North American Combustion, Inc. Method and apparatus for diffuse combustion of premix
EP3242080B1 (en) * 2016-05-04 2019-07-10 WS-Wärmeprozesstechnik GmbH Apparatus and method for heating of furnaces using radiant tubes
DE102017222517A1 (en) * 2017-12-12 2019-06-13 Dürr Systems Ag Method for cleaning exhaust gas and exhaust gas purification device
ES2933119T3 (en) * 2018-11-12 2023-02-02 Ws Waermeprozesstechnik Gmbh Procedure and device for staged combustion without flame
CN114641508B (en) * 2019-11-07 2023-10-27 埃克森美孚化学专利公司 Process for the polymerization of olefins
US11898747B2 (en) * 2020-04-30 2024-02-13 Honeywell International Inc. Burner system and process for natural gas production

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772149A (en) * 1951-12-13 1956-11-27 Hydrocarbon Research Inc Generation of synthesis gas and apparatus therefor
US3207201A (en) * 1963-02-06 1965-09-21 Zink Co John Apparatus for combustion of waste gases
US3195608A (en) * 1963-04-08 1965-07-20 Coen Co Volatile waste incinerator
US3320999A (en) * 1965-03-15 1967-05-23 Owens Corning Fiberglass Corp Internal combustion burner
US3418062A (en) * 1966-08-08 1968-12-24 Bloom Eng Co Inc Burner structures
US3810732A (en) * 1971-07-01 1974-05-14 Siemens Ag Method and apparatus for flameless combustion of gaseous or vaporous fuel-air mixtures
US4033725A (en) * 1972-02-24 1977-07-05 John Zink Company Apparatus for NOx control using steam-hydrocarbon injection
US3898317A (en) * 1972-07-24 1975-08-05 Midland Ross Corp Method for incinerating flue gases
DE2362132C2 (en) * 1973-12-14 1982-03-11 Klöckner-Humboldt-Deutz AG, 5000 Köln Device for the thermal treatment of fine-grained material with several additional combustion devices assigned to a heat exchanger system
US4154567A (en) * 1977-01-07 1979-05-15 Continental Carbon Company Method and apparatus for the combustion of waste gases
DE2801161B2 (en) * 1978-01-12 1981-06-25 Babcock Krauss-Maffei Industrieanlagen GmbH, 8000 München Process and burning of sintered goods made from carbonate raw materials such as cement clinker
US4519993A (en) * 1982-02-16 1985-05-28 Mcgill Incorporated Process of conversion for disposal of chemically bound nitrogen in industrial waste gas streams
US4784599A (en) * 1982-05-14 1988-11-15 Garbo Paul W Liquid fuel combustion with porous fiber burner
US4541561A (en) * 1983-06-23 1985-09-17 Smith Robert E Heating equipment and method of operating same
USRE34298E (en) * 1984-08-17 1993-06-29 American Combustion, Inc. Method for waste disposal
US4865543A (en) * 1984-08-30 1989-09-12 Garbo Paul W Liquid fuel combustion with porous fiber burner
US4658762A (en) * 1986-02-10 1987-04-21 Gas Research Institute Advanced heater
US4785768A (en) * 1986-09-15 1988-11-22 Iowa State University Research Foundation, Inc. Means and method for controlling load turndown in a fluidized bed combustor
IT1227318B (en) * 1988-07-29 1991-04-08 Pietro Italiano METHANE CATALYTIC COMBUSTION BOILER FOR OBTAINING HOT WATER FOR DOMESTIC AND INDUSTRIAL USES.
US4988287A (en) * 1989-06-20 1991-01-29 Phillips Petroleum Company Combustion apparatus and method
US4974530A (en) * 1989-11-16 1990-12-04 Energy And Environmental Research Apparatus and methods for incineration of toxic organic compounds
ES2064538T3 (en) * 1990-06-29 1995-02-01 Wuenning Joachim PROCEDURE AND DEVICE FOR COMBUSTION OF FUEL IN A COMBUSTION ENCLOSURE.
CN2077084U (en) * 1990-07-14 1991-05-15 朱华 Pipe-type nonflame burner
US5025631A (en) * 1990-07-16 1991-06-25 Garbo Paul W Cogeneration system with low NOx combustion of fuel gas
US5236354A (en) * 1991-03-18 1993-08-17 Combustion Power Company, Inc. Power plant with efficient emission control for obtaining high turbine inlet temperature
US5165884A (en) * 1991-07-05 1992-11-24 Thermatrix, Inc. Method and apparatus for controlled reaction in a reaction matrix
US5249952A (en) * 1992-04-24 1993-10-05 Cosmos Ventures, Inc. Exhaust fume energy source and waste combustion apparatus
WO1994014008A1 (en) * 1992-12-17 1994-06-23 Thermatrix Inc. Method and apparatus for control of fugitive voc emissions
US5297954A (en) * 1993-03-11 1994-03-29 Haden Schweitzer Corporation Volatile organic compound abatement system
JPH09500574A (en) * 1993-07-16 1997-01-21 サーマトリックス・インコーポレーテッド Method and afterburner device for controlling highly fluctuating flows
US5366699A (en) * 1993-09-22 1994-11-22 Bonnie June Goodrich Apparatus for thermal destruction of waste
US5542840A (en) * 1994-01-26 1996-08-06 Zeeco Inc. Burner for combusting gas and/or liquid fuel with low NOx production
AU3953195A (en) * 1994-10-19 1996-05-15 Altex Technologies Corporation Lime mud regeneration process and apparatus
JPH10508683A (en) * 1994-10-27 1998-08-25 アイセントロピック・システムズ・リミテッド Improvements in fuel gas combustion and utilization
US5690482A (en) * 1994-11-04 1997-11-25 Integrated Energy Development Corp. Process for the combustion of sulphur containing fuels
US5592811A (en) * 1995-10-03 1997-01-14 Alliedsignal Inc. Method and apparatus for the destruction of volatile organic compounds
US5823124A (en) * 1995-11-03 1998-10-20 Gas Research Institute Method and system to reduced NOx and fuel emissions from a furnace
US6136144A (en) * 1996-06-06 2000-10-24 Thermatrix, Inc. Method of removing sulfur from a process gas stream using a packed bed calcinator
US5819673A (en) * 1996-10-15 1998-10-13 Thermatrix Inc. Systems for the treatment of chemical wastes and methods for treating chemical wastes
US6238206B1 (en) * 1997-05-13 2001-05-29 Maxon Corporation Low-emissions industrial burner
US6003305A (en) * 1997-09-02 1999-12-21 Thermatrix, Inc. Method of reducing internal combustion engine emissions, and system for same
TR200000915T2 (en) * 1997-10-08 2000-07-21 Shell Internationale Research Maatschappij B.V. Flameless combustion process heating means.
DE19747905C1 (en) * 1997-10-30 1999-01-28 Chemisch Thermische Prozestech Cleaner for pollutant bearing exhaust gases
US6146007A (en) * 1998-03-20 2000-11-14 Cedarapids Inc. Asphalt plant having centralized media burner and low fugitive emissions
KR19980082082A (en) * 1998-08-21 1998-11-25 오석인 Evaporative Regenerative Incineration System of Organic Wastewater
DE60025933T2 (en) * 1999-11-02 2006-11-09 Ebara Corp. BURNING DEVICE FOR TREATMENT OF EXHAUST GAS
DE10001293B4 (en) * 2000-01-14 2008-06-12 WS-Wärmeprozeßtechnik GmbH Tube Erhitzerofen
MXPA03005172A (en) * 2000-12-13 2003-09-22 Megtec Sys Inc Determination of supplemental fuel requirement and instantaneous control thereof involving regenerative thermal oxidation.
DE10119083C1 (en) * 2001-04-19 2002-11-28 Joachim Alfred Wuenning Compact steam reformer
FR2825448B1 (en) * 2001-05-30 2003-09-12 Inst Francais Du Petrole THERMAL GENERATOR FOR LIMITING EMISSIONS OF NITROGEN OXIDES BY RECOMBUSTION OF FUMES AND METHOD FOR IMPLEMENTING SUCH A GENERATOR
US20030013053A1 (en) * 2001-07-11 2003-01-16 Cornel Dutescu Waste and toxic gas combustion reactor
US20030059731A1 (en) * 2001-09-25 2003-03-27 Coffey Clayton G. Device for incinerating waste gas
JP3864092B2 (en) * 2002-01-10 2006-12-27 東京瓦斯株式会社 Flame retardant decomposition burner
DE10217524B4 (en) * 2002-04-19 2005-10-13 WS - Wärmeprozesstechnik GmbH Burner with side outlet for flameless oxidation
DE10217913B4 (en) * 2002-04-23 2004-10-07 WS Wärmeprozesstechnik GmbH Gas turbine with combustion chamber for flameless oxidation
US20040018460A1 (en) * 2002-07-29 2004-01-29 Korwin Michel J. Apparatus and method for thermal neutralization of gaseous mixtures
US6796789B1 (en) * 2003-01-14 2004-09-28 Petro-Chem Development Co. Inc. Method to facilitate flameless combustion absent catalyst or high temperature oxident
CA2560393A1 (en) * 2003-03-21 2004-09-30 Kleen-Up S.R.L. Method and apparatus for reducing combustion residues in exhaust gases
US7273366B1 (en) * 2003-10-28 2007-09-25 Soil-Therm Equipment, Inc. Method and apparatus for destruction of vapors and waste streams
US7270539B1 (en) * 2003-10-28 2007-09-18 Soil-Therm Equipment, Inc. Method and apparatus for destruction of vapors and waste streams using flash oxidation
US20070154854A1 (en) * 2003-12-29 2007-07-05 Liang Tee D System and method using cool hydrogen flame for destruction of vocs and odorous compounds
DE102005026764B3 (en) * 2005-06-10 2007-04-05 Ws Reformer Gmbh Fixed bed gasifier and process for the gasification of solid fuel
US8062027B2 (en) * 2005-08-11 2011-11-22 Elster Gmbh Industrial burner and method for operating an industrial burner
US20090136406A1 (en) * 2007-11-27 2009-05-28 John Zink Company, L.L.C Flameless thermal oxidation method

Also Published As

Publication number Publication date
AR069751A1 (en) 2010-02-17
KR20100098632A (en) 2010-09-08
EP2227654A1 (en) 2010-09-15
CN101874180B (en) 2012-10-03
CL2008003517A1 (en) 2010-01-15
BRPI0820661A2 (en) 2015-06-16
US20090133854A1 (en) 2009-05-28
CA2705773A1 (en) 2009-06-04
MX2010005194A (en) 2010-05-24
WO2009070563A1 (en) 2009-06-04
CN101874180A (en) 2010-10-27
JP2011508864A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
TW200940155A (en) Flameless thermal oxidation apparatus and methods
US20090136406A1 (en) Flameless thermal oxidation method
CN105579776B (en) With the premix fuel burner for having hole flame holder
CA2513382C (en) Method and apparatus to facilitate flameless combustion absent catalyst or high temperature oxident
KR101477519B1 (en) System apparatus and method for flameless combustion absent catalyst or high temperature oxidants
CN105899876A (en) Method for operating a combustion system including a perforated flame holder
US20130232876A1 (en) Gradual oxidation with heat transfer
US20130232984A1 (en) Gradual oxidation with heat control
US20130236841A1 (en) Staged gradual oxidation
CN107923613A (en) The flame of the portions turn of perforation flame holder starts
AU2005337795A1 (en) Process and apparatus for low-NOx combustion
JPH10501056A (en) Ultra low NOx burner
US8671917B2 (en) Gradual oxidation with reciprocating engine
JP2008513721A (en) Combustion method and burner
RU2012126542A (en) METHOD FOR HEATING A DOMAIN FURNACE AIR HEATER
JP2013181732A (en) Waste incinerator and waste incineration method
CN105637293B (en) With the horizontal ignition type combusting for having hole flame holder
US5248252A (en) Enhanced radiant output burner
JP2015517076A (en) Slow oxidation using heat transfer
JP6218117B2 (en) Grate-type waste incinerator and waste incineration method
ES2933119T3 (en) Procedure and device for staged combustion without flame
JP4901054B2 (en) Overpressure combustor for burning lean concentration of combustible gas
RU2818121C2 (en) Method and device for flameless staged combustion
JP6355103B2 (en) Heating apparatus and heating method
JP2024100401A (en) Industrial furnace with ammonia burner