TW200938804A - Method of implementing pattern reflection to measure contour of object surface - Google Patents
Method of implementing pattern reflection to measure contour of object surface Download PDFInfo
- Publication number
- TW200938804A TW200938804A TW97109043A TW97109043A TW200938804A TW 200938804 A TW200938804 A TW 200938804A TW 97109043 A TW97109043 A TW 97109043A TW 97109043 A TW97109043 A TW 97109043A TW 200938804 A TW200938804 A TW 200938804A
- Authority
- TW
- Taiwan
- Prior art keywords
- stripe
- image
- phase
- cos
- reflection
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
200938804 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種物體表面形貌的光學量測方法,尤 指一種應用條紋反射法自動化量測物體表面微小尺寸形貌 的方法。 【先前技術】 由於現今半導體及微機電產業的快速發展,對於微小 尺寸元件的量測需求更為擴大》就以半導體製程為例,其200938804 IX. INSTRUCTIONS: [Technical Field] The present invention relates to an optical measuring method for surface topography of an object, and more particularly to a method for automatically measuring the surface size of an object by using a stripe reflection method. [Prior Art] Due to the rapid development of the semiconductor and micro-electromechanical industries today, the measurement requirements for tiny-sized components are expanding. Take the semiconductor process as an example.
❹ 主要係於晶圓的每一晶粒單元上成長數層厚度不等且材質 互異的薄膜。因製程環境的影響,使得晶圓上每一層薄膜 承受應力產生變化。如該晶圓上成長該些薄膜的製程中 常需透過氡化、物理或化學沈積等步驟而沈積薄膜,因所 沈積之薄膜與晶片的熱機械性質不同’在沈積該薄膜的過 程中’受操作溫度的升高或降低的影響,導致異質材料間 因熱膨脹係數的差異而殘留應力,造成薄片形晶圓易產生 紐曲,甚至於薄膜與晶圓的界面間產生剝離或形成過多的 空洞、裂縫而產生缺陷。因此,在晶圓的製程中,為確保 產品的品質水準,通常會利用非破壞性的檢測方式篩選出 具有缺陷的單元,避免後續製程不必要的損失。 有關前述之晶圓製程 _ '丨〜咏〜"'日日上的薄膜, 因高溫產生的變形約在數十個微米(micr〇n)之間,而目前 已知的檢測方法如··投影疊紋法、條紋投料、陰影疊: :等光學量測方法,雖可達到量測的面外變形範圍為 數十微米以上技術水準,可符合前述晶圓表面量測的基本 4 200938804 需:,但是,目晶圓表面係屬高反射性表面,前述已知光 學置測方法應用於該晶圓表面形貌量測時,會因其表面的 高反射性所產生光學量測的干擾,無法達到預定的精密量 測效果,加以半導體技術日益精進,晶片產品尺寸更為微 小化,前述量測方法更為無法適用晶圓表面形貌量測之用 途’故有待人們進一步加以改善。 【發明内容】 纟發明之主要目的在於提供-種應用條紋反射法量測 物體表面形貌的方法,希藉此設計,提昇物體表面量測的 精度及正確性。 冑達成前揭目的,本發明所設計應用條紋反射法量測 物體表面形貌的方法,其步驟係包含: 、 由電腦以相位移手段產生條紋影像顯示於螢幕上; .令該螢幕上所顯示的條紋影像清晰地投射至-平面鏡 Ji., ❹ w 像#貞取手段縣自該平面鏡反射的條紋影像,並 紀錄於電腦中,作為待測物件量測的參考依據; Z具反射性表面的待測物件放置於該平面鏡上; 令遠螢幕上所顯示的條紋影像投射至該待測物件上; 、以影像擷取手㈣取自該待測物件上反射之條紋影像 ’並紀錄於電腦中;以及 利用電腦以相位移法及相位展手段分析該些條紋的相 位變形,並推算得知斜率後經解析手段運算而得到該待測 物件表面形貌。 5 200938804 本發明藉由前述方法部_叫_ , 乃忐5又b十,其特點在於:本發明主要 運J:光予式條紋反射量測手段結合幾何解析或向量解析 任,透過電腦以自動方式及較高精度地正確 量測出物體表面& # & . ^ ^ 貌,為產業界對其產品非破壞性檢測 提供一項更具實用性之量測方法。 【實施方式】 Μ己合參閱第-圖所示之流程圖及第二圖所示之配置 ❹ 圖本發月應用條紋反射法量測物體表面形貌的方法,其 包括有以下步驟: 、 由電腦(5 〇 )以相位移手段產生條紋影像顯示於勞 幕(2 〇 )上’其主要係利用電腦(5 0 )中預設的電腦 程式H ( 2 〇 )依序呈現出具有複數條間隔平行排列 的條紋的條紋影像圖; 7該螢幕(2 0 )上顯示的條紋影像透過光路傳遞清 晰地投射至-平面鏡(丄〇 )上,其主要將一平面鏡(丄 0)放置於β玄螢幕(2〇)下方偏位於一側,並使營幕( 20)呈現出之條紋影像圖可投射至該平面鏡(工上 ’再朝向相反方向反射; 以影像擁取手段擷取自該平面鏡(工〇 )反射的條紋 影像,並紀錄於f腦(5 〇 ) t,作為待測物件量測的參 考依據,其主要利用一組如CCD之類的影像擷取器(4 〇 ),由平面鏡(10)上方一側擷取自該平面鏡(1〇) 反射的條紋影像,再回傳至電腦(5 0 )中紀錄; 將一具反射性表面的待測物件放置於該平面鏡(工〇 6 200938804 上’其中該待測物件表面 圓· ·.等)為佳; 具有鏡面般反射效果(如 晶 令該螢幕(2 0 ) 才又射至該待測物件上, 件為佳; 上所顯不的條紋影像透過光路傳遞 其中以條紋影像清晰投射至待測物❹ It is mainly used to grow several layers of different thicknesses and different materials on each die unit of the wafer. Due to the influence of the process environment, each layer of the film on the wafer is subjected to stress changes. For example, in the process of growing the thin films on the wafer, it is often necessary to deposit a thin film by a step of deuteration, physical or chemical deposition, etc., because the deposited film and the thermal mechanical properties of the wafer are different 'in the process of depositing the thin film' The influence of the increase or decrease of temperature leads to the residual stress between the heterogeneous materials due to the difference in thermal expansion coefficient, which causes the sheet-shaped wafer to easily generate a koji, and even the film-wafer interface is peeled off or excessive voids and cracks are formed. And a defect. Therefore, in the wafer manufacturing process, in order to ensure the quality level of the product, non-destructive inspection methods are usually used to screen out defective units to avoid unnecessary loss of subsequent processes. Regarding the aforementioned wafer process _ '丨~咏~" 'the film on the day, the deformation due to high temperature is between tens of micrometers (micr〇n), and the currently known detection methods such as ··· Projection embossing method, stripe feeding, shadow stacking: :Equivalent optical measuring method, although the measured out-of-plane deformation range is above tens of micrometers, it can meet the basic requirements of the above wafer surface measurement. However, the surface of the wafer is a highly reflective surface. When the above-mentioned known optical sensing method is applied to the surface topography measurement, the optical measurement may be disturbed by the high reflectivity of the surface. By achieving the precise measurement results, the semiconductor technology is becoming more and more sophisticated, and the size of the wafer product is more miniaturized. The above measurement method is even more inapplicable to the use of wafer surface topography measurement, so it needs further improvement. SUMMARY OF THE INVENTION The main object of the invention is to provide a method for measuring the surface topography of an object by using a stripe reflection method, and to improve the accuracy and correctness of the surface measurement of the object. Prior to the achievement of the present invention, the method for measuring the surface topography of an object by using the stripe reflection method is designed, and the steps thereof include: displaying a stripe image by a computer by means of phase shifting on the screen; The stripe image is clearly projected onto the plane mirror Ji., ❹ w like the stripe image reflected from the plane mirror in the county, and recorded in the computer as a reference for the measurement of the object to be tested; Z with a reflective surface The object to be tested is placed on the plane mirror; the image of the stripe displayed on the far screen is projected onto the object to be tested; and the image of the stripe taken from the object to be tested is taken by the image capture object (4) and recorded in the computer; And using the computer to analyze the phase deformation of the stripe by phase shift method and phase spread means, and calculate the slope and then calculate the surface topography of the object to be tested by analytical means. 5 200938804 The present invention is characterized by the foregoing method part _ _ _ 忐 又 又 又 又 , , , , , , , , , 本 本 本 : : : : : : : : : : : : : : : : : : : : : : : : : : The method and the higher accuracy of accurately measuring the surface of the object &#& . ^ ^ appearance, for the industry to provide a more practical measurement method for non-destructive testing of its products. [Embodiment] Referring to the flow chart shown in the first figure and the configuration shown in the second figure, the method for measuring the surface topography of the object by the stripe reflection method includes the following steps: The computer (5 〇) produces a stripe image by phase shifting on the screen (2 〇). It mainly uses a computer program H ( 2 〇) preset in the computer (50) to sequentially display a plurality of intervals. Stripe image of the stripe arranged in parallel; 7 The stripe image displayed on the screen (20) is clearly projected onto the plane mirror (丄〇) through the optical path, which mainly places a plane mirror (丄0) on the β-screen (2〇) is located on one side below, and the stripe image of the screen (20) can be projected onto the plane mirror (on the work' and then reflected in the opposite direction; the image is taken from the plane mirror 〇) Reflected fringe image, recorded in the f brain (5 〇) t, as a reference for the measurement of the object to be tested, mainly using a set of image pickers (4 〇) such as CCD, by the plane mirror ( 10) The upper side is taken from the plane mirror 1〇) The reflected fringe image is then transmitted back to the computer (50) for recording; a reflective surface of the object to be tested is placed on the plane mirror (Workshop 6 200938804) where the surface of the object to be tested is round. . etc.); it has a mirror-like reflection effect (such as crystals that the screen (2 0) is shot on the object to be tested, and the piece is better; the image of the stripe displayed on the image is transmitted through the light path. Projection to the object to be tested
以影像擷取手段擷取自 ,並紀錄於電腦(50)中 的影像擷取器(4〇),由 測物表面反射的條紋影像, :以及 該待測物件上反射之條紋影像 ’即同樣利用一組如CCD之類 待測物件上方一側擷取自該待 再回傳至電腦(5 0 )中紀錄 利用電腦(5 0 )以反射條紋圖像分析手段分析該些 條、·文的相位變形’並推算得知斜率後經解析手段運算而得 到該待測物件表面形貌。 前述由電腦(50)以相位移手段產生條紋影像顯示 於螢幕(2 0 )上的步驟中,所述相位移手段係透過電腦 ❹料依序產生數張隸f彡像圖,該條紋料的灰階分佈為 -餘弦聽’於本較佳實施例中’係'採用目步相位移法設 定電腦程式產生四張條紋影像(Ιι、“、“及“),該四張 條紋影像的初始相位分別設定為〇、冗/2、疋、3冗/2,其 聯立方程式如下: 7 200938804The image capture device (4〇) recorded by the image capture means, recorded in the computer (50), the striped image reflected from the surface of the object, and the striped image reflected on the object to be tested is the same Using a set of objects such as CCD, the upper side of the object to be tested is retrieved from the computer (50), and the computer (50) is used to analyze the strips and images by means of reflective fringe image analysis. The phase deformation is calculated and the surface morphology of the object to be tested is obtained by the analytical means after the slope is calculated. In the step of displaying, by the computer (50), the stripe image is displayed on the screen (20) by the phase shifting means, the phase shifting means sequentially generates a plurality of images of the stripe through the computer material, the stripe material The gray scale distribution is - cosine listening. In the preferred embodiment, the 'system' uses the step phase shift method to set the computer program to generate four stripe images (Ιι, ", ", and "), the initial phase of the four stripe images. Set to 〇, verb/2, 疋, 3 /2, respectively, and the simultaneous equation is as follows: 7 200938804
/〇 + cos I h = I0 + A C0S(^ - £.) ’3 = ’〇 + j COS(沴-π) _.·(3· 1~ 1) ’〇 + j COS(必-l£_) 上述聯立方程式中,“為背景的強度’A為振巾、 紋影像圖形中該點的相位角。 田、0為條/〇+ cos I h = I0 + A C0S(^ - £.) '3 = '〇+ j COS(沴-π) _.·(3· 1~ 1) '〇+ j COS(必-l£ _) In the above-mentioned simultaneous equation, "the intensity of the background" is the phase angle of the point in the vibrating towel and the pattern image.
O 前揭聯立方程式經三角函數轉換以及代數 條紋與條紋之間各點的相位值0,如下式所示。,可得到 ^,3^) = tan'1 W3) ............................... (3. 4) 須進一步說明的是,由於沿某一方向延伸 能得到此方向之條紋偏移量,因此 的條紋’只 T对W至少堂面 兩個不同方向(即X方向、y方向)之條紋=要使用 第四圖所示,t能具有足夠的資訊來重建 圖及 亦即本發明較佳實施例中’必須 开7貌, ^ 白以相位移法產生 四張X方向條紋影像圖,以及四張y方向條紋爹像圖 :㈣:電腦以反射條紋圖像分析手段分析該:條紋 爽=夏:處理’係透過相位展開法以及判定量測區域法 來元成’或者,於進行相位展開法及判定量_域 先進行中值濾波處理,其中: 所述中值濾波處理手段之使用,係因影像掏取與轉換 過程中會產生電子雜訊,而使所拮員取 、 .^ ^ ^ 取則的條紋影像圖普遍 存在有隨機雜m,故本發明進-步透過電腦㈠㈣波運 8 200938804 算手段,用以降低雜訊,其運算式為: Λ /(^ y) = median{g(s, t)} (")e〜 .............................(3.4-1) 其中? 為中值濾波後之影像灰階值; \為原始影像中所有像素點座標; 客CM)為座標㈨)處之設定區域中所有灰階值。 所述之相位展開法之處理步驟,係因前述相位移法運 算式是反正切函數(tarrl)的形式’因量測所得的相位值經The front phase of the cubic program is transformed by a trigonometric function and the phase value of each point between the algebraic stripe and the stripe is 0, as shown in the following equation. , can get ^,3^) = tan'1 W3) ............................... (3. 4) It should be further explained that since the stripe offset in this direction can be obtained by extending in a certain direction, the stripe 'only T to W at least two different directions of the side surface (ie, the X direction, the y direction) stripes = to be used As shown in the fourth figure, t can have enough information to reconstruct the map and, in the preferred embodiment of the present invention, 'must open 7 appearances, ^ white produces four X-direction stripe image maps by phase shift method, and four sheets y Directional stripe image: (4): The computer analyzes the image by reflection fringe image analysis: Stripe cool = summer: processing 'through the phase expansion method and the determination of the measurement area method to Yuancheng' or, in the phase expansion method and determination The quantity_domain first performs median filtering processing, wherein: the use of the median filtering processing means is caused by electronic noise generated during image capturing and conversion, and is caused by the trapping, . ^ ^ ^ The fringe image map generally has random m, so the present invention advances through the computer (1) (4) wave transport 8 200938804 calculation method to reduce noise, and its operation formula is : Λ /(^ y) = median{g(s, t)} (")e~ ........................... ..(3.4-1) Where? The median filtered image grayscale value; \ is the coordinates of all pixel points in the original image; the guest CM) is the coordinate value of all the grayscale values in the set region at coordinates (9)). The processing step of the phase unwrapping method is because the phase shift method is in the form of an inverse tangent function (tarrl).
判斷後’相位截斷纟〇七之區間内,故所得的相位圖並 非連續的’因此’透過Macy相位展開法將被截斷的相位 恢復為原來連續相位圖。 所述判定量測區域法之處理步驟,係對透過前述相位 展開法所還原之相位圖’進一步區別出被量測影像範圍與 背景’其中可利用相位遮罩法區隔出所取得的相位圖中被 測物與背景影像像素之灰階分佈,之後,再利用影像臨界 值法將被測物與背景影像之灰階分佈作分割,而得到量測 範圍。 刚述之相位遮罩法中,係利用如下所示之方程式,令 有相位變化區域與沒有相位變化區產生灰階分佈差異,: 被測物與背景之灰階產生區隔。 /('利w抑“I...........................(3. 3-1) 上述中,I广I4為前述相位移中所取得之相位圖。 則述之影像臨界值法,係影像分割應用的一種簡易方 八中係選擇分開該些不同灰階分佈的臨界值了,所 δ»界值T的選定,於本發明中,係設定·· ' 9 Τ = 2μ ο ❹ dAB =2 h-tana ····_ 其中: A與B點之間的距離 當影像擷取器(2 〇 )觀測待 鏡面(3 〇 )時,力 200938804 '(3. 3-2 ) 其中#•整體影像之灰階平均值。 有關前述之@ 4 & ,After the judgment "phase cutoff" is in the interval of seven, the obtained phase map is not continuous. Therefore, the phase that has been truncated is restored to the original continuous phase map by the Macy phase unwrapping method. The processing step of the determination measurement area method is to further distinguish the measured image range from the background by the phase map restored by the phase expansion method, wherein the phase map obtained by using the phase mask method is separated. The gray scale distribution of the measured object and the background image pixel, and then the image threshold value method is used to divide the gray scale distribution of the measured object and the background image to obtain a measurement range. In the phase mask method just described, the equation shown below is used to make the difference between the phase change region and the phase change region without the phase change region, and the measured object is separated from the background gray scale. /('Lee w suppress "I...........................(3. 3-1) In the above, I Guang I4 is the aforementioned The phase map obtained in phase shift. The image threshold method is a simple method for image segmentation. The selection of the threshold value of the δ» boundary value is selected. In the present invention, the setting is ·· ' 9 Τ = 2μ ο ❹ dAB = 2 h-tana ····· where: the distance between the point A and the point B when the image picker (2 〇) is to be mirrored ( 3 〇), force 200938804 '(3. 3-2 ) where #• the overall gray level of the image. For the aforementioned @ 4 &
冰 解析手段,於本發明之較佳實施例中,V 以使用幾何解析法弋s 了 推算出量測區方法之任一,使其可 紋的偏移量… 積分,以期正確地推算出條 有關所述之幾柄· 、土 #靼- “叙 析法,其基本原理係先利用幾何關 係與一角函數,藉由影 ] ㈣在像操取點、鏡面與條紋影像間的相 對關係,得到鏡面高度跟斜μ 1的相 式。在幾何解拚、怿紋偏移之間的關係 飞社戍料析方面,基於物體表 積分並加入像素與真實的長度關蚤方向 X與y方向表面高度。 方了侍到待量測件之 如第五圖所示,於縱向(y方向)條 士 設定影像擷取點(4 〇 ) 〜偏移方面,其係 紋影像(即螢幕(2 0 ))與基準 h’條 L,影像操取g (40)由基準鏡 〇)的距離為 紋影像中的Λ點,由待測鏡面(2 )可觀測到條 中的Β點,由基準鏡面與待 可觀_條紋影像 ,、订列規面之間 條紋偏移量為,其與高度h的 。又差所造成的 m— 尽何關係為·· (2. 200938804 面(3〇)i生-個斜率變化θ,由反射定律可知 此斜率變化在反射時,會造成共2θ的角度偏移,此角产偏 待測鏡面(30)觀測到的條紋影像β點偏 移至C點,令此偏移距離Ac為: dBc = (L - h)[x^n(a + 2Θ) - tan α ]..................( 2 2 - 2 ) 由(式2.2])及(式2.2_2)得到由高度差及斜率的變 化在y方向所造成的偏移量办為: ❹The ice analysis means, in the preferred embodiment of the present invention, V uses a geometric analysis method 推 s to derive any one of the measurement area methods, so that the offset of the striate... integral, in order to correctly calculate the strip Regarding the mentioned handles, the soil #靼- "analysis method, the basic principle is to use the geometric relationship and the angle function first, by the shadow] (four) in the relative relationship between the image processing point, the mirror surface and the stripe image, The mirror height is the phase of the oblique μ 1 . In the relationship between the geometric solution and the crepe offset, the object is integrated based on the object table and the pixel is added to the true length. As shown in the fifth figure, the image is taken in the vertical (y-direction) to set the image capture point (4 〇) to offset, and the twill image (ie, the screen (2 0) ) and the reference h' strip L, the image fetching g (40) from the reference mirror 〇) is the Λ point in the striated image, and the 镜 point in the strip can be observed from the mirror surface (2) to be measured, from the reference mirror surface and Waiting for the image of the fringe, the stripe offset between the gauge faces is the height h The difference between the m and the difference is (2. 200938804 face (3〇) i-slope change θ, from the law of reflection, this slope change will cause a total 2θ angular offset when reflected The angle of the fringe image observed by the mirror surface (30) is shifted to point C, so that the offset distance Ac is: dBc = (L - h)[x^n(a + 2Θ) - tan α ]..................( 2 2 - 2 ) From the (formula 2.2]) and (formula 2.2_2), the change in height difference and slope is obtained in the y direction. The resulting offset is: ❹
^ = (L-/z)[tan(a + 2^)-tan a ]-2Atan or ............(2· 2-3) 畲條紋影像與基準鏡面(1 〇)之間的距離⑴遠大 :基準鏡面(1 0 )與待測鏡面(3 〇 )之間的高度差 (h)N·,前式(2.2-3)可進一步簡化為: ^ = Z[tan(a + 26>)-tana]........................(2 2-4) 之後,再利用和角公式進一步整理上式可以得到: dy ^tan 2Θ -(l + tan2 g ) (2.2-5) 1 - tan or tan 2Θ 當0在0. 50以内,且tan α tan, 26>《丨,因此,上式可進 一步簡化為: 办=2认(lWa)........................... (2.2-6) 由上式可以得知,於相同斜率變化值與固定的影像擷 取角度(α )的條件下,增加物體至條紋間的距離,就可以 令條紋偏移距離办增大,並提昇量測系統的量測靈敏度。 假設待測物體的表面為完美平面時,透過該表面反射 的條紋影像灰階分佈為沿y方向變化的餘弦函數,則所擷 取的條紋影像的光強度分佈為: I(y) = a(y) + b(y)ο〇5[(2π/py)y]................ (2. 2-7) π 200938804 上式中,a:背景光的強度; b .振幅, A : y方向條紋間距。 當待測物體表面有斜率變化時’則該斜率變化會造成 條紋變形,變形後的條紋強度為: / (y) = a(y) + b(y)cos^/py)y + φ{γ)].........(2.2-8) 其中河少)為y方向條紋變形所產生的相位變化值 ❹ ❹ 上式中,因條紋變形產生相位變化值的單位為徑度 (rad),該相位變化值與長度單位的關係為. 二又 9{y) = ^±.................... '^ = (L-/z)[tan(a + 2^)-tan a ]-2Atan or ............(2· 2-3) 畲 fringe image and reference mirror (1 Distance between 〇) (1) is far: the height difference (h)N· between the reference mirror (10) and the mirror to be tested (3 〇), the former formula (2.2-3) can be further simplified as: ^ = Z[ Tan(a + 26>)-tana]........................(2 2-4) Afterwards, the re-use and angle formulas are further refined. The formula can be obtained as follows: dy ^tan 2Θ -(l + tan2 g ) (2.2-5) 1 - tan or tan 2Θ When 0 is less than 0.50, and tan α tan, 26> "丨, therefore, the above formula can be further Simplified to: do = 2 recognize (lWa) ..................... (2.2-6) can be known from the above formula, Under the condition of the same slope change value and the fixed image capture angle (α), increasing the distance between the object and the stripe can increase the stripe offset distance and improve the measurement sensitivity of the measurement system. Assuming that the surface of the object to be tested is a perfect plane, the gray-scale distribution of the fringe image reflected through the surface is a cosine function that changes along the y direction, and the light intensity distribution of the captured fringe image is: I(y) = a( y) + b(y)ο〇5[(2π/py)y]................ (2. 2-7) π 200938804 In the above formula, a: background Light intensity; b. Amplitude, A: y-direction stripe spacing. When there is a slope change on the surface of the object to be tested, the slope change will cause the stripe to deform. The intensity of the stripe after deformation is: / (y) = a(y) + b(y)cos^/py)y + φ{γ )].........(2.2-8) where the river is less) The phase change value produced by the stripe deformation in the y direction ❹ 上 In the above formula, the unit of the phase change value due to the stripe deformation is the diameter ( Rad), the relationship between the phase change value and the length unit is. Two and 9{y) = ^±.................... '
Py .............................. 將式(2.2-6)代入式(2.2.2-9)得到: 紹2,)办予卜n、)............... (2<2_1〇) 上式中,可♦ η:%,n為光學配置放大率⑽ amplification of the 〇Dtical rnnf,、 · optical configuration) ^ η ^ 代表在相同表面斜率變化下舍客, π千變化下會產生較大的相位變化,因此 η值越大,即可提高量測系統的靈敏度。 再將上式進一步整理可得: ...... . ................................................. 2-11) 因為物體表面斜率鼻立古λ j, VL七二 半為其间度的微分,將物體表面斜率 沿y方向積分,即可得到v古a & 士 气% . y方向的表面高度好ω,其積分 八兩 · H(y)= jedy........ ..........................................2-12) 由以上的推導過程中 J夫 在條紋反射法中,於擷取 12 200938804 相位移變化之條紋影像後1㈣式 值及斜率變化,並進一 矸而件到相位變化 I進步透過電腦積分外首 雯化 (Pixel)間的關係,像素與真 ^出斜率與像素 y = Ry-S{pixel)............具二長度的長度關係為: 其中V y方向之影像解析度 (2.2 13)Py .............................. Substituting the formula (2.2-6) into the formula (2.2.2-9): 2,) to give n,)............... (2<2_1〇) In the above formula, ♦ η:%, n is the optical configuration magnification (10) amplification of the 〇Dtical rnnf,, · optical configuration) ^ η ^ represents a large phase change under the same surface slope change, π thousand changes will produce a large phase change, so the larger the η value, the sensitivity of the measurement system can be improved. Further finishing the above formula can be obtained: .............................................. ............... 2-11) Because the slope of the surface of the object is λ j, VL VII is the differential of the degree, and the slope of the surface of the object is integrated in the y direction. Get v ancient a & morale %. The surface height in the y direction is good ω, its integral 八·H(y)= jedy.......................... ............................2-12) From the above derivation process, J is in the fringe reflection method, and draws 12 200938804 Phase shift changes after the fringe image 1 (four) value and slope change, and then into a phase change to the phase change I progress through the computer integral outside the relationship between Pixel (Pixel), pixel and true ^ slope and pixel y = Ry -S{pixel)............The length relationship of two lengths is: Image resolution in the V y direction (2.2 13)
Rp⑹0 :影像像素 由上述推導過程中, t j y方向(縱向)各蟪沾▲— ’但在X方向(橫向)上的高度關係,無法 由線的兩度 ❹條紋偏移量求得,因此,必須進-步結人 乂方向 係式方能得到正確完整之三維高度形二X方向的高度關 在橫向(X方向)條紋偏移方面,如 準鏡面(1 0 )與待測鏡面(3 〇 )之 :因基 的條紋偏移量為‘,但d在 曰、南又所造成 必在x方向無分量,因此,高度h 不存在X方向之條紋偏移量。 其-人,當影像擷取點觀測待測鏡面(3 〇 )時,若待 〇測鏡面(3 0) a y軸為旋轉產生—個斜率變化点,此角 度偏移會使由待測鏡面(3〇)觀測到的B點偏移至C,點 ,其造成的條紋偏移量為七c,。故令影像操取點肖〇點連 線與條紋影像平面之交點為D,在Dj、方、c,、五及五· 共平面之狀態下,由反射定律可知,丽=远,且必证,與 ADBC'為相似三角形,故^γϊ = 2@。 又Ζ(:Ό’Β = 2Ζ£Ό五=2夕,故斜率變化夕所造成的條紋偏 移量為: = —/2)tan2p …………(2.2-17) 13 200938804 因此,可以得到由高度差及斜率的變化在χ方 ^ 的總偏移量办為: °所造 ^ = {L — h)tB.n 2β ......... 木 ................................(2.2-18) 虽條紋影像之間的距離L遠大於基準鏡面(丄〇 ) 待測鏡面(3 Ο )之間的高度差⑻時,i式可進_步: ❹ dx = Ltax\ 2β ........ 當石在0. 50以内 ............................................ 則上述可再進一步簡化為: dx ~ 2pL.................... 又沿X方向擷取的條紋影像的光強度分佈 I(x) = a(x) + K^)cos[(2^ / ρχ)χ]........................ 其中a :背景光的強度; b ·振幅, •(2.2-20) % i •(2.2-21) 凡:χ方向條紋間距。 變形後的條紋強度為: Ο I(x) = a{x) + ft(x)cos[(2^· I ρχ)χ + φ{χ)\ (2.2-22) 其中〆χ):因χ方向條紋變形偏移所產生的相位變化 值。 其相位變化值與長度單位的關係為: ¢)( χ)= 2π,dx Px (2.2-23) 將(2.2-20)代入(2.2-23)得到: (2.2-24) φ(χ) = (2π / px)dx = .............Rp(6)0: In the above derivation process, the height relationship between the tjy direction (longitudinal direction) and the X direction (lateral direction) cannot be obtained from the two-degree ❹-strip offset of the line. Therefore, it is necessary to The step-by-step relationship can obtain the correct and complete three-dimensional height. The height of the two X directions is related to the lateral (X-direction) stripe offset, such as the quasi-mirror (10) and the mirror to be tested (3 〇). The base stripe offset is ', but d has no component in the x direction due to the 曰 and the south. Therefore, the height h does not have the stripe offset in the X direction. It-person, when the image capturing point observes the mirror to be tested (3 〇), if the mirror surface (30) ay axis is rotated, a slope change point will be generated, which will cause the mirror to be tested ( 3〇) The observed B point is shifted to C, and the resulting stripe offset is seven c. Therefore, the intersection point of the image manipulation point and the stripe image plane is D. In the state of Dj, square, c, five, and five · common plane, it is known from the law of reflection that Li = far, and must be proved , and ADBC' is a similar triangle, so ^γϊ = 2@. Also Ζ(:Ό'Β = 2Ζ£Ό5=2 eve, so the slope shift caused by the change of slope is: = —/2) tan2p ............(2.2-17) 13 200938804 Therefore, you can get The difference between the height difference and the slope is the total offset of the square ^: °^^ {L — h)tB.n 2β ......... wood....... .........................(2.2-18) Although the distance L between the fringe images is much larger than the reference mirror (丄〇) to be tested ( 3 Ο ) The height difference (8), i can enter _step: ❹ dx = Ltax\ 2β ........ When the stone is within 0. 50........... ................................. The above can be further simplified as: dx ~ 2pL... .............. The light intensity distribution of the fringe image taken along the X direction I(x) = a(x) + K^)cos[(2^ / ρχ)χ] ........................ where a: the intensity of the background light; b · amplitude, • (2.2-20) % i • (2.2-21) Where: χ direction stripe spacing. The stripe strength after deformation is: Ο I(x) = a{x) + ft(x)cos[(2^· I ρχ)χ + φ{χ)\ (2.2-22) where 〆χ): because The phase change value produced by the directional stripe deformation offset. The relationship between the phase change value and the length unit is: ¢)( χ)= 2π, dx Px (2.2-23) Substituting (2.2-20) into (2.2-23) gives: (2.2-24) φ(χ) = (2π / px)dx = .............
Px 將上式進一步整理可得: 200938804 e_<p(x).pr ......(2. 2 - 2 5 ) 4πΣ 因物體表面斜、 率為其南度的微分,將物體表面斜率沿Px further refines the above formula: 200938804 e_<p(x).pr ......(2. 2 - 2 5 ) 4πΣ The slope of the surface of the object due to the inclination of the surface of the object and the differential of its southness along
X方向積分,即可媒$丨丨 Q 仵到X方向的表面高度/f(x),其積分式 為: .......(2.2-26) .....C 2. 2 ~ 2 7) mx)= \βάχ............................. 而像素與真實長度的長度關係為: x = K-^{pixel)................Integral in the X direction, the surface height of the media $丨丨Q X to the X direction /f(x), the integral formula is: .......(2.2-26) .....C 2. 2 ~ 2 7) mx)= \βάχ............................. The relationship between the length of the pixel and the true length is: x = K-^{pixel)................
其中' :X方向之影像解析度 :影像像素 度,故再結合 即可得到正確 上述推導可得x方向(即橫向)各線的高 先前已經推導@ y方向各線高度之關係式, 完整之三維高度形貌。 有關所述之向量解析法 矩陣以及反射向量轉換矩陣 偏移轉換斜率公式等來完成 ,其主要係利用向量旋轉轉換 ’再結合條紋偏移公式、條紋 ,其中:Where ': X-direction image resolution: image pixel degree, so the combination can be obtained correctly. The above-mentioned derivation can be obtained in the x-direction (ie, horizontal). The height of each line has previously derived the relationship between the heights of the lines in the @ y direction, the complete three-dimensional height. Morphology. The vector analytic method matrix and the reflection vector conversion matrix offset conversion slope formula are completed, and the main method is to use vector rotation conversion ‘recombining the stripe shift formula and the stripe, wherein:
所述之向^旋轉轉換矩陣,其係利用 -.丁 穴π π π双宇矩陣型式表The rotation to the ^ transformation matrix, which uses the -. Ding π π π double-macro matrix type table
不向量’並進一步推练A 推導向量旋轉之矩陣轉換式。苴中,基 於向量沿一設定軸( ^ ^ y、ζ之任一)旋轉時,於該設定 八 因此/、頊考慮其餘二轴構成之平面上之 刀量變化,該向量在所 述平面上的投影,其向量大小不變 ,只是旋轉後方向改變。 j个燹 如第七、八圖所示,係將p向量 (X,y,ζ)以數學的矩陳 皁表不時,因移動轉換及其它轉換 口 I ’,、辰示式為:Not vector' and further refine the matrix transformation of A derivation vector rotation. In the case, when the vector is rotated along a set axis (^ ^ y, ζ any), the setting of the octet /, 顼 considers the variation of the scalar amount on the plane of the remaining two axes, the vector is on the plane The projection has a constant vector size, but only changes direction after rotation. j 燹 As shown in the seventh and eighth figures, the p vector (X, y, ζ) is timed by a mathematical moment. Because of the movement conversion and other conversion ports I ’, the formula is:
15 200938804 因向量沿z軸旋轉時z軸分量不變,向量在x,y平 面上的投影,向量大小不變,僅旋轉後方向改變,故不考 慮z分量之向量大小為: r =」X2 + y2 旋轉後前後之x,y方向分量為: x = r cos <f\15 200938804 Since the z-axis component is constant when the vector is rotated along the z-axis, the projection of the vector on the x, y plane, the vector size is unchanged, and only the direction after the rotation changes, so the vector size of the z component is not considered: r = "X2 + y2 The x and y directions before and after rotation are: x = r cos <f\
^ = r sin φχ x = rcos φ2 y — -rsin φ2 且戎=0 —為,代入上式 X = rcos =Γ〇〇3(φ — φι) =jccos φ +_ysin φ γ=-Γ5ΐηφ2 =-rsin((p-</>x) = -xsin φ +jcos φ 因此,基於前述的幾何關係,經過推導及整理後,可 知一向量沿X軸旋轉(0角度)、沿y軸旋轉(0角度)以及沿 Z軸旋轉(彡角度)之各轉換矩陣式分別為: I I 1 X y z^ = r sin φχ x = rcos φ2 y — -rsin φ2 and 戎 = 0 — for, substituting the above formula X = rcos = Γ〇〇3(φ — φι) = jccos φ +_ysin φ γ=-Γ5ΐηφ2 =-rsin ((p-</>x) = -xsin φ +jcos φ Therefore, based on the aforementioned geometric relationship, after derivation and collation, it is known that a vector rotates along the X axis (0 angle) and rotates along the y axis (0 The angles of rotation and the transformation matrix along the Z axis (彡 angle) are: II 1 X yz
cos φ -sin φ 0 0 sin φ cos φ 0 0 0 0 1 0 0 0 0 1 (2.3-10) 1 0 0 0 0 cos -sin φ 0 0 sin φ cos φ 0 0 0 0 1 (2.3-11) 16 200938804 Ο _χ’ y ζ’ l] y cos φ 0 · -sin φ O' 0 1 0 0 sin φ 0 cos φ 0 0 0 0 1 参, 如第 九圖 所 ...(2.3-12) ^ = [4 Λ 在一平面E所產生之反射向量5 =[坟仄< ’平面E之單位法向量及=[义' %],令2在及上的投影 為%,則: N0Cos φ -sin φ 0 0 sin φ cos φ 0 0 0 0 1 0 0 0 0 1 (2.3-10) 1 0 0 0 0 cos -sin φ 0 0 sin φ cos φ 0 0 0 0 1 (2.3-11 ) 16 200938804 Ο _χ' y ζ' l] y cos φ 0 · -sin φ O' 0 1 0 0 sin φ 0 cos φ 0 0 0 0 1 Reference, as shown in the ninth figure... (2.3-12) ^ = [4 反射 The reflection vector generated in a plane E = = [tomb < 'the unit normal vector of plane E and = [meaning ' %], let the projection of 2 on and above be %, then: N0
NN
N —· /V = (2.3-13) 又’ 乂與其在單位法向量及投影的向量瓦的合向量為 c: <^=] + ΛΓ。=:5 + ((-])·及)及............................(2. 3-14) 1 · —► 5為J之反射向量’所以2與云相對於%是對稱的,因 此 5 = ζ ; 反射向量 B = iV0 + C2 = 3 + 2((-]). ❹ Αχ-2{α·Ν)Νχ Ay-2^N)Ny Αζ-2{Α·Ν)Νζ~ 0' ο ο 1 ο οN —· /V = (2.3-13) and ′ 乂 and its vector in the unit normal vector and the projected vector watt are c: <^=] + ΛΓ. =:5 + ((-])· and) and..............................(2. 3-14) 1 · —► 5 is the reflection vector of J' so 2 is symmetric with respect to the cloud with respect to %, so 5 = ζ ; reflection vector B = iV0 + C2 = 3 + 2((-]). ❹ Αχ-2{α·Ν )Νχ Ay-2^N)Ny Αζ-2{Α·Ν)Νζ~ 0' ο ο 1 ο ο
B lA Ay A, Ο 1 ο Ο Ο 1 '2{ν·α)Νχ -2(N-A)Ny -2(ϊν·1)ΛΓ; ............................(2.3-16) 有關條紋偏移方法,如第九、十圖所示,其係令〇點 為座標原點,xy平面為一鏡面(i 〇 ),冗代表影像擷 取器(40)觀察鏡面(1〇)上〇點之向量,α為影像 棟取器(4 0 )觀測角’則:必=[〇 sina _cosa];鏡面法向 17 200938804 量iV = [0 0 1],令i?為的反射向量,將^與及代入前揭 式(2.3-16),則: R l] = [i?x Ry Rz l] [AOx AOy AOz l] 1 0 0 0 1 0 0 0 1 0 0 0 -2 (N^A〇)Nx -2(N.Ad)Ny -.2(n.A〇)Nz Ο =[0 sin a 一 cos、a =[0 sin a cos a 量云經過〇點形成 X = « 少= Z = 其中 0 0 1 0 0 0 0 1 0 0 0 0 2cos a 1 '· (2.3-17) .....................(2.3-18) 待求常數’則代表螢幕之平面方程式. ❹ 6為 L — h 解式(2.3-18)、(2.3-19)可得[ Γ _ ...........··(2.3-20) (”“、 向量及與螢幕之交點為: V {L~h)tBna (L~h))... ........................(2.3-21) 此即尚未產生斜率變化前影像擷取器 幕位置,以下i隹一牛, 錢鏡面觀察到螢 以下進一步加入縱向及橫向之斜率變化,发實 先加入縱向斜率變化,如第十一圖所示,,、中. 0)沿y軸產生-Θ之斜率變化,即繞⑼/鏡面(1 此時之鏡面法Θ暑ϋ 篼χ軸轉Θ度時,人 兄面法向量為 ',將Θ代入式(2 3_u 7 }則法向量 L — h ]—-- cos a ...... a代入式(2·3_18)可求得反射 (2.3-19) 18 200938804 $為X ι]=[^B lA Ay A, Ο 1 ο Ο Ο 1 '2{ν·α)Νχ -2(NA)Ny -2(ϊν·1)ΛΓ; ................ ............(2.3-16) For the stripe offset method, as shown in the ninth and tenth figures, the 〇 point is the coordinate origin and the xy plane is a mirror surface (i 〇 ), the redundant representative image picker (40) observes the vector of the upper point of the mirror surface (1〇), α is the image building device (40) observation angle 'then: must = [〇sina _cosa]; mirror normal 17 200938804 The quantity iV = [0 0 1], let i? be the reflection vector, and ^ and and enter the previous method (2.3-16), then: R l] = [i?x Ry Rz l] [AOx AOy AOz l] 1 0 0 0 1 0 0 0 1 0 0 0 -2 (N^A〇)Nx -2(N.Ad)Ny -.2(nA〇)Nz Ο =[0 sin a a cos, a = [0 sin a cos a The cloud is formed by the defect X = « Less = Z = where 0 0 1 0 0 0 0 1 0 0 0 0 2cos a 1 '· (2.3-17) ........ .............(2.3-18) The constant to be found represents the plane equation of the screen. ❹ 6 is the L - h solution (2.3-18), (2.3-19) [ Γ _ ...........··(2.3-20) ("", the intersection of vector and screen: V {L~h)tBna (L~h))... .......................(2.3-21) The position of the image picker screen before the slope change has not yet been generated. The following i隹一牛, the money mirror observes the slope and further changes the slope of the vertical and horizontal directions, and the vertical slope is added first, as shown in the eleventh figure, 0. 0) Generate a slope change along the y-axis, that is, around (9)/mirror (1) When the mirror method is used, the normal vector of the human face is ', and the 法 is substituted. (2 3_u 7 }, the normal vector L — h ]—-- cos a ...... a substitution (2·3_18) can be obtained (2.3-19) 18 200938804 $ is X ι]=[^
Ny Nz [0 0 11] 1 0 0 0 1 0 0 0 0 cos^ -sin0 0 0 sin^ COS0 0 0 0 0 1 0 cos <9 sin0 0 0 0 -sin Θ 0 cos0 0 0 1 (2.3-22) =[〇 sin^ cos0 1]Ny Nz [0 0 11] 1 0 0 0 1 0 0 0 0 cos^ -sin0 0 0 sin^ COS0 0 0 0 0 1 0 cos <9 sin0 0 0 0 -sin Θ 0 cos0 0 0 1 (2.3- 22) =[〇sin^ cos0 1]
接著加入橫向斜率變化,如第十二圖所示,鏡面(1 0 )沿X軸產生一泠角之斜率變化,即繞y軸轉/3度後, 令此時鏡面法向量為$,將/3代入式(2.3-12),則法向量Then add the lateral slope change. As shown in Fig. 12, the mirror surface (10) produces a slope change along the X-axis, that is, after the y-axis is rotated by /3 degrees, so that the mirror normal vector is $, /3 substitution type (2.3-12), then normal vector
Nxy 為'X l] = [{Ny)x (Ny)y (ΝΑ =[0 sin(^) cos(^) 1]Nxy is 'X l' = [{Ny)x (Ny)y (ΝΑ =[0 sin(^) cos(^) 1]
cos;0 0 - sin P -sin 夕 0 0 0 0 COSy0 0 0 0 0 cos;0 0 -siny^ o 1 siny9 0 0 0 0 COSy0 0 0 0 0 =[cos ^ sin/? sin^ cos^cosy^ l]....................(2.3-23) 產生斜率變化後鏡面法向量為$,令此時冗之反射向量 為$,將^與%代入式(2.3-16),則:Cos;0 0 - sin P -sin 夕0 0 0 0 COSy0 0 0 0 0 cos;0 0 -siny^ o 1 siny9 0 0 0 0 COSy0 0 0 0 0 =[cos ^ sin/? sin^ cos^cosy ^ l]....................(2.3-23) After the slope is changed, the mirror normal vector is $, so that the redundant reflection vector is $, which will be ^ With % substitution (2.3-16), then:
=[ΑΟχ ΑΟγ AOz l]· 19 200938804 1 0 0 0 0 1 0 0 0 0 10 -2{W^-A〇){Nxy)x -2{Ν;·Αδ){Ν^)ν -2(λΓ·Ι〇)(^)ζ 1 [0 sin⑷—cos⑷ l] 1 0 ο -2 (sin ^ sin α -cos θ cos β cos a )cos Θ sin β 0 1 Ο 0 -2 (sin Θ sin a -cos Θ cos β cos cir )sin ^ 0 0 0 0 1 0 -2 (sin Θ sin a -cos Θ ^cos β cos a ) cos Θ cos β 1 [-2(sin 0 sin a -cos A.cos Θ cos> a )cos Θ sin.々 sin(a) - 2(sin Θ sin a -cos Θ cos β cos a )sin Θ -cos a -2(sin Θ sin a -cos Θ cos β >cos a )cos Θ cos β ❹ .(2.3-24) 則向量經過〇點形成之直線方程式為:=[ΑΟχ ΑΟγ AOz l]· 19 200938804 1 0 0 0 0 1 0 0 0 0 10 -2{W^-A〇){Nxy)x -2{Ν;·Αδ){Ν^)ν -2( λΓ·Ι〇)(^)ζ 1 [0 sin(4)—cos(4) l] 1 0 ο -2 (sin ^ sin α -cos θ cos β cos a )cos Θ sin β 0 1 Ο 0 -2 (sin Θ sin a -cos Θ cos β cos cir )sin ^ 0 0 0 0 1 0 -2 (sin Θ sin a -cos Θ ^cos β cos a ) cos Θ cos β 1 [-2(sin 0 sin a -cos A.cos Θ cos> a)cos Θ sin.々sin(a) - 2(sin Θ sin a -cos Θ cos β cos a )sin Θ -cos a -2(sin Θ sin a -cos Θ cos β >cos a )cos Θ cos β ❹ .(2.3-24) Then the straight line equation for the vector formed by the defect is:
JCJC
(rA y = t2* ............................................( 2. 3. 25) ^ = h*{K)z 上式中,t2為一待求常數,並表示螢幕(20)之平面方 程式為: z = L_h ·.··............................................. . (2. 3 — 26) 20 200938804 解前式,可得:匕 L-hΚΙ (2.3-27) 將t2代入式(2. 3-25)可得反射向量ζ與螢幕面之交點為: r(R) -(L-h) (R^) -(L-h) ) 、~~- 7〜-飞——(L-h) ...............(2.3-28) 上式即產生斜率變化後影像擷取器經由鏡面觀察螢幕 上的位置,將式(2.3-21)與式(2.3-28)相減,可得斜率變 化引起之X與Y方向相位偏移量0X ^ 、 - 一 ( ί η \ \ 0 y為· Ο {φχ Φγ) ❹ tana (L-h) 2cos Θ sin β (cos Θ cos β cos a -sin 0 sin a ) cos Θ cos β (2cos a cos Θ cos β -2sin Θ sin a )-cos a sin a -2sin a sin2 Θ +2sin Θ cos Θ cos β cos a cos Θ cos β (2cos a cos Θ cos β -2sin Θ -sin a )-cos a /T , N sin 2β cos a cos2 Θ -sin a sin β sin 2Θ (L-h) ( (L-h) tan a (L-h) 2cos a cos2 Θ cos2 β -cos a -sin a sin 2Θ cos β sin a cos 20 +sin 20 cos. # cos_ a tan a 2cos丨 a cos2 Θ cos2 々-cos a -sin a sin 2Θ cos 户 最後加入兩鏡面高度差h所造成條紋偏移量:2 htana。綜 合高度差h與斜率變化引起之X與y方向相位偏移么與& 為: U. (Z —/z)(sin 20 .cos a cos2 0 -sin a -sin 户 sin 20 ) 2cos a cos2 Θ cos2 β -cos a -sin a isin 2Θ cos β sin a cos 2Θ +sin 2Θ cos β cos a 2cos a cos2 Θ cos2 β -cos a -sin a sin 2Θ cos β -tan a (L-h)-2 htana (2.3-30) 21 200938804 由前式中可知,當鏡面(1 ο)產生高度與斜率變化 時其相對應之縱橫向條紋偏移量,但實際量測時,則係量 得條紋偏移量後換算為斜率變化,進而求待量側物輪廓, 前式所包含的組成變數較複雜,因此先對其進行加以簡化 處理後,再行求解。其中: siny0 => β 若冷與0皆極小(<0_ 50),且L>>h,則··代入 sin^ => 0 1(rA y = t2* ........................................... ( 2. 3. 25) ^ = h*{K)z In the above formula, t2 is a constant to be determined, and the plane equation of the screen (20) is: z = L_h ·.·... ....................................... (2. 3 — 26) 20 200938804 Solution Preform, available: 匕L-hΚΙ (2.3-27) Substituting t2 into equation (2.3-25) The intersection of the reflection vector ζ and the screen surface is: r(R) -(Lh) (R^) -(Lh) ),~~- 7~-fly——(Lh) ...............(2.3-28) The above equation is the image picker after the slope change Mirror observation of the position on the screen, subtracting the equation (2.3-21) from the equation (2.3-28), the phase shift between the X and Y directions caused by the slope change is 0X ^ , - one ( ί η \ \ 0 y · χ {φχ Φγ) tana tana (Lh) 2cos Θ sin β (cos Θ cos β cos a -sin 0 sin a ) cos Θ cos β (2cos a cos Θ cos β -2sin Θ sin a )-cos a sin a -2sin a sin2 Θ +2sin Θ cos Θ cos β cos a cos Θ cos β (2cos a cos Θ cos β -2sin Θ -sin a )-cos a /T , N sin 2β cos a cos2 Θ -sin a sin β sin 2Θ (Lh) ( (Lh) tan a (Lh) 2cos a cos2 Cos2 β -cos a -sin a sin 2Θ cos β sin a cos 20 +sin 20 cos. # cos_ a tan a 2cos丨a cos2 Θ cos2 々-cos a -sin a sin 2Θ cos The last addition of the two mirror height difference h The resulting stripe offset: 2 htana. The integrated height difference h and the phase shift in the X and y directions caused by the slope change are & U: (Z —/z) (sin 20 .cos a cos2 0 -sin a -sin sin 20 ) 2cos a cos2 Θ cos2 β -cos a -sin a isin 2Θ cos β sin a cos 2Θ +sin 2Θ cos β cos a 2cos a cos2 Θ cos2 β -cos a -sin a sin 2Θ cos β -tan a (Lh)-2 htana (2.3-30) 21 200938804 As can be seen from the above formula, when the mirror surface (1 ο) produces a height and slope change, the corresponding vertical and horizontal stripe offset, but the actual measurement time Then, the stripe offset is converted into a slope change, and then the contour of the side object is obtained. The composition variables included in the former formula are complicated, so the first step is simplified and then solved. Where: siny0 => β if both cold and 0 are extremely small (<0_ 50), and L>>h, then substituted for sin^ => 0 1
式(2. 3-30)化簡 2β (cosor - esina)Equation (2. 3-30) Simplification 2β (cosor - esina)
L 2sina-sina + 2^cos a 2cos α-cos α-2 Θ sin a 2cos a-cos a-2 Θ sin a tan a 2β{\-θ\^ηα) 1-2 Θ tan aL 2sina-sina + 2^cos a 2cos α-cos α-2 Θ sin a 2cos a-cos a-2 Θ sin a tan a 2β{\-θ\^ηα) 1-2 Θ tan a
=L=L
=L tan a+ 20 --tan a 1-2 Θ tan a 2β -2βθ\ζηα 1-20 tan a le + lOtan2 a 1-20 tan a (2.3-31) 次令 ΧΦ=L tan a+ 20 --tan a 1-2 Θ tan a 2β -2βθ\ζηα 1-20 tan a le + lOtan2 a 1-20 tan a (2.3-31) order ΧΦ
yφ)= 2β{\-θίοηα) 1-20 tan a 20(1 + tan2 a) 1-20 tan a (2.3-33) 解聯立方程式 ΧΦ (2.3-34) 2β{\ - Otana) 1-2 Θ tan a 2(9(1 + tan2 a) 1-2 Θ tana 並可求得:0: cos a {β θ) 2+γφ sin 2a 2么 ' β = φν COS2 ( χφ 2 + γφ sinacosa 代入 4L + ^sin 2a 2L+^ysin 2a (2.3-37) 22 200938804 條、’文偏移量么與%為長度單位,其相位變化值與長度 單位之關係式為: φ(χ)~2π'^ Ρχ < .Ν 2π·ώ ... 9{y) =-i- I Py Ρχ :橫向條紋間距 :縱向條紋間距 將式(2^3-38)代入式(2· 3-37)可得 Py-9(y)C0:Yφ)= 2β{\-θίοηα) 1-20 tan a 20(1 + tan2 a) 1-20 tan a (2.3-33) Decomposed Cubic Formula ΧΦ (2.3-34) 2β{\ - Otana) 1-2 Θ tan a 2(9(1 + tan2 a) 1-2 Θ tana and can be obtained: 0: cos a {β θ) 2+γφ sin 2a 2 ′′ β = φν COS2 ( χφ 2 + γφ sinacosa substituted 4L + ^ Sin 2a 2L+^ysin 2a (2.3-37) 22 200938804, 'Where the offset and % are the length units, the relationship between the phase change value and the length unit is: φ(χ)~2π'^ Ρχ < .Ν2π·ώ ... 9{y) =-i- I Py Ρχ : transverse stripe spacing: vertical stripe spacing Substituting the formula (2^3-38) into the formula (2·3-37) gives Py-9 (y) C0:
Ο 2Ρχ·φ(χ) 、β θ、---_; - -__JTy 'fKJ' )^\Ja UL + Py-<P(y)^ 2a 4iZ^(3;)sin 2« J............(2.3-39) 將量測所得之相位偏移咖、咖與卜^^代入式 (2·3 39)即可得到橫向與縱向之斜率變化冷與0。 基於物體表面斜率為其高度的微分’故若要得到物體 的=物體表面斜率沿兀與y方向積分並加入像素與 2的長度關係如式(2·2_13)、(2·2·27),即可得到y 方向试件表面高度,其積分 \βάχ H(y) = \θάγ .......................(2.3-40) 最後代入之像素與實際長度關係式: y~Ry' S(pixei^ X~RX' 8{pixei^ 其中V y方向之影像解析度 尺·· X方向之影像解析度 Ap&o :影像像素 即可得知 A^y方向之高度 結合X方向與 (2.2-13) (2.2-27) Y方向之高度 23 200938804 關係’即可獲得完整之物體三維高度形貌。 綜上所述,本發明應用條紋反射法量測物體表面形貌 的方法設計,其主要係利用光學式條紋反射量測手段結合 幾何解析或向量解析運算手段之任―,再透過電腦以自動 方式及較高精度地正確量測推算出物體表面的形貌,為產 業界對其產品非破壞性檢測提供一項更具實用性之量測方 法。 Ο ❹ 【圖式簡單說明】 第-圖所示之本發明應用條紋反射法量測物體表 貌之流程圖。 第二圖係本發明應用條紋反射法量測物體表面形貌基 本設備之示意圖。 土 。第三、四圖係分別為沿X方向及γ方向之條紋示意圖 第^圖係本發㈣鏡面高度與條紋變形平面關係圖。 第六圖係本發明於鏡面高度與條紋變形立體關係圖。 第七圖係向量旋轉示意圖。 第八圖係向量俯視圖。 第九圖係向量反射示意圖。 十圖係產生斜率變化前之平面幾何配置圖。 第十圖係沿Υ方向之平面幾何配置圖。 第十一圖係X方向之平面幾何配置圖。 【主要元件符號說明】 (ι〇)平面鏡(基準鏡面) 24 200938804 (2 0 )螢幕 (3 0 )待測鏡面 (4 0 )影像擷取器 (5 0 )電腦 〇Ο 2Ρχ·φ(χ) , β θ, ---_; - -__JTy 'fKJ' )^\Ja UL + Py-<P(y)^ 2a 4iZ^(3;)sin 2« J.. ..........(2.3-39) The phase deviation of the measured offset, coffee, and cloth ^^ into the equation (2·3 39) can be used to obtain the horizontal and vertical slope changes cold and 0 . Based on the slope of the surface of the object as the difference of its height', if the object is to be obtained, the slope of the surface of the object is integrated along the y and y directions, and the relationship between the length of the pixel and 2 is added as in the equation (2·2_13), (2·2·27). The surface height of the test piece in the y direction can be obtained, and its integral \βάχ H(y) = \θάγ .......................(2.3-40) The relationship between the pixel and the actual length of the substitution: y~Ry' S(pixei^ X~RX' 8{pixei^ The image resolution of the V y direction · The image resolution of the X direction Ap&o: the image pixel It is known that the height of the A^y direction is combined with the X direction and the height of the (2.2-13) (2.2-27) Y direction 23 200938804 to obtain a complete three-dimensional height profile of the object. In summary, the present invention applies the stripe. The method of measuring the surface topography of the object by the reflection method is mainly based on the optical stripe reflection measurement method combined with the geometric analysis or the vector analysis operation method, and then the calculation is correctly measured by the computer in an automatic manner and with high precision. The appearance of the surface of the object provides a more practical measurement method for the non-destructive detection of its products for the industry. BRIEF DESCRIPTION OF THE DRAWINGS The flow chart of the present invention is applied to the measurement of the appearance of an object by the stripe reflection method. The second figure is a schematic diagram of the basic apparatus for measuring the surface topography of an object by the stripe reflection method of the present invention. The third and fourth figures are respectively a schematic diagram of the stripe along the X direction and the γ direction. The fourth figure is a relationship between the mirror height and the stripe deformation plane. The sixth figure is a three-dimensional relationship between the mirror height and the stripe deformation of the present invention. The seventh diagram is a vector rotation diagram. The eighth diagram is a vector top view. The ninth diagram is a vector reflection diagram. The ten diagrams show the plane geometry configuration diagram before the slope change. The tenth diagram is the plane geometry configuration diagram along the Υ direction. A picture is a plane geometry diagram in the X direction. [Main component symbol description] (ι〇) plane mirror (reference mirror) 24 200938804 (2 0 ) screen (3 0 ) mirror to be tested (4 0 ) image capture device (5 0) Computer 〇
2525
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97109043A TW200938804A (en) | 2008-03-14 | 2008-03-14 | Method of implementing pattern reflection to measure contour of object surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97109043A TW200938804A (en) | 2008-03-14 | 2008-03-14 | Method of implementing pattern reflection to measure contour of object surface |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200938804A true TW200938804A (en) | 2009-09-16 |
TWI358525B TWI358525B (en) | 2012-02-21 |
Family
ID=44867455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97109043A TW200938804A (en) | 2008-03-14 | 2008-03-14 | Method of implementing pattern reflection to measure contour of object surface |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200938804A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI467236B (en) * | 2012-04-12 | 2015-01-01 | Univ Nat Formosa | Three-dimensional appearance remote measuring system and the method using the same |
CN112504162A (en) * | 2020-12-04 | 2021-03-16 | 江苏鑫晨光热技术有限公司 | Heliostat surface shape rapid resolving system and method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI503579B (en) | 2013-06-07 | 2015-10-11 | Young Optics Inc | Three-dimensional image apparatus, three-dimensional scanning base thereof, and operation methods thereof |
-
2008
- 2008-03-14 TW TW97109043A patent/TW200938804A/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI467236B (en) * | 2012-04-12 | 2015-01-01 | Univ Nat Formosa | Three-dimensional appearance remote measuring system and the method using the same |
CN112504162A (en) * | 2020-12-04 | 2021-03-16 | 江苏鑫晨光热技术有限公司 | Heliostat surface shape rapid resolving system and method |
CN112504162B (en) * | 2020-12-04 | 2022-07-26 | 江苏鑫晨光热技术有限公司 | Heliostat surface shape rapid resolving system and method |
Also Published As
Publication number | Publication date |
---|---|
TWI358525B (en) | 2012-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8803943B2 (en) | Formation apparatus using digital image correlation | |
CN104655011B (en) | A kind of noncontact optical measurement method of irregular convex surface object volume | |
CN104897062B (en) | Visual measurement method and device for shape and position deviation of part non-coplanar parallel holes | |
TWI426228B (en) | Method and apparatus of shape measurement of specular reflective surface | |
CN104930985B (en) | Binocular vision 3 D topography measurement method based on space-time restriction | |
CN104457603B (en) | Object deformation measurement method under high-temperature environment | |
WO2013116299A1 (en) | Method and apparatus for measuring the three dimensional structure of a surface | |
CN107767456A (en) | A kind of object dimensional method for reconstructing based on RGB D cameras | |
TW201000886A (en) | Method and apparatus for detecting defects using structured light | |
Nguyen et al. | Accuracy assessment of fringe projection profilometry and digital image correlation techniques for three-dimensional shape measurements | |
TW200947348A (en) | System, program product, and related methods for registering three-dimensional models to point data representing the pose of a part | |
TWI583920B (en) | Measuring system of specular object and measuring method thereof | |
Zou et al. | High-accuracy calibration of line-structured light vision sensors using a plane mirror | |
TW200938804A (en) | Method of implementing pattern reflection to measure contour of object surface | |
CN111353997A (en) | Real-time three-dimensional surface defect detection method based on fringe projection | |
Hu et al. | Microscopic fringe projection profilometry systems in Scheimpflug condition and performance comparison | |
CN109164063A (en) | Method based on OCT and Digital image technology automatic measurement Refractive Index of Material | |
CN105698708A (en) | Three-dimensional visual sense reconstruction method | |
Hodgson et al. | Novel metrics and methodology for the characterisation of 3D imaging systems | |
Grzelka et al. | Investigations of concrete surface roughness by means of 3D scanner | |
TW201800717A (en) | Optical interferometric apparatus for real-time full-field thickness inspection | |
Brutto et al. | 3D mosaic documentation using close range photogrammetry | |
CN203704883U (en) | Three-dimensional measurement system | |
Ding et al. | Automatic 3D reconstruction of SEM images based on Nano-robotic manipulation and epipolar plane images | |
CN207248095U (en) | A kind of dimension measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |