200938588 六、發明說明: 【發明所屬之技術領威】 本發明係關於玻璃纖維強化聚酿胺樹脂組成物及成形 品,詳言之,係關於機械強度、薄板成形性及表面外觀均優 異,適於薄板之行動電子機器零件與個人電腦殼體零件的玻 璃纖維強化聚醯胺樹脂組成物及成形品。 【先前技術】 習知,PDA、行動電話、個人電腦等行動電子機器的殼體, 係使用成形品的表面外觀與低翹曲性均優異的聚碳酸酯樹 脂、或ABS樹脂等非晶性熱可塑性樹脂。然而,在電子機器 小型化、輕量化中,殼體所使用的樹脂亦要求薄板成形品, 在上述聚碳酸酯樹脂或ABS樹脂中,將滑石或玻璃纖維等當 作強化材料並調配。但是’該等強化樹脂組成物係隨強化材 料的調配’雖會提升強度,但流動性卻會惡化,特別係較難 依薄板成形為如殼體之類的複雜形狀。 近年,有提案以聚醯胺樹脂等為基質,並將液晶聚合物、 或聚烯烴樹脂、或聚苯醚樹脂施行合金化,更利用玻璃纖維 等無機填充材施行強化的樹脂組成物(例如參照專利文獻i 與2)。然而,該等樹脂組成物雖成形溫度、模具溫度等樹 脂加工溫度係高於非晶性熱可塑性樹脂,且流動性較優異, 但就成形性^言係成形時容易發生毛邊,在成形後必 需將毛邊除去俾整理為成形品形狀。 098103367 4 200938588 兼顧流動性提升與毛邊抑制的方法,有提案2種方法。第 -方法係龍具構造的方法(例如參料利文獻3與 4)。該等方法在模具製作上較耗成本1當屬於複雜成形: 的情況,難以施行用以抑制模具構造發生毛邊的機構。 第-方法係有提案在樹脂組成物中調配人非纖維狀的粒 狀無機填充材之方法、或調配入球狀無機填充劑的方法 (例如參照專利文獻5與6)。然而,該等方法储由將會發 ❹生毛邊的模具間隙(模穴/模芯間的細微間隙)’利用無機填 充材填塞,雖對毛邊抑制具有效果,但在複_狀的成形體 方面會有無機填充材阻礙模具轉印,導致表面外觀惡化 題發生。 [專利文獻1]曰本專利特開平6_24〇132號公報 [專利文獻2]日本專利特開2〇〇卜316587號公報 [專利文獻3]日本專利特開平4_312猶號公報 ® [專利文獻4]曰本專利特開平5_〇5〇472號公報 [專利文獻5]日本專利特開糊6_193727號公報 [專利文獻6]日本專利特開2〇〇8_〇〇7753號公報 【發明内容】 (發明所欲解決之問題) 本發月目的在於提供機械強度、薄板成形性及表面外觀岣 優/、適用為薄板之行動電子機器零件與個人電腦殼體零件 的玻璃纖維強化聚酿胺樹脂組成物。 098103367 200938588 再者’本案發明的樹脂組成物相較於習知組成的芳香族尼 龍/聚苯驗樹脂等,可降低射出成形時的模具溫度,不會降 低熔融黏度,並可確保樹脂的流動性,因而可抑制毛邊的發 生。. (解決問題之手段) 本發明者等為解決此種問題,經深入鑽研的結果,發現在 調配入玻璃纖維的玻璃纖維強化聚醯胺樹脂組成物中,藉由 調配入特定的聚醯胺樹脂與酸改質苯乙烯系彈性體,便可達 成上述目的,遂完成本發明。 即’本發明所提供的玻璃纖維強化聚醯胺樹脂組成物,係 相對於由聚醯胺樹脂90〜99質量%與酸改質苯乙烯系彈性體 1〜10質量%所構成的聚醯胺樹脂組成物1〇〇質量份,調配入 玻璃纖維50〜150質量份而成的玻璃強化聚醯胺樹脂組成 物’其中,聚醯胺樹脂係由聚醯胺66樹脂20〜60質量%、聚 醯胺12樹脂20〜40質量%及非晶性聚醯胺樹脂20〜50質量% 調配而成,且總量為100質量%。 (發明效果) 根據本發明’在破璃纖維強化聚醯胺樹脂組成物中,聚酿 胺樹脂係使用聚醯胺66樹脂、聚醯胺12樹脂及非晶性聚酿 胺樹脂’且藉由依特定比例調配入酸改質苯乙烯系彈性體, 便可提供機械強度高,即使薄板成形體,在成形時仍可抑制 發生毛邊情形,且表面外觀優異的樹脂組成物。 098103367 6 200938588 【實施方式】 =明係由曝自聚酿胺66樹脂與聚_胺12 、、-«曰d生聚釀胺、非晶性聚醯胺、以及酸改 體' _纖維所構成的職組成物。 本發明中所謂之「結晶性聚酿胺」係指當 量計依听/分升溫速度進賴㈣,顯^^差知描熱 ❺ 結晶融解熱的聚醯胺。此外,所謂「非 g :”之 ”示差掃描熱量計依2似分升沒速度‘:胺定時係= 〜以上之結晶融解熱的聚醯胺。本發明中所謂之 =rc/分升溫速度進行測定,將各自之結晶融=2 大峰/皿度及比熱轉移溫度,依常法所求得之溫度。 …、 本發明所謂之「聚醯胺66樹脂 依等莫耳調配並進行聚合的方法, ❿聚合的方法所獲得,具有結晶性, 胺。 」係指使己二胺與己二酸 或依照使該等一對鹽進行 且熔點255〜265°C的聚隨 本發明所使用的聚醯胺66樹脂,係僅取用當使用示差掃 描熱量計依2(TC/分升溫速度進行測定時,顯示lcal/g以 上之結晶融解熱的聚醯胺66樹脂。目前公知聚醯胺66樹脂 雖僅有lcal/g以上之結晶融解熱的結晶性聚醯胺66樹脂, 但若將來開發出使用示差掃描熱量計並依2〇〇c/分升溫迷 度進行測定時未顯示lcal/g以上之結晶融解熱的聚醯胺66 098103367 7 200938588 樹脂時,該等便取用為本發明所㈣的非晶性聚酿胺。 本發明所使用之聚醯胺66樹脂的相對黏度並無特別的限 制’最好當溶劑係使用96重量%濃硫酸並依溫度机、濃 度ig/di的條件進行測定時,相對黏度在15〜4 q範圍内<。 若相對黏度小於1.5 ’因為屬於低黏度,因而娜融混練後 的抽取性較為困難,組成物無法獲得所需物性。反之,若大 於4.0’因為屬於高黏度,因而成形加工時的流動性差無 法施予充分的射出壓力,導致無法獲得零件的性能。 本發明可使用的聚醯胺66樹脂,市售物係可使用例如聚 醯胺66樹脂(Unitika公司製A125,相對黏度2.8,熔點26〇 °(:;杜邦公司製27忧1(^1〇况,相對黏度2.8,熔點260。(:; 旭化成化學公司製LEONA® 1300,相對黏度2. 7,熔點26〇 〇C)等。 此種聚醯胺66樹脂的結晶融解熱係ι〇〜25cai/g。 此聚醯胺66樹脂係相對於聚醯胺樹脂1〇〇質量%,較佳為 20〜60質量%。若在20質量%以下,則機械強度會降低,反 之,若為60質量%以上,則成形體的表面光澤度會變低,且 毛邊的發生會趨於明顯,因而最好避免。 本發明所謂之「聚醯胺12樹脂」係指以12-胺基十二烷 酸或ω-十二内醢胺為原料,經聚合而可獲得,具有結晶性, 且熔點170〜180°C的聚醯胺。 本發明所使用之聚醯胺12樹脂,僅取用當使用示差掃描 098103367 200938588 熱量計並依20C/分升溫速度進行測定時,顯示icai/g以 上之結晶融解熱的聚醯胺12樹脂。目前公知聚醯胺12樹脂 雖僅有lcal/g以上之結晶融解熱的結晶性聚醯胺12樹脂, 但若將來開發出使用示差掃描熱量計並依2〇°C/分升溫速 度進行測定時未顯示lcal/g以上之結晶融解熱的聚醯胺12 樹脂時,該等便取用為本發明所定義的非晶性聚醯胺。 本發明所使用之聚醯胺12樹脂的相對黏度並無特別的限 ❹ 制,最好當溶劑係使用96重量%濃硫酸並依溫度25t、濃 度lg/dl的條件進行測定時,相對黏度在1· 6〜2. 5範圍内。 若相對黏度較小於1. 6,因為屬於低黏度,因而成形品容易 發生毛邊。反之,若大於2. 5,因為屬於高黏度,因而成形 加工時的流動性差,無法施予充分的射出壓力,導致無法獲 得零件的性能。 本發明可使用的聚醯胺12樹脂,市售物係可使用例如聚 ❹醯胺12樹脂(ARKEMA公司製AESN,相對黏度2. 3,溶點176 °C)等。此種聚醯胺12樹脂的結晶融解熱係5〜2〇cai/g。 該聚醯胺12樹脂係相對於聚醯胺樹脂1〇〇質量%,較佳為 20〜40質量%。若少於20質量%,則所獲得之成形品容易發 生毛邊,反之,若多於40質量%,則所獲得之成形品的機械 強度會降低,因而最好避免。 本發明的非晶性聚醯胺樹脂,係使用經由三元環以上的内 醢胺、可聚合的ω-胺基羧酸、二胺及二羧酸等的縮合所獲 098103367 9 200938588 得之聚酿胺,並未具有結晶性,且,轉移溫度1〇代以上 的聚醢胺。此種非晶性聚_的製法係眾所周知,只要使用 習知方法便可。 構成非晶性聚醯胺樹脂的單體具體例係例如:己内醯 胺、ω-十二内醯胺等内醢胺類;6_胺基己酸、η_胺基十一 烷酸、12-胺基十二烷酸、對胺基笨曱酸等胺基羧酸;丁二 胺、己二胺、十一烷二胺、十二烷二胺、2,2,4/2,4,4_三甲 基己二胺、5-甲基壬二胺、間二甲笨二胺、對二甲苯二胺、❹ 1’ 3-雙(胺甲基)環己烧、1,4-雙(胺甲基)環己炫、雙(4-胺 基環己基)曱烷、雙(3-胺基環己基)甲烷、3_胺基環己基_4_ 胺基環己基曱烧、1-胺基-3-胺甲基~3, 5, 5-三甲基環己炫、 雙(3-甲基-4-胺基環己基)甲烷、2, 2-雙(4-胺基環己基)丙 燒、雙(胺丙基)σ底β井、雙(胺乙基)π底畊等二胺類;己二酸、 辛二酸、壬二酸、癸二酸、十二炫二酸、對苯二甲酸、間苯 二曱酸、萘二羧酸等二羧酸類。 〇 上述單體的組合係有如例如:丁二胺與己二酸的縮聚物、 己二胺與己二酸及對苯二曱酸的縮聚物、ε-己内醯胺與己 二胺及對苯二甲酸的縮聚物等,但該等係具有結晶性,並不 適用為本案發明所使用的聚醯胺。其他的組合係有如:己二 胺與雙(3-甲基-4-胺基環己基)甲烷與對苯二甲酸及間苯二 甲酸的縮聚物、己二胺與對苯二曱酸及間苯二曱酸的縮聚 物、ε-己内醯胺與間二曱苯二胺及間苯二甲酸的縮聚物、 098103367 10 200938588 2, 2, 4/2, 4, 4-三曱基己二胺與對苯二甲酸的縮聚物’該等係 具有非晶性,適用為本案發明所使用的非晶性聚醯胺樹脂。 非晶性聚醯胺樹脂的較佳具體例,係可舉例如:間苯二曱 酸/對苯二曱酸/己二胺/雙(3_甲基_4_胺基環己基)甲烷的 縮聚體、對苯二甲酸/2, 2, 4-三甲基己二胺/2, 4, 4-三曱基己 二胺的縮聚體、間苯二曱酸/雙(3-甲基_4_胺基環己基)曱烷 十二内醯胺的縮聚體、間苯二甲酸/對苯二曱酸/己二胺 〇 的縮聚體、間苯二曱酸/2, 2, 4-三甲基己二胺/2, 4, 4-三曱基 己二胺的縮聚體、間苯二甲酸/對苯二甲酸/2, 2, 4-三曱基己 二胺/2, 4, 4-三曱基己二胺的縮聚體、間苯二甲酸/雙(3一甲 基-4-¾基環己基)曱烧/ω_ +二内醯胺的縮聚體等。亦包括 對苯二甲酸成分及/或間苯二甲酸成分的苯環被烷基或鹵原 子所取代者。此外,該等非晶性聚醯胺樹脂亦可併用2種以 上。較佳係使用間苯二曱酸/對苯二曱酸/己二胺/雙(3_甲基 ❹ 妝基環己基)曱烧的縮聚體、或對苯二曱酸/2, 2, 4-三曱 基己二胺/2, 4, 4-三甲基己二胺的縮聚體、或間苯二甲酸/ 對苯一甲酸/己二胺/雙(3-甲基—4-胺基環己基)甲烷的縮聚 體與對苯二甲酸/2, 2, 4-三曱基己二胺/2, 4, 4-三曱基己二 胺的縮聚體之混合物。 本發明的非晶性聚醯胺樹脂係在玻璃轉移溫度1〇〇t以 上之則知:下’除上述單體的組合以外,尚可為任何單體組成。 再者,該單體的最佳調配例係當為己二胺與雙(3-曱基-4- 098103367 200938588 胺基環己基)甲烷與對苯二甲酸及間苯二曱酸的縮聚物時, 可在己二胺40〜50莫耳%、雙(3-甲基-4-胺基環己基)甲燒 0〜10莫耳%、對苯二甲酸〇~30莫耳%、間苯二曱酸20〜50莫 耳%範圍中適當調整。 本發明所使用之非晶性聚醢胺樹脂的相對黏度並無特別 的限制,最好當溶劑係使用96重量%濃硫酸並依溫度25°c、 濃度lg/dl的條件進行測定時’相對黏度在L5〜2·8範圍 内。若相對黏度小於1. 5,則機械強度會降低,反之,若大 ❹ 於2. 8,則熔融黏度會變為過高,導致成形性惡化,因而最 好避免。 該非晶性聚醢胺樹脂係相對於聚醯胺樹脂100質量%,較 佳為20〜50質量%。若少於20質量%時’表面外觀會惡化, 反之,若多於50質量%時,成形時的樹脂流動性會變差,無 法依薄板確實地獲得成形體。 本案發明的樹脂組成物使用由聚醯胺66樹脂及聚醯胺12 Q 樹脂所構成結晶性聚醯胺與非晶性聚酿胺之組合的理由在 於,首先,以聚醯胺66樹脂為基質,並調配入玻璃纖維的 樹脂組成物’因為結晶化速度過快,在模具内的急速冷卻, 導致體積收縮,造成成形品表面出現玻璃纖維浮起情形,而 出現凹凸,使表面外觀變差。相對於此’使用聚醢胺66樹 脂與非晶性聚醯胺樹脂並調配入玻璃纖維的樹脂組成物,非 晶性聚醯胺樹脂會抑制聚醯胺66樹脂的結晶性’而使表面 098103367 12 200938588 外觀呈良化。另一方面,非晶性聚醯胺樹脂在進行熱可塑時 的流動性差,無法依薄板確實獲得成形體。 在此’當取代聚醯胺66而改用聚醯胺6(結晶性)時,不 僅機械物性會降低’且經成形所獲得之成形品的毛邊特性會 惡化,特別係在如本案發明的薄板成形品中,不應該調配入 聚酿胺6樹脂。且,當取代聚醯胺12而改為使用聚醯胺6(結 晶性)時’所獲得之成形體的拉伸斷裂伸度會降低,毛邊發 ❹ 生趨於明顯,表面光澤會惡化。 本案發明中’將所調配的聚醯胺樹脂設定為適量調配入聚 醯胺66樹脂與非晶性聚醯胺樹脂以及聚醯胺12樹脂的3 成分,相較於聚醯胺66樹脂與非晶性聚醯胺樹脂的2成分 系統,可拉長於射出成形後利用模具施行冷卻、固化的樹脂 組成物之冷卻完成時間,亦即拉長戴至到達成形品降溫結晶 化溫度的時間,在此期間内,可對樹脂確保充分的流動性, ❹且可利用充分時間進行冷卻,可抑制必要以上的體積收縮, 可抑制玻璃纖維浮起,且亦可抑制因收縮異向性所造成的成 形品翹曲情形,毛邊發生較少,可獲得不僅表面外觀佳,就 連尺寸安定性亦優異的成形品。另外’所謂「玻璃纖維浮起」 係指在樹脂組成物中所調配的破璃纖維内,特別係在靠近成 形品表面之部分處的玻璃纖維,因周圍樹脂成份的體積收 縮’僅有玻截料ώ於表面之狀態(玻賴料分形成凸 狀)的現象。 098103367 13 200938588 奸本^所使用的酸改質苯乙烯系彈性體,係可使用氮化的 :乙:二一埽共聚合體或氛化的苯乙埽·異戊二稀共聚合 規共聚合體、錢共聚合體、接枝共聚合 亦可為對該聚合體其中一部分導人具有官能基 的聚合性皁體0 酸此==有官能基的聚合性單體,係可舉例如:丙浠 順丁稀二酸、衣康酸等贿肪族叛酸;順丁 烯一酸肝、衣康酸軒、檸康酸酐等脂肪族竣酸肝;鄰苯二甲 酸肝、偏苯三酸軒等芳香族紐酐乙醋、(甲基) 丙烯酸-2-經乙醋、内醋改質(甲基)丙稀酸經乙醋等含經基 物;(甲基)丙烯酸環氧丙醋、(曱基)丙婦酸甲基環氧丙醋等 含環氧基的乙_科’亦可個該等2 m。即使含有 其中-部分不會與該等聚合性單體產生反應者,亦不會有任 何問題。 該等酸改質苯乙烯系彈性體中,最好使用酸改質苯乙烯_ 乙烯-丁烯-笨乙烯嵌段共聚合體(SEBS)e當未氫化的情況, 苯乙烯系彈性體會有與聚醯胺樹脂產生交聯反應的可能 性,若進行交聯反應,則樹脂流動性會變差,就薄板而言較 不易填充樹脂,因而最好避免。 酸改質笨乙烯系彈性體係就酸改質的程度而言,較佳係使 用酸價1〜15mgCH3Na/g物’更佳為使用酸價2〜i〇mgcH3Na/g 物。若使用酸價未滿1 mgCHWa/g的酸改質笨乙稀系彈性體, 14 098103367 200938588 則與聚醯胺間的相溶性會變差,機械強度會降低,因而最好 避免。反之,若使用酸價超越15mgCH3Na/g的酸改質苯乙烯 系彈性體,則樹脂組成物的熔融黏度會提高,導致對成形性 造成障礙,因而最好避免。 再者’酸改質苯乙烯系彈性體為能提升與聚醯胺間的相溶 性’依23(TCx2. 16kgf所測得之熔體流動速率(以下稱「MFR」) 較佳為3〜lOg/lOmin、更佳為4〜9g/1〇min。若MFR未滿 ❹’則溶融時的流動性差,因而無法與聚酿胺樹脂呈 均勻分散,反之,若MFR超過i〇g/i〇min,則因為熔融時的 流動性過佳,導致無法與聚醯胺樹脂呈均勻分散。}^吓係酸 改質苯乙烯系彈性體分子量的指標,MFR為3〜1〇g/1〇min的 數量平均分子量大約係1〜2〇萬。 再者,當未使用酸改質笨乙烯系彈性體,或取代酸改質苯 乙烯系彈性體而改為使用未改質苯乙烯一乙稀_丁稀_苯乙稀 ❿肷段共聚合體、聚婦系彈性體時,在與聚酿胺間的相溶性 會變差,導致機械強度降低,因而最好避免。 酸改質苯乙稀系彈性體係將現有的苯乙烯系彈性體施行 酸改質’對使苯乙烯、乙稀、丁二_各嵌段單位進行共聚 合而獲得苯乙烯系彈性體,使用順丁烯二酸酐等至少將^ ㈣基導人分子鏈中便可製得,市售物係可取得例如酸改質 苯乙烯-乙稀•丁二烯-笨乙烯餘共聚合體(旭化成化學公 司製 TUFTEC M1911 :酸價 2mgCH3Na/g,MFR4. 5§/ι〇^η ;旭 098103367 15 200938588 化成化學公司製TUFTEC M1913 :酸價10mgCH3Na/g, MFR5.0g/10min ;旭化成化學公司製TUFTEC M1943 :酸價 10mgCH3Na/g,MFR8. 0g/10min)等。 該酸改質苯乙烯系彈性體係在聚醯胺樹脂組成物10〇質 量%中,較佳為1〜10質量%。若少於1質量%,則所獲得成形 品的拉伸斷裂伸度會降低,若多於10質量%時,流動性會變 差’因而難以依薄板確實地填充樹脂,故最好避免。 本發明的玻璃纖維係可使用截面呈圓形狀者,最好使用長 軸10〜50 # m、短軸5〜20 y m範圍内,且長韩/短軸比1. 5〜10 之具扁平截面形狀的扁平玻璃纖維。其中,為能減輕玻璃纖 維強化聚醯胺樹脂組成物特有的成形品翹曲情形,使用扁平 截面形狀長軸/短軸比1. 5〜10者係為有效。較佳係 2. 〇〜6. 0。若長軸/短軸比在丨.5以下,會欠缺減輕翹曲的效 果反之,若長軸/短軸比達10以上,則玻璃纖維本體的製 、争為困難戶斤5胃「扇平截面形狀」係指除橢圓开)之夕卜,尚 p L擇萌i型、眉形、長圓型、矩形等形狀,在能達到本案 發月效果之抑制薄板成形品_曲情形的前提下,並不僅偈限 於該等截面形狀。 再玻璃纖維係可選擇使用長纖維式的紗束、短纖維式 的切股磨碎纖維等。若屬於長纖維式,則因為屬於紗束捲 取的連續纖維, t 因而必需先使紗束含潤少量熔融聚醯胺樹 月曰’而製成長纖維樹脂齡(a)。該等長纖維翻旨顆粒係在 098103367 200938588 由聚醯胺樹脂、從彈性體另外製成的聚醯胺樹脂組成物 (但,因為長纖維樹脂顆粒(a)已含潤聚醯胺樹脂,因而從最 終聚醯胺樹脂組成物的聚醯胺樹脂調配量中,扣減掉含潤所 需要的聚醯胺樹脂量)所構成樹脂顆粒(b)進行成形時,便混 合入,且利用施行射出成形、擠出成形,便可形成活用所調 配入長纖維玻璃纖維長度之機械特性優異的成形體。此時, 所使用的長纖維樹脂顆粒通常係使用3〜15丽左右者。長纖 ❹維樹脂顆粒中,因為長纖維玻璃纖維依相等長度存在,因而 當長纖維樹脂顆粒長度超過15丽的長度時,在成形加工時 會發生長纖維樹脂顆粒咬入不良情形,反之,若長纖維樹脂 顆粒長度未滿3mm’當施行成形體的成形時,便無法形成具 有充分機械特性的成形體。若發生不需調配入長度較短玻璃 纖維的情況,最好使用預先切斷為較短的切股料。當使用切 股料的情況,較佳係長度3〜6mm的玻璃纖維、更佳係長度 G 4〜5mm。另外,當製作長纖維樹脂顆粒時,亦可藉由對樹脂 顆粒(b)調配入經適當調整過的玻璃纖維切股料,而形成長 纖維式紐纖維式玻璃纖維複合化的聚醯胺樹脂組成物。玻璃 纖維係可使用經利用環氧系、胺基傾系、異氰酸§旨系等石夕 烧偶合劑施行表面處理者。 所使用纖維的粗度輕㈣朗纖維原本強化材料的機 械強度’係使用粗度3〜20/zm物。若該粗度過粗,便無法獲 得玻璃纖維㈣性’反之’若過細的破璃纖維,不僅製造趨 098103367 17 200938588 於困難’亦會有欠缺強化材料補強效果等問題。 該玻璃纖維的調配量係相對於聚醯胺樹脂組成物100質 量份’較佳為50〜150質量份。若未滿50質量份,則成形品 的機械強度會降低,反之,若達15Q質量份以上,則樹脂流 動性差’當為薄板的情況,便較難獲得高尺寸精度的成形體。 再者本發明的樹脂組成物中,尚可添加顏料、熱安定劑、 抗氧化劑、耐候劑、難燃劑、可塑劑、脫模劑、其他強化材 料等:進行添加時,在不會大幅損及本發明效果之前提下, 的限制’但通常相對於玻璃纖維強化聚_ ,曰 質量份,只要使用0.0卜20質量份左右便可。 匕種熱安定劑與抗氧化劑係有如:受阻紛類 受阻胺類、硫化合物、鋼化合物。 ^合物、 耐候劑係可使用一般的二苯基酮類、苯并三 難燃劑係可使用一般的碟系難燃劑與I 。 強化材料係可舉例如. ^ 。 妈石 黏土、滑石、奴酸舞、碳 石一氧化石夕、氧化紹、氧化鎮、石夕酸妈、 矽 妈、额鎮、氣氧⑽、氫氧蝴、銘酸 馨、鈉馨、絲、麵則、中糊、碳化鋇、鉀 、爾鋅、彿石、水滑石、金2、三氧 屬鬚晶、陶韻晶、鈦酸鉀鬚晶、氮化硼、雲母、輪、金 璃纖維、碳纖維等。 石墨、玻 098103367 本發明的樹脂組成物係使用—般具有料或以螺桿的 200938588 擠出機,藉由施行熔融混練便可進行製造。將聚醯胺樹脂與 彈性體成分施行一次襞填,並在途中使用侧進料器進行玻璃 纖維的添加,經擠出後,再抽取為絞合線,並利用造粒機進 行切粒便獲得樹脂顆粒。 再者,亦可僅將聚醯胺成分統括裝填,經獲得樹脂顆粒 後,再將該顆粒施行乾燥,將該顆粒與彈性體樹脂進行統括 裝填,經熔融混練後,利用側進料進行玻璃纖維添加,而獲 ❹ 得樹脂顆粒。 擠出溫度係依照所調配的樹脂中熔點最高的聚醯胺66樹 脂溶點便可決定。雖必需將當作原料使用的樹脂施行充分熔 融,但若將擠出溫度提升至必要以上,便無法充分發揮本案 發明的效果。本案發明中,施行熔融混練的擠出溫度,較佳 依聚醯胺66熔點+60°C以内的溫度範圍内實施,係28(TC 〜32〇C。若超過聚醯胺66熔點+60°C,便會促進其他樹脂的 ®分解等’導致著色、或機械物性降低’因而最好避免。 混練時的螺桿旋轉係依照所使用擠出機的螺桿徑而異,例 如使用螺桿徑37mm的擠出機時,較佳依1〇〇〜400rpm範圍内 實施。若未滿l〇〇rpni,則不僅混練不足,且亦無法獲得足 夠吐出量。若超過400rpm,則變成過度混練,玻璃纖維會 變成不必要的短,樹脂組成物的相溶將過度進行,且容易發 生毛邊,亦無法獲得充分機械物性。 再者’聚醯胺樹脂與玻璃纖維的調配中,擠出溫度、螺桿 098103367 200938588 敬轉、及吐出量間的均衡取得將屬重要事項。若拚出溫度過 同,聚醯胺樹脂將劣化’且機械物性變差。若螺椁旋轉過慢, 則擠出轉矩會變高’玻璃纖維變短,因而機械物性會變差。 較佳條件-例係當使用螺桿徑37隨的混練機時,最佳為擠 出/皿度280 C、螺桿旋轉25〇rpm、吐出量25kg/h。 本發明的樹脂組成物係可獲得機械強度高,即使為薄板成 形體’特別係板厚〇.卜5mm、更薄為〇· 〇5 〜2mm的成形部分, 在成形時仍可抑制毛邊的發生,JL表面外觀優異的成形品, 可使用於電氣·電子機器殼體(例如PDA、行動電話等行動 終端機、個人電腦、QA㈣、電池或電動i具等的殼體); 該等的内#零件;或者汽車用外板、車門、後視鏡、後視鏡 座摩托車、迷克達機車、船的護罩、照明器具等。特別係 本發明肋成物可有效使肖於諸如行動終端機 、個人電腦、 OA機器等⑥要薄板的電子機器殼體。 [實施例] 以下例示實施例及比較例針對本發明進行具體說明,惟 、不僅侷限於此。另外,實施例及比較例中的原料及 成形品之物性測定係依如下述實施。 (參考例D : Hi·生祕胺(A-5) 將比例為間笨二曱酸45莫耳%、對苯二曱酸5莫耳%、己 胺45莫耳/〇、雙~(4一胺基~3~曱基環己基)曱烷5莫耳%的 原料i〇kg’與Skg純水一起裂填於反應槽中,a利用氮將 098103367 200938588 反應槽内的空氣施行數次迫淨。使溫度上升至90°c並進行 約5小時反應後,一邊在加壓下(i8bar)對槽内施行攪拌, 一邊使反應溫度歷時10小時徐緩上升至28〇°c。接著,釋 壓而使壓力下降至大氣壓後,更在同溫度下施行6小時聚 合。待反應結束後便從反應槽中排出,經切斷便獲得顆粒。 所獲得顆粒的相對黏度(依與前述相同方法)係1. 90。且, 玻璃轉移溫度係150°C,結晶融解熱係0cal/g。將該非晶性 ❹聚酿胺設定為A-5。A-4、A-6的聚醯胺亦係根據此方法便可 製得。 (參考例2):非晶性聚醯胺(A-6) 將比例為間苯二甲酸7 0莫耳%、對苯二曱酸3 〇莫耳%、己 二胺100莫耳%的原料10kg ’與8kg純水一起裝填於反應样 中,並利用氮將反應槽内的空氣施行數次迫淨。使溫度上升 至90°C並進行約5小時反應後’ 一邊在加壓下(18bar)對槽 〇 内施行攪拌’ 一邊使反應溫度歷時1〇小時徐緩上升至28〇 °c。接著’釋壓而使壓力下降至大氣壓後,更在同溫度下施 行6小時聚合。待反應結束後便從反應槽中排出,經切斷便 獲得顆粒。所獲得顆粒的相對黏度(依與前述相同方法)係 2. 1。且’玻璃轉移溫度係125°C,結晶融解熱係〇cal/g。 (1)原料 (A)聚醯胺樹脂 •結晶性聚醯胺(A-1):聚醯胺66樹脂(unitika公司製 098103367 21 200938588 A125,相對黏度2.8,熔點260°C,結晶融解熱18cal/g) •結晶性聚醯胺(A-2):聚醢胺12樹脂(ARKEMA公司製 AESN,相對黏度2. 3,熔點176°C,結晶融解熱13cal/g) •結晶性聚醯胺(A-3):聚醯胺6樹脂(Unitika公司製 A1030BRL,相對黏度2.5,熔點220°C,結晶融解熱22cal/g) •結晶性聚醯胺(A-4):對苯二曱酸、己二酸及己二胺的縮 聚體(對苯二曱酸/己二酸/己二胺=45/55/100(莫耳比),相 對黏度2. 7,熔點290°C,結晶融解熱8cal/g) •非晶性聚醯胺樹脂(A-5):(間苯二曱酸、對苯二曱酸、己 二胺及雙(3-甲基-4-胺基環己基)甲烷的縮聚體(間苯二曱 酸/對苯二曱酸/己二胺/雙(3-曱基-4胺基環己基)曱烷 =45/5/45/5(莫耳比),相對黏度1.9,玻璃轉移溫度150°C, 結晶融解熱Ocal/g) •非晶性聚醯胺樹脂(A-6):(間苯二曱酸、對苯二曱酸及己 二胺的縮聚體(間苯二甲酸/對苯二曱酸/己二胺 二70/30/100(莫耳比),相對黏度2. 1,玻璃轉移溫度125°C, 結晶融解熱Ocal/g) (B)酸改質苯乙烯系彈性體 •彈性體(B-1):酸改質苯乙烯-乙烯· 丁二烯-苯乙烯嵌段 共聚合體(旭化成化學公司製TUFTEC M1911 :酸價 2mgCH3Na/g 5 MFR4. 5g/10min) •彈性體(B-2):苯乙烯-乙烯· 丁二烯-苯乙烯嵌段共聚合 098103367 22 200938588 體(旭化成化學公司製TUFTEC H1141 :酸價〇mgCH3Na/g’ MFR140g/10min) (C)玻璃纖維 •玻璃纖維(C-l):具有長短軸比為4之橢圓形型截面的扁 平玻璃纖維(日東紡公司製CSG3pA82〇s,長軸28"m,短轴 7 # m,纖維長3mm,有施行石夕烧系表面處理) •玻璃纖維(C-2):具圓形截面的玻璃纖維(ASAHI FIBER O GLASS公司製03JAH69,平均纖維徑10//m,纖維長3mm) (2 )成形品之物性測定 a) 彎曲強度、彎曲彈性模數及拉伸斷裂伸度 使用FANUC公司製射出成形機(a_1〇〇iA),依樹脂溫度 280〇C、模具溫度8G°C施行試驗片成形,f曲特性係根據 ASTMD790,拉伸特性係根據ASTMD_639進行測定。將彎曲 強度28GMPa以上、,彎曲彈性模數丨驗以上、拉伸斷裂伸 ❹ 度1%以上設為合格。 b) 成形性 _uc公司製射出成形機(α_刚iA),依樹脂溫度 28(TC、模具溫度8(TC、最大射出壓力12〇MPa,成形出厚 0· 4咖\匕寬40咖、長70mm的圖i所示形狀成形體。從樹脂 填充狀恝,依如下述施行成形性評估。將達「〇」以上設為 合格。 ◎:樹脂確實地填充於成形體整體中。 098103367 23 200938588 〇··成形體中雖有填充樹脂,但可發現到熔接部分。 △.成开々體中雖有填充樹脂,但肋條背面等其中一部分有 發現些微縮痕。 X ·在成形體其中一部分處有發現樹脂未填充部分。 C)毛邊 使用FANUC公司製射出成形機(α-1〇〇ίΑ),依樹脂溫度 280 C、模具溫度80°C ’成形出厚0_4mm、寬40mm、長70mm 的圖1所形狀成形體’針對毛邊測定部利用光學顯微鏡進行 觀察並測定毛邊長度。將未滿50 者設為合格。毛邊長度 的測定通常係使用啞鈴等試驗片施行評估,但本案則使用模 仿實際成形品(例如行動電話的液晶框等)形狀之試驗模施 行評估。所以,相較於如啞鈴之類厚達3〜4mm的試驗片本 案係依更嚴苛施行毛邊評估。 d)表面光澤 使用FANUC公司製射出成形機(a_1〇〇iA),依樹脂溫度 28代、模具溫度8(rc ’成形出厚〇 4賴、寬40mm、長70mm 的圖1所示形狀成形體,並依目視觀察表面光澤測定部,調 查玻璃的浮起狀態。評估方法係如下述,並將達「〇」以上 設定為合格。 ◎:完全無發現玻螭浮起。 〇:雖無發現玻璃浮起,但光反射不足。 △:些微發現玻璃浮起。 098103367 24 200938588 X :有觀察到玻螭浮起,且光反射亦差。 (製造例) (A-7)聚醯胺樹脂之調製 將聚醯胺66樹脂40質量%、聚醯胺12樹脂25質量%、及 非晶聚醯胺樹脂35質量%,利用東芝機械公司製TEM37BS, 依擠出溫度280°C、螺桿旋轉數250rpm、攪拌轉矩60%進行 混合。將所獲得聚醯胺樹脂(Α-Ό施行乾燥後’便提供進行 φ 以後的試驗。 (A-8MA-17)聚醯胺樹脂之調製 依照表1所記載的調配,如同(A-7)般的進行製作。200938588 VI. Description of the Invention: [Technical Advantages of the Invention] The present invention relates to a glass fiber reinforced polyamine resin composition and a molded article, and in particular, is excellent in mechanical strength, sheet formability, and surface appearance. A glass fiber reinforced polyamide resin composition and a molded article of a mobile electronic device part and a personal computer case part of a thin plate. [Prior Art] It is known that a casing of a mobile electronic device such as a PDA, a mobile phone, or a personal computer uses a polycarbonate resin excellent in surface appearance and low warpage of a molded article, or amorphous heat such as ABS resin. Plastic resin. However, in the miniaturization and weight reduction of electronic equipment, the resin used for the casing is also required to be a thin plate molded product, and in the above polycarbonate resin or ABS resin, talc or glass fiber or the like is used as a reinforcing material and blended. However, the reinforcement of the reinforcing resin composition with the reinforcing material increases the strength, but the fluidity deteriorates, and it is particularly difficult to form the sheet into a complicated shape such as a casing. In recent years, there has been proposed a resin composition in which a liquid crystal polymer, a polyolefin resin, or a polyphenylene ether resin is alloyed with a polyamide resin or the like, and an inorganic filler such as glass fiber is further used (for example, reference) Patent documents i and 2). However, these resin compositions have higher resin processing temperatures than the amorphous thermoplastic resin, such as the molding temperature and the mold temperature, and are excellent in fluidity. However, it is easy to cause burrs during molding, and it is necessary after molding. The burrs are removed and finished into a shape of a molded article. 098103367 4 200938588 There are two methods proposed for both liquidity improvement and burr suppression. The first method is a method of constructing a dragon (see, for example, References 3 and 4). These methods are costly in the production of the mold. When it is a complicated molding: it is difficult to perform a mechanism for suppressing the occurrence of burrs in the mold structure. In the first method, there is a method of disposing a non-fibrous granular inorganic filler in a resin composition or a method of blending a spherical inorganic filler (see, for example, Patent Documents 5 and 6). However, these methods are stored by a mold gap (a fine gap between the cavity/core) which is to be burred, and is filled with an inorganic filler. Although it has an effect on the burr suppression, it is in the form of a complex. There will be inorganic fillers that hinder mold transfer, resulting in surface appearance deterioration. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei No. 316587 (Patent Document 3) Japanese Patent Laid-Open Publication No. Hei No. Hei. Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 6-193727 (Patent Document No. 6). Problem to be Solved by the Invention) The purpose of this month is to provide a glass fiber reinforced polyamine resin composition which is excellent in mechanical strength, sheet formability, and surface appearance, and is suitable for use as a thin-plate mobile electronic machine part and a personal computer case part. . 098103367 200938588 Further, the resin composition of the present invention can reduce the mold temperature at the time of injection molding, and can reduce the melt viscosity and ensure the fluidity of the resin, compared with the conventionally composed aromatic nylon/polyphenylene resin. Therefore, the occurrence of burrs can be suppressed. (Means for Solving the Problem) In order to solve such a problem, the present inventors have found through intensive studies that a glass fiber reinforced polyamide resin compound formulated into glass fibers is formulated into a specific polyamine. The above object can be attained by the resin and the acid-modified styrene-based elastomer, and the present invention has been completed. That is, the glass fiber-reinforced polyamine resin composition provided by the present invention is a polyamine which is composed of 90 to 99% by mass of the polyamide resin and 1 to 10% by mass of the acid-modified styrene elastomer. A glass-reinforced polyamide resin composition in which the resin composition is blended in an amount of 50 to 150 parts by mass of the glass fiber, wherein the polyamide resin is 20 to 60% by mass of polyamine 66 resin. The guanamine 12 resin is 20 to 40% by mass and the amorphous polyamide resin is 20 to 50% by mass, and the total amount is 100% by mass. (Effect of the Invention) According to the present invention, in the glass fiber reinforced polyamide resin composition, the polyamine resin is a polyamide amine resin, a polyamide 12 resin, and an amorphous polyamine resin. When the acid-modified styrene-based elastomer is blended in a specific ratio, it is possible to provide a resin composition which is excellent in mechanical strength and which is capable of suppressing occurrence of burrs and excellent surface appearance even at the time of molding. 098103367 6 200938588 [Embodiment] = Ming system is composed of polyaniline 66 resin and poly-amine 12,, - «曰d raw polyamine, amorphous polyamide, and acid modified ' _ fiber Job composition. The term "crystalline polyamine" as used in the present invention refers to a polyamine which is obtained by measuring the temperature of the temperature of the meter according to the temperature of the listener/minute. In addition, the "non-g:" "differential scanning calorimeter" is based on the fact that the rate is not as high as that of the above-mentioned crystallization. The measurement is carried out, and the respective crystals are melted = 2 large peaks/spans and specific heat transfer temperature, and the temperature is determined according to the usual method. ..., the method of the present invention, "polyamide 66 resin is mixed and polymerized,结晶 ❿ ❿ , , 具有 具有 具有 具有 具有 具有 具有 系 」 」 」 」 」 」 」 」 」 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己 己The 66 resin is only used as a polyamide 66 resin which exhibits a crystal melting heat of 1 cal/g or more when measured by a differential scanning calorimeter according to 2 (TC/min.). It is known that polyamine 66 resin is only Crystalline polyamine 66 resin having a crystal melting temperature of lcal/g or more. However, if a differential scanning calorimeter is used in the future and the measurement is performed at a temperature of 2 〇〇c/min, the crystal of lacal/g or more is not shown. Melting hot polyamine 66 098103367 7 200938588 resin The amorphous polyamines of the invention (4) are used. The relative viscosity of the polyamide 66 resin used in the present invention is not particularly limited. It is preferred to use 96% by weight of concentrated sulfuric acid in the solvent system. When the temperature machine and the concentration ig/di are measured, the relative viscosity is in the range of 15 to 4 q. <. If the relative viscosity is less than 1.5 ′ because it is a low viscosity, the extraction of Na Rong after mixing is difficult, and the composition cannot obtain the desired physical properties. On the other hand, if it is larger than 4.0' because it is a high viscosity, the fluidity at the time of forming processing cannot be sufficiently applied, and the performance of the part cannot be obtained. The polyamide 66 resin which can be used in the present invention can be, for example, polyamine 66 resin (A125 manufactured by Unitika Co., Ltd., relative viscosity 2.8, melting point 26 〇 ° (:; DuPont) 27 worries 1 (^1〇 The relative viscosity is 2.8, the melting point is 260. (:; Asahi Kasei Chemical Co., Ltd. LEONA® 1300, relative viscosity 2.7, melting point 26〇〇C), etc. The crystal melting heat of this polyamide 66 resin is ι〇~25cai /g. The polyamine 66 resin is preferably 20 to 60% by mass based on 1% by mass of the polyamide resin. If it is 20% by mass or less, the mechanical strength is lowered, and if it is 60% by mass When the content is more than %, the surface gloss of the molded body becomes low, and the occurrence of burrs tends to be conspicuous, so that it is preferably avoided. The term "polyamido 12 resin" as used in the present invention means 12-aminododecanoic acid. Or ω-dodecanamide as a raw material, obtained by polymerization, having a crystallinity and a polyamine having a melting point of 170 to 180 ° C. The polyamido 12 resin used in the present invention is only used when the use of the differential is used. Scan 098103367 200938588 When the calorimeter is measured at a heating rate of 20C/min, the knot above icai/g is displayed. Crystallization and desorption of polyamine 12 resin. It is known that polymelamine 12 resin has only crystallized polyamide 12 resin which is more than lcal/g, but if it is developed in the future, it will be developed using a differential scanning calorimeter. When the polyamine 12 resin having a crystal melting heat of 1 cal/g or more is not measured at a temperature increase rate of 〇 ° C / minute, the amorphous polyamine which is defined in the present invention is used. The relative viscosity of the polyamide 12 resin is not particularly limited. Preferably, when the solvent is 96% by weight of concentrated sulfuric acid and measured according to the temperature of 25t and the concentration of lg/dl, the relative viscosity is 1.6~ 2. In the range of 5. If the relative viscosity is less than 1.6, because the low viscosity, the molded article is prone to burrs. Conversely, if it is greater than 2.5, because of the high viscosity, the fluidity during forming is poor. A sufficient injection pressure is applied, resulting in failure to obtain the performance of the part. The polyamido 12 resin which can be used in the present invention can be used, for example, a polyamine 12 resin (AESNA made by ARKEMA, a relative viscosity of 2.3, Melting point 176 °C), etc. The crystal melting heat of the amine 12 resin is 5 to 2 〇 cai / g. The polyamine 12 resin is preferably 20 to 40% by mass based on 1% by mass of the polyamide resin. If less than 20% by mass The molded article obtained is likely to be burred, and if it is more than 40% by mass, the mechanical strength of the obtained molded article is lowered, so that it is preferably avoided. The amorphous polyamine resin of the present invention is used. By the condensation of a meglumine or a polymerizable ω-aminocarboxylic acid, a diamine, a dicarboxylic acid or the like of a three-membered ring or more, 098103367 9 200938588 obtained a polyamine, which has no crystallinity and a transfer temperature. More than 1 generation of polyamine. The method for producing such an amorphous poly-polymer is well known as long as a conventional method can be used. Specific examples of the monomer constituting the amorphous polyamine resin are, for example, indoleamine such as caprolactam or ω-dodecanamide; 6-aminocaproic acid and η-aminoundecanoic acid; Aminocarboxylic acid such as 12-aminododecanoic acid, p-amino alumic acid; butanediamine, hexamethylenediamine, undecanediamine, dodecanediamine, 2,2,4/2,4 , 4_trimethylhexamethylenediamine, 5-methylstilbene diamine, m-dimethyldiamine, p-xylenediamine, ❹ 1′ 3-bis(aminomethyl)cyclohexane, 1,4- Bis(Aminomethyl)cyclohexyl, bis(4-aminocyclohexyl)decane, bis(3-aminocyclohexyl)methane, 3-aminocyclohexyl-4-aminocyclohexyl oxime, 1- Amino-3-aminemethyl~3,5,5-trimethylcyclohexanyl, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl) a diamine such as albendone, bis(aminopropyl) σ bottom β well, bis(amine ethyl) π bottom tillage; adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid And dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene dicarboxylic acid. The combination of the above monomers is, for example, a polycondensate of butanediamine and adipic acid, a polycondensate of hexamethylenediamine and adipic acid and terephthalic acid, ε-caprolactam and hexamethylenediamine, and A polycondensate of phthalic acid or the like, but these have crystallinity and are not suitable for the polyamine used in the present invention. Other combinations are: condensed polymers of hexamethylene diamine and bis(3-methyl-4-aminocyclohexyl)methane with terephthalic acid and isophthalic acid, hexamethylenediamine and terephthalic acid and a polycondensate of phthalic acid, a polycondensate of ε-caprolactam and m-diphenylene diamine and isophthalic acid, 098103367 10 200938588 2, 2, 4/2, 4, 4-trimethylhexan The polycondensate of an amine and terephthalic acid' is amorphous, and is suitable for the amorphous polyamine resin used in the present invention. Preferred examples of the amorphous polyamine resin include, for example, isophthalic acid/terephthalic acid/hexamethylenediamine/bis(3-methyl-4-indolylcyclohexyl)methane. Polycondensate, polycondensate of terephthalic acid/2, 2, 4-trimethylhexamethylenediamine/2,4,4-tridecylhexamethylenediamine, isophthalic acid/bis(3-methyl_ Polycondensate of 4_Aminocyclohexyl)decane dodecylamine, polycondensate of isophthalic acid/terephthalic acid/hexanediamine, m-benzoic acid/2, 2, 4-three Polycondensate of methyl hexamethylenediamine/2,4,4-tridecyl hexanediamine, isophthalic acid/terephthalic acid/2, 2, 4-tridecyl hexanediamine/2, 4, 4 - a polycondensate of tridecyl hexanediamine, a polycondensate of isophthalic acid / bis(3-methyl-4-cyclohexylcyclohexyl) oxime / ω_ + diendammine, and the like. Also included are those in which the benzene ring of the terephthalic acid component and/or the isophthalic acid component is replaced by an alkyl group or a halogen atom. Further, these amorphous polyamine resins may be used in combination of two or more kinds. Preferably, a polycondensate of isophthalic acid/terephthalic acid/hexamethylenediamine/bis(3-methylindoleylcyclohexyl) anthracene or terephthalic acid/2, 2, 4 is used. a polycondensate of trimethyl hexamethylenediamine/2,4,4-trimethylhexamethylenediamine or isophthalic acid / p-benzoic acid / hexamethylenediamine / bis (3-methyl-4-amino A mixture of a polycondensate of cyclohexyl)methane and a polycondensate of /2,2,4-tridecylhexamethylenediamine/2,4,4-tridecylhexamethylenediamine. The amorphous polyamine resin of the present invention is not limited to a glass transition temperature of 1 Torr or more, and may be any monomer composition other than the combination of the above monomers. Furthermore, the optimum formulation of the monomer is when a polycondensate of hexamethylenediamine and bis(3-mercapto-4- 098103367 200938588 aminocyclohexyl)methane with terephthalic acid and isophthalic acid , can be 40~50 mol% of hexamethylenediamine, 0~10 mol% of bis(3-methyl-4-aminocyclohexyl)carbamate, 〇30 mol% of terephthalate, m-phenylene The acidity is adjusted in the range of 20 to 50 mol%. The relative viscosity of the amorphous polyamine resin used in the present invention is not particularly limited, and it is preferred that when the solvent is used in an amount of 96% by weight of concentrated sulfuric acid and measured at a temperature of 25 ° C and a concentration of lg / dl. The viscosity is in the range of L5~2·8. If the relative viscosity is less than 1.5, the mechanical strength will decrease. Conversely, if it is greater than 2.8, the melt viscosity will become too high, resulting in deterioration of formability, and thus it is best avoided. The amorphous polyamine resin is preferably 20 to 50% by mass based on 100% by mass of the polyamide resin. When the amount is less than 20% by mass, the surface appearance is deteriorated. On the other hand, when it is more than 50% by mass, the fluidity of the resin during molding is deteriorated, and the molded body cannot be obtained reliably by the thin plate. The reason why the resin composition of the present invention uses a combination of crystalline polyamine and amorphous polyamine which is composed of polyamine 66 resin and polyamine 12 Q resin is that, first, polyamine 66 resin is used as a substrate. And the resin composition blended into the glass fiber 'because the crystallization rate is too fast, the rapid cooling in the mold causes the volume to shrink, causing the glass fiber to float on the surface of the molded article, and unevenness occurs, which deteriorates the surface appearance. In contrast to the resin composition in which the polyamide resin 66 and the amorphous polyamide resin are blended into the glass fiber, the amorphous polyimide resin inhibits the crystallinity of the polyamide 66 resin to make the surface 098103367 12 200938588 The appearance is benign. On the other hand, the amorphous polyamine resin has poor fluidity when it is subjected to thermoplasticity, and it is not possible to obtain a molded body from a thin plate. Here, when the polyamine 66 is used instead of the polyamide 6 (crystallinity), not only the mechanical properties are lowered, but also the burr characteristics of the molded article obtained by the molding are deteriorated, particularly in the sheet of the present invention. In the molded article, it should not be blended into the polyamine 6 resin. Further, when the polyamine 12 is replaced and the polyamine 6 (crystallinity) is used instead, the tensile elongation at break of the formed body is lowered, the burr hair tends to be conspicuous, and the surface gloss is deteriorated. In the invention of the present invention, the polyamine resin to be formulated is set to a proper amount to be blended into the polyamide 3 resin and the amorphous polyamide resin and the polyamide 12 resin, compared to the polyamide 66 resin and the non-polyamide 66 resin. The two-component system of the crystalline polyamide resin can be elongated in the cooling completion time of the resin composition which is cooled and solidified by the mold after the injection molding, that is, the time until the temperature of the molded product reaches the temperature of the crystallization. During the period, sufficient fluidity can be ensured for the resin, and sufficient time can be used for cooling, and volume shrinkage of more than necessary can be suppressed, glass fiber floating can be suppressed, and molded articles due to shrinkage anisotropy can be suppressed. In the case of warpage, the occurrence of burrs is small, and a molded article having excellent surface stability and excellent dimensional stability can be obtained. In addition, 'the so-called "glass fiber float" refers to the glass fiber blended in the resin composition, especially the glass fiber near the surface of the molded article, due to the volume shrinkage of the surrounding resin component. The phenomenon that the material is placed on the surface (the glass material is formed into a convex shape). 098103367 13 200938588 The acid-modified styrene elastomer used in traits can be nitrided: B: a bismuth copolymer or a condensed styrene-isoprene copolymer copolymer, The money copolymer, the graft copolymerization may be a polymerizable soap having a functional group in which a part of the polymer is introduced, and the polymerizable monomer having a functional group may, for example, be propylene Diuretic acid, itaconic acid and other bribes rebel acid; maleic acid liver, itaconic acid, citraconic anhydride and other aliphatic citrate liver; phthalic acid liver, trimellitic acid and other aromatic Ethyl acetate, (meth)acrylic acid-2-acetic acid, internal vinegar modified (meth)acrylic acid, ethyl acetate, etc.; (meth)acrylic acid propylene vinegar, ) B-glycolic acid methyl epoxide vinegar and other epoxy group-containing B-group ' can also be such 2 m. Even if it contains a part which does not react with the polymerizable monomer, there is no problem. Among the acid-modified styrene-based elastomers, it is preferred to use an acid-modified styrene-ethylene-butylene-stupid ethylene block copolymer (SEBS)e. When it is not hydrogenated, the styrene-based elastomer will be polymerized. The guanamine resin has a possibility of causing a crosslinking reaction. When the crosslinking reaction is carried out, the fluidity of the resin is deteriorated, and the resin is less likely to be filled with the resin, so that it is preferably avoided. The acid-modified stupid vinyl-based elastomer system preferably uses an acid value of 1 to 15 mg of CH3Na/g, and more preferably an acid value of 2 to i〇mgcH3Na/g. If an acid-modified stupid ethylene elastomer having an acid value of less than 1 mg CHWa/g is used, 14 098103367 200938588 will have poor compatibility with polyamine and mechanical strength will be lowered, so it is best to avoid it. On the other hand, when an acid-modified styrene-based elastomer having an acid value exceeding 15 mg CH3Na/g is used, the melt viscosity of the resin composition is increased, which causes an obstacle to formability, and thus it is preferably avoided. Further, the 'acid-modified styrene-based elastomer is capable of improving the compatibility with the polyamide'. The melt flow rate (hereinafter referred to as "MFR") measured by TCx2.16kgf is preferably 3 to lOg. / lOmin, more preferably 4 to 9 g / 1 〇 min. If MFR is not full ❹ 'the flowability during melting is poor, and thus can not be uniformly dispersed with the polyamine resin, and if MFR exceeds i 〇 g / i 〇 min However, since the fluidity at the time of melting is too good, it is impossible to uniformly disperse with the polyamide resin. The index of the molecular weight of the styrene-based elastomer is changed to an MFR of 3 to 1 〇g/1 〇 min. The number average molecular weight is about 1 to 2 million. Furthermore, when the acid-modified stupid vinyl elastomer is not used, or the acid-modified styrene elastomer is replaced, the unmodified styrene-ethylene is used instead. When the dilute-styrene-based copolymer and the poly-branched elastomer are inferior in compatibility with the polyamine, the mechanical strength is lowered, so it is best to avoid the acid-modified styrene-based elastic system. The existing styrene-based elastomer is subjected to acid modification to copolymerize styrene, ethylene, and dibutyl units. The styrene-based elastomer can be obtained by using at least a (tetra) group-introduced molecular chain using maleic anhydride or the like, and a commercially available system can obtain, for example, an acid-modified styrene-ethylene butadiene- Stupid ethylene co-polymer (Taiwan Chemical Co., Ltd. TUFTEC M1911: acid price 2mgCH3Na/g, MFR4. 5§/ι〇^η; Asahi 098103367 15 200938588 Chemical company TUFTEC M1913: acid price 10mgCH3Na/g, MFR5.0g/ 10 min; TUFTEC M1943 manufactured by Asahi Kasei Chemical Co., Ltd.: acid value: 10 mg CH 3 Na/g, MFR 8. 0 g/10 min), etc. The acid-modified styrene-based elastic system is preferably 10 〇 mass% of the polyamide resin composition. When the amount is less than 1% by mass, the tensile elongation at break of the obtained molded article is lowered, and when it is more than 10% by mass, the fluidity is deteriorated, so that it is difficult to reliably fill the resin with a thin plate, so the most 5〜10的。 The glass fiber of the present invention can be used in a circular cross-section, preferably using a long axis of 10 to 50 # m, a short axis of 5 to 20 ym, and a long Korean / short axis ratio of 1. 5~10 Flat glass fiber with a flat cross-section shape, in order to reduce the strength of the glass fiber The 系 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 If the axial ratio is below 丨5, the effect of reducing the warpage will be lacking. Conversely, if the ratio of the long axis/minor axis is 10 or more, the system of the glass fiber body is difficult to be used. In addition to the elliptical opening, the shape of the e-type, the eyebrow shape, the oblong shape, the rectangle, etc., is not limited to the premise of suppressing the effect of the moon in the case. The cross-sectional shape. Further, the glass fiber type may be a long fiber type yarn bundle or a short fiber type cleavage fiber. In the case of the long-fiber type, since it is a continuous fiber which is taken up by the yarn bundle, it is necessary to first make the yarn bundle contain a small amount of molten polyamidamine tree 曰' to make a long fiber resin age (a). The isometric fiber granules are 098103367 200938588 consisting of a polyamide resin and a polyamide resin composition additionally prepared from an elastomer (however, since the long fiber resin particles (a) already contain a urethane resin, When the resin particles (b) composed of the amount of the polyamidamide resin in the final polyamide resin composition are subtracted from the amount of the polyamide resin required for the wetting, the resin particles (b) are mixed and injected. By molding and extrusion molding, it is possible to form a molded body excellent in mechanical properties in which the length of the long fiber glass fiber is blended. At this time, the long-fiber resin particles to be used are usually used in an amount of about 3 to 15 angstroms. In the long-fiber reticular resin particles, since the long-fiber glass fibers are present in equal lengths, when the length of the long-fiber resin particles exceeds 15 liters, the long-fiber resin particles may be bitten in the forming process, and vice versa. The length of the long-fiber resin particles is less than 3 mm. When the molded body is molded, a molded body having sufficient mechanical properties cannot be formed. In the case of a glass fiber that does not need to be blended into a shorter length, it is preferable to use a cut stock that is cut in advance to be shorter. When a strand is used, a glass fiber having a length of 3 to 6 mm is preferable, and a length G 4 to 5 mm is preferable. In addition, when the long fiber resin particles are produced, the long fiber type fiberglass composite fiber polyamine resin can also be formed by blending the resin particles (b) into the appropriately adjusted glass fiber cut strands. Composition. The glass fiber system can be subjected to surface treatment by using an epoxy-based, amine-based, isocyanate or the like. The thickness of the fibers used is light (4). The mechanical strength of the original reinforcing material is a thickness of 3 to 20/zm. If the thickness is too coarse, the glass fiber (four) sex "or vice" is not obtained. If the glass fiber is too fine, it will not only produce the problem of 098103367 17 200938588 but also lack the reinforcing effect of the reinforcing material. The blending amount of the glass fibers is preferably 50 to 150 parts by mass based on 100 parts by mass of the polyamide resin composition. When the amount is less than 50 parts by mass, the mechanical strength of the molded article is lowered. On the other hand, if it is 15 parts by mass or more, the resin flowability is poor. When it is a thin plate, it is difficult to obtain a molded article having high dimensional accuracy. Further, in the resin composition of the present invention, a pigment, a heat stabilizer, an antioxidant, a weathering agent, a flame retardant, a plasticizer, a mold release agent, and other reinforcing materials may be added: when added, no significant loss is caused. And the limitation of the effect of the present invention is 'but it is usually about 20 parts by mass with respect to the glass fiber reinforced poly- and 曰 mass parts. The thermal stabilizers and antioxidants are as follows: hindered amines, sulfur compounds, steel compounds. For the compound and the weathering agent, a general diphenyl ketone or a benzotriene flame retardant can be used, and a general dish-based flame retardant and I can be used. The reinforcing material can be, for example, . Ma Shi clay, talc, kiwi dance, carbon stone, oxidized stone, oxidized Shao, oxidized town, Shixi acid mother, aunt, foretown, oxygen (10), hydrogen oxygen butterfly, Mingxinxin, sodium xinxin, silk , noodles, medium paste, tantalum carbide, potassium, zinc, buddha, hydrotalcite, gold 2, trioxane whisker, pottery crystal, potassium titanate whisker, boron nitride, mica, wheel, glass fiber, Carbon fiber, etc. Graphite, glass 098103367 The resin composition of the present invention can be produced by performing melt-kneading using a 200938588 extruder having a material or a screw. The polyamine resin and the elastomer component are subjected to one-time filling, and the glass fiber is added by using a side feeder on the way, and after being extruded, it is extracted into a stranded wire, and is obtained by pelletizing with a granulator. Resin particles. Furthermore, the polyamine component may be uniformly loaded, and after the resin particles are obtained, the particles are dried, and the particles and the elastomer resin are uniformly loaded, and after melt-kneading, the glass fiber is used for the side feed. The resin particles are obtained by adding. The extrusion temperature is determined by the melting point of the polyamido 66 resin having the highest melting point among the formulated resins. Although it is necessary to sufficiently melt the resin used as the raw material, if the extrusion temperature is raised to more than necessary, the effects of the present invention cannot be sufficiently exerted. In the invention of the present invention, the extrusion temperature for performing the melt-kneading is preferably carried out in the temperature range of the melting point of the polyamide amine 66 + 60 ° C, and is 28 (TC ~ 32 〇 C. If the melting point of the polyamide 66 is exceeded + 60 ° C, it will promote the decomposition of other resins, etc., causing coloration or mechanical properties to decrease, so it is best to avoid it. The screw rotation during kneading varies depending on the screw diameter of the extruder used, for example, using a screw diameter of 37 mm. When it is out of the machine, it is preferably carried out in the range of 1 〇〇 to 400 rpm. If it is less than l 〇〇 rpni, not only the mixing is insufficient, but also sufficient discharge amount cannot be obtained. If it exceeds 400 rpm, it becomes excessively kneaded, and the glass fiber becomes Unnecessarily short, the compatibility of the resin composition will be excessive, and burrs will easily occur, and sufficient mechanical properties will not be obtained. In addition, in the blending of polyamide resin and glass fiber, the extrusion temperature, screw 098103367 200938588 And the balance between the amount of discharge and the amount of discharge will be an important matter. If the temperature is too high, the polyamide resin will deteriorate and the mechanical properties will deteriorate. If the screw is rotated too slowly, the extrusion torque will become high. The dimension becomes short, and the mechanical properties are deteriorated. Preferred conditions - For example, when using a kneading machine with a screw diameter of 37, the optimum extrusion/washing degree is 280 C, the screw rotation is 25 rpm, and the discharge amount is 25 kg/h. The resin composition of the present invention can obtain a high mechanical strength, and even if it is a formed portion of a thin plate molded body, particularly a plate thickness of 5 mm and a thickness of 5 mm to 2 mm, the burr can be suppressed during molding. A molded article having an excellent appearance on the surface of the JL can be used for an electric/electronic device case (for example, a mobile terminal such as a PDA or a mobile phone, a personal computer, a QA (four), a battery, or an electric device); #零件; or automotive exterior panels, doors, rearview mirrors, rearview mirror mount motorcycles, Merck locomotives, ship shields, lighting fixtures, etc. Especially the ribs of the present invention can effectively make Xiao such as action An electronic device casing that is thinner than a terminal, a personal computer, an OA machine, etc. [Examples] The following examples and comparative examples are specifically described to the present invention, but are not limited thereto. Further, examples and comparative examples Raw materials and ingredients The physical property measurement of the product was carried out as follows (Reference Example D: Hi·Biosamine (A-5) The ratio was 45 mol% of stearic acid, 5 mol% of p-benzoic acid, hexylamine 45 m / 〇, bis ~ (4 - amine ~ 3 ~ decyl cyclohexyl) decane 5 mol% of the raw material i 〇 kg ' with Skg pure water cleavage in the reaction tank, a nitrogen using 098103367 200938588 The air in the reaction tank was forced to clean several times. After the temperature was raised to 90 ° C and the reaction was carried out for about 5 hours, the reaction was allowed to stand for 10 hours while stirring under the pressure (i8 bar). To 28 ° C. Then, after releasing the pressure to bring the pressure down to atmospheric pressure, the polymerization was carried out for 6 hours at the same temperature. After the reaction is completed, it is discharged from the reaction tank, and the pellet is obtained by cutting. The relative viscosity of the obtained particles (in the same manner as described above) is 1.90. Further, the glass transition temperature was 150 ° C, and the heat of crystal fusion was 0 cal/g. This amorphous ruthenium polyamine was set to A-5. Polyamines of A-4 and A-6 can also be obtained by this method. (Reference Example 2): Amorphous Polyamide (A-6) A raw material having a ratio of 70% by mole of isophthalic acid, 3 % by mole of terephthalic acid, and 100% by mole of hexamethylenediamine 10 kg 'filled in the reaction sample together with 8 kg of pure water, and the air in the reaction tank was forced to be forced several times with nitrogen. After the temperature was raised to 90 ° C and the reaction was carried out for about 5 hours, the reaction temperature was gradually increased to 28 ° C for 1 hour while stirring under the pressure (18 bar). Then, after the pressure was released and the pressure was lowered to atmospheric pressure, polymerization was carried out for 6 hours at the same temperature. After the reaction is completed, it is discharged from the reaction tank, and the pellet is obtained by cutting. The relative viscosity of the obtained particles (in the same manner as described above) is 2.1. And the glass transition temperature was 125 ° C, and the crystal melting heat system was cal/g. (1) Raw material (A) Polyamide resin • Crystalline polyamine (A-1): Polyamide 66 resin (098103367 21 200938588 A125 manufactured by Unitika Co., Ltd., relative viscosity 2.8, melting point 260 ° C, crystal melting heat 18 cal /g) • Crystalline polyamine (A-2): Polyamide 12 resin (AESN made by ARKEMA, relative viscosity 2.3, melting point 176 ° C, heat of crystal melting 13 cal/g) • Crystalline polyamine (A-3): Polyamide 6 resin (A1030BRL manufactured by Unitika Co., Ltd., relative viscosity 2.5, melting point 220 ° C, heat of crystal melting 22 cal/g) • Crystalline polyamine (A-4): terephthalic acid , adipic acid and hexamethylene diamine polycondensate (terephthalic acid / adipic acid / hexamethylene diamine = 45 / 55 / 100 (mole ratio), relative viscosity of 2. 7, melting point 290 ° C, crystal melting Heat 8cal/g) • Amorphous polyamide resin (A-5): (isophthalic acid, terephthalic acid, hexamethylene diamine and bis(3-methyl-4-aminocyclohexyl)) a polycondensate of methane (m-benzoic acid/terephthalic acid/hexamethylenediamine/bis(3-indolyl-4-aminocyclohexyl)decane=45/5/45/5 (mole ratio), Relative viscosity 1.9, glass transition temperature 150 ° C, crystal heat of fusion Ocal / g) • Amorphous polyamide resin (A-6): ( Polycondensate of isophthalic acid, terephthalic acid and hexamethylenediamine (isophthalic acid / terephthalic acid / hexamethylene diamine / 70 / 30 / 100 (mole ratio), relative viscosity 2. 1 , glass transition temperature 125 ° C, crystal heat of fusion Ocal / g) (B) acid modified styrene elastomer · elastomer (B-1): acid modified styrene - ethylene · butadiene - styrene embedded Segment Copolymer (TUFTEC M1911 manufactured by Asahi Kasei Chemical Co., Ltd.: acid value 2 mg CH3Na/g 5 MFR 4. 5 g/10 min) • Elastomer (B-2): styrene-ethylene·butadiene-styrene block copolymerization 098103367 22 200938588 Body (TUFTEC H1141 manufactured by Asahi Kasei Chemical Co., Ltd.: acid price 〇mgCH3Na/g' MFR140g/10min) (C) Glass fiber • Glass fiber (Cl): flat glass fiber with elliptical cross section with a long axis to short axis ratio of 4 (Nittofang Company made CSG3pA82〇s, long axis 28"m, short axis 7 # m, fiber length 3mm, surface treatment of Shixi burning system) • Glass fiber (C-2): glass fiber with circular cross section (ASAHI FIBER) O GLASS company 03JAH69, average fiber diameter 10 / / m, fiber length 3mm) (2) physical properties of molded products a) bending strength, bending elastic modulus and The tensile elongation at break was measured by a FANUC injection molding machine (a_1〇〇iA), and a test piece was formed at a resin temperature of 280 ° C and a mold temperature of 8 G ° C. The f-bend characteristics were according to ASTM D790, and the tensile properties were based on ASTM D_639. Determination. The bending strength was 28 GMPa or more, the bending elastic modulus was not more than the above, and the tensile elongation at break was 1% or more. b) Formability _uc company injection molding machine (α_ just iA), according to resin temperature 28 (TC, mold temperature 8 (TC, maximum injection pressure 12 〇 MPa, forming a thickness of 0 · 4 coffee \ 匕 width 40 coffee The shape-molded body shown in Fig. i having a length of 70 mm was evaluated from the resin-filled crucible as follows. The moldability was evaluated as follows: ○: The resin was surely filled in the entire molded body. 098103367 23 200938588 虽············································································································· The unfilled portion of the resin was found. C) The burr was formed by an injection molding machine (α-1〇〇ίΑ) manufactured by FANUC Co., Ltd., and the thickness was 0_4 mm, width 40 mm, and length 70 mm according to the resin temperature of 280 C and the mold temperature of 80 °C. The shape molded body of Fig. 1 is observed by an optical microscope with respect to the burr measuring unit, and the length of the burr is measured. The number of the burrs is less than 50. The measurement of the burr length is usually performed using a test piece such as a dumbbell, but the case is simulated using the actual case. to make The test piece of the shape of a shape (such as a liquid crystal frame of a mobile phone) is evaluated. Therefore, compared with a test piece having a thickness of 3 to 4 mm such as a dumbbell, the test piece is subjected to a more severe evaluation of the edge. d) Surface gloss use The injection molding machine (a_1〇〇iA) manufactured by FANUC Co., Ltd., according to the resin temperature of 28 generations and the mold temperature of 8 (rc', formed a shape of the shape shown in Fig. 1 with a thickness of 4 Å, a width of 40 mm, and a length of 70 mm, and visual observation The surface gloss measurement unit was used to investigate the floating state of the glass. The evaluation method was as follows, and the above-mentioned "〇" was set as the pass. ◎: No glass float was found. 〇: Although no glass float was found, light was not found. Insufficient reflection. △: The glass was found to float slightly. 098103367 24 200938588 X : It was observed that the glass floated and the light reflection was also poor. (Manufacturing example) (A-7) Preparation of Polyamide Resin Polyamide 66 40% by mass of the resin, 25% by mass of the polyamide 12 resin, and 35 mass% of the amorphous polyamide resin, and TEM37BS manufactured by Toshiba Machine Co., Ltd., the extrusion temperature was 280 ° C, the number of screw rotations was 250 rpm, and the stirring torque was 60%. Mixing. The obtained polyamide resin After drying purposes Α-Ό 'φ will be provided after the test. (A-8MA-17) Polyamide resin formulation in accordance with the modulation shown in Table 1, as (A-7) was produced like.
098103367 25 200938588 [表1] 製造例 — A-7 A-8 A-9 Α-ιη A-11 A-12 A-13 A-14 A-15 Δ 1 ft 聚醯胺66 A-1 18 20 35 60 70 40 40 — 一 40 Α 1〇 Λ{\ Α-17 聚醯胺樹 聚醯胺12 A-2 37 35 20 20 18 10 18 20 30 40 49 聚醯胺6 A-3 ~~1 _ 月曰的稱成 (質量%) 結晶性聚醯胺 A-4 — --— 非晶性聚醯胺 A-5 45 45 45 20 20 20 42 40 3Π 2η ——— 20 ——-— 非晶性聚醯胺 A-6 ^ - (A-18)~(A-27)聚酿胺樹脂之調製 依照表2所記載的調配,如同(a_7)般的進行製作。 [表2] A-18 __ 製造例 '~ A-19 A-21 A-23 A-24 Α-ί>5 Α-26 A—97 聚醯胺66 A-1 55 55 55 55 40 35 25 25 IX L· i 25 聚醢胺樹 聚醯胺12 A-2 27 25 20 10 25 30 40 25 聚醯胺6 A-3 月曰的構成 (t%%) 結晶性聚醯胺 A-4 V只里/〇/ 非晶性聚醯胺 A-5 18 20 25 35 35 35 35 50 非晶性聚醢胺 A-6 (A-28MA-35)聚醯胺樹脂之調製 依照表3所記載的調配’如同(a-7)般的進行製作。 098103367 26 200938588 [表3]098103367 25 200938588 [Table 1] Manufacturing Example - A-7 A-8 A-9 Α-ιη A-11 A-12 A-13 A-14 A-15 Δ 1 ft Polyamide 66 A-1 18 20 35 60 70 40 40 — A 40 Α 1〇Λ{\ Α-17 Polyamide Polyamine 12 A-2 37 35 20 20 18 10 18 20 30 40 49 Polyamide 6 A-3 ~~1 _ Month Weighing of yttrium (% by mass) Crystalline Polyamine A-4 — --— Amorphous Polyamide A-5 45 45 45 20 20 20 42 40 3Π 2η ——— 20 —————— Amorphous The preparation of polyamine A-6^-(A-18)~(A-27) polyacrylamide resin was carried out in accordance with the formulation described in Table 2, and was produced as in (a_7). [Table 2] A-18 __ Manufacturing Example '~ A-19 A-21 A-23 A-24 Α-ί>5 Α-26 A-97 Polyamide 66 A-1 55 55 55 55 40 35 25 25 IX L· i 25 Polyamide Polyamide 12 A-2 27 25 20 10 25 30 40 25 Polyamide 6 A-3 Composition of the ruthenium (t%%) Crystalline Polyamine A-4 V 〇 / 〇 / amorphous polyamine A-5 18 20 25 35 35 35 35 50 Amorphous polyamine A-6 (A-28MA-35) polyamide resin preparation according to the preparation of Table 3 'Like as (a-7). 098103367 26 200938588 [Table 3]
聚酿胺樹 脂的構成 (質量%) 「奢你.你丨 i 故造例 一_η A-28 A-29 A-30 A-31 A-32 Α-33 Α-34 A-3 5 A-3R A-1 80 10 15 40 40 60 40 A-2 10 50 15 25 25 25 20 35 A-3 40 OK 結晶性聚醯脸 A-4 35 Ct 〇 QC; 非晶性聚醯脸 A-5 10 40 70 35 —, 聚釀胺 11 A-6 35 20 45 O J 依表4所示,將聚醯胺樹脂(A-7)97質量%與彈性體(b_1)3 質量%’從東芝機械公司製擠出機37BS的基部投入,相對於 該等樹脂1GG質量份,將玻璃纖維(C-l)lGG質量份從側邊 才又入依擠出溫度28(TC、螺桿旋轉數250rpm進行混合, 獲得玻璃纖維強化聚醯胺樹脂組成物顆粒。所獲得顆粒經乾 燥後,再依上述所示方法施行各項特性的評估。彎曲強度、 f曲彈性模數、拉伸斷裂伸度、成形性、毛邊長度、及表面 光澤均滿足基準。 [實施例2〜16] 施行如同實施例1相同的操作,獲得玻璃纖維強化聚酿胺 樹脂組成物顆粒。所獲得顆粒經乾燥後,再依上述所示方法 施行各項特性的評估。·彎曲強度、f轉性模數、拉伸斷裂 伸度、成雜、毛邊長度、及表㈣料滿足基準。 [比較例1〜23] 098103367 27 200938588 施行如同實施例1相同的操作,獲得玻璃纖維強化聚醯胺 樹脂組成物顆粒。所獲得顆粒經乾燥後,再依上述所示方法 施行各項特性的評估。比較例1〜比較例24因為逾越本發明 範圍外,因而彎曲強度、彎曲彈性模數、拉伸斷裂伸度、成 形性、毛邊長度、及表面光澤中均會有任一者未滿足基準。 實施例1〜16、比較例1〜23的結果,分別如表4〜8所示。 098103367 28 200938588 ο !><〕 實施例5 〇 〇 卜 CO <=> 〇> LT3 ο οο LO 呀· οά 〇 u〇 ◎ 實施例4 〇 (=> CO ο ο ο ο CO 1 14.0 ! CO οά 〇 CV3 ◎ 比較例4 〇 CO ο ο —Η LO C<I οο CO 呀 oi X CM m 〇 比較例3 ◦ CD CO ο ο 1—Η LO 呀 CO οο cd ϊ—Η CNI ◎ <Z5 οα X 比較例2 Ο c=> CO 〇> ο ο 呀 οο LO CO oi ◎ C<l CO X 實施例3 ο ο CO ο ο r-H ο CO CO 卜 LC) LO ◎ s 〇 實施例2 ο ο 5; CO ο ο 1' 1 < LO CD 05 CO CO CM· 〇 C=5 1—H ◎ 實施例1 1 ο ο S; CO ο ο 1—Η o oo C<l CO τ—Η CO CO 〇 co ◎ 比較例1 ο ο ΐ"»Η CO ο ο 1 < <=> CO oa ο c<i oo CO < ◎ 聚醯胺樹脂組成物 〇〇 05 1 〇 1 t-H 1 < (Nl CO in ΐ 03 τ—^ 1 ο OJ MPa cd On ο β ffl 聚醯胺 彈性體 1 玻璃纖維 彎曲強度 彎曲彈性模數 拉伸斷裂伸度 成形性 1 毛邊長度 表面光澤 1 樹脂組成 :(質量%) 1_ 調配比 (質量份) 特性值 a 卜9££01860 200938588 實施例10 〇 Ρ"·Ή 卜 CO o o CD <〇 CO 14. 1 1丨_丨1 CO 〇 <=> ◎ 實施例9 〇 〇 CO o o r*H o CO LO LO oi ◎ C3 CNI 〇 比較例7 〇 <=> CO o 〇> LO r«H CO oo 呀’ < o X Ο οα 1 t 〇 實施例8 〇 CO <=> o 1—t m Cvl CO CO LO oo 〇 oo 〇 實施例7 〇) <=) CO ◦ o T—H LO CNI CO <NI LO 03 csi ◎ 05 呀 ◎ 比較例6 〇 〇 CO o o r-H LO 1—» CO OO 寸· 1—H 00 01 〇 ΙΟ 寸 < 比較例5 〇» C5 CO G? CD ◦ c— CNI CO CD iri 〇 LO C<J <1 實施例6 Ό 〇 1' '< CO o CD CD CM CO CO oo 寸· ◎ LO C<I 〇 聚醯胺樹脂組成物 CO i Α-17 〇〇 2 A-20 I < <N1 A-22 A-23 A-24 CQ (NI ώ H ό 6 MPa GPa β m 聚醯胺 彈性體 玻璃纖維 彎曲強度 彎曲彈性模數 拉伸斷裂伸度 成形性 毛邊長度 表面光澤 樹脂組成 ί(質量%) 1 調配比 (質量份) 特性值 0£ c--01860 200938588 實施例13 〇 〇 ^—1 CO ο 〇> Ο CO CO oi 〇 LO (NI 〇 比較例13 <〇 〇 5; CO o c=> 1—H cr? CO CNI C5 r-H CO <NI X CD CO X 比較例12 〇 1—Η CO CD o Ο ΙΟ ι_ Η 卜· CM* 〇 οο LO 〇 比較例11 〇 <〇 Η CO CD CD r·' H ιη LO ι—Η τ—Η od 05 r· < X οο ◎ 比較例10 〇 〇 > —< 5 CO <=> 1 i Ο CO τ-Η 03 od »_H 05 〇 05 ◎ 比較例9 <〇 〇 CO <=> 〇» 1 1 \ <=> C<I CO 〇〇 LO ί t 1—4 ◎ m C<1 < 比較例8 〇 〇 1—Η $ CQ c=> o ο οο CM ΟΟ οά ϊ—Η 00 01 X οο ◎ 實施例12 〇 c=? CO o c=> y—H LO οο <>3 寸 CQ CD CO 〇 ◎ 實施例11 ο c=> 1—Η CO 〇> 〇> Ο οο C<I CO 卜 〇 L〇 ◎ 聚醯胺樹脂組成物 Α-25 Α-26 A-27 丨A-2司 A-29 A-30 CO F32 A-23 ώ 1 〇Q (Nl Ο MPa GPa β m ! 聚醯胺 彈性體 玻璃纖維 彎曲強度 彎曲彈性模數 1 拉伸斷裂伸度 成形性 毛邊長度 表面光澤 樹脂組成 (質量%) 調配比 (質量份) 特性值 ιε Α9εεοΙ°°60 200938588 比較例17 〇 〇 o o t—H Ο 卜 οα σί ai CO X LO < 比較例16 〇 〇 L〇 〇〇 lO o CD r»H Ο Ε>- 03 <=> οα _丨Η <=5 CO X 呀 〇 比較例15 〇 〇 LO σί 05 L〇 C=5 c=> c=> <=> ΟΟ <ΝΪ 寸 LO LO CD ◎ LO (N1 〇 比較例14 〇> 〇» r-H ο CD <〇 〇> o C<I CO οα 1—^ 呀 c> 〇 LO 〇 X 實施例17 〇 〇 τ-Η OJ 03 〇〇 o <=> T—H Ο <Νϊ 14. 5 Csl to i—H 〇 LO ◎ 實施例16 <〇 〇 τ-Η CO 〇> 〇> 1—H C5 ΟΟ C^3 13. 6 CNI CO ◎ c— i—H 〇 實施例15 〇 〇 τ-Η CO o CD <Ζ5 CO CO ΟΟ LO Τ"Ή r-H CNI 〇 oo 〇 實施例14 ο ο τ-Η CO CD o C3 ◦ CO CZ5 LO LO oi ◎ (N1 oa 〇 聚醯胺樹脂組成物 A-33 A-34 A-35 A-23] T—H OQ LB-2J 1 4 (>α 1 ο MPa GPa β m 聚醯胺 彈性體 1 1 玻璃纖維 1_ 彎曲強度 彎曲彈性模數 拉伸斷裂伸度 成形性 毛邊長度 表面光澤 樹脂組成 (質量%) 1 1_ 調配比 (質量份) 特性值 °ze ❹ 卜 9§1 200938588 〔8嵴〕 比較例23 〇 〇 r-H 5; CO 〇 CD 1—4 Ό CQ CO ι—Η C£J ΟΟ τ~Η ◎ IT) 00 X 比較例22 〇 〇 1—Η CO 〇> C=5 〇〇 Ο CO 呀 LO Ο (N1 03 X οα X 比較例21 C5 ο CO ο CO ι—Η ο οο CO 18. 5 厂— X οο X i比較例20 ◦ ο CO <=> οα οα 12. 1 ΟΟ 一 ◎ C5 03 ◎ 比較例19 ο ο τ-^ CO LO CO »·Η (>α 卜· LO oi ◎ ΟΟ 寸 〇 i比較例18 ο ο S; CO ο <=> τ—Η Ο LT3 03 LO οά CD o’ X CO CQ X 聚醯胺樹脂組成物 A-33 寸 CO 1 A-35 1_ A-36 A-23 1 0Q <N1 CQ C^3 MPa) GPa| B 聚醯胺 彈性體 玻璃纖維 彎曲強度 彎曲彈性模數 拉伸斷裂伸度 成形性 毛邊長度 l表面光澤 樹脂組成 (質量%) 調配比 (質量份) 特性值 - --0-60 200938588 表4中’若將比較例1、實施例1及實施例2進行比對, 得知隨所使用聚醯胺樹脂中調配的聚醯胺66比率提高,,彎 曲強度、彎曲彈性模數亦會提高。相對於聚醯胺樹脂j 〇〇 質量% ’聚醯胺66的調配未滿20質量%之比較例1,彎曲強 度、彎曲彈性模數未滿足既定基準,成形性亦差。 表4中’若將實施例3、比較例2及比較例3進行比對, 雖隨所使用聚醯胺樹脂中調配的聚醯胺66比率提高,靑曲 強度、彎曲彈性模數亦會提高,但另一方面,樹脂成形品 J 〇 表面光澤會降低。相對於聚醯胺樹脂100質量%,聚醯胺66 的調配超越60質量%的比較例2、比較例3,表面光澤並未 滿足既定基準。且,毛邊發生明顯’毛邊長度超過基準長度。 表4中,若將比較例4、實施例4及實施例5進行比對, 隨所使用聚醯胺樹脂中調配的聚醯胺12比率提高,在施行 樹脂成形品的射出成形時,可抑制毛邊發生。相對於聚醯胺 樹脂100質量%,聚醯胺丨2的調配未滿2〇質量%之比較例4, ❹ 毛邊的發生明顯,毛邊長度超越基準長度,成形性亦差。Composition of the styrene resin (% by mass) "Luxury. You 丨i 造 造 _ _ -28 A-28 A-29 A-30 A-31 A-32 Α-33 Α-34 A-3 5 A- 3R A-1 80 10 15 40 40 60 40 A-2 10 50 15 25 25 25 20 35 A-3 40 OK Crystallized poly-face A-4 35 Ct 〇QC; Amorphous poly-face A-5 10 40 70 35 —, 聚聚胺11 A-6 35 20 45 OJ As shown in Table 4, 97% by mass of polyamine resin (A-7) and 3% by mass of elastomer (b_1) were manufactured by Toshiba Machine Co., Ltd. The base of the extruder 37BS was charged, and the GG mass parts of the glass fiber (Cl) were mixed from the side to the extrusion temperature of 28 (TC, screw rotation number of 250 rpm) to obtain the glass fiber. The granules of the polyamide resin composition are reinforced, and the obtained granules are dried, and then evaluated according to the above-mentioned methods. Flexural strength, f-flexural modulus, tensile elongation at break, formability, length of burrs, Both the surface gloss and the surface gloss were satisfied. [Examples 2 to 16] The glass fiber-reinforced polyamine resin composition pellets were obtained in the same manner as in Example 1. After the particles are dried, the characteristics are evaluated according to the methods described above. · Bending strength, f-transfer modulus, tensile elongation at break, miscellaneous, burr length, and Table (4) materials satisfy the benchmark. Examples 1 to 23] 098103367 27 200938588 The same operation as in Example 1 was carried out to obtain particles of a glass fiber-reinforced polyamine resin composition. After the obtained particles were dried, evaluation of various characteristics was carried out by the above-described method. In Examples 1 to Comparative Examples 24, the flexural strength, the flexural modulus, the tensile elongation at break, the formability, the burr length, and the surface gloss were not satisfied as a result of exceeding the range of the present invention. The results of 1 to 16 and Comparative Examples 1 to 23 are shown in Tables 4 to 8. 098103367 28 200938588 ο !><〕 Example 5 CO CO CO <=>〇> LT3 ο οο LO呀·οά 〇u〇◎ Example 4 〇(=> CO ο ο ο ο CO 1 14.0 ! CO οά 〇CV3 ◎ Comparative Example 4 〇CO ο ο —Η LO C<I οο CO 呀oi X CM m 〇 Comparative Example 3 ◦ CD CO ο ο 1—Η LO 呀 CO οο cd ϊ—Η CNI ◎ <Z5 οα X Comparative Example 2 Ο c=> CO 〇> ο ο 呀οο LO CO oi ◎ C<l CO X Example 3 ο ο CO ο ο rH ο CO CO 卜 LC) LO ◎ s 〇 Example 2 ο ο 5; CO ο ο 1' 1 < LO CD 05 CO CO CM· 〇 C=5 1—H ◎ Example 1 1 ο S; CO ο ο 1—Η o oo C<l CO τ—Η CO CO 〇co ◎ Comparative Example 1 ο ο ΐ"»Η CO ο ο 1 <<=> CO oa ο c<i oo CO < ◎ Polyamide resin composition 〇〇05 1 〇1 tH 1 < (Nl CO in ΐ 03 τ—^ 1 ο OJ MPa cd On ο β ffl Polyamide elastomer 1 Glass fiber bending strength Bending elasticity Modulus Tensile Elongation Formability 1 Burr Length Surface Gloss 1 Resin Composition: (% by mass) 1_ Blending ratio (parts by mass) Characteristic value a 卜9££01860 200938588 Example 10 〇Ρ"·Ή Bu CO oo CD <〇CO 14. 1 1丨_丨1 CO 〇<=> ◎ Example 9 〇〇CO oor*H o CO LO LO oi ◎ C3 CNI 〇Comparative Example 7 〇<=> CO o 〇> LO r«H CO oo 呀 ' < o X Ο οα 1 t 〇Example 8 〇CO <=> o 1—tm Cvl CO CO LO oo 〇oo 〇Example 7 〇) <=) CO ◦ o T-H LO CNI CO <NI LO 03 csi ◎ 05 呀 ◎ Comparative Example 6 〇〇CO oo rH LO 1—» CO OO inch · 1—H 00 01 &inch<Comparative Example 5 〇» C5 CO G? CD ◦ c- CNI CO CD iri 〇LO C<J <1 Example 6 Ό 〇1' '< CO o CD CD CM CO CO oo inch · ◎ LO C<I 〇polyamide resin composition CO i Α-17 〇〇2 A-20 I <N1 A-22 A-23 A-24 CQ (NI ώ H ό 6 MPa GPa β m Polyamide elastomer glass fiber bending strength Bending elastic modulus Tensile elongation Dilatation Forming burr length Surface gloss resin composition ί (% by mass) 1 Mixing ratio (mass parts) Characteristic value 0£ c-- 01860 200938588 Example 13 〇〇^—1 CO ο 〇> Ο CO CO oi 〇LO (NI 〇Comparative Example 13 <〇〇5; CO oc=> 1 —H cr? CO CNI C5 rH CO <NI X CD CO X Comparative Example 12 〇1—Η CO CD o Ο ΙΟ ι_ Η 卜·CM* 〇οο LO 〇Comparative Example 11 〇<〇Η CO CD CD r 'H ιη LO ι—Η τ—Η od 05 r· < X οο ◎ Comparative Example 10 〇〇>—< 5 CO <=> 1 i Ο CO τ-Η 03 od »_H 05 〇 05 ◎ Comparative Example 9 <〇〇CO <=> 〇» 1 1 \ <=>C<I CO 〇〇LO ί t 1-4 ◎ m C<1 < Comparative Example 8 〇〇1 —Η $ CQ c=> o ο οο CM ΟΟ οά ϊ—Η 00 01 X οο ◎ Example 12 〇c=? CO oc=> y—H LO οο <>3 inch CQ CD CO 〇◎ Example 11 ο c=> 1—Η CO 〇>〇> Ο οο C<I CO 〇 〇 L〇 ◎ Polyamide resin composition Α-25 Α-26 A-27 丨A-2 Division A -29 A-30 CO F32 A-23 ώ 1 〇Q (Nl Ο MPa GPa β m ! Polyamide elastomer glass fiber bending strength bending elastic modulus 1 tensile elongation elongation forming burr length surface gloss resin composition ( Quality %) Proportion (parts by mass) Characteristic value ιε Α9εεοΙ°°60 200938588 Comparative Example 17 〇〇oot—H Ο Bu οα σί ai CO X LO < Comparative Example 16 〇〇L〇〇〇lO o CD r»H Ο Ε> - 03 <=> οα _丨Η <=5 CO X 呀〇Comparative example 15 〇〇LO σί 05 L〇C=5 c=>c=><=> ΟΟ <ΝΪ inch LO LO CD ◎ LO (N1 〇 Comparative Example 14 〇> 〇»rH ο CD <〇〇> o C<I CO οα 1—^ 呀 c> 〇LO 〇X Example 17 〇〇τ-Η OJ 03 〇〇o <=> T—H Ο <Νϊ 14. 5 Csl to i—H 〇LO ◎ Example 16 <〇〇τ-Η CO 〇>〇> 1—H C5 ΟΟ C ^3 13. 6 CNI CO ◎ c—i—H 〇 Example 15 〇〇τ-Η CO o CD <Ζ5 CO CO ΟΟ LO Τ"Ή rH CNI 〇oo 〇Example 14 ο ο τ-Η CO CD o C3 ◦ CO CZ5 LO LO oi ◎ (N1 oa 〇polyamide resin composition A-33 A-34 A-35 A-23] T-H OQ LB-2J 1 4 (>α 1 ο MPa GPa β m Polyamide elastomer 1 1 Glass fiber 1_ Flexural strength Bending elasticity Modular tensile elongation at break Forming burr length Surface gloss resin composition (% by mass) 1 1_ Formulation ratio (mass parts) Characteristic value °ze ❹ 卜 9§1 200938588 [8嵴] Comparative Example 23 〇〇rH 5; CO 〇CD 1—4 Ό CQ CO ι—Η C£J ΟΟ τ~Η ◎ IT) 00 X Comparative Example 22 〇〇1—Η CO 〇> C=5 〇〇Ο CO 呀LO Ο (N1 03 X οα X Comparative Example 21 C5 ο CO ο CO ι—Η ο οο CO 18. 5 Factory - X οο X i Comparative Example 20 ◦ ο CO <=> οα οα 12. 1 ΟΟ ◎ C5 03 ◎ Comparative Example 19 ο ο τ-^ CO LO CO »·Η (>α 卜· LO oi ◎ ΟΟ 〇 〇i Comparative Example 18 ο ο S; CO ο <=> τ—Η Ο LT3 03 LO οά CD o' X CO CQ X Polyamide resin composition A-33 inch CO 1 A-35 1_ A-36 A-23 1 0Q <N1 CQ C^3 MPa) GPa| B Polyamide elastomer glass fiber bending strength bending elastic mold Number of tensile elongation at break Forming burr length l Surface gloss resin composition (% by mass) Formulation ratio (mass parts) Characteristic value - --0-60 20093858 8 In Table 4, if Comparative Example 1, Example 1 and Example 2 were compared, it was found that the flexural strength and flexural modulus were also increased as the ratio of polyamine 66 blended in the polyamide resin used was increased. Will improve. In Comparative Example 1 in which the polyamine resin j 〇〇 mass % 'polyamide 66 was less than 20% by mass, the bending strength and the bending elastic modulus did not satisfy the predetermined standard, and the moldability was also inferior. In Table 4, if Example 3, Comparative Example 2, and Comparative Example 3 were compared, the flexural strength and flexural modulus increased as the ratio of polyamine 66 blended in the polyamide resin used was increased. On the other hand, the surface gloss of the resin molded article J 会 is lowered. With respect to 100% by mass of the polyamide resin, the blending of the polyamide 66 exceeded 60% by mass of Comparative Example 2 and Comparative Example 3, and the surface gloss did not satisfy the predetermined standard. Moreover, the burrs are noticeably 'the length of the burr exceeds the reference length. In Table 4, when Comparative Example 4, Example 4, and Example 5 were compared, the ratio of the polyamido 12 blended in the polyimide resin to be used was increased, and the injection molding of the resin molded article was suppressed. Burrs occur. In Comparative Example 4 in which the polyamidoxime 2 was blended in an amount of less than 2% by mass based on 100% by mass of the polyamide resin, the occurrence of burrs was remarkable, and the burr length exceeded the reference length, and the formability was also inferior.
表5中,若將實施例6與比較例5進行比對,隨所使用聚 醯胺樹脂中調配的聚醯胺12比率提高’彎曲強度、彎曲彈 性模數會降低。相對於聚醯胺樹脂1〇〇質量%,聚醯胺U 的調配超過40質量%之比較例5,彎曲強度、彎曲彈性模數 並未滿足既定基準。 表5中,若將比較例6、實施例7、實施例8及比較例7 098103367 34 200938588 進行比對’雖隨所使用聚醯胺樹脂中調配的非晶性聚醯胺比 率提高’將提升所獲得成形品的表面光澤,但另一方面,成 形性會降低。相對於聚醯胺樹脂10〇質量%,非晶性聚醯胺 的調配未滿20質量%之比較例6,成形品的表面光澤並未滿 足基準。 表6中,若將實施例11、實施例12及比較例8進行比對, 隨所使用聚醯胺樹脂中調配的非晶性聚醯胺比率提高,成形 ❹性會降低。樹脂成形品的表面光澤均呈良好。相對於聚醯胺 樹脂100質量%,非晶性聚醯胺的調配超越5〇質量%之比較 例6,成形品的成形性未滿足基準。 表6中’比較例9係相對於聚醯胺樹脂10〇質量%,聚醯 胺6 6的調配超越既疋調配量’另一方面,聚酿胺12、非晶 性聚醯胺均未滿既定調配量。所以,所獲得樹脂成形品的毛 邊發生明顯,表面光澤大幅降低。 ❹ 表6中,比較例10係相對於聚醯胺樹脂1〇〇質量%,聚醯 胺66的調配未滿既定調配量’另一方面,聚醯胺12超越既 定調配量。所以,所獲得成形品的彎曲強度與彎曲彈性模數 均大幅降低。 表6中,比較例11係相對於聚醯胺樹脂1〇〇質量%,聚酿 胺66、聚醯胺12均未滿足既定調配量,且非晶性聚醯胺超 越既定調配量。所以’所獲得成形品的彎曲強度、彎曲彈性 模數大幅降低,且成形性亦降低。 098103367 35 200938588 表6中,比較例12係取代聚醯胺66改用聚酿胺 所獲得成形品的彎曲強度、彎曲彈性模數均大幅降因而 毛邊的發生明顯,毛邊長度超越基準長度。 —。且, —表6中,比較例13係取代非晶性聚:胺,改為使用由斜 本二f酸、己二酸及己二胺的縮聚體(對苯二尹酸,已二酸/ 己一胺=45/55/厲莫耳比)所構成結晶性㈣胺,因而成形 性差,且所獲得成形品的表面光澤大幅降低。 〇 表6中,實施例13係取代扁平玻璃纖維,改為使用星右 圓形載面的玻璃纖維。相較於使用扁平玻璃纖維的^ 成形性略差’但彎曲強度、f曲彈性模數、拉 = 成形性、毛邊長度、及表面光澤均滿足基準。度、 表7中’實施例14〜16係取代非晶性聚醯胺(a、5),改為 使用非晶性聚酿胺(“)。彎曲強度、彎曲彈性模數、拉伸 斷裂伸度、成雜、域長度、及表面解均滿足基準。 〇 表7中,實施例π傳、除相對於聚醯胺樹脂組成物_質 量% ’將彈性體的調配改為8質量之外,其餘均如同實施例 9般的實施。發現隨彈性體的調配增加,會有.彎曲強度、f 曲彈欧模數降低,而成形品的表面光澤提升之傾向。弯曲強 度、彎曲彈性模數、拉伸斷裂伸度、成形性、毛邊長度表 面光澤均滿足基準。 表7中’比較例14〜17係除相對於聚醯胺樹脂組成物1〇〇 質里%改為將彈性體的調配逾越既定範圍外的調配量之 098103367 36 200938588 外,其餘均如同實施例9般的實施。比較例Μ、15因為彈 性體的調配並未滿足既定量,因而拉伸斷裂伸度並未滿足某 準,且表面光澤亦會降低。另-方面,比較例16、17因^ 彈性體的調配超越既定量’因而成形性降低。 表8中,比較例18係除取代彈性體(Β_υ,改為使用彈性 體(Β-2)之外,其餘均如同實施例9般的實施。因為使用除 酸改質笨乙烯系彈性體以外的彈性體,因而機械強度降低、 ❹ 成形性差、成形品的表面光澤降低。 表8中’比較例19〜比較例22係除相對於聚酸胺樹脂組 成物100質量%,將玻璃纖維的調配改設為逾越既定範圍外 的調配量之外,其餘均如同實施例9般的實施。比較例19、 20因為破璃纖維的調配較低於既定量,因而弯曲強度、彎 曲彈性模數並未滿足基準。另一方面,比較例21、22因為 玻璃纖維的調配超越既定量,因而獲得成形性的成形品表面 φ 光澤降低。 【圖式龄單說明】 圖1為本發明施行有無毛邊發生與表面光澤評估的成形 品立體示意圖(表面)。 圖2為本發明施行有無毛邊發生與表面光澤評估的成形 品立體示意圖(背面)。 【主要元件符號說明】 1 閘口位置 098103367 37 200938588 2 毛邊評估部 3 表面光澤評估部In Table 5, when Example 6 was compared with Comparative Example 5, the ratio of the polyamine 12 blended in the polyimide resin used was increased, and the flexural strength and the flexural modulus were lowered. In Comparative Example 5 in which the polyamide 9 was blended in an amount of more than 40% by mass based on 1% by mass of the polyamide resin, the flexural strength and the flexural modulus did not satisfy the predetermined standard. In Table 5, comparison of Comparative Example 6, Example 7, Example 8, and Comparative Example 7 098103367 34 200938588 'Although the ratio of the amorphous polyamine blended in the polyamine resin used is increased' The surface gloss of the obtained molded article is lowered, but on the other hand, the formability is lowered. In Comparative Example 6 in which the amorphous polyamine was blended in an amount of less than 20% by mass based on 10% by mass of the polyamide resin, the surface gloss of the molded article did not satisfy the standard. In Table 6, when Example 11, Example 12, and Comparative Example 8 were compared, the ratio of the amorphous polyamine blended in the polyimide resin to be used was increased, and the moldability was lowered. The surface gloss of the resin molded article was good. With respect to 100% by mass of the polyamide resin, the blending of the amorphous polyamine exceeds 5% by mass. In Comparative Example 6, the formability of the molded article did not satisfy the standard. In Table 6, 'Comparative Example 9 is based on 10% by mass of the polyamide resin, and the blending of the polyamide 6 6 exceeds the blending amount. On the other hand, the polyamine 12 and the amorphous polyamine are not full. The amount of the set. Therefore, the embossing of the obtained resin molded article is remarkable, and the surface gloss is largely lowered. ❹ In Table 6, Comparative Example 10 was prepared in an amount of 1% by mass based on the polyamide resin, and the blending amount of the polyamide 66 was less than the predetermined amount. On the other hand, the polyamide 12 exceeded the predetermined blending amount. Therefore, both the bending strength and the bending elastic modulus of the obtained molded article are largely lowered. In Table 6, in Comparative Example 11, the amount of the polyamine 6 and the polyamine 12 did not satisfy the predetermined amount with respect to 1% by mass of the polyamide resin, and the amorphous polyamine exceeded the predetermined amount. Therefore, the flexural strength and the flexural modulus of the obtained molded article are largely lowered, and the formability is also lowered. 098103367 35 200938588 In Table 6, in Comparative Example 12, the flexural strength and the flexural modulus of the molded article obtained by substituting polyamine 66 for polystyrene were greatly reduced, and the occurrence of burrs was remarkable, and the length of the burr exceeded the reference length. —. Further, in Table 6, Comparative Example 13 was substituted for the amorphous polyamine: instead, a polycondensate derived from succinic acid, adipic acid and hexamethylenediamine (p-benzoic acid, adipic acid/ Since the mono-amine = 45/55/mole molar ratio constitutes a crystalline (tetra)amine, the formability is poor, and the surface gloss of the obtained molded article is largely lowered. 〇 In Table 6, Example 13 was replaced with a flat glass fiber, and a glass fiber of a star-shaped circular surface was used instead. The moldability is slightly inferior to that of the flat glass fiber, but the bending strength, the f-flexural modulus, the pull = formability, the burr length, and the surface gloss all satisfy the standard. In Table 7, 'Examples 14 to 16 are substituted for amorphous polyamine (a, 5), and amorphous polyamine (") is used instead. Flexural strength, flexural modulus, tensile elongation at break The degree, the impurity, the domain length, and the surface solution all satisfy the criteria. In Table 7, the example π is transmitted, and the composition of the elastomer is changed to 8 masses with respect to the polyimide resin composition _ mass %. The rest were carried out in the same manner as in Example 9. It was found that as the blending of the elastomer was increased, there was a tendency that the bending strength, the f-modulus ohmic modulus decreased, and the surface gloss of the molded article increased. Flexural strength, flexural modulus, The tensile elongation at break, the formability, and the surface gloss of the burr length were all satisfied. In Table 7, 'Comparative Examples 14 to 17 were replaced with the % of the phthalocyanine resin composition. Except for the set amount outside the established range of 098103367 36 200938588, the rest are implemented as in the case of Example 9. In the comparative example, 15 because the blending of the elastomer does not satisfy the quantitative amount, the tensile elongation at break does not satisfy a certain standard. And the surface gloss will also decrease. On the other hand, In Comparative Examples 16, 17 , the blending of the elastomer exceeded the quantitative amount, and thus the formability was lowered. In Table 8, Comparative Example 18 was except for the substituted elastomer (Β_υ, instead of using the elastomer (Β-2), In the same manner as in Example 9, since an elastomer other than the acid-modified vinyl elastomer was used, the mechanical strength was lowered, the moldability was poor, and the surface gloss of the molded article was lowered. In Comparative Example 19 to Comparative Example In the 22nd embodiment, the blending of the glass fibers was changed to the blending amount outside the predetermined range, and the rest was performed as in Example 9. The comparative examples 19 and 20 were broken. The blending of the glass fibers was lower than the average amount, and thus the flexural strength and the flexural modulus of elasticity did not satisfy the criteria. On the other hand, in Comparative Examples 21 and 22, since the blending of the glass fibers exceeded the quantitative amount, the surface of the molded article was obtained. Fig. 1 is a perspective view (surface) of a molded article for the presence or absence of burr occurrence and surface gloss evaluation of the present invention. Fig. 2 shows the presence or absence of burrs in the present invention. Perspective schematic view of a molded article surface gloss evaluation (back surface). The main element SIGNS LIST 1 position of the gate 098 103 367 200 938 588 2 3 Surface gloss 37 [Evaluation burr evaluation section portion
098103367 38098103367 38