TW200937899A - A synchronization method for OFDM systems - Google Patents

A synchronization method for OFDM systems Download PDF

Info

Publication number
TW200937899A
TW200937899A TW97105531A TW97105531A TW200937899A TW 200937899 A TW200937899 A TW 200937899A TW 97105531 A TW97105531 A TW 97105531A TW 97105531 A TW97105531 A TW 97105531A TW 200937899 A TW200937899 A TW 200937899A
Authority
TW
Taiwan
Prior art keywords
signal
interference
division multiplexing
frequency division
synchronization method
Prior art date
Application number
TW97105531A
Other languages
Chinese (zh)
Other versions
TWI360974B (en
Inventor
Wen-Long Chin
Sau-Gee Chen
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW97105531A priority Critical patent/TWI360974B/en
Publication of TW200937899A publication Critical patent/TW200937899A/en
Application granted granted Critical
Publication of TWI360974B publication Critical patent/TWI360974B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Noise Elimination (AREA)

Abstract

The present invention discloses a synchronization method for orthogonal frequency-division multiplexing (OFDM) systems based on signal-to-interference-and-noise-ratio (SINR) maximization. Due to the incurred losses from inter-symbol interference (ISI) and inter-carrier interference (ICI), the SINR of the received data drops drastically for synchronization errors. Owing to this characteristic, the synchronization errors are estimated, the symbol time offset (STO) and the carrier frequency offset (CFO), by maximizing the SINR. The invention proposes a SINR metric such that prior knowledge of the channel profiles and transmitted data are not required, thus the method is non-data-aided (NDA) and the transmission efficiency can be maximized.

Description

200937899 九、發明說明: - 【發明所屬之技術領域】 • 本發明係有關一種應用在通訊系統中的訊號同步方法,特別 是一種應用在正交分頻多工(OFDM)系統中之訊號同步方法。 【先前技術】 正交分頻多工(Orthogonal Frequency Division Multiplexing, O 〇FDM)是一種高效率的多通道調變解調變技術,對於多通道衰減具 有很強的抑制能力。正交分頻多工(0FDM)目前被許多通訊標準所 採用,如DVB-T, DAB, xDSL,以802.11X為標準之無線區域網路 (WLAN)、以及以802·16χ為標準之固定或移動式MAN系統,最 近之趨勢為3G以上之行動通訊系統幾乎都採用正交分頻多工 (OFDM)方式傳輸資料,其將可使用的頻寬被劃分為多個狹窄的頻 f,資料就可以被平行的在這些頻帶上傳輸,然而其缺點為容易產生 同步的錯誤。 在 J. J. van de Beek、M. Sandell 與 P. 〇· Borjess〇n 所發表之“ML O estimation of time and frequency offset in OFDM systems/5 (IEEE Trans.200937899 IX. Description of the invention: - [Technical field to which the invention pertains] The present invention relates to a signal synchronization method applied in a communication system, and in particular to a signal synchronization method applied in an orthogonal frequency division multiplexing (OFDM) system . [Prior Art] Orthogonal Frequency Division Multiplexing (O 〇 FDM) is a high-efficiency multi-channel modulation and demodulation technology with strong suppression capability for multi-channel attenuation. Orthogonal Frequency Division Multiplexing (OFDM) is currently used in many communication standards, such as DVB-T, DAB, xDSL, 802.11X-based wireless local area network (WLAN), and 802.16-inch fixed or Mobile MAN systems, the recent trend of mobile communication systems with more than 3G is almost all using Orthogonal Frequency Division Multiplexing (OFDM) to transmit data. The available bandwidth is divided into multiple narrow frequency f, and the data is It can be transmitted in parallel on these frequency bands, but its disadvantage is that it is easy to generate synchronization errors. ML O estimation of time and frequency offset in OFDM systems/5 (IEEE Trans.) published by J. J. van de Beek, M. Sandell and P. 〇 Borjess〇n

Signal Pro獄,vol.45, n0.7),提出符元及頻率偏移同時用延遲相關 (delayed-correlation)演算法估測,它是最大近似(maximum likehhood)估測’但只在可加性白色高斯雜訊通道(AWGN)的環境 下有較好的效能。 就像其他通訊系統-樣,在正交分頻多工系統亦有一些同步處 理議題需要考量。首先,未知之訊號延遲會造成符元時間偏移(啊^丨 time offset, STO) ( coarse symbol time, CST ) Λ 細微符元時間(finesymboltime,FST)同步化,其在發射機與接收機 也射減⑽f摘,減數·解偏移(脇㈣cWer 5 200937899 frequency offset, FCFO)、整數載波頻率偏移(integrai caiTier frequency offset, ICFO)及剩餘載波頻率偏移(residual carrier frequency offset, RCFO)必需消除;另外,類比-數位轉換器與數位_類比轉換器的取 樣時脈不一致也會造成取樣時脈頻率偏移(sampling cl〇ck frequenCy offset, SCFO)。 在 Τ· M. Schmidl 與 D. C. Cox 所發表之“R〇bust frequency and timing synchronization for OFDM;5 (IEEE Trans. Commun., vol.45, no.12)’提出一個利用時域的訓練符元’可用在靜態多重路徑的方法, 但還是存在一些不確定的區域。 在 H. Minn、V. K. Bhargava 與 Κ· B. Letaief 所提之“A robust timing and frequency synchronization for OFDM systems,”(IEEE Trans.Signal Pro Prison, vol.45, n0.7), proposes the symbol and frequency offset to be estimated simultaneously using the delayed-correlation algorithm, which is the maximum approximation estimate but only available The white Gaussian noise channel (AWGN) has better performance in the environment. Just like other communication systems, there are some synchronization issues that need to be considered in orthogonal frequency division multiplexing systems. First, the unknown signal delay will cause the symbol time offset (STO) (coarse symbol time, CST) Λ fine symbol time (FST) synchronization, which is also in the transmitter and receiver. Shooting subtraction (10)f pick, subtraction · solution offset (threat (4) cWer 5 200937899 frequency offset, FCFO), integer carrier frequency offset (integrai caiTier frequency offset, ICFO) and residual carrier frequency offset (RCFO) Elimination; In addition, the sampling clock inconsistency between the analog-to-digital converter and the digital-to-analog converter also causes sampling cl〇ck frequenCy offset (SCFO). "R〇bust frequency and timing synchronization for OFDM; 5 (IEEE Trans. Commun., vol.45, no.12)", proposed by Τ·M. Schmidl and DC Cox, proposes a training symbol using time domain. The method of static multipath can be used, but there are still some uncertain regions. "A robust timing and frequency synchronization for OFDM systems," by H. Minn, VK Bhargava and Κ B. Letaief (IEEE Trans.

Wireless Commun·,vol.2,no.4)’對上述的缺點提出了解決方案,但多 出的訓練符元會浪費系統資源,而且這些方法會找到最強的多重路 徑,而非第一個多重路徑’故不適用在細微符元時間估測(fine symb〇1 time estimation )。 雖然 K. Ramasubramanian 與 K. Baum,所提之“An OFDM timing recovery scheme with inherent delay-spread estimation,”(Proc. IEEE GLOBECOM’Ol. vol.5, pp. 3111-3115, Nov. 2001 ),在多路徑衰 減通道中可以辨認無交互符號干擾(ISI)之區域,但是要求精確之 ST估測時所使用之符元過多。 在 M. Speth,S. Fechtel, G. Fock,及 H. Meyer 所提之 ‘Optimum receiver design for OFDM-based broadband transmission-part II: ει case study,(IEEE Trans. Commun., vol.49, no.4, pp. 571-578, Apr. 2001 ) > 通道頻率響應(channel frequency response, CFR)必須先預測,接著 以反快速傅利葉轉換(IFFT )求得通道時脈響應(channel impulse response,CIR),其再被用於調整符元邊界,處理相當複雜。 6 200937899 【發明内容】 為了解決上述問題,本發明目的之一係針對正交分頻多工 (OFDM)系統巾的符元同頻題,糾_最大峨 大的SINR值 (臓—職)之•鮮崎歸元_躲符元邊界= 本發明之另-目㈣係針對正交分頻多工(〇fdm)系統中 的載波頻率偏移的問題’提丨—最大峨對干擾加雜· (__ ΟWireless Commun., vol. 2, no. 4)' proposes a solution to the above shortcomings, but the extra training symbols will waste system resources, and these methods will find the strongest multipath, not the first multiple The path 'is not applicable to fine symb〇1 time estimation. Although K. Ramasubramanian and K. Baum, "An OFDM timing recovery scheme with inherent delay-spread estimation," (Proc. IEEE GLOBECOM'Ol. vol. 5, pp. 3111-3115, Nov. 2001), An area with no inter-symbol interference (ISI) can be identified in the multipath fading channel, but too many symbols are required for accurate ST estimation. 'Optimum receiver design for OFDM-based broadband transmission-part II: ει case study, (IEEE Trans. Commun., vol.49, no) by M. Speth, S. Fechtel, G. Fock, and H. Meyer .4, pp. 571-578, Apr. 2001 ) > The channel frequency response (CFR) must be predicted first, followed by the inverse fast Fourier transform (IFFT) to obtain the channel impulse response (CIR). ), which is used to adjust the symbol boundary, the processing is quite complicated. 6 200937899 SUMMARY OF THE INVENTION In order to solve the above problems, one of the objects of the present invention is to solve the problem of the same frequency of the orthogonal frequency division multiplexing (OFDM) system towel, and to correct the maximum SINR value (臓-) • Xiansui Guiyuan _ escaping element boundary = another object of the present invention (4) is the problem of carrier frequency offset in orthogonal frequency division multiplexing (〇fdm) system 'resolving - maximum 峨 interference plus noise · (__ Ο

SINR)之H: ’精栽魏騎誤差校正似提供正確的降頻計 算’不需預先知道通道輪廓與傳輸之資浦_條件下即可 訊 號同步的問題。 '° 為了達到上述目的’本發明一實施例之正交分頻多工 (OFDM)通Λ系統中之峨同步方法,包括:接收數個通道内的 2域資料滅’分__料峨;計算賴_滅纽訊號對干 擾加雜訊比,取樣每-通勒之符元之兩點,產生兩個訊號對干擾加 雜訊比(SINR);將_峨對干擾加雜紙(s臟)相減,並過滤 出一誤差訊號,並使誤差訊號趨近於零。 為了達到上述目的,本發明另-實施例之正交分頻多工 (OF^VI) itw纟統巾之訊翻步方法,包括·接收數個通道内的 2域資料減,分析頻崎觀號;計算贼魏城產钱號對干 加雜訊比;將_的賴資料訊絲鱗—通道内之較小及較大之 頻偏’產生兩個訊號對干擾加雜訊比(SINR);將兩個訊號對干擾加 雜4比(SINR)相減’並韻出_縣喊,並使誤差訊號趨近於 7SINR) H: 'The fine-grained Wei riding error correction seems to provide the correct down-clock calculation. 'The problem of signal synchronization can be obtained without knowing the channel contour and transmission. In order to achieve the above object, a method for synchronizing in an orthogonal frequency division multiplexing (OFDM) wanted system according to an embodiment of the present invention includes: receiving two domain data in a plurality of channels; Calculate the noise-to-noise ratio of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Subtracting and filtering out an error signal and bringing the error signal closer to zero. In order to achieve the above object, the orthogonal frequency division multiplexing (OF^VI) itw纟 towel data step-by-step method of the present invention includes: receiving two domain data subtraction in several channels, and analyzing the frequency spectrum view No. Calculate the ratio of the thief Weicheng production money to the dry noise ratio; the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ; subtract two signals to the interference plus 4 ratio (SINR) and rhyme out _ county shout, and make the error signal close to 7

Ο (inter-symbol interference, ISI)。因此’在壞的符元時間做粗略符元 時間(coarse symbol time, CST)估測後’接續以細微符元時間(fme 200937899 【實施方式】 符元時間(SymbolTime)估測是整體正交分頻多 同步處理的第-階段,其提供後序階段的預估正交分頻多工符元2 第L正交分鮮工軌系統之三個連續的符元時間 時域不意圖,三個連續的符元為㈣h Symbd、(⑽Symb ^Inter-symbol interference (ISI). Therefore, 'after the coarse symbol time (CST) is estimated, the continuation of the symbol time (CST) is followed by the fine symbol time (fme 200937899 [Embodiment] Symbol Time estimate (SymbolTime) is the overall orthogonal score The first stage of the frequency multi-synchronization process, which provides the estimated orthogonal frequency division multiplex symbol of the subsequent stage 2, the three consecutive symbol time domain non-intentions of the L orthogonal orthogonal work track system, three The consecutive symbols are (4) h Symbd, ((10)Symb ^

Symb=每_符抑始為—保護關(GI),預估的符元時間通常)落 在二個定義區域的其中-個,即圖中的ST1、ST2及ST3,壞的符元 時間誤差區域sti及好的符元時間誤差區域ST3是在正交分頻多^ 符元之保護區間(gi)内(ng),通道的最大延遲擴展為〇。在(鱗 Symbol中,符元時間誤差區域ST3只有通道效應而不會有交互符號 干擾(isi)現象,然而壞的符元時間誤差區域ST1與壞的符元時間 誤差區域ST2會分別受到(/_7)th Symbol及(/+〇th Symbol的碼間干擾 symbol time,FST)估測用於細微調校OFDM符元邊界,可避免交互 符號干擾(ISI )並使訊號對干擾加雜訊比 (Signal-to-Interference-and-Noise Ratio, SINR)達到最佳化。 第2圖所示為本發明一實施例之正交分頻多工(OFDM) 通訊系統架構示意圖。於本實施例中,基頻帶訊息位元流(速率 為F=l/T)從資料源20經過訊號映射器21進入N點反向快速 傅立葉轉換22,串並聯轉換後分別送到N個子通道上,對N 個子通道上之訊號進行N點反向快速傅立葉轉換(IFFT) 22 處理實現正交調變,經由數位類比轉換器24轉換成為連續波 形,載於射頻上(升頻)放大發送,射頻中心載波頻率為Λ, 為消除符元間之干擾,所以在循環前置插入單元23置入循環前 置(cyclic prefix,CP)。 8 200937899 調,5?=::通道26接收到射頻訊號後先進行射頻解 = = 頻帶(降頻),然後一 速Ϊ立ΪΓΓ移除單元35移除«前置,再經N點快 = = JFFT)34、等化器33及訊號解映射… 各個子通叙息流解調、譯碼, 據流信號,最後傳❹㈣H,變換為原先的串灯數 〇 肺ί L,2訊號對干擾加雜訊比估測器38,連接類比數位 接收數位訊號’並計算出在正交分頻多工 正值最後·i的付70時間的誤錄正值及載波頻賴移的誤差校 ==__校w別傳送至循環前置移除單元35及 ~於上述實施例中’ Ά發射端第灸個子頻帶的頻域資料, / “為接收端第/:個子頻帶的頻域資料,'”是第/個符元中第” 個被傳輸的時間域取樣,、,是包含循環前置(cp)的接收端資料, ,λγ是子頻道的數目,F⑴是接收到之連續時間訊 號,#是快速傅立葉轉換(FFT)的大小u+馬是〇pDM Ο 系統中的符元長度,其包含循環前置(CP); 是取樣頻率, Λ是載波^率,是載波頻偏(CF0)經由子載波空間正規化 所產生,«是估f的最大訊號對干擾加雜訊比(MSINR)符 元時間偏移(STO),^w是估測的最大訊號對干擾加雜訊比 (MSINR)載波頻偏(CFO)。另外,在發射端中w個複雜資料符元 是由#點反向快速傅立葉轉換22調變至ΛΜ固子載波,最後一個符 元的乂所形成的反向快速傅立葉轉換取樣會被複製成為循環前置 (CP)’其會插入每一個OFDM符元的開始,因為置入循環前置(cp) ' 而形成一保護區間(guardinterval),可盡量避免交互符號干擾(ISI) • 現象及保持子載波間的正交關係’於接收端可使用快速傅立葉轉 換解調所收到之訊號。 9 200937899 , 在第1圖中符元時間(ST) /7△可能落在OFDM符元的三個誤 差區域的其中之一,在壞的ST1區域範圍為 —Is +1 、好的ST3區域範圍為 、另外一個壞的ST2區域範圍為1<义。 符疋時間偏移(STO)視為與理想符元時間的偏移量,理想符元時間 作記時間座標為0,位於圖中AA,虛線,在此三個符元誤差區域内任 一點所,收的頻域資料訊號如式(1)所示: 尤,=+ .................................(1) 豆中,X d 〇Symb=per _ character is initially - protection off (GI), the estimated symbol time usually falls in one of the two defined areas, namely ST1, ST2 and ST3 in the figure, bad symbol time error The region sti and the good symbol time error region ST3 are within the guard interval (gi) of the orthogonal frequency division multi-symbol (ng), and the maximum delay spread of the channel is 〇. In (Square Symbol, the symbol time error region ST3 has only a channel effect without an intersymbol interference (isi) phenomenon, but the bad symbol time error region ST1 and the bad symbol time error region ST2 are respectively received (/ _7)th Symbol and (/+〇th Symbol's intersymbol interference symbol time, FST) estimation is used to fine tune the OFDM symbol boundary to avoid inter-symbol interference (ISI) and to add interference-to-noise ratio to the signal ( The signal-to-interference-and-noise ratio (SINR) is optimized. Figure 2 is a schematic diagram showing the architecture of an orthogonal frequency division multiplexing (OFDM) communication system according to an embodiment of the present invention. The baseband message bit stream (rate F=l/T) enters the N-point inverse fast Fourier transform 22 from the data source 20 through the signal mapper 21, and is respectively sent to the N sub-channels for N sub-channels after serial-parallel conversion. The signal is subjected to N-point inverse fast Fourier transform (IFFT) 22 processing to realize quadrature modulation, which is converted into a continuous waveform by the digital analog converter 24, and is transmitted on the radio frequency (up-amplification) to amplify and transmit, and the radio frequency center carrier frequency is Λ , to eliminate interference between symbols Therefore, the cyclic pre-insertion unit 23 is placed in a cyclic prefix (CP). 8 200937899 调, 5?=:: Channel 26 receives the RF signal and then performs RF solution == band (down frequency), then one The speed Ϊ ΪΓΓ removal unit 35 removes «pre-position, then N-point fast == JFFT) 34, equalizer 33 and signal demapping... each sub-streaming stream demodulation, decoding, data stream signal, Finally, pass ❹(4)H, change to the original string number 〇 lung ί L, 2 signal to interference plus noise ratio estimator 38, connect the analog digital receive digital signal 'and calculate the orthogonal frequency multiplex positive value last · The error value of the 70-time misreading of the i-time and the error of the carrier frequency shift are corrected to the cyclic pre-removal unit 35 and the 'sub-band of the moxibustion sub-band in the above embodiment Frequency domain data, / "Frequency domain data for the /: subband of the receiving end, '" is the "translated time domain sampling of the first symbol", and is the reception containing the cyclic preamble (cp) End data, , λγ is the number of subchannels, F(1) is the continuous time signal received, and # is fast Fourier transform (FFT) The size u+ horse is the symbol length in the 〇pDM Ο system, which includes the cyclic preamble (CP); is the sampling frequency, Λ is the carrier frequency, and is the carrier frequency offset (CF0) generated by the subcarrier space normalization. « is the maximum signal-to-interference plus noise ratio (MSINR) symbol time offset (STO) of f, which is the estimated maximum signal-to-interference plus noise ratio (MSINR) carrier frequency offset (CFO). In the transmitting end, w complex data symbols are modulated by the #点 inverse fast Fourier transform 22 to the tamping subcarrier, and the inverse fast Fourier transform sampling formed by the last symbol 会 is copied into the loop. Set (CP)' which inserts the beginning of each OFDM symbol, because a pre-loop (cp)' is placed to form a guard interval, which avoids cross-signal interference (ISI). • Phenomena and keep subcarriers The orthogonal relationship between the receivers can be used to demodulate the received signals at the receiving end using Fast Fourier Transform. 9 200937899, symbol 1 (ST) / 7 △ in Figure 1 may fall in one of the three error regions of the OFDM symbol, in the range of the bad ST1 region is -Is +1, good ST3 region range For another bad ST2 area, the range is 1<. The symbol time offset (STO) is regarded as the offset from the ideal symbol time. The ideal symbol time is recorded as 0, which is located in the figure AA, the dotted line, at any point within the three symbol error regions. The received frequency domain data signal is as shown in equation (1): 尤, =+ ............................... ..(1) Bean, X d 〇

T U為正確的資料訊號如式(2)所示: J·.· (2) w_ = 〇 另外’ 為干擾訊號加上可加性白色高斯雜訊通道(AWGN)訊號 叫’如式(3)所示: 〜Δ 1 .V-] T:k…w W Μ. p ~ / 2 Λ- / Λ/ Ν疋 ,且Ws=iV +均是包括循環前置(CP)的長度。在 式(3)中的载波間的干擾(ICI)訊號為式(4): Σ ⑷ n'~N—n^ 在式(3)中的符元間的干擾(ISI)訊號為式(5): 々诖Σ Σ k'h+~aA〜一⑸ m n'^N-n^ 其中义為第W個子通道的通道頻率響應(Channel Frequency Response,CFR )。 根據上述’正確的資料訊號所形成的功率如式(6)所示: 200937899The TU is the correct data signal as shown in equation (2): J·.· (2) w_ = 〇 another 'Additional white Gaussian noise channel (AWGN) signal for the interference signal is called '如式(3) Shown: ~Δ 1 .V-] T:k...w W Μ. p ~ / 2 Λ- / Λ/ Ν疋, and Ws=iV + are the lengths including the cyclic preposition (CP). The inter-carrier interference (ICI) signal in equation (3) is equation (4): Σ (4) n'~N-n^ The interference between symbols (ISI) in equation (3) is equation (5). ): 々诖Σ Σ k'h+~aA~1(5) m n'^Nn^ where is the channel frequency response (CFR) of the Wth subchannel. The power generated by the above-mentioned 'correct data signal' is as shown in equation (6): 200937899

E mE m

X l.k m2 N-nA—\ N2 w -(»1 -»2 )i (6)X l.k m2 N-nA—\ N2 w -(»1 -»2 )i (6)

N »1 =〇 »2=〇 且合併的干擾訊號與可加性白色高斯雜訊通道(AWGN )訊號之功率 <=五ΜN »1 =〇 »2=〇 and the combined interference signal and the power of the additive white Gaussian noise channel (AWGN) signal <= five

7«, |2 ΣΣΣ^1 -w2)(TO_々+£/) I好 |2 m^k n} =0 «2=〇 N-\ N-\ / v + Σ Σ W-^h\H? (7)7«, |2 ΣΣΣ^1 -w2)(TO_々+£/) I is good|2 m^kn} =0 «2=〇N-\ N-\ / v + Σ Σ W-^h\H ? (7)

Wj =Α^-/3δ w2=A^-Wa N-\ N~\ / w Ί +2Σ Σ Σ K[n^2)[m~k+Ef) ΗΜ\σΛ m^k Wj =Λ^-«δ «2s^-wa * 其中’ %rf=五[KJ ]=五[I不+U| _ ’ W|x|為傳送資料功率,σ:為可加 性白色高斯雜訊通道(AWGN)功率,SINR π(«Δ,^·)的理論值是 南度依靠符元時間偏移(STO)與載波頻偏(CFO)。 ❹ 請參閱第3圖為本發明一實施例在正交分頻多工(〇FDM)通 況系統中之訊號同步方法流程圖’包括:步驟S1接收通道内的頻域 資料訊號,分析頻域資料訊號如式(1)至式(5)所表示,並分析頻 域資料功率、干擾功率與AWGM功率,如式(6)與式(7)。 步驟S2計算全部子載波的平均訊號對干擾加雜訊比(SINR); 使用複高斯雜訊内嵌之二階與四階動量的包絡’可得出在多重路徑衰 減中真值訊號的SINK,對式(1)作統計運算產生式(8)、式(9) 與式(10): Μ ^ =^Σ |^/,a-I ?................................ (8) 200937899Wj =Α^-/3δ w2=A^-Wa N-\ N~\ / w Ί +2Σ Σ Σ K[n^2)[m~k+Ef) ΗΜ\σΛ m^k Wj =Λ^- «δ «2s^-wa * where '%rf=five[KJ]=five[I not+U| _ ' W|x| is the transmitted data power, σ: is the additive white Gaussian noise channel (AWGN) The theoretical value of power, SINR π(«Δ, ^·) is that South is dependent on symbol time offset (STO) and carrier frequency offset (CFO). ❹ Referring to FIG. 3 is a flowchart of a signal synchronization method in an orthogonal frequency division multiplexing (〇FDM) system according to an embodiment of the present invention, including: step S1, receiving a frequency domain data signal in a channel, and analyzing a frequency domain. The data signal is expressed by equations (1) to (5), and the frequency domain data power, the interference power, and the AWGM power are analyzed, as in equations (6) and (7). Step S2 calculates the average signal-to-interference plus noise ratio (SINR) of all subcarriers; using the envelope of the second and fourth order momentum embedded in the complex Gaussian noise to obtain the SINK of the true value signal in the multipath attenuation, Equation (1) is used for statistical operations to produce equations (8), (9), and (10): Μ ^ =^Σ |^/, aI ?................ ................ (8) 200937899

Q ΔQ Δ

LL

L Σ ΙΛL Σ ΙΛ

>+\Λ (9) (10) =在第k個子載波的訊號功率&與干擾功率々可由式⑴)與式(η) (11) Ο 〇 h =Mk -sk,.............. (12) 在第k個子載波的估測81]^為式(13): Ik ~ Sk / Jk............... (13) 所以平均全部子載波[得到整體的SINR,其值;7如式(14)所示: .............. (14) 為了降低複雜度,在式⑻與式(9) ^=ι貝叫=〇, ^峨泰猶計算< 糾;終先對全部子載波求 + -勺’再對—適當數量的符元作第二次 訊比(SINR),可降低除法祕吾此欠喊對干擾加雜 號功至/,降低除法的數量,簡化後之訊號功率V與干擾气 就功率I之_式如式⑼與式(16) 、卞摱。孔 S: 丨.............. (15) Κ (16) /個符===:元的功率之幾何平均,· //;. (17) 再對所有I符元取平均值_式(18) 全部之SINR的簡化式.· 12 200937899 η,= τ^η; · (is) 上述之估測式只需要接收頻率域資料而不需先知道通道輪 (channelp_e)與傳輸之資料。藉由對式(18)求取最大值以ς 符元時間偏移(sto)與載波頻偏(CF0),如式(19): ('μ麵々μ麵)=arg = f,)}.(叫 式(19)的二維搜尋問題非常複雜,在無過多效能損失的情況 下’將式(19)分開成以侧解決獨立的符元時間偏移(ST〇) 波頻偏(CFO)問題,如式(2〇)所示: ^ ^^msinr = ^^{nnA,if MSJNR)} ......... (20) 請看第4A圖所示為都會區中典型的具有29個路徑的通道中 SINR與在取樣巾_示圖,其,256、力=32,s臟在無符元 間的干擾(即的區域(H〇也之間)有一平坦的區域出現最大值。 /簡化的式(18)對SINR估測的取樣顯示圖如第4B圖所示,其所實 行的系統與第4A圖是相同的。第犯圖中可以看見式(18)對3舰 估測不如式(14)精確’然而式(18)所產生的SINR輪廓依然清楚 的被保存,且第4B ®的sikr在壞的ST1區域比第4A圖掉下的幅 度更明顯。式(18)的估測對所有符元作過求取平均值的動作,使 SINK輪廓可以保存在時變通道(time_variantch識⑴,如第5b圖所 ^ 5 J- ® t 11¾¾ Normalized Doppler Frequency, NDF ) 為〇.1_。另外’若是由式(⑷的3騰估測式所計算之結果如第认 圖所示’可得知式(14)並不適合在時變通道中使用。 第6A圖與第6B圖所顯示為式(14)與式(18)在各種CF0值 中的SINR估測,CF0的範圍為_1/2< & <1/2,圖中s職的最大值 13 200937899 出現在CF〇==0時。式(14)與式(18)在時變的通道中的3取尺估 ' 測如第7A圖與第7B圖所顯示,其卿條件為0.1,第7B麵示式 (18)的在時變的通道中的SINR估測是強健的,優於第7A (14)。 ^ ”接著於第3 B1中之步驟S31取樣符元之兩點,並產生此兩點之 訊號對干擾加雜訊比(SINR);為了減少搜尋整個範圍《△所產生的計 '、复雜度/、對成號於心△及兩時點取樣,~是符 元邊界的時間偏移量。 ❹ 步驟S4用此兩點的訊號對干擾加雜訊比(SINR)相減,並過 f出一錯誤訊號,使誤差訊號趨近於零;第8圖中所顯示為本發明之 符70同步估測架構示意圖,將式在上述兩點之51]^相減並過 ^形成一錯誤訊號匕(0,如果取樣的兩點- T △與 ”+ τΔ是分別在最佳ST的左邊與右邊並與其相對之距離相 等’其~是預估之符元時間偏移(STO )的時間偏移量,錯誤訊號(/) 等,0 ’最佳取樣點則是位在兩點之中間;反之,在其它情況下錯誤 喊心(0不等於0,則以早/遲閘(early/lategate,E⑹方式使誤差 訊號趨近於零°錯誤訊號匕(0不等於〇時,錯誤訊號的定時甄別器 © 之S曲線如式(21)所示: Δ ( ) Vl( ^AMSINR 5 ^fMSINR ) ~ ^/ i^AMSINR fMSINR )-...(21) 其近似線性模型如第9圖所示,使用於早/遲閘時脈恢復迴路將誤差 值調整為0,其符號表示義意為: F{z) 迴圈過濾器; KF 迴圈過濾器增益; Κ1 f r" 時脈偵測器本質之增益; K'/ 壓控振盡器之増益; '(’)的Z轉換; ',MSWii(/)的 Z 轉換; 14 200937899 E^{z) e&(I)的 z 轉換; K(z) 過濾的錯誤訊息4(/)的z轉換。 在第9圖中’範圍η△的訊號《△(/)經過z轉換(z-transforn^ 後產生W△⑷輸入至時脈偵測器(Time Detector) 71,並輸出—錯轉 訊號〜(0的Z轉換£Δ(ζ)至迴圈過濾器(LoopFilter)厂〇) 72,增 圈過濾器72接收五△⑻訊號產生圮⑻訊號,其為過濾後之錯姨气 號4(7)的Z轉換。在壓控振盪器(VC0) 73中,符元時間(st) | 由式(22)調整:>+\Λ (9) (10) = Signal power & and interference power at the kth subcarrier can be expressed by equation (1) and equation (η) (11) Ο 〇h =Mk -sk,... .......... (12) Estimation at the kth subcarrier 81]^ is the equation (13): Ik ~ Sk / Jk............... (13) So average all subcarriers [get the overall SINR, its value; 7 as shown in equation (14): .............. (14) In order to reduce the complexity, (8) and formula (9) ^=ι贝叫=〇, ^峨泰犹算<Correction; the first to find all subcarriers + - scoop 're-pair - the appropriate number of symbols for the second time ratio (SINR ), can reduce the division of the secret, the screaming of the interference plus the number of the work to /, reduce the number of divisions, the simplified signal power V and the interference gas on the power I _ as shown in equations (9) and (16), 卞摱. Hole S: 丨.............. (15) Κ (16) / character ===: the geometric mean of the power of the element, · //;. (17) again for all I symbol averaging_式(18) Simplified formula of all SINR.· 12 200937899 η,= τ^η; · (is) The above estimation only needs to receive the frequency domain data without first knowing the channel wheel. (channelp_e) and the data of the transmission. The maximum value is obtained by the equation (18), ς symbol time offset (sto) and carrier frequency offset (CF0), as in equation (19): ('μ面々μ面面) = arg = f,)} (The two-dimensional search problem of equation (19) is very complicated, and the equation (19) is separated to solve the independent symbol time offset (ST〇) wave frequency offset (CFO) without excessive performance loss. The problem, as shown in the formula (2〇): ^ ^^msinr = ^^{nnA,if MSJNR)} ......... (20) See Figure 4A for a typical example of the metropolitan area The SINR in the channel with 29 paths and the interference in the sampling towel, which is 256, the force = 32, s dirty in the unsigned (ie the area (H〇 also) has a flat area The maximum value of the simplified (18) SINR estimation sampling display is shown in Fig. 4B, and the system implemented is the same as Fig. 4A. The equation (18) versus 3 can be seen in the first crime map. The ship estimate is not as accurate as equation (14). However, the SINR profile produced by equation (18) is still clearly preserved, and the sikr of 4B ® is more pronounced in the bad ST1 region than in Figure 4A. 18) The estimate is averaged for all symbols. Action, so that the SINK contour can be saved in the time-varying channel (time_variantch (1), as shown in Figure 5b, 5 J-® t 113⁄43⁄4 Normalized Doppler Frequency, NDF) is 〇.1_. In addition, if it is evaluated by (3) The results calculated by the measurement are as shown in the first figure. It can be known that the equation (14) is not suitable for use in time-varying channels. Figures 6A and 6B show equations (14) and (18) in various The SINR estimate in the CF0 value, the range of CF0 is _1/2 <&< 1/2, the maximum value of the s job in the figure 13 200937899 appears when CF 〇 = = 0. Equation (14) and formula ( 18) Estimation of 3 in time-varying channels. As shown in Figures 7A and 7B, the SINR is estimated to be 0.1, and the SINR in the time-varying channel of Equation 7B is shown in Figure 7B. The test is robust and better than 7A (14). ^ ” Next, at step S31 in the third B1, the two points of the symbol are sampled, and the signal-to-interference plus noise ratio (SINR) of the two points is generated; Search for the entire range "counts generated by △", complexity /, pairing at heart △ and two time points, ~ is the time offset of the symbol boundary. ❹ Step S4 uses the signal interference of these two points The noise ratio (SINR) is subtracted, and an error signal is generated to make the error signal approach zero. FIG. 8 is a schematic diagram of the synchronization estimation architecture of the symbol 70 of the present invention. 51]^ subtracts and over^ forms an error signal 匕 (0, if the two points of the sample - T △ and " + τ Δ are respectively on the left and right sides of the best ST and the distance is equal to the opposite '' The time offset of the symbol time offset (STO), the error signal (/), etc., 0 'the best sampling point is in the middle of the two points; otherwise, in other cases the error is called (0 is not equal 0, the early/late gate (E(6) mode makes the error signal approach zero° error signal 匕 (0 is not equal to 〇, the S curve of the error signal's timing discriminator © is as shown in equation (21) : Δ ( ) Vl( ^AMSINR 5 ^fMSINR ) ~ ^/ i^AMSINR fMSINR )-...(21) The approximate linear model is shown in Figure 9. The error is used in the early/late gate recovery loop. The value is adjusted to 0, the sign of which means the meaning is: F{z) loop filter; KF loop filter gain; Κ1 f r" the essence of the clock detector; K'/ pressure-controlled vibrator benefit; '(') Z-conversion; ', MSWii(/) Z-conversion; 14 200937899 E^{z) e&(I) z-conversion; K(z) filtering The error message 4 (/) z conversion. In Fig. 9, the signal "Δ(/) of the range η △ is converted by z (z-transforn^ generates W Δ (4) input to the Time Detector 71, and outputs - the wrong signal ~ ( 0 Z conversion £ Δ (ζ) to loop filter (LoopFilter) factory 72), the ring filter 72 receives five △ (8) signal generation 圮 (8) signal, which is the filtered error 姨 4 (7) Z conversion. In the voltage controlled oscillator (VC0) 73, the symbol time (st) | is adjusted by equation (22):

^AMSINR (/) = ^A,MSINR (l-\) + KvNsTse'A(l).·.·.·· (22) 最後輸出元(z)訊號,其為圮(/)訊號的Z轉換。 上述第9圖的迴路系統可以由式(23)所示: l^(z) = -__Κτζ (1 -αζ i)_ 1 + ζ 1 {κτ -2^ + ζ~2{\~ Κτα)............... (23 ) 其中,尺/是時脈偵測器71本身的增益; f f是過濾器72的增益; A是壓控振盪器(VCO) 73的增益; k^KfKWs。 此系統在式(24)的條件下是穩定的: (24) 〇<a<\ and 0<KT<^/ τ Λ + α: 經過上述調整後,最後於步驟S5將符元時間調整在最佳位置。 在另一實施例中,於第3圖中之步驟S32將收到的頻域資料气 號乘以每一通道内之較小及較大之頻偏產生兩個訊號對干擾加雜= 比(SINR) ’並於步驟S4用此兩個訊號對干擾加雜訊比(sj^)相 減,過濾出一錯誤訊號,使誤差訊號趨近於零;如第1〇圖中所顯示 為本發明之載波頻率(CF)同步估測架構示意圖,其與第8圖的不同 處為在早分支中頻率偏移、- τ^,在遲分支中頻率偏移 15 200937899 ^ fMSWR + T f y τ f 是預估之載波頻偏(CFO)的頻率偏移量,其 錯誤訊號的頻率甄別器之S曲線如式(25)所示: ^/(0 = ^7/(^ A,MSINR 5 ^/MSINR —fy ) — 77/ (^\tMSINR ,云f,MSINR +、)·(25) 最後於步驟S5修正載波頻偏。 請參閱第11圖至第14圖以及第15圖至第18圖中所顯示為本 發明與其它估測法在各種條件情況下的效能比較,其所設定之環境參 數為一般都會區通道相似,一 OFDM系統N=256子通道,保護區間 #G=AV8=32且只考慮資料子通道,正交相位變換鍵控(QPSK)調變, 信號頻寬2.5 MHz及射頻為2.4 GHz,子載波範圍是8.68 kHz,符元 期間為115.2/^。評估最大訊號對干擾加雜訊比估測器的效能是 用估測的正規化平均方差(mean-squared error, MSE )。時脈恢復 迴路的參數設定如下:β = 0.9997、、正規化迴路頻寬 為5AM,其中5是迴路頻寬並設為005,每一次模擬為1〇〇〇〇 個符元。 於符元估測實施時,本發明與A. J. AI-Dweik所提之最小干擾符 元估測(minimum-interference ST estimation)及[5]所提之時域中無 資料輔助符元估測(time-domain M)A ST estimation )之比較分別顯 示於第11圖與第12圖,第13圖為本發明之符元估測在各種訊雜比 (SNR)情況下之效能比較,第14圖為本發明之符元估測在各種正 歸化都普勒頻率(NDF)情況下之效能比較;另外,於載波頻偏估測 實施時,本發明與A. J. AI-Dweik所提之最小干擾符元估測 (minimum-interference ST estimation)之比較分別顯示於第 μ 圖與 第16圖’第π圖為本發明之載波頻偏估測在各種訊雜比(snr)情 況下之效能比較,第18圖為本發明之載波頻偏估測在各種正歸化都 普勒頻率(NDF)情況下之效能比較。 上述模擬比較與分析中’本發明與A. J_ AI-Dweik所提出的最小 干擾符元估測(minimum-interference ST estimation)的比較,並分別 16 200937899 在疋否有載賴偏(CFO)的情況作—完整之比較,圖中顯示不論是 否有載波頻偏(CF0)的情況’本發_可財較佳的效能,且對於 載波頻偏(CFO)的影響較不敏感。 再者’本發明之符元同步會朝向無符元間的干擾(⑸)的區域 聚集,且載波辭同步侧會朝向載波頻偏(CF⑴聚集,最重要的 ,符元同步估測與做辭同步估_均方差(MSE)在低獄與 尚NDF情況下受到極小之影響,使得本發明在極嚴苛的情況下也適 用0^AMSINR (/) = ^A, MSINR (l-\) + KvNsTse'A(l).······ (22) Finally output element (z) signal, which is the Z conversion of 圮(/) signal . The loop system of Figure 9 above can be expressed by equation (23): l^(z) = -__Κτζ (1 -αζ i)_ 1 + ζ 1 {κτ -2^ + ζ~2{\~ Κτα). . . ....... (23) where the ruler/ is the gain of the clock detector 71 itself; ff is the gain of the filter 72; A is the voltage controlled oscillator (VCO) 73 Gain; k^KfKWs. This system is stable under the condition of equation (24): (24) 〇 <a<\ and 0<KT<^/ τ Λ + α: After the above adjustment, finally adjust the symbol time in step S5 Best location. In another embodiment, the received frequency domain data gas number is multiplied by the smaller and larger frequency offset in each channel in step S32 in FIG. 3 to generate two signals to interference plus impurity ratio ( SINR) 'and in step S4, the two signals are subtracted from the interference plus noise ratio (sj^), and an error signal is filtered to make the error signal approach zero; as shown in Fig. 1 is the present invention. Schematic diagram of the carrier frequency (CF) synchronization estimation architecture, which differs from the 8th figure in the frequency offset in the early branch, - τ^, and the frequency offset in the late branch 15 200937899 ^ fMSWR + T fy τ f The estimated frequency offset of the carrier frequency offset (CFO), the S curve of the frequency discriminator of the error signal is as shown in equation (25): ^/(0 = ^7/(^ A, MSINR 5 ^/MSINR —fy ) — 77/ (^\tMSINR , cloud f, MSINR +, ) (25) Finally, the carrier frequency offset is corrected in step S5. Please refer to Fig. 11 to Fig. 14 and Fig. 15 to Fig. 18 It shows the performance comparison between the invention and other estimation methods under various conditions. The environmental parameters set are similar to the general metropolitan area channel, and an OFDM system N=256 subchannels. Interval #G=AV8=32 and only consider the data subchannel, quadrature phase shift keying (QPSK) modulation, the signal bandwidth is 2.5 MHz and the radio frequency is 2.4 GHz, the subcarrier range is 8.68 kHz, and the symbol period is 115.2/ ^. The evaluation of the maximum signal-to-interference plus noise ratio estimator is based on the estimated mean-squared error (MSE). The parameters of the clock recovery loop are set as follows: β = 0.9997, normalized The loop bandwidth is 5AM, where 5 is the loop bandwidth and is set to 005, and each simulation is 1 unit. The minimum interference proposed by the present invention and AJ AI-Dweik is implemented during the implementation of the Fuyuan estimation. The comparison of the minimum-interference ST estimation and the time-domain M A ST estimation in [5] is shown in Figure 11 and Figure 12, respectively. Figure 13 is a comparison of the performance of the symbol estimation of the present invention in various signal-to-noise ratios (SNR), and Figure 14 is a diagram of the symbol estimation of the present invention in various normalized Doppler frequencies (NDF). The performance comparison; in addition, the implementation of the carrier frequency offset estimation, the present invention and AJ AI-Dweik The comparison of minimum-interference ST estimation is shown in the μ map and the 16th graph. The π map is the carrier frequency offset estimation of the present invention in various signal-to-noise ratios (snr) cases. Comparing the performance, Figure 18 is a comparison of the performance of the carrier frequency offset estimation of the present invention under various normalized normalized Doppler frequencies (NDF). In the above simulation comparison and analysis, the comparison between the present invention and the minimum-interference ST estimation proposed by A. J_AI-Dweik, and 16 200937899 respectively, whether or not there is a load-biased bias (CFO) Situation-Complete comparison, the figure shows that regardless of whether there is carrier frequency offset (CF0), the performance of this method is better, and it is less sensitive to the influence of carrier frequency offset (CFO). Furthermore, the symbol synchronization of the present invention will be concentrated toward the region of the interference between unsigned symbols ((5)), and the carrier side synchronization side will face the carrier frequency offset (CF(1) aggregation, and most importantly, the symbol synchronization estimation and speech. Synchronous estimation _ mean square error (MSE) is minimally affected in the case of low prisoner and NDF, making the invention applicable in extremely severe situations.

綜合上述,本發明針對正交分頻多工(〇FDM)系統中的符 元同步問題,提出-最大减軒擾加雜絲(maximum sinr)之 方法’其湘最佳符元_位於符元邊界有最大的5騰值,於無傳 輸資料的資訊情況下即可崎朗步的問題,所以本發明亦為_^非 數據輔助(non-data-aidec^NDA)演算法。且本發明可用於 時,多路徑衰落通道,且在低SNR、高CF。值與高_ ; 有局的準確性。 | 以上所述之實施例僅係為說明本發明之 點,其目的在使熟習此項技藝之人士能夠瞭解本發;:= 並據以實施’當不能以之限定本發明之專利範圍,g π谷 揭示之精神所作之均等變化或修娜’仍應 發明之專利範圍内。 在本 【圖式簡單說明】 第1圖所示為正交分頻多工通訊系統之三個連續沾 意圖。 、苻7時間時域示 工通訊系統架構示 第2圖所示為根據本發明一實施例之正交分頻多 意圖。 17 200937899 施例—(。_通訊 圖第4β圖所示為根據本發明在各種蠢情況下各取樣索 ====^_娜樹轉種脈情 ==_示為轉她在—況下各取樣 ΟIn summary, the present invention is directed to the problem of symbol synchronization in an orthogonal frequency division multiplexing (〇FDM) system, and proposes a method of maximal sinr plus maximum sinr. The boundary has the largest value of 5, which can be used in the case of no information transmission, so the invention is also a non-data-aidec^NDA algorithm. And the present invention can be used for multipath fading channels with low SNR and high CF. Value and high _; have a local accuracy. The above-described embodiments are merely illustrative of the present invention, and are intended to enable those skilled in the art to understand the present invention; and = and to implement 'when the patent scope of the present invention cannot be limited thereto, g The equal change of the spirit revealed by π谷 reveals that Senna is still in the scope of patents that should be invented. In this [Simplified Description of the Drawings] Figure 1 shows three consecutive intents of the orthogonal frequency division multiplexing communication system.苻7 time time domain communication communication system architecture Fig. 2 is a diagram showing the orthogonal frequency division multi-intent according to an embodiment of the present invention. 17 200937899 Example - (._Communication diagram Figure 4β shows the sampling of each sample in various stupid situations according to the present invention ====^_娜树转种脉情==_Showing to turn her in the situation Sampling

G =:=r本發明在時變通道一值 第8圖所示為根據本發明—實施例之符元同步估測架構示意圖。 =所示為根據本發明一實施例之早/遲間時脈恢復迴路運算架構 =0圖解為根據本發明-實施例之概頻物步侧架構示意 本㈣財它彳蝴法在各種驗條件情況 的掘效ΐΓ/咐林㈣料它細丨卿條件情 【主要元件符號說明】 2〇 資料源 21 訊號映射器 22 Ν點反向快速傅立葉轉換 18 200937899 23 循環前置插入單元 24 數位類比轉換器 26 通道 30 資料區 32 訊號解映射器 33 等化器 34 N點快速傅立葉轉換 35 循環前置移除單元 36 類比數位轉換器 38 最大訊號對干擾加雜訊比估測器 71 時脈偵測器 72 迴圈過濾器 73 壓控振盪器 Q ST1、ST2、ST3符元時間誤差區域 S1〜S5 流程步驟 19G =:=r The present invention is a time-varying channel value. Figure 8 is a schematic diagram showing the symbol synchronization estimation architecture according to the present invention. = Shown as an early/late time clock recovery loop operation architecture = 0 according to an embodiment of the present invention is illustrated as a schematic diagram of the general frequency step side architecture according to the present invention - (4) The situation of the effect / Yulin (four) expected it fine conditions [main component symbol description] 2 〇 data source 21 signal mapper 22 反向 point reverse fast Fourier transform 18 200937899 23 loop pre-insertion unit 24 digital analog conversion 26 Channel 30 Data Area 32 Signal Demapper 33 Equalizer 34 N-point Fast Fourier Transform 35 Cycle Pre-Remove Unit 36 Analog-to-Digital Converter 38 Maximum Signal-to-Interference plus Noise Ratio Estimator 71 Clock Detection 72 72 loop filter 73 voltage controlled oscillator Q ST1, ST2, ST3 symbol time error region S1 ~ S5 process step 19

Claims (1)

200937899 十、申請專利範圍: 卜種正交分頻h通訊系统中之訊號同步方法,包含下列步驟: 接收數個通道内的頻域資料訊號,分析該些頻域資料訊號; 計算該些頻域資料訊號產生平均訊號對干擾加雜訊比;’ 產生兩個訊號對干擾加雜訊比(SINR);以及 將该兩個訊號對該干擾加雜訊比(smR)相減,並過遽出—誤差气 號,並使該誤差訊號趨近於零。 ° 2.如请求項1所述之正交分頻多項訊祕中之訊號同步方法,其中 產生該兩個訊號對干擾加雜耻是由取_—該通道内之符元之兩點所 產生。 3_如請求項1所述之正交分頻多工通訊祕巾之猶同步方法,其中 產生》玄兩個δ礼號對干擾加雜訊比是由該些頻域資料訊號乘以每一該通道 内之較小及較大之頻偏所產生。 4.如4求項1所述之正交分頻多工通訊系統中之訊號同步方法,其中 號包含資料訊號、干擾域以及可加性白色高斯雜訊通道 訊號’該頻域資料訊號之表示公式為: ,k U + ’其中I Μ為正碟的資料訊號,W A:為干擾訊號 加上可加性白色高斯雜訊通道(AWGN)訊號。 5‘如睛求項4所述之正交分頻多工通訊系統中之訊號同步方法,其中 該資料訊號之表示公式為: 200937899 〜¢/ A 1 W - w, -1 X/,广V S ❼厂^),其中叭為 e~ .12 π / Μ ’ 為第m個子通道的通道頻率響應,為發射端第灸 個子頻帶的頻域資料。 如月求項4所述之正交分頻多工通訊系統中之訊號同步方法,其中 »亥干擾峨加上該可加性自色高斯雜訊通道訊號之表示公式為:200937899 X. Patent application scope: The signal synchronization method in the orthogonal frequency division h communication system includes the following steps: receiving frequency domain data signals in several channels, analyzing the frequency domain data signals; calculating the frequency domains The data signal produces an average signal-to-interference plus noise ratio; 'generates two signal-to-interference plus noise ratios (SINR); and subtracts the interference plus noise ratio (smR) between the two signals and overshoots - the error gas number and the error signal approaches zero. ° 2. The signal synchronization method in the orthogonal frequency division multiple secret message described in claim 1, wherein the two signals are generated by the interference and the shame is generated by taking two points of the symbol in the channel. . 3_ The method of juxtaposition of the orthogonal frequency division multiplexing communication secret towel as claimed in claim 1, wherein the generating two δ etiquette pair interference plus noise ratio is multiplied by each of the frequency domain data signals Smaller and larger frequency offsets within the channel are produced. 4. The signal synchronization method in the orthogonal frequency division multiplexing communication system according to claim 1, wherein the number includes a data signal, an interference domain, and an additivity white Gaussian noise channel signal, the representation of the frequency domain data signal. The formula is: , k U + ' where I Μ is the data signal of the positive disc, WA: is the interference signal plus the additive white Gaussian noise channel (AWGN) signal. 5' The signal synchronization method in the orthogonal frequency division multiplexing communication system according to item 4, wherein the data signal representation formula is: 200937899 ~ ¢ / A 1 W - w, -1 X /, wide VS ❼厂^), where 叭 is e~.12 π / Μ ' is the channel frequency response of the mth subchannel, which is the frequency domain data of the sub-band of the moxibustion at the transmitting end. The signal synchronization method in the orthogonal frequency division multiplexing communication system described in Item 4 of the present invention, wherein the expression of the haihe interference 峨 plus the additivity self-color Gaussian noise channel signal is: 乂二士51—如/}认^ 一 △)+' -¾+¾ ’ 其中外為可加性白色高斯雜訊通道(AWGN)訊號,K為第m個子通 道的通道頻率響應U發射端第w個子頻帶的頻域資料,乾為符 兀間的干擾(ISI)訊號,和為載波間的干擾訊號。 7.如凊求項6所述之正交分頻多工通訊系統中之訊號同步方法,其中 該載波間的干擾訊號之表示公式為:乂二士51—如/}认^一△)+' -3⁄4+3⁄4 ' The externally is the additive white Gaussian noise channel (AWGN) signal, K is the channel frequency response of the mth subchannel, the U transmitting end The frequency domain data of the sub-bands is the inter-band interference (ISI) signal and the inter-carrier interference signal. 7. The signal synchronization method in the orthogonal frequency division multiplexing communication system according to Item 6, wherein the expression of the interference signal between the carriers is: Ϊ %例 Η入JV& 、m^k 該符元間的干擾訊號之表示公式為: -lNsef-kn^) :以及 Σ 一))。 m η'-Ή-η^ 8.如請求項4所述之正交分頻多工通訊系統中之訊號同步方法,其中 分析該些頻域資料訊號更包括將該資料訊號及該干擾訊號加上該可加性 白色高斯雜訊通道訊號轉換成功率形式,資料訊號之功率為·· 21 200937899 σ xf,kΪ % Example Into JV&, m^k The expression of the interference signal between the symbols is: -lNsef-kn^) : and Σ a)). m η'-Ή-η^ 8. The signal synchronization method in the orthogonal frequency division multiplexing communication system according to claim 4, wherein analyzing the frequency domain data signals further comprises adding the data signal and the interference signal The add-on white Gaussian noise channel signal is converted into a power form, and the power of the data signal is ·· 21 200937899 σ xf,k W Ν .(η1 _»2)6/ ;以及 該干擾城加上利加性自色高雜減道减之功率為: < = Ε[Ψ^ΓW Ν .(η1 _»2)6/ ; and the power of the interference city plus the Ligaic self-color high-subtraction reduction is: < = Ε[Ψ^Γ _ϋ£ y~l ΛΓ-1 Σ Σ Σ w:^~^){m-k+ef)\H m*k «1 =0 η2=〇 I ' η —2 ”ι ="-»△ ”2 = ;\Γ_„λ \α k 2 2 Hm + σν, 其中历IX丨為傳送資料功率,可加性白色高斯雜訊通道(AWGN)功 率K與//*分別為第讲個與第灸子通道的通道頻率響應。 Ο 9.如明求項1所述之正交分解卫通訊祕巾之訊細步方法,其中 計算該些頻域資料訊號包含: 對每一子載波估測訊號對干擾加雜訊比;以及 平均該些子毅之訊麟干擾加雜訊比,產錢平均職對干擾加雜訊 比。 > 10·如請求項9所述之正交分頻多工ii訊系統十之訊號同步方法,其 中對每一子載波估測訊號對干擾加雜訊比之步騍為: 八_ϋ y~l ΛΓ-1 Σ Σ Σ w:^~^){m-k+ef)\H m*k «1 =0 η2=〇I ' η —2 ”ι ="-»△ ” 2 = ;\Γ_„λ \α k 2 2 Hm + σν, where IX丨 is the transmitted data power, and the additivity white Gaussian noise channel (AWGN) power K and //* are the first lecture and the first moxibustion The channel frequency response of the subchannel. Ο 9. The method according to claim 1, wherein the calculating the frequency domain data signals comprises: estimating a signal pair for each subcarrier Interference plus noise ratio; and the average of these Ziyi's interference with the noise ratio, the average job-to-interference plus noise ratio. > 10. The orthogonal frequency division multiplexing yi as described in claim 9 The ten-way signal synchronization method of the system, wherein the step of estimating the noise-to-interference plus noise ratio for each sub-carrier is: S; 22 200937899 /; = s,货 V V k 八尤十/+u - \,;以及 n\ =s; //;. 0 月東項9所述之正交分頻多工通訊系統中之訊號同步方法,其 中平均騎子絲之赌料擾轉誠之衫公絲: 、 η, = τ~Σ ° Lj IS; 22 200937899 /; = s, goods VV k 八尤十/+u - \,; and n\ = s; //;. 0 in the orthogonal frequency division multiplexing communication system described in Dongxiang 9 Signal synchronization method, in which the average rider's gambling material is disturbed by Chengzhi shirt: η, = τ~Σ ° Lj I 如月长項11所述之正交分頻多工通訊系統中之訊號同步方法,其 _更包括求取最大值1¾铜-符元時間偏移與—微齡,其求取最大 值之表示公式為: ^msjNr = argmax ~,μ_ 二 argi^,怜 其中5/是載波頻偏(CFO)經由子載波空間正規化所產生,心是符 元時間。 13. 如請求項12所述之正交分頻多工通訊系統中之訊號同步方法,其 中該誤差訊號具有一定時甄別器之S曲線,其表示式為: δ(0 ^l^'AMSINR ^^^^MSINR ^A^^fMSINR^·其中心 是符元邊界的時間偏移量。 14. 如請求項12所述之正交分頻多工通訊系統中之訊號同步方法,其 中該誤差訊號具有一頻率甄別器之S曲線,其表示式為: e 一 爸fMS酿 τ f、巧^.hMSim,爸f)4SINR 七 τ f).实今 Γ /是載波頻偏的頻率偏移量。 23 200937899 15. 如請求項1所述之正交分頻多工通訊系統中之訊號同步方法,其 中使該誤差訊號趨近於零是使用時脈恢復迴路。 16. 如請求項15所述之正交分頻多工通訊系統中之訊號同步方法,其 中該時脈恢復迴路為早/遲閘時脈恢復迴路,其表示公式為: KTz~{{\ - αζ~χ) {^Kj —2^+z 2(1 — Κγύ^ 其中文7為全部之增益。For the signal synchronization method in the orthogonal frequency division multiplexing communication system described in the monthly term 11, the method further includes obtaining a maximum value of 13⁄4 copper-symbol time offset and -micro age, and the formula for determining the maximum value For: ^msjNr = argmax ~, μ_ two argi^, pity 5/ is the carrier frequency offset (CFO) generated by subcarrier space normalization, the heart is the symbol time. 13. The signal synchronization method in the orthogonal frequency division multiplexing communication system according to claim 12, wherein the error signal has an S curve of a time discriminator, and the expression is: δ(0 ^l^'AMSINR ^ ^^^MSINR ^A^^fMSINR^· Its center is the time offset of the symbol boundary. 14. The signal synchronization method in the orthogonal frequency division multiplexing communication system described in claim 12, wherein the error signal The S curve with a frequency discriminator, the expression is: e a dad fMS brewing τ f, Qiao ^.hMSim, dad f) 4SINR seven τ f). Reality Γ / is the frequency offset of the carrier frequency offset. 23 200937899 15. The signal synchronization method in the orthogonal frequency division multiplexing communication system according to claim 1, wherein the error signal is brought close to zero by using a clock recovery loop. 16. The signal synchronization method in the orthogonal frequency division multiplexing communication system according to claim 15, wherein the clock recovery loop is an early/late gate clock recovery loop, and the expression is: KTz~{{\ Αζ~χ) {^Kj —2^+z 2(1 – Κγύ^ Its Chinese 7 is the total gain. 24twenty four
TW97105531A 2008-02-18 2008-02-18 A synchronization method for ofdm systems TWI360974B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97105531A TWI360974B (en) 2008-02-18 2008-02-18 A synchronization method for ofdm systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97105531A TWI360974B (en) 2008-02-18 2008-02-18 A synchronization method for ofdm systems

Publications (2)

Publication Number Publication Date
TW200937899A true TW200937899A (en) 2009-09-01
TWI360974B TWI360974B (en) 2012-03-21

Family

ID=44867156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105531A TWI360974B (en) 2008-02-18 2008-02-18 A synchronization method for ofdm systems

Country Status (1)

Country Link
TW (1) TWI360974B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418188B (en) * 2010-05-20 2013-12-01 Harris Corp Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
CN106416167A (en) * 2016-04-20 2017-02-15 香港应用科技研究院有限公司 Timing offset estimation through SINR measurements in OFDM-based system
US9860861B2 (en) 2016-04-20 2018-01-02 Hong Kong Applied Science And Technology Research Timing offset estimation in an OFDM-based system by SINR measurement
CN112285688A (en) * 2019-07-22 2021-01-29 财团法人工业技术研究院 Signal sensing system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418188B (en) * 2010-05-20 2013-12-01 Harris Corp Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
CN106416167A (en) * 2016-04-20 2017-02-15 香港应用科技研究院有限公司 Timing offset estimation through SINR measurements in OFDM-based system
WO2017181352A1 (en) * 2016-04-20 2017-10-26 Hong Kong Applied Science and Technology Research Institute Company Limited Timing offset estimation in an ofdm-based system by sinr measurement
US9860861B2 (en) 2016-04-20 2018-01-02 Hong Kong Applied Science And Technology Research Timing offset estimation in an OFDM-based system by SINR measurement
CN106416167B (en) * 2016-04-20 2019-03-26 香港应用科技研究院有限公司 Estimated in the system based on OFDM by the timing slip that SINR measurement carries out
CN112285688A (en) * 2019-07-22 2021-01-29 财团法人工业技术研究院 Signal sensing system and method

Also Published As

Publication number Publication date
TWI360974B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2019119778A1 (en) Anti-interference signal detection and synchronization method for wireless broadband communication system
JP4159030B2 (en) Timing synchronization method for wireless networks using OFDM
TWI407719B (en) A symbol time synchronization method for ofdm systems
US7539125B2 (en) Method and circuit for frequency offset estimation in frequency domain in the orthogonal frequency division multiplexing baseband receiver for IEEE 802.11A/G wireless LAN standard
US7236554B2 (en) Timing estimation in an OFDM receiver
JP2007520167A (en) Frame synchronization acquisition and initial symbol timing acquisition system and method
EP1825625A1 (en) Method for estimating frequency/time offset and apparatus using the same in ofdm communication system
TW200937899A (en) A synchronization method for OFDM systems
Zou et al. An integrated OFDM receiver for high-speed mobile data communications
US9369329B1 (en) Low-complexity non-data-aided estimation of symbol time offset in OFDM systems
KR101538595B1 (en) Method for Time Synchronization and Carrier Frequency Offset Compesation in Optical OFDM System
CN107018112B (en) NC-OFDM cognitive radio narrow-band interference resistant cognitive user synchronization method
Kumar et al. Blind symbol timing offset estimation for offset‐QPSK modulated signals
Nasraoui et al. Robust brute force and reduced complexity approaches for timing synchronization in IEEE 802.11 a/g WLANs
Kung et al. Frequency domain symbol synchronization for OFDM systems
Rebouh et al. Blind joint CFO and STO estimation for FBMC/OQAM systems.
Jing et al. Research on carrier frequency offset estimation algorithm based on PN sequence preamble in OFDM system
Zhong et al. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises
Louveaux et al. FBMC synchronization techniques
CN105743836B (en) Ofdm system frequency deviation estimating method based on multi-path separation
Li et al. A novel time and frequency synchronization algorithm for LTE system
Kim et al. Blind frequency-offset tracking scheme for multiband orthogonal frequency division multiplexing using time-domain spreading
Tonge et al. Channel Estimation with Improved OFDM
Zhou Synchronization in OFDM systems
Raajan et al. Estimation of DAP symbols using asynchronized OFDM system