TW200937499A - Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor - Google Patents

Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor Download PDF

Info

Publication number
TW200937499A
TW200937499A TW97140054A TW97140054A TW200937499A TW 200937499 A TW200937499 A TW 200937499A TW 97140054 A TW97140054 A TW 97140054A TW 97140054 A TW97140054 A TW 97140054A TW 200937499 A TW200937499 A TW 200937499A
Authority
TW
Taiwan
Prior art keywords
crystal
mask
substrate
dislocation
growth
Prior art date
Application number
TW97140054A
Other languages
Chinese (zh)
Inventor
Fumitaka Sato
Seiji Nakahata
Makoto Kiyama
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW200937499A publication Critical patent/TW200937499A/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A method of manufacturing a semi-insulating nitride semiconductor substrate includes the steps of forming on an underlying substrate (1), a mask (3) in which dotted or striped coating portions having a width or a diameter Ds from 10 μ m to 100μ m are arranged at an interval Dw from 250μ m to 2000μ m, growing a nitride semiconductor crystal (5) on the underlying substrate (1) with an HVPE method at a growth temperature from 1040 DEG C to 1150 DEG C by supplying a group III raw material gas and a group V raw material gas of which group V/group III ratio R5/3 is set to 1 to 10 and a gas containing iron, and removing the underlying substrate (1), to thereby obtain a free-standing semi-insulating nitride semiconductor substrate (5s) having a specific resistance not smaller than 1x10<SP>5</SP>Ω cm and a thickness not smaller than 100μ m. Thus, the semi-insulating nitride semiconductor crystal substrate in which warpage is less and cracking is less likely can be obtained.

Description

200937499 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種半絕緣性氮化物半導體基板及其製造 方法、氮化物半導體磊晶基板以及場效電晶體。所謂氮化 物半導體,係指氮化鎵(GaN)、氮化鋁(A1N)、氮化銦(InN) 及混晶之InGaN、AlInGaN等。對象並非附著於基底基板 上之薄膜’而係獨立之結晶基板。此處主要係對GaN進行 敍述。GaN之帶隙較寬’故可用作藍色發光元件之材料。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-insulating nitride semiconductor substrate, a method of fabricating the same, a nitride semiconductor epitaxial substrate, and a field effect transistor. The term "nitride semiconductor" means gallium nitride (GaN), aluminum nitride (A1N), indium nitride (InN), and mixed crystals of InGaN or AlInGaN. The object is not a film attached to the base substrate, but is a separate crystal substrate. Here, GaN is mainly described. GaN has a wide band gap, so it can be used as a material for a blue light-emitting element.

藍色發光二極體、半導體雷射等發光元件,先前可藉由 於藍寶石(α-Α12〇3)單晶基板上磊晶生長InGaN、GaN、 AlInGaN等之氮化物半導體薄膜結晶來製造。藍寶石與氮 化鎵相同,亦為六方晶系(hexag〇nal system)。於藍寶石C 面結晶上生長GaN之C面薄膜。 然而,藍寶石基板具有絕緣性,無法自底面形成 極,且GaN之劈開面與藍寶石基板之劈開面不同,故存名 下難點即,必須藉由切割用機械來進行分離,費時卫 費事,並且晶片分離之良率較差。 又’氮化鎵(GaN)與藍寶石中之晶格常數差異相當大。 於藍寶石基板上生長之GaN結晶具有較高之位錯密度。而 = 為了將氮化鎵自身作為基板,嘗隸 可作來製作基板結晶。氮化鎵之帶隙較寬,故認為 Μ件之較佳的材料。就發光元件而言,可 順利地於底面形成η電極、 之導電性較高。 於頂科成Ρ電極,故期望基板 135248.doc 200937499 迄今為止,氮化物半導體基板之製造的目標亦係,自由 電子密度較高之n型氮化物半導體結晶之生長。當前,可 製造直徑為2英吋之η型GaN之獨立基板。本發明並非關於 η型氮化物半導體之生長,而係關於半絕緣性氮化物半導 體之生長。A light-emitting element such as a blue light-emitting diode or a semiconductor laser can be produced by epitaxially growing a nitride semiconductor thin film crystal such as InGaN, GaN or AlInGaN on a sapphire (α-Α12〇3) single crystal substrate. Sapphire is the same as gallium nitride and is also a hexag〇nal system. A C-plane film of GaN is grown on the sapphire C-plane crystal. However, since the sapphire substrate is insulative and cannot form a pole from the bottom surface, and the cleavage surface of GaN is different from the cleavage surface of the sapphire substrate, it is difficult to save the name, that is, it is necessary to perform separation by the cutting machine, which is time consuming and troublesome, and The yield of wafer separation is poor. Also, the difference in lattice constant between gallium nitride (GaN) and sapphire is quite large. The GaN crystal grown on the sapphire substrate has a higher dislocation density. And = In order to use gallium nitride itself as a substrate, it is possible to make a substrate crystal. Gallium nitride has a wider band gap and is considered to be the preferred material for the component. In the case of the light-emitting element, the n-electrode can be formed smoothly on the bottom surface, and the conductivity is high. In the case of the top electrode, the substrate is desired. 135248.doc 200937499 The target of the manufacture of the nitride semiconductor substrate is also the growth of the n-type nitride semiconductor crystal having a high free electron density. Currently, a separate substrate of n-type GaN having a diameter of 2 inches can be fabricated. The present invention is not related to the growth of an n-type nitride semiconductor, but to the growth of a semi-insulating nitride semiconductor.

GaN除了帶隙較寬之外,在用作電子元件時亦具有良好 之特性。例如,當前大體上係使用si來作為場效電晶體 (FET ’ Field Effect Transistor)之材料。然而,就電子遷移 率或财電壓特性等而言時,通常認為GaN半導體優於8丨半 導體。GaN之電子遷移率高於Si,且崩潰電壓高於Si。若 可藉由GaN來製作FET,則可獲得較si更高速且電流更 大、電壓更大之FET。若製作如AlGaN/GaN之異質接合, 則電子被封閉於AlGaN/GaN之接合界面,生成電子呈二維 狀刀布之狀態的二維電子氣^生成二維電子氣之部分並無 散射因素’故二維電子氣可高速移動。 本發明之目的係製造作為FET之材料之氮化物半導體結 晶’而並非如先前般作為光元件之材料。 若利用GaN/AlGaN薄膜來製作FET,最初係於藍寶石基 板上進行製作。FET中,沒極、閘極、源極之電極係接近 &quot;導體層之上而形成,且電流為水平流動。源極、閘極、 沒極之電極亦可排列設置於上表面。該點與電流於基板内 沿縱向流動之發光元件之情形不同。 就FET而言,背面n電極並無問題’故亦可為絕緣性藍 寶石基板,但仍存在晶格失配之問題。進而,亦存在成本 135248.doc 200937499 之問題,GaN系之FET遠無法實用化。 然而,當製作GaN-FET時,就晶格匹配方面而言,較好 的是採用以下方法:使用藍寶石基板、更好的是GaN結晶 基板,並於其上形成GaN、AlGaN等之磊晶薄膜而作為 FET。 因係FET之基板,故期望並非高傳導性之η型,而係高 ' 電阻之半絕緣性。與迄今為止之發光元件用之GaN結晶基 板所要求的性質差異較大。本發明係關於一種可用作FET φ 基板之半絕緣性GaN基板結晶之製造方法。 首先對摻雜劑進行敍述。先前,對於藍色發光元件,係 使用GaN或InGaN薄膜。當需要成為p型時,摻雜Mg或掺 雜Zn。而當需要成為η型時,則摻雜Si。本發明者等人首 先發現,為了成為η型GaN基板,只需掺雜氧即可。由 此,η型摻雜劑為Si、0。如此,問題在於,使用何種摻雜 劑以使GaN結晶成為半絕緣性、以及於何種條件下進行製 作。 ® 【先前技術】 為了製造發光元件而於藍寶石基板上形成氮化物半導體 - 薄膜(GaN、InGaN、AlGaN薄膜等)時,大多係使用 • MOCVD(有機金屬化學氣相沈積,Metal Organic ChemicalIn addition to a wide band gap, GaN has good characteristics when used as an electronic component. For example, si is currently generally used as a material for a field effect transistor (FET). However, in terms of electron mobility or financial voltage characteristics, etc., GaN semiconductors are generally considered to be superior to 8 丨 semiconductors. The electron mobility of GaN is higher than that of Si, and the breakdown voltage is higher than Si. If the FET can be fabricated by GaN, an FET which is higher in speed, larger in current, and larger in voltage can be obtained. When a heterojunction such as AlGaN/GaN is formed, electrons are trapped at the bonding interface of AlGaN/GaN, and a two-dimensional electron gas that generates electrons in a two-dimensional knives generates a portion of the two-dimensional electron gas without scattering factors. Therefore, the two-dimensional electronic gas can move at high speed. The object of the present invention is to fabricate a nitride semiconductor crystal as a material of an FET and not as a material of the optical element as before. When an FET is fabricated using a GaN/AlGaN thin film, it is initially fabricated on a sapphire substrate. In the FET, the electrode of the gate, the gate, and the source is formed close to the conductor layer, and the current flows horizontally. The source, the gate, and the electrode of the electrode are also arranged on the upper surface. This point is different from the case where the current flows in the longitudinal direction of the light-emitting element in the substrate. In the case of the FET, there is no problem with the back n-electrode, so it may be an insulating sapphire substrate, but there is still a problem of lattice mismatch. Furthermore, there is also a problem of cost 135248.doc 200937499, and GaN-based FETs are far from practical. However, when fabricating a GaN-FET, in terms of lattice matching, it is preferable to use a sapphire substrate, preferably a GaN crystal substrate, and form an epitaxial film of GaN, AlGaN or the like thereon. And as a FET. Since it is a substrate of an FET, it is desirable to have a high conductivity n-type and a high-resistance semi-insulation. The properties required for the GaN crystal substrate for light-emitting elements hitherto are largely different. The present invention relates to a method of manufacturing a semi-insulating GaN substrate crystal which can be used as a FET φ substrate. The dopant is first described. Previously, for blue light-emitting elements, GaN or InGaN thin films were used. When it is required to be p-type, it is doped with Mg or doped with Zn. When it is necessary to become an n-type, Si is doped. The inventors of the present invention first discovered that in order to form an n-type GaN substrate, it is only necessary to dope oxygen. Thus, the n-type dopant is Si, 0. Thus, the problem is which dopant is used to make the GaN crystals semi-insulating and under what conditions. ® [Prior Art] When a nitride semiconductor-film (GaN, InGaN, AlGaN thin film, etc.) is formed on a sapphire substrate for the purpose of fabricating a light-emitting device, most of them are used. • MOCVD (Organic Metal Chemical Vapor Deposition, Metal Organic Chemical)

Vapor Deposition)法。因係氣相沈積法,故原料係以氣體 之形態而提供。氮係以氨(NH3)之形態而提供。MOCVD法 係以有機金屬之形態而提供第三族元素。將鎵、銦等第三 族元素之有機金屬(三甲基鎵、三乙基銦等)與NH3作為原 135248.doc 200937499 料而供給至經加熱之藍寶石基板上。 當藉由氣相沈積法來形成GaN系之半導體薄膜時,亦經 常使用HVPE(氫化物氣相生長,Hydride Vapor PhaseVapor Deposition) method. Because of the vapor deposition method, the raw materials are supplied in the form of a gas. Nitrogen is supplied in the form of ammonia (NH3). The MOCVD method provides a Group III element in the form of an organic metal. An organometallic (trimethylgallium, triethylindium, etc.) of a third group element such as gallium or indium and NH3 are supplied as raw 135248.doc 200937499 to the heated sapphire substrate. When a GaN-based semiconductor thin film is formed by vapor deposition, HVPE (Hydride Vapor Phase, Hydride Vapor Phase) is also often used.

EpitaXy)法。即,於晶座上設置放入有Ga金屬熔融液之Ga 晶舟’吹入HC1而合成GaCl,並將其作為Ga原料。因此, 原料氣體為GaCl與氨。 關於摻雜劑之問題’為了使GaN結晶成為半絕緣性,而 摻雜鐵(Fe)。鐵(Fe)於GaN結晶之帶隙中形成較深之能階 並捕獲η型載體(自由電子)’故載體減少。因此GaN結晶成 為半絕緣性。因並非完全絕緣性,故被稱作半絕緣性 (Semi-insulating) ’且具有不影響成為FET基板之程度的較 高的電阻率。即’本發明中所謂半絕緣性,係指例如具有 1χ10 Qcm以上之電阻率(specific resistance)。因添加至氣 相生長之氮化物半導體之内部,故必須使用氣體之鐵化合 物。例如’使用二環戊二烯基鐵((CsHshFe)、及二甲基環 戊二烯基鐵((CH3C5H4)2Fe)等。 國際公開WO 99/23693號手冊(以下稱作專利文獻1}中揭 示有如下方法:於GaAs基板上附上開口直徑為1〜5 、 開口間距為4 μηι〜10 μιη之掩模,形成GaN緩衝層,並於 820°C或970°C下利用MOCVD法使GaN結晶生長於其上c 面、或者於970°C、1000°C、1010°C、1020°C、或 1〇3〇。〇 下利用HVPE法使GaN結晶生長於其上C面,從而獲得較厚 之GaN結晶。 專利文獻1係使用具有微細開口之掩模者。圖1係表示基 135248.doc 200937499 底基板1上所形成之掩模3之一例的平面圖。掩模3上,較 廣之被覆4 (係指基底基板被掩模覆蓋之部分,以下相同) 中規貝]地排列有多個較小之開口 。基底基板丨自開口 3W露出。掩模3之被覆部之面積大於掩模3之開口部(開口 3w)的面積。 根據圖2A〜圖2G,說明藉由掩模法而減少結晶生長中之 位錯之原理。圖2A〜2G係表示利用掩模法之結晶生長步驟 之剖面圖。如圖2A所示,掩模3上係於基底基板丨上形成掩 模材、且規則地設置有較小之開口 3w。如圖2B所示,若 使氬化鎵氣相生長,則僅開口 3w中會產生氮化鎵結晶5。 結晶5與基底基板1之邊界產生多個朝上之位錯5t。 若進一步生長,則如圖2C所示,開口 3w上之結晶5之一 部分生長至掩模3上並於掩模3上橫向延伸。因結晶5橫向 生長’故位錯5t亦橫向延伸。橫面成為面指數較低之刻面 5f。如圖2D所示,結晶5向上方及橫向延伸,從而成為圓 錐梯形狀。圓錐台之上表面為C面5c。如圖2E所示,自一 個開口 3 w延伸出之結晶5與自該開口之鄰接開口 3 w延伸出 的結晶5接觸。兩方之結晶5、5中各自之位錯5t、5t橫向延 伸,且彼此碰撞。藉此,位錯5t、5t相互抵消。 如圖2F所示,結晶5之刻面5f之槽被填埋,而逐漸變 小。不久,刻面5 f所成之凹部被填埋而成為平坦之表面。 該平坦之表面係C面5c。之後’該C面5c繼續生長而作為表 面。開口 3 w上之位錯5t較多’而掩模3上之位錯5t較少。 專利文獻1係重要之先前技術,其中生長溫度及原料分 135248.doc -10- 200937499 壓等均有具體之揭示。專利文獻丨中對生長溫度之敍述如 下所示。於HVPE法之情形時,生長溫度為97(rc、 1〇〇〇t、1010°C、l〇20°C、或 1030t。於 MOCVD法之情 形時’生長溫度為82〇。〇或970。(:。 HVPE法中’原料為hc卜Ga熔融液、及NH3。第三族原 料使Ga熔融液與hci氣體進行反應而形成Gac卜所供給之 第二族原料與第五族原料之量,係藉由GaC1之分壓匕似與 NH3之分壓pNH3來表現。第五族原料相對於第三族原料之 比率Rs/3 ’可藉由NH3之分壓?則與GaC1之分壓匕❿的比 率來表現。即’定義為R5/3=PNH3/P(3ac丨。 藉由掩模法而形成之GaN結晶之比電阻S,係處於 S-0-005 ficm〜0.08 Ωοιη之範圍内。 關於專利文獻1之實施例中所述之MOCVD法的生長條 件’若以(生長溫度Tq、ΝΗ3分壓Ρνη3、TMG(三甲基鎵, Trimethyl Gallium)分壓PTMG、第五族/第三族之比尺5/3)來 表示’則為(970。(:、20 kPa、0.2 kPa、100)、(970°C、25 kPa、0.2 kPa、100)、(820。。、20 kPa、0.3 kPa、67)、 (970T:、20 kPa、0.2 kPa、100)、(1000。。、20 kPa、0.4 kPa、50)、(970〇C、25 kPa、0.5 kPa、50)。 關於專利文獻1之實施例中所述之HVPE法的生長條件, 若以(生長溫度Tq、NH3分壓pNH3、HC1分壓PHC1、第五族/ 第三族之比r5/3)來表示,則為(97〇〇c、25 kpa、2 kPa、 12.5)、(970°C、25 kPa、2,5 kPa、10)、(97(TC、25 kPa、 0.5 kPa、50)、(1000。。、20 kPa、2 kPa、10)、(950〇C、25 135248.doc 11 200937499 kPa、2 kPa、12.5)、(1020°C、25 kPa、2 kPa、12.5)、 (1000。。、25 kPa、2 kPa、12.5)、(loio。。、25 kPa、2 kPa、12.5)、(1030〇C、25 kPa、2 kPa、12.5) 〇 專利第3788037號說明書(日本專利特開2000-012900號 公報,以下稱作專利文獻2)中提供如下之獨立GaN基板, 其係於GaAs基板上形成呈錯齒狀地設有細小開口之掩模, 於其上一邊藉由HVPE法維持C面一邊使GaN結晶較厚地生 長,並除去GaAs基板,從而可獲得以下獨立GaN基板:直 ❹ 徑20 mm以上、厚度70 μπι以上,且當直徑換算為5〇 mm時 彎曲(翹曲)為0.55 mm以下。直徑50 mm之晶圓中,中心之 彎曲(翹曲)為0.55 mm,若換成曲率半徑r,則約6〇〇 mm= 0.6 m。 根據專利文獻2,在使用HVPE法時,生長溫度Tq設為 970°C、102CTC、或 103(TC,GaCl 分壓 pGaC1設為 i |^或2 kPa(0.01 〜0.02 atm),NH3分壓 PNH3則設為4 kPa 或 6 kPa。 &amp; 該專利文獻2中有如下敍述,當Gaa分壓p(jaci設為i kpa 時,會產生表面雖平坦但翹曲較大、内部應力巨大而易碎 故而無法使用之結晶’無法形成7 〇 以上之膜厚。 專利文獻2中有如下敍述,相反,當GaC1分壓匕⑹設為2 kPa時會產生表面雖粗縫但輕曲較小、内部應力較小之 結晶。NH3分壓1&gt;仙3為6 kPa、12 kpa、或24 kpa。第五族/ 第三族之比Rw為3、6或12。曲率半徑為i m左右。比電阻 為0.0035〜0.0083 Qcm。上述結晶為n型結晶。 關於專利文獻2之實施例中所述之生長條件,若以(生長 135248.doc •12· 200937499 溫度Tq、NH3分壓PNH3、GaCl分壓PGaC1、第五族/第三族之 比 R5/3)來表示’則為(l〇3〇C、4 kPa、1 kPa、4)、 (1030°C、6 kPa、1 kPa、6)、(97〇t、6 kPa、2 kPa、3)、 (970°C、6 kPa、1 kPa、6)、(97(TC、6 kPa、1 kPa、6)、 (1020Ό、6 kPa、2 kPa、3)、(1020X:、6 kPa、2 kPa、 3)、(103CTC、6 kPa、1 kPa、6)、(970°C、6 kPa、2 kPa、 3)、(970°C、12 kPa、2 kPa、6)、(97〇°c、24 kPa、2 kPa、12)。 專利第3788041號說明書(日本專利特開2000-0222 12號 公報,以下稱作專利文獻3)提出一種GaN之獨立單晶基板 之製造方法,其係於GaAs基板上形成具有在[u_2]方向上 隔以固定間隔且在[-1 10]方向上偏離半個間距之點狀開口 的掩模、或者具有於[1 1-2]方向上延伸之條狀開口的掩模 或者具有於[_ 11 0]方向上延伸之條狀開口的掩模,設置緩 衝層,一邊藉由HVPE法保持GaN結晶之C面一邊進行磊晶 生長,並除去基板與掩模。 專利文獻3亦係如圖丨所示之方法,其係於基底基板丨之 上形成以較小間距縱橫排列有多個較小之開口的掩模,使 GaN結晶氣相生長’從而減少結晶之位錯。Gw分壓p㈤ 有1 kPa(0.01 &amp;加)與2 kPa(0.02 atm)該兩種情形。專利文 獻3中有如下敍述,即’ si心之情形時,會產生表面平 坦但内部應力較大、翹曲亦較大而易碎之_結晶,於2 心之情形時’會產生表面粗糙但内部應力較小、翹曲較 小而不易碎之GaN結晶;當生長溫度為1〇2旳或1〇3吖 I35248.doc -13· 200937499 時,表面平坦,内部應力較大而易碎;於生長溫度97〇(&gt;c 且GaCl分壓為2 kPa之情形時,當結晶較厚時會產生表面 粗糙但内部應力較小且翹曲亦較小之GaN結晶。NH3分壓 Pnh3 為 6 kPa〜12 kPa 〇 釔而言之,專利文獻3中用以製造翹曲、内部應力較小 且不易碎之粗糙GaN結晶之溫度為97〇〇c、GaC1分壓為2 kPa、NH3分壓為6〜12 kPa、第五族/第三族之比尺…為3〜6 左右。可獲得比電阻為〇·01 〜〇 〇17 ncm之η型結晶。 關於專利文獻3之實施例中所述之HVPE生長條件,若以 (生長溫度Tq、ΝΗ3分壓PNH3、GaCi分壓pGaa、第五族/第 三族之比R5/3)來表示’則為(1〇3〇°c、4 kPa、1 kPa、4)、 (l〇30°C、6 kPa、1 kPa、6)、(970°C、6 kPa、2 kPa、3)、 (970°C、6 kPa、1 kPa、6)、(970°C、6 kPa、1 kPa、6)、 (102(TC、6 kPa、2 kPa、3)、(l〇2(TC、6 kPa、2 kPa、 3)、(1030°C、6 kPa、1 kPa、6)、(970°C、6 kPa、2 kPa、 3)、(970°C、12 kPa、2 kPa、6)、(970°C、24 kPa、2 kPa &gt; 12) 〇 於國際公開WO 98/471 70號手冊(以下稱作專利文獻4) 中’有如下敍述,即,使雙重、三重之EL〇掩模(Epitaxial Lateral 〇vergrowth ’橫向磊晶過生長)以交替重疊之方式 設置’從而減少位錯’並一邊藉由MOCVD法或HVPE法維 持C面一邊使Si摻雜之n型GaN結晶生長;ELO掩模於開口 之位錯密度較大、而掩模上之位錯密度較小,故以開口交 錯之方式附上雙重、三重的ELO掩模,從而減小位錯密 135248.doc 14 200937499 度;於M〇CVD法之情形時’第五族/第三族之比r5/3為 30〜2000係較佳條件。 實施例中,使用第五族/第三族之比In為i2〇〇、MU、 1800、1500、800、或3〇之比率的原料氣體。對於^^叩法 並未敍述。有如下敍述,即,n型摻雜劑為Si ;使用矽烷 (SiH4)氣體進行摻雜;首先,藉由m〇cvd法製作梯形結晶 直至ELO掩模之開口上為止,並於EL〇掩模上將要合體之 刖切換成1^?丑法;較好的生長溫度為95〇。(;:〜1〇5〇1^。 EPC公開EP0942459 A1公報(以下稱作專利文獻5)與專利 文獻4大致相同,提出藉由雙重、三重之EL〇掩模來減少 位錯之方案。又,於專利第37881〇4號說明書(日本專利特 開2000-044400號公報,以下稱作專利文獻6)最先提出藉由 將氧作為η型摻雜劑摻雜至GaN中以製造n型GaN基板之方 法。 專利文獻4、5係使用矽烷(SiH4)氣體並將以作為n型掺雜 劑而摻雜至結晶中。矽烷氣體有爆炸之可能性,為使η型 基板生長而大量使用矽烷氣體係極為危險的。專利文獻6 發現,氧於GaN結晶中形成較淺之施體能階;向原料氣體 NH3、HC1等中添加水,並於GaAs基板上設置EL〇掩模, 藉由HVPE法而使GaN結晶生長,則進行c面生長,但因原 料中有氧摻入而形成施體能階,並產生n型載體,從而使 結晶成為η型;且於較大之濃度範圍内活化率為j 〇〇% ;且 最先明確了氧對於如基板般之較厚的結晶,係較佳之η型 摻雜劑。 135248.doc •15- 200937499 於專利第3826825號說明書(日本專利特開2〇〇2_373864 號公報,以下稱作專利文獻7)中,明確了 GaN結晶中摻雜 氧時具有顯著的異向性。即,氧難以通過c面((〇〇〇1)面)進 入、但易通過C面以外之面進入之選擇性。專利文獻7提出 如下方法,如圖17所示平均係於e軸方向(「〇〇〇1」方向)上 之生長,但於表面上形成大量的非C面之刻面5f,並使氧 通過非C面即刻面5 f而摻入結晶,或者如圖丨8所示,使用 具有非C面(hkmn)y(OOOl)面)之GaN基底基板,並自非c面 表面摻雜氧。專利文獻7中最先明確了氧摻雜之顯著的異 向性。 關於專利文獻7之實施例中所述之HVPE生長條件,若以 (生長溫度Tq、NH3分壓PNH3、HC1分壓PHC1、第五族/第三 族之比 R5/3)來表示’則為(1020°C、20 kPa、1 kPa、20)。 曰本專利特開2001-102307號公開(以下稱作專利文獻8) k出了 一種與ELO法完全不同的新的位錯密度減小法。專 利文獻8中,藉由適當地控制生長條件,如圖3所示積極地 製作大量的刻面5 f、及由刻面形成之大小的凹坑5 p,並維 持刻面5f、凹坑5p不被掩埋直至生長結束。因維持刻面不 被掩埋直至最後’故稱作刻面生長。凹坑5p係六角錐或十 二角錐’此處為簡單起見,表示六角錐之凹坑。 如圖4之凹坑5p之立體圖、圖5之凹坑5p的平面圖所示, 右 邊維持刻面5f之凹部(凹坑5p) ’ 一邊使結晶生長,則 在凹坑5p内部,結晶會於刻面5f之法線方向〜上生長。 位錯51:係沿生長方向5v而延伸,故位錯5t係於刻面法線 135248.doc 16· 200937499 方向上延伸。藉由刻面生長而將位錯5t引向邊界線5b。於 ,線b下方形成位錯5t之集合(面狀之位錯集合結晶區域 5pd) ° 若刻面生長,則位錯進而向凹坑5p之底部集中。於凹坑 外之底部形成大量的位錯5t之集結部(線狀之缺陷集合··位 錯集合結晶區域5h)。即便位錯之總量幾乎不變,但因位 B會集中於面狀之位錯集合結晶區域5 口^、線狀之位錯集 合結晶區域5h中’故其他部分之位錯密度會減小。該方法 ❿ 肖⑽法不同,自生長中期至末期均有效。該方法係完全 新穎之位錯密度減小法。被稱作刻面生長法。 專利文獻8之方法因無法明確何處會產生凹坑5p(凹 部)’故將其稱作隨機刻面,以便與之後的改良形加以區 刀。所產生之結晶之表面存在嚴重的凹凸。 關於專利文獻8之實施例中所述之生長條件,若以(生長 溫度Tq、ΝΑ分壓PnH3、HCi分壓、第五族/第三族之 比r5/3)來表示,則為(105(rc、20 kPa、〇5 kpa、4〇)、 (i〇〇(rc、3〇 kPa、2 kPa、15)、(1㈣。c、2〇 咖、〇 5 kPa &gt; 40) ^ (l〇2〇t ^20 kPa ^ 1 kPa ^ 20) . (!〇〇〇r OO kPa、2 kPa、15)、(1〇〇(rc ' 4〇 kpa、3 kpa、⑺、 (980°C、40 kPa、4 kPa、i〇)。 專利文獻8中因刻面凹坑5p(係指由刻面5f所形成之凹坑 5p以下相同)之產生位置係偶然支配,故可稱作隨機刻 面法。而且並無局部之特異性,故暫時集結之位錯隨著生 長可能會再次離散。另外,因基板之上係供製作元件,故 135248.doc -17- 200937499 若預先指定刻面凹坑5p之產生位置則更佳。若可封閉位錯 且使其不再次離冑,則可進一步徹底地實現低位錯化。 專利第3864870號說明書(日本專利特開號 公報,以下稱作專利文獻9)中有如下敍述,即,如圖6所 不,於基底基板1上形成由孤立的點狀被覆部(掩模3部分) 規則地排列而成之掩模3,·基底基板丨上露出之部分(露出 部le)遠遠大於被覆部(掩模3部分);於被遮蓋的基底基板2 之上使GaN結晶氣相生長;被覆部(掩模3部分)之上的結晶 生長較慢,故產生以被覆部(掩模3部分)為底之凹部(刻面 凹坑5p)。 參照圖9A〜9F,對使用點型掩模之GaN結晶5之刻面生長 進行說明。如圖9顿示,於基底基板1之上形成孤立點狀 之被覆部(掩模3部分)《&gt;當氮化鎵結晶氣相生長時,如圖 9B所示,結晶5僅於基底基板丨之露出部卜上生長,而並不 於被覆部(掩模3部分)上生長。若結晶5進而生長,則如圖 9C所示,結晶5會堆積於露出部^上。傾斜面係面指數較 低之刻面5f。若結晶5進而生長,則如圖91)所示,產生如 以被覆部(掩模3部分)為底、傾斜面為刻面竹之六角錐、或 者十二角錐之刻面凹坑5P。若結晶5進而生長,則如圖9E :示,結晶5亦會形成至被覆部(掩模3部分)上。此係位錯 高密度集合之位錯集合結晶區域5h。刻面5f之下方係位錯 減乂刻面生長結晶區域5z。平坦面為c面c面k之下方 係位錯減少C面生長結晶區域5y。此處,GaN結晶中之位 錯集合結晶區域511、位錯減少c面生長結晶區域々以及位 135248.doc 200937499 錯減少刻面生長結晶區域5 可藉由螢光顯微鏡之可見光 像來觀察GaN結晶。亦即,接水舶地 力即,螢先顯微鏡之可見光像中,位 錯集合結晶區域5 h 4系flS· f +-¾ ». 你暗&amp;域’位錯減少C面生長結晶區域 係較強之區域(發光較強之區域),而位錯減少刻面生長 結晶區域5z係較弱之區域(發光較弱之區域)。 參照圖7所示之結晶5夕#贼面 〇日日5之立體圖、以及圖8所示之結晶5之 平面圖,刻面凹坑5p縱橫地排列㈣aN結晶5之表面上,EpitaXy) method. In other words, a Ga wafer boat in which a Ga metal melt is placed is placed on the crystal holder, and HC1 is blown to synthesize GaCl, and this is used as a Ga raw material. Therefore, the material gases are GaCl and ammonia. Regarding the problem of the dopant, iron (Fe) is doped in order to make the GaN crystal semi-insulating. Iron (Fe) forms a deeper energy level in the band gap of the GaN crystal and captures the n-type carrier (free electrons), so the carrier is reduced. Therefore, the GaN crystal is semi-insulating. Since it is not completely insulative, it is called semi-insulating and has a high resistivity which does not affect the extent of the FET substrate. That is, the term "semi-insulating property" in the present invention means, for example, a specific resistance of 1 χ 10 Qcm or more. Since it is added to the inside of the nitride semiconductor grown by the gas phase, it is necessary to use a gas iron compound. For example, 'dicyclopentadienyl iron ((CsHshFe), and dimethylcyclopentadienyl iron ((CH3C5H4)2Fe), etc. are used. International Publication WO 99/23693 (hereinafter referred to as Patent Document 1) A method is disclosed in which a mask having an opening diameter of 1 to 5 and an opening pitch of 4 μm to 10 μm is attached to a GaAs substrate to form a GaN buffer layer, and GaN is formed by MOCVD at 820 ° C or 970 ° C. The crystal grows on the upper c-plane, or at 970 ° C, 1000 ° C, 1010 ° C, 1020 ° C, or 1 〇 3 〇. The GaN crystal is grown on the upper C surface by HVPE method, thereby obtaining Thick GaN crystal. Patent Document 1 uses a mask having a fine opening. Fig. 1 is a plan view showing an example of a mask 3 formed on a base substrate 1 of 135248.doc 200937499. On the mask 3, it is wider. The cover 4 (refers to the portion covered by the mask on the base substrate, the same applies hereinafter) has a plurality of smaller openings. The base substrate is exposed from the opening 3W. The area of the cover portion of the mask 3 is larger than the mask. The area of the opening (opening 3w) of 3. According to FIG. 2A to FIG. 2G, the crystallization process is reduced by the mask method. 2A to 2G are cross-sectional views showing a crystal growth step by a mask method. As shown in FIG. 2A, a mask 3 is formed on a base substrate to form a mask material, and regularly A small opening 3w is provided. As shown in Fig. 2B, if gallium argon is grown in vapor phase, gallium nitride crystal 5 is generated only in the opening 3w. The boundary between the crystal 5 and the base substrate 1 is a plurality of upwards. Dislocation 5t. If further grown, as shown in Fig. 2C, one portion of the crystal 5 on the opening 3w is grown onto the mask 3 and extends laterally on the mask 3. Since the crystal 5 grows laterally, the dislocation 5t is also lateral. The transverse plane becomes a facet 5f having a low surface index. As shown in Fig. 2D, the crystal 5 extends upward and laterally to form a conical ladder shape. The upper surface of the truncated cone is a C-plane 5c. As shown in Fig. 2E, The crystal 5 extending from one opening 3w is in contact with the crystal 5 extending from the adjacent opening 3w of the opening. The dislocations 5t, 5t of the two crystals 5, 5 extend laterally and collide with each other. The dislocations 5t and 5t cancel each other out. As shown in Fig. 2F, the groove of the facet 5f of the crystal 5 is filled. Soon, the concave portion formed by the facet 5 f is filled into a flat surface. The flat surface is the C surface 5c. Then the 'C surface 5c continues to grow as a surface. The position on the opening 3 w The error 5t is more 'and the dislocation 5t on the mask 3 is less. Patent Document 1 is an important prior art, in which the growth temperature and the raw material fraction 135248.doc -10- 200937499 pressure are specifically disclosed. Patent Literature丨The description of the growth temperature is as follows. In the case of the HVPE method, the growth temperature is 97 (rc, 1 〇〇〇t, 1010 ° C, 10 ° C ° C, or 1030 t. In the case of the MOCVD method, the growth temperature is 82 〇. 〇 or 970. (: In the HVPE method, 'the raw material is hc-bu-Ga melt, and NH3. The third-group raw material reacts the Ga melt with the hci gas to form the amount of the second-group raw material and the fifth-group raw material supplied by the Gac. It is expressed by the partial pressure of GaC1 and the partial pressure pNH3 of NH3. The ratio of the fifth group raw material to the third-group raw material Rs/3 ' can be divided by NH3, and the partial pressure of GaC1 The ratio is expressed as 'R5/3=PNH3/P (3ac丨. The specific resistance S of the GaN crystal formed by the mask method is in the range of S-0-005 ficm~0.08 Ωοιη. The growth conditions of the MOCVD method described in the examples of Patent Document 1 are as follows (growth temperature Tq, ΝΗ3 partial pressure Ρνη3, TMG (trimethyl gallium), partial pressure PTMG, fifth/third family The scale of 5/3) means 'then (970. (:, 20 kPa, 0.2 kPa, 100), (970 ° C, 25 kPa, 0.2 kPa, 100), (820.., 20 kPa, 0.3)kPa, 67), (970T:, 20 kPa, 0.2 kPa, 100), (1000%, 20 kPa, 0.4 kPa, 50), (970 〇C, 25 kPa, 0.5 kPa, 50). The growth conditions of the HVPE method described in the examples are represented by (growth temperature Tq, NH3 partial pressure pNH3, HC1 partial pressure PHC1, fifth group/third group ratio r5/3), then (97) 〇〇c, 25 kpa, 2 kPa, 12.5), (970 °C, 25 kPa, 2,5 kPa, 10), (97 (TC, 25 kPa, 0.5 kPa, 50), (1000.., 20 kPa) , 2 kPa, 10), (950〇C, 25 135248.doc 11 200937499 kPa, 2 kPa, 12.5), (1020 ° C, 25 kPa, 2 kPa, 12.5), (1000.., 25 kPa, 2 kPa) , 12.5), (loio, . 25 kPa, 2 kPa, 12.5), (1030 〇 C, 25 kPa, 2 kPa, 12.5) 〇 Patent No. 3780 037 (Japanese Patent Laid-Open No. 2000-012900, hereinafter referred to as Patent Document 2) provides an independent GaN substrate in which a mask having fine openings in a staggered manner is formed on a GaAs substrate, and a GaN crystal is thickened by maintaining a C-plane by an HVPE method. Growing and removing the GaAs substrate Obtained freestanding GaN substrate, the following: straight ❹ diameter of at least 20 mm, a thickness of more than 70 μπι, and when the bending diameter 5〇 converted to mm (warp) of 0.55 mm or less. In a 50 mm diameter wafer, the center bend (warp) is 0.55 mm, and if it is changed to the radius of curvature r, it is about 6 〇〇 mm = 0.6 m. According to Patent Document 2, when the HVPE method is used, the growth temperature Tq is set to 970 ° C, 102 CTC, or 103 (TC, GaCl partial pressure pGaC1 is set to i |^ or 2 kPa (0.01 to 0.02 atm), and NH3 partial pressure PNH3 In the case of Gaa partial pressure p (jaci is i kpa), the surface is flat but the warpage is large and the internal stress is large and fragile. Therefore, the crystal which cannot be used 'cannot form a film thickness of 7 〇 or more. Patent Document 2 has the following description. On the contrary, when the GaC1 partial pressure enthalpy (6) is set to 2 kPa, the surface is rough, but the surface is small, and the internal stress is small. Smaller crystals. NH3 partial pressure 1&gt; Xian 3 is 6 kPa, 12 kpa, or 24 kpa. The ratio of the fifth group to the third group Rw is 3, 6 or 12. The radius of curvature is about im. The specific resistance is 0.0035. 〜0.0083 Qcm. The above crystal is an n-type crystal. The growth conditions described in the examples of Patent Document 2 are (growth 135248.doc •12·200937499 temperature Tq, NH3 partial pressure PNH3, GaCl partial pressure PGaC1, The ratio of the five/third group R5/3) means 'then (l〇3〇C, 4 kPa, 1 kPa, 4), (1030 ° C, 6 kPa, 1) kPa, 6), (97〇t, 6 kPa, 2 kPa, 3), (970 °C, 6 kPa, 1 kPa, 6), (97 (TC, 6 kPa, 1 kPa, 6), (1020 Ό, 6 kPa, 2 kPa, 3), (1020X:, 6 kPa, 2 kPa, 3), (103CTC, 6 kPa, 1 kPa, 6), (970 °C, 6 kPa, 2 kPa, 3), (970) °C, 12 kPa, 2 kPa, 6), (97 〇 °c, 24 kPa, 2 kPa, 12). Patent No. 3788041 (Japanese Patent Laid-Open No. 2000-0222 12, hereinafter referred to as Patent Document 3) A method for fabricating a GaN independent single crystal substrate is proposed which is formed on a GaAs substrate by a mask having a dot-like opening which is spaced apart by a fixed interval in the [u_2] direction and which is offset by a half pitch in the [-1 10] direction. a mask, or a mask having strip openings extending in the [1 1-2] direction or a mask having strip openings extending in the [_11 0] direction, providing a buffer layer while being held by the HVPE method The C-plane of the GaN crystal is epitaxially grown, and the substrate and the mask are removed. Patent Document 3 is also a method as shown in Fig. ,, which is formed by arranging a plurality of layers on the base substrate 纵 at a small pitch. a small opening mask, GaN crystal vapor phase growth 'bits so as to reduce the crystal dislocation. The Gw partial pressure p (five) has two cases of 1 kPa (0.01 &amp; plus) and 2 kPa (0.02 atm). Patent Document 3 discloses that, in the case of 'Si heart, a crystal having a flat surface but a large internal stress and a large warpage and being brittle is generated, and in the case of 2 hearts, a surface roughness is generated. GaN crystal with less internal stress and less warpage and less brittleness; when the growth temperature is 1〇2旳 or 1〇3吖I35248.doc -13· 200937499, the surface is flat, the internal stress is large and fragile; When the growth temperature is 97 〇 (&gt;c and the partial pressure of GaCl is 2 kPa, when the crystal is thick, GaN crystals having a rough surface but less internal stress and less warpage are produced. The NH3 partial pressure Pnh3 is 6 kPa. In the case of ~12 kPa, in Patent Document 3, the temperature of the rough GaN crystal which is warped, has small internal stress and is not easily broken is 97〇〇c, the partial pressure of GaC1 is 2 kPa, and the partial pressure of NH3 is 6. ~12 kPa, a fifth-group/third-group scale, which is about 3 to 6. An η-type crystal having a specific resistance of 〇·01 to 〇〇17 ncm can be obtained. HVPE growth conditions, if (growth temperature Tq, ΝΗ3 partial pressure PNH3, GaCi partial pressure pGaa, fifth/third group ratio R5/3) '(1〇3〇°c, 4 kPa, 1 kPa, 4), (l〇30°C, 6 kPa, 1 kPa, 6), (970°C, 6 kPa, 2 kPa, 3) ), (970 ° C, 6 kPa, 1 kPa, 6), (970 ° C, 6 kPa, 1 kPa, 6), (102 (TC, 6 kPa, 2 kPa, 3), (l〇2 (TC) , 6 kPa, 2 kPa, 3), (1030 ° C, 6 kPa, 1 kPa, 6), (970 ° C, 6 kPa, 2 kPa, 3), (970 ° C, 12 kPa, 2 kPa, 6) ) (970 ° C, 24 kPa, 2 kPa &gt; 12) In the International Publication WO 98/471 70 manual (hereinafter referred to as Patent Document 4), the following description is made, that is, double and triple EL〇 a mask (Epitaxial Lateral 〇vergrowth 'transverse epitaxial overgrowth) is disposed in an alternately overlapping manner to reduce dislocations and crystallizes the Si-doped n-type GaN while maintaining the C-plane by MOCVD or HVPE; The ELO mask has a large dislocation density in the opening and a small dislocation density on the mask, so the double and triple ELO masks are attached in an interlaced manner to reduce the dislocation density 135248.doc 14 200937499 Degree; in the case of M〇CVD method, the ratio of the fifth/third group r5/3 is 30~2000 Preferably, in the embodiment, the ratio of In of the fifth group/third group is used as a material gas of a ratio of i2 〇〇, MU, 1800, 1500, 800, or 3 。. The ^^ method is not described. There is a description that the n-type dopant is Si; doping is performed using a silane (SiH4) gas; first, a trapezoidal crystal is formed by the m〇cvd method until it reaches the opening of the ELO mask, and is applied to the EL〇 mask. The upper part will be switched to 1^? ugly method; the better growth temperature is 95〇. (;: 〜1〇5〇1^. The EPC publication EP0942459 A1 (hereinafter referred to as Patent Document 5) is substantially the same as Patent Document 4, and proposes a scheme for reducing dislocations by a double or triple EL 〇 mask. In the specification of Japanese Patent No. 37881-4 (Japanese Patent Laid-Open Publication No. 2000-044400, hereinafter referred to as Patent Document 6), it is first proposed to dope n-type GaN by doping oxygen into an GaN as an n-type dopant. Method of substrate. Patent Documents 4 and 5 use decane (SiH4) gas and dope into the crystal as an n-type dopant. The decane gas has a possibility of explosion, and a large amount of decane is used for growing the n-type substrate. The gas system is extremely dangerous. Patent Document 6 found that oxygen forms a shallow donor energy level in GaN crystals; water is added to the material gases NH3, HC1, etc., and an EL〇 mask is placed on the GaAs substrate by the HVPE method. When the GaN crystal is grown, the c-plane growth is performed, but the donor energy level is formed by the oxygen incorporation in the raw material, and the n-type carrier is generated, so that the crystal becomes n-type; and the activation ratio is in a large concentration range. j 〇〇% ; and the first clear oxygen A thicker crystallization is a preferred η-type dopant. 135248.doc • 15-200937499, in the specification of Japanese Patent No. 3,826,825 (Japanese Patent Laid-Open Publication No. Hei No. 2-373864, hereinafter referred to as Patent Document 7) It is clear that the GaN crystal has a significant anisotropy when it is doped with oxygen. That is, it is difficult for oxygen to enter through the c-plane ((〇〇〇1) plane), but it is easy to enter through the surface other than the C-plane. Patent Document 7 The following method is proposed. As shown in Fig. 17, the average is grown in the e-axis direction ("〇〇〇1" direction), but a large number of non-C face facets 5f are formed on the surface, and oxygen is passed through the non-C plane. The GaN substrate having a non-C-face (hkmn) y (OO1) plane is used as the face 5 f to incorporate crystals, or as shown in FIG. 8 , and oxygen is doped from the non-c-plane surface. In Patent Document 7, the remarkable anisotropy of oxygen doping is first confirmed. The HVPE growth conditions described in the examples of Patent Document 7 are expressed as (growth temperature Tq, NH3 partial pressure PNH3, HC1 partial pressure PHC1, fifth group/third group ratio R5/3) (1020 ° C, 20 kPa, 1 kPa, 20). A new dislocation density reduction method which is completely different from the ELO method is disclosed in Japanese Laid-Open Patent Publication No. 2001-102307 (hereinafter referred to as Patent Document 8). In Patent Document 8, by appropriately controlling the growth conditions, a large number of facets 5 f and pits 5 p of a size formed by the facets are actively produced as shown in FIG. 3, and the facets 5f and pits 5p are maintained. Not buried until the end of growth. Because the facets are not buried until the end, it is called facet growth. The pit 5p is a hexagonal cone or a dip cone. Here, for the sake of simplicity, the pit of the hexagonal cone is shown. As shown in the perspective view of the pit 5p of FIG. 4 and the recessed surface 5p of FIG. 5, the concave portion (pit 5p) of the facet 5f is maintained on the right side, and while the crystal grows, the crystal will be engraved inside the pit 5p. The normal direction of the face 5f is grown up. Dislocation 51: extends along the growth direction 5v, so the dislocation 5t extends in the direction of the facet normal 135248.doc 16·200937499. The dislocation 5t is directed to the boundary line 5b by facet growth. A set of dislocations 5t is formed below the line b (the planar dislocation set crystal region 5pd). If the facet grows, the dislocations are concentrated toward the bottom of the pit 5p. A large number of clusters of dislocations 5t are formed at the bottom of the pits (linear defect set·dislocation set crystal regions 5h). Even if the total amount of dislocations is almost constant, the position B will be concentrated in the planar dislocations, the crystallized area is 5, and the linear dislocations are collected in the crystallized area 5h, so the dislocation density of other parts will decrease. . This method is different from the XI (10) method and is effective from the middle to the end of growth. This method is a completely novel method of reducing the density of dislocations. It is called facet growth method. The method of Patent Document 8 is called a random facet because it is impossible to know where a pit 5p (concave portion) is generated, so that it can be zoned with the subsequent modified shape. The surface of the crystal produced has severe irregularities. The growth conditions described in the examples of Patent Document 8 are represented by (growth temperature Tq, ΝΑ partial pressure PnH3, HCi partial pressure, fifth group/third group ratio r5/3), then (105) (rc, 20 kPa, 〇5 kpa, 4〇), (i〇〇(rc, 3〇kPa, 2 kPa, 15), (1(four).c, 2〇, 〇5 kPa &gt; 40) ^ (l 〇2〇t ^20 kPa ^ 1 kPa ^ 20) . (!〇〇〇r OO kPa, 2 kPa, 15), (1〇〇(rc ' 4〇kpa, 3 kpa, (7), (980°C, 40 kPa, 4 kPa, i〇). In Patent Document 8, the position at which the facet pit 5p (which is the same as the pit 5p formed by the facet 5f) is accidentally dominated, so it can be called a random facet. There is no local specificity, so the dislocation of the temporary assembly may be discretized again with the growth. In addition, since the substrate is used for making components, 135248.doc -17- 200937499 If the faceted pit is specified in advance The position where the 5p is generated is more preferable. If the dislocation can be closed and it is not separated from the crucible, the low dislocation can be further completely achieved. Patent No. 3864870 (Japanese Patent Laid-Open Publication No. Hei Publication No. Hei 9) ) As described below, as shown in FIG. 6, a mask 3 in which the isolated dot-like covering portions (the portions of the mask 3) are regularly arranged is formed on the base substrate 1, and the exposed portion of the base substrate is exposed (exposed) The portion is far larger than the covering portion (the portion of the mask 3); the GaN crystal is vapor-grown on the covered base substrate 2; the crystal growth on the covering portion (the portion of the mask 3) is slow, so that The covered portion (the portion of the mask 3) is a recessed portion (faceted pit 5p). The facet growth of the GaN crystal 5 using the dot mask will be described with reference to FIGS. 9A to 9F. An isolated dot-shaped covering portion (mask 3 portion) is formed on the base substrate 1. "When the gallium nitride crystal is vapor-grown, as shown in FIG. 9B, the crystal 5 is grown only on the exposed portion of the base substrate. It is not grown on the coated portion (mask 3 portion). If the crystal 5 is further grown, as shown in Fig. 9C, the crystal 5 is deposited on the exposed portion. The facet 5f having a low inclined surface index is 5f If the crystal 5 is further grown, as shown in FIG. 91), as shown in the surface of the covering portion (the portion of the mask 3), The bevel is a hexagonal cone of a faceted bamboo or a facet pit 5P of a dodecagonal pyramid. If the crystal 5 is further grown, as shown in Fig. 9E, the crystal 5 is also formed on the covered portion (the portion of the mask 3). Dislocation high density set of dislocations set crystallization area 5h. Below the facet 5f is a dislocation reduction 乂 facet growth crystallization area 5z. Flat face is c face c face k below the system dislocation reduction C face growth crystallization area 5y. Here, the dislocation crystallization region 511 in the GaN crystal, the dislocation reduction c-plane growth crystallization region 々 and the position 135248.doc 200937499 erroneous reduction of the facet growth crystallization region 5 can be observed by the visible light image of the fluoroscopy microscope GaN crystallizes. That is, the groundwater force is the visible light image of the first microscope, the dislocations are collected in the crystalline region 5 h 4 series flS· f +-3⁄4 ». Your dark &amp; field' dislocations reduce the C-side growth crystallization region A strong region (a region with a strong luminescence), and a dislocation reduces a region where the facet growth crystallization region is weaker (the region where the luminescence is weak). Referring to the plan view of the crystal 5, the rib face, the day 5, and the plan 5 of the crystal 5 shown in Fig. 7, the faceted pits 5p are arranged vertically and horizontally on the surface of the (a) aN crystal 5,

域刻面凹坑5p係由倒錐形之如花瓣之刻面5f而形成。凹 坑5p下之相田於莖部之結晶區域係位錯集結之位錯集合結 曰曰區域5h莖σ[5 (位錯集合結晶區域叫下之相當於根部之 部分係被覆部(掩模3部分)。平坦面係CM。。CM。之下 方所生長之結晶區域(位錯減少Μ生長結晶區域W係低 位錯密度部分。刻面5f之下方所生長之結晶區域(位錯減少 刻面生長結晶區域5z)亦係低位錯密度部分。《了與其他 區域進行區分,有時亦稱作點型。假設將該方法稱作點狀 刻面生長法。The domain facet pit 5p is formed by an inverted cone-shaped facet 5f such as a petal. In the crystal region of the stem under the pit 5p, the dislocation set of the dislocations is the 5h stem σ [5 (the dislocation set crystal region is called the part corresponding to the root part of the coating (mask 3) Part). The flat surface is the crystallization area under which CM. CM is grown (dislocation reduction Μ growth crystallization region W is low dislocation density portion. Crystallized region grown below facet 5f (dislocation reduces facet growth) The crystallization region 5z) is also a low dislocation density portion. It is distinguished from other regions and is sometimes called a dot type. It is assumed that this method is called a point facet growth method.

如上所述刻面凹杌5p具有使刻面5f上之位錯5〖向邊界 線5b集中、進而向凹坑底集中之作用。凹坑底(被覆部(掩 模3部分)之上方)係位錯集結之位錯集合結晶區域5匕。暫時 集結後之位錯並*會再次離散。由此,位錯集合結晶區域 5h亦被稱作「封閉位錯集合結晶區域」。 錯較少之位錯減少刻面生長結晶區域52(產生於刻= 方)、位錯減少C面生長結晶區域巧(產生於〇面之下方)。 如此獲得之位錯減少刻面生長結晶區域5z以及位錯減少c 135248.doc -19- 200937499 面生長結晶區域外中,位錯均得以減少。由此,亦將位錯 減少刻面生長結晶區域5 z以及位錯減少c面生長結晶區域 5y—併稱作位錯減少結晶區域。 根據專利文獻9,最先形成了位錯集合結晶區域5h、位 錯減=刻面生長結晶區域5z、及位錯減少c面生長結晶區 域5y^_樣的概念。雖稱作掩模,但並非如掩模般以較 小間距存在較小開口。而是於基底基板1之較大之露出部 le中製作相當大的點狀(圓、四邊等)被覆部(掩模3部分) (圖 6)。 圖1所示之ELO掩模中,基底基板丨之露出部ie(開口 3w) 窄於被覆部(掩模3部分),且露出部^較小(直徑卜2 _、 間距亦較小(2 μιη〜6 μιη)。 與ELO掩模相反,專利文獻9之以刻面凹坑之基礎之 掩模3中,基底基板丨之露出部“大於被覆部(掩模3部分)。 被覆部(掩模3部分)之直徑相當大(直徑2〇 μιη〜1〇〇 μηι)。被 覆邛(掩模3邛为)之上方成為刻面凹坑底部。刻面凹坑外使 位錯向底部集中後加以捕獲,而不會使位錯再次離散。其 特徵在於:於掩模3之上之位置形成高位錯密度之位錯集 合結晶區域5h,且於其周圍形成低位錯密度之位錯減少刻 面生長結晶區域5z以及位錯減少c面生長結晶區域5y。於 無掩模之基底基板1之露出部16上形成低位錯密度之位錯 減少刻面生長結晶區域5z以及位錯減少C面生長結晶區域 5y。位錯減少刻面生長結晶區域5z形成於刻面5f之正下 方’且位錯減少C面生長結晶區域5y形成於C面生長部分 135248.doc -20 - 200937499As described above, the facet concave portion 5p has a function of concentrating the dislocations 5 on the facet 5f toward the boundary line 5b and further concentrating toward the bottom of the pit. The bottom of the pit (over the portion of the mask (the portion of the mask 3)) is a dislocation-concentrated crystal region 5匕 of the dislocation assembly. The dislocations after the temporary assembly and * will be discrete again. Thus, the dislocation set crystallization region 5h is also referred to as "closed dislocation crystallization region". The less dislocations reduce the facet growth crystallization region 52 (produced in the square = square), and the dislocations decrease the C-plane growth crystallization region (produced below the kneading surface). The dislocations thus obtained reduce the facet growth crystallization region 5z and the dislocation reduction c 135248.doc -19-200937499 The dislocations are all reduced in the surface growth crystallization region. Thereby, the dislocations are also reduced by the facet growth crystallization region 5 z and the dislocations are reduced by the c-plane growth crystallization region 5y - and are referred to as dislocation-reduced crystal regions. According to Patent Document 9, the concept of the dislocation set crystallization region 5h, the dislocation reduction = facet growth crystallization region 5z, and the dislocation reduction c-plane growth crystallization region 5y^_ is formed first. Although referred to as a mask, there is not a small opening at a relatively small pitch as a mask. On the other hand, in the large exposed portion le of the base substrate 1, a relatively large dot (circle, four-sided, etc.) covering portion (mask 3 portion) is formed (Fig. 6). In the ELO mask shown in FIG. 1, the exposed portion ie (opening 3w) of the base substrate 窄 is narrower than the covered portion (the portion of the mask 3), and the exposed portion is small (the diameter is 2 _, and the pitch is also small (2). In contrast to the ELO mask, in the mask 3 based on the faceted pit of Patent Document 9, the exposed portion of the base substrate “ is "greater than the covered portion (mask 3 portion). The diameter of the mold 3 is quite large (diameter 2〇μιη~1〇〇μηι). The top of the cover 邛 (the mask 3邛) becomes the bottom of the faceted pit. The facet is outside the pit and the dislocation is concentrated to the bottom. It is captured without dispersing the dislocations again. It is characterized in that a dislocation-concentrated crystalline region 5h having a high dislocation density is formed at a position above the mask 3, and a dislocation-reducing facet having a low dislocation density is formed therearound. The growth crystallization region 5z and the dislocation reduction c-plane growth crystallization region 5y. The dislocation-reducing facet growth crystallization region 5z and the dislocation reduction C-plane growth crystallization are formed on the exposed portion 16 of the maskless base substrate 1 at a low dislocation density. Region 5y. Dislocations reduce the facet growth crystallization region 5z formed in Immediately below the surface of 5f 'and reduce the growth of the dislocation crystal region 5y is formed on the C-plane C-plane growth portion 135248.doc -20 - 200937499

下方位錯減』刻面生長結晶區域5z以及位錯減少c 面生長結曰日區域5y均為單晶且位錯密度較低。可以點狀掩 模為中心而形成位錯集合結晶區域5 h /位錯減少刻面生長 結晶區域5z/位錯減少C面生長結晶區域々之同心構造。 ELO中,基底基板丨之露出部“(掩模3之開口 3幻之上方係 向位錯密度之位錯集合結晶區域5h,而被覆部(掩模3部分) 之上方係低位錯密度之位錯減少刻面生長結晶區域52以及 位錯減少C面生長結晶區域5y。其等之關係完全相反。 關於專利文獻9之實施例中之生長條件,若以(生長溫度 Tq、NH3分壓ΡΝΗ3、Ηα分壓ρΗα、第五族/第三族之比 U 來表示’則為(1050〇c、3〇 kPa、2 kPa、15)、 (1030 C、30 kPa、2_5 kPa、12)、(l〇i(TC、2〇 kPa、2.5 kPa、8)、(1030 C、25 kPa、2.5 kPa、10)、(i〇5〇°c、3〇 kPa、2.5 kPa、12)、(l〇30°C、25 kPa、2 kPa、12.5)、 (1030°C、25 kPa、2 kPa、12.5)。 專利文獻9中掩模3係規則分布之孤立點(點)狀,因此, 於點上形成位錯集合結晶區域5h,且於其周圍形成位錯減 少刻面生長結晶區域5 z以及位錯減少c面生長結晶區域 5y。半導體雷射或發光二極體等元件係形成於位錯減少刻 面生長結晶區域5 z以及位錯減少C面生長結晶區域5 y上, 故有時若位錯集合結晶區域5 h分散則不理想。 因此’專利第3801 125號說明書(日本專利特開2003-183 100號公報,以下稱作專利文獻ι〇)中,如圖1〇所示, 於基底基板1上以等間隔形成具有平行條紋狀之被覆部(掩 135248.doc -21 - 200937499 模3部分)的掩模3,並於其上使GaN結晶刻面生長。掩模3 之被覆部(掩模3部分)之寬度Ds與基底基板!之露出部^之 寬度Dw之總值為間距Dp(Dp=Ds+Dw)。Ds遠遠小於Dw。 藉由氣相生長而於基底基板1上使GaN結晶生長。 參照圖11所示之結晶5之平面圖以及圖12所示之結晶5之 立體圖,所得之GaN結晶5成為具有平坦頂面之平行的多 個凹凸型結晶。於被覆部(掩模3部分)上形成相互平行之位The lower azimuth error reduction facet growth crystal region 5z and the dislocation reduction c face growth crucible day region 5y are all single crystals and the dislocation density is low. The dislocation-forming crystal region can be formed centering on the dot mask. 5 h / dislocation reduces the facet growth. The crystal region 5z/dislocation reduces the concentric structure of the C-plane growth crystal region. In the ELO, the exposed portion of the base substrate “ "(the opening 3 of the mask 3 is above the dislocation density crystallization region 5h of the dislocation density, and the upper portion of the coating portion (the portion of the mask 3) is at the low dislocation density) The difference between the facet growth crystallization region 52 and the dislocation reduction C-plane growth crystallization region 5y is reversed. The growth conditions in the examples of Patent Document 9 are (the growth temperature Tq, NH3 partial pressure ΡΝΗ 3, Ηα partial pressure ρΗα, the ratio of the fifth group/third family U means 'then (1050〇c, 3〇kPa, 2 kPa, 15), (1030 C, 30 kPa, 2_5 kPa, 12), (l 〇i (TC, 2 kPa, 2.5 kPa, 8), (1030 C, 25 kPa, 2.5 kPa, 10), (i〇5〇°c, 3〇kPa, 2.5 kPa, 12), (l〇30 °C, 25 kPa, 2 kPa, 12.5), (1030 ° C, 25 kPa, 2 kPa, 12.5). In Patent Document 9, the mask 3 is an isolated point (dot) in a regular distribution, and thus is formed at a point. The dislocations collect the crystal regions 5h, and form dislocations around them to reduce the facet-grown crystal regions 5 z and the dislocations to reduce the c-plane growth crystal regions 5y. Semiconductor lasers or light-emitting diodes and the like It is formed in the dislocation-reducing facet-growing crystal region 5 z and the dislocation-reducing C-plane growth crystal region 5 y. Therefore, it is not preferable if the dislocation-collecting crystal region is dispersed for 5 h. Therefore, the patent No. 3801 125 (Japanese Patent Laid-Open Publication No. 2003-183100, hereinafter referred to as Patent Document 〇), as shown in FIG. 1A, a portion having a parallel stripe shape is formed on the base substrate 1 at equal intervals (mask 135248.doc) -21 - 200937499 Part 3 of the mask 3, and GaN crystal facets are grown thereon. The width Ds of the covered portion (mask 3 portion) of the mask 3 and the width Dw of the exposed portion of the base substrate! The total value is the pitch Dp (Dp = Ds + Dw). Ds is much smaller than Dw. GaN crystal growth is performed on the base substrate 1 by vapor phase growth. Referring to the plan view of the crystal 5 shown in Fig. 11 and Fig. 12 A perspective view of the crystal 5 is shown, and the obtained GaN crystal 5 is a plurality of concavo-convex crystals having a flat top surface in parallel, and is formed in parallel with each other on the covering portion (the portion of the mask 3).

❹ 錯集合結晶區域5h,並於基底基板丨之露出部上形成相互 平行之位錯減少刻面生長結晶區域5z以及位錯減少c面生 長結晶區域5y。形成於平行掩模上且位錯集中之區域被稱 作位錯集合結晶區域5h。與該位錯集合結晶區域讣鄰接、 且於刻面5f下方連續生長之結晶區域,被稱作位錯減少刻 面生長結晶區域5z。於相鄰之位錯減少刻面生長結晶區域 5z、5z之間,有時產生位錯減少c面生長結晶區域々,有 時不產生。 於專利文獻9中,形成於孤立點狀之㈣上之位錯集合 結晶區域5ht,暫時集結之位錯不會再次離散。亦即,形 成於孤立點狀之掩模上之位錯集合結晶區域化被封閉。同 樣’形成於條狀掩模上之位錯集合結晶區域讣中,暫時集 結之位錯亦不會再次離散。亦即,形成於條狀掩模上之位 錯集合結晶區域5h亦被封閉。位錯減少刻面生長結晶區域 域被位錯集合結晶區域5h失住而生長。位錯減少C面生 長結晶區域5y有時產生、有時不產生。該位錯減少C面生 長結晶區域5y係於C面之下方生長的結晶區域。 135248.doc •22- 200937499 根據不同生長方法,有時位供祕,卜p = 于位錯減少C面生長結晶區域5y 亦會消失。參照圖U所示之結晶5之平面圖以及圖14所示 之結晶5之立體圖’有時所得之㈣結晶5係、具有尖銳脊線 之凹凸型結晶。被覆部(掩模3部分)上形成有相互平行之位 錯集合結晶區域5h。上述位錯集合結晶區域511為凹部。於 • 《臨近之基底基板1之露出部上產生相互平行之位錯減少 刻面生長結晶區域5z。凸形之刻面5f、5f尖銳,並無c面 5c之部分。位錯減少c面生長結晶區域々消失。亦即,所 ❿ 付之GaN結晶5具有…位錯減少刻面生長結晶區域5z/位錯 集合結晶區域5h/位錯減少刻面生長結晶區域5z/位錯集合 結晶區域5h...之構造。 參照圖15A-15F ,對條紋型刻面生長法加以說明。如圖 15Α所示,於基底基板丨上形成平行線狀之複數個條紋被覆 部(掩模3部分)。當於基底基板!上氣相生長氮化鎵結晶 時,如圖15Β所示,結晶5僅於基底基板丨之露出部u上生 • 長,而不於被覆部(掩模3部分)上生長。若結晶5進而生 長,則如圖15C所示,結晶5於基底基板1之露出部le上堆 積。傾斜面係面指數較低之刻面5f。結晶5係藉由被覆部 而被分開之平行島狀。若結晶5進而生長,則如圖15D所 示’平行地產生以被覆部(掩模3部分)為底且包括向相反方 向傾斜之平行傾斜面的V槽。相向之傾斜面係傾斜方向相 反且形成相同角度之刻面5f、5f。相鄰之掩模3、3之間之 結晶5的平坦面係c面5 c。 若結晶5進而生長,則如圖丨5E所示,結晶5亦形成至被 135248.doc 23- 200937499 覆邛(掩模3部分)上。此係位錯高密度集合之位錯集合結晶 區域5h。右結晶5進而生長,則如圖i5F所示,掩模3上方 之位錯集合結晶區域外大體上維持其寬度而向上延伸。刻 面5f、5f變得更大。刻面5f、5f之正下方係位錯減少刻面 生長結晶區域5z。位錯集合結晶區域5h與位錯減少刻面生 . ★結晶區域5z之邊界係晶界5k。晶界分將位錯封閉於位錯 集合結晶區域5h。 &amp;於㈣掩模3、3之間的部分上方之結晶5的平坦面係C 面5c C面5c下方係位錯減少c面生長結晶區域々。c面氕 逐漸變窄。形成條紋構造之結晶5之間距與掩模3之間距办 =等。掩模間距Dp係掩模3之寬度Ds與基底基板丨之露出 部le之寬度Dw的和(Dp=Ds+Dw)。若結晶$進而生長則 如圖16A所示,生長成如以位錯集合結晶區域⑽山底、 c面5c為山脊之山脈般的平行結晶5。相當於山頂之c面化 P刀變乍於刻面5f之正下方形成位錯減少刻面生長結晶 • 區域5z,且於C面之正下方形成c面生長結晶區域巧。 若結晶5進而生長,則有時結晶亦會維持圖16八所示之形 狀而向上方生長。或者,如圖16B所示,有時亦會成為如 具有更陡峭之峰的平行山脈般。該情形時,c面消失,且 C面生長結晶區域5y亦消失。 根據專利文獻10所獲得之結晶5,具有條狀擴展之··位 錯減少刻面生長結晶區域5z/位錯集合結晶區域5h/位錯減 少刻面生長結晶區域5z/位錯減少c面生長結晶區域5y/位錯 減少刻面生長結晶區域5z/位錯集合結晶區域5h/位錯減少 135248.doc •24- 200937499 2面生長結晶區域5z/位錯減少Ct&amp;生長結晶區域5y/位錯減 ^刻面生長結晶區域5z/位錯集合結晶區域5h...之構造,或 么士條狀擴展之…位錯減少刻面生長結晶區域Μ位錯集合 結晶區域5 h /位錯減少刻面生長結晶區域5 z /位錯集合結晶 區域5W位錯減少刻面生長結晶區域5z/位錯集合結晶區域 5h.|.之構造。位錯集中於位錯集合結晶區域5h中,且位錯 減夕刻面生長結晶區域5z以及位錯減少c面生長結晶區域 5y為單晶且位錯密度較低。 ►、根據專利文獻1Q之方法,係形成相互平行之條狀掩模, 並形成相互平行之條狀位錯集合結晶區域5h,故可將該方 法稱作條紋型刻面生長法。根據該方法所得之結晶中,位 錯減J刻面生長結晶區域52係形成為直線狀,故易於製作 半導體雷射、發光二極體等元件。 刻面生長法與ELO法係完全不同之方法。掩模之形狀、 尺寸、作用等亦不同。開口分布呈鋸齒狀之EL〇掩模與條 紋掩模之形狀、大小亦不同,可明確地加以區分。條紋掩 模之掩模寬度Ds為20 μηι〜3〇〇 μιη左右,間距邱為1〇〇 μιη〜2000 μηι左右。例如,條紋掩模之寬度以為咒、間 距 Dp 為 5 00 μπι。 使用點型或者條紋型掩模之刻面生長法中,位錯係集中 於掩模上之位錯集合結晶區域5h中且被晶界5k包圍,故位 錯不會再次離散。與位錯集合結晶區域汕鄰接之位錯減少 刻面生長結晶區域5z以及與位錯減少刻面生長結晶區域&amp; 鄰接之位錯減少C面生長結晶區域5y係單晶且位錯密度較 I35248.doc -25· 200937499 低。該位錯減少結晶區域可作 分。 ‘、、、供元件之電流流通之部错 The crystallization region is assembled for 5 hours, and dislocation-reducing facet-growing crystal regions 5z and dislocation-reducing c-plane growth crystal regions 5y are formed on the exposed portions of the base substrate. The region formed on the parallel mask and in which the dislocations are concentrated is referred to as a dislocation crystal region 5h. A crystal region which is adjacent to the dislocation crystal region 讣 and continuously grows under the facet 5f is referred to as a dislocation-reducing facet growth crystal region 5z. When the adjacent dislocations reduce the facet-grown crystallization regions between 5z and 5z, dislocations are sometimes reduced to reduce the c-plane growth crystallization region, sometimes not occurring. In Patent Document 9, the dislocation-concentrated crystal region 5ht formed on the (4) of the isolated dots is not scattered again. That is, the dislocation set crystallization region formed on the isolated dot-shaped mask is closed. Similarly, in the dislocation-concentrated crystal region 形成 formed on the strip mask, the temporarily accumulated dislocations are not discrete again. That is, the dislocation-concentrated crystal region 5h formed on the strip mask is also closed. The dislocation-reducing facet-grown crystallization region is grown by the dislocation-collecting crystallization region 5h. The dislocation reduction C-side growth crystallization region 5y is sometimes generated and sometimes does not occur. This dislocation reduces the C-plane growth crystal region 5y to a crystal region grown below the C-plane. 135248.doc •22- 200937499 According to different growth methods, sometimes the bit is secreted, and p = = dislocation reduces the C-side growth crystallization area 5y will also disappear. Referring to the plan view of the crystal 5 shown in Fig. U and the perspective view of the crystal 5 shown in Fig. 14, the (four) crystal 5 system, which has a sharp ridge line, is sometimes obtained. A dislocation crystal region 5h which is parallel to each other is formed on the covering portion (the portion of the mask 3). The dislocation collection crystal region 511 is a concave portion. On the exposed portion of the adjacent base substrate 1, a mutually parallel dislocation reduction facet growth crystal region 5z is generated. The convex facets 5f, 5f are sharp and have no part of the c face 5c. The dislocations reduce the c-plane growth crystallization region and disappear. That is, the GaN crystal 5 to be treated has ... dislocation reduction facet growth crystal region 5z/dislocation set crystal region 5h/dislocation reduction facet growth crystal region 5z/dislocation set crystal region 5h... . The stripe type facet growth method will be described with reference to Figs. 15A to 15F. As shown in Fig. 15A, a plurality of stripe coating portions (mask 3 portions) in a parallel line shape are formed on the base substrate. As the base substrate! When the gallium nitride crystal is grown in the vapor phase, as shown in Fig. 15A, the crystal 5 is grown only on the exposed portion u of the base substrate, and is not grown on the coated portion (the portion of the mask 3). When the crystal 5 is further grown, as shown in Fig. 15C, the crystal 5 is deposited on the exposed portion le of the base substrate 1. The facet 5f with a low slope surface index. The crystal 5 is a parallel island shape separated by a covering portion. When the crystal 5 is further grown, a V-groove having a covered portion (the portion of the mask 3) as a base and including a parallel inclined surface inclined in the opposite direction is generated in parallel as shown in Fig. 15D. The facing inclined faces are facets 5f, 5f whose inclination directions are opposite to each other and which form the same angle. The flat surface of the crystal 5 between the adjacent masks 3, 3 is the c-plane 5c. If the crystal 5 is further grown, as shown in Fig. 5E, the crystal 5 is also formed to be covered by the 135248.doc 23-200937499 (mask 3 portion). This dislocation is a high density collection of dislocations in the crystallization zone 5h. The right crystal 5 is further grown, and as shown in Fig. i5F, the dislocation-collecting crystal region above the mask 3 substantially maintains its width and extends upward. The facets 5f, 5f become larger. The dislocations directly under the facets 5f and 5f reduce the facet growth crystallization region 5z. The dislocation set crystallization region 5h and the dislocation reduction facet. ★ The boundary of the crystal region 5z is the grain boundary 5k. The grain boundary is closed by dislocations in the crystallization zone 5h. &lt;(4) The flat surface C of the crystal 5 above the portion between the masks 3 and 3 is c-plane 5c C-plane 5c. The dislocation reduces the c-plane growth crystal region 々. The c-face is gradually narrowed. The distance between the crystals 5 forming the stripe structure and the distance between the masks 3 and the like. The mask pitch Dp is the sum of the width Ds of the mask 3 and the width Dw of the exposed portion of the base substrate ( (Dp = Ds + Dw). When crystallization is carried out and further grown, as shown in Fig. 16A, it is grown into a parallel crystal 5 like a mountain of a mountain ridge with a dislocation crystal region (10) and a c-plane 5c. Corresponding to the c-plane of the top of the mountain. The P-knife is deformed below the facet 5f to form dislocations to reduce the growth of the facet crystals. The region 5z, and the c-plane growth crystal region is formed directly below the C-plane. When the crystal 5 is further grown, the crystal may be maintained in the shape shown in Fig. 16 and grown upward. Alternatively, as shown in Fig. 16B, it may sometimes become a parallel mountain having a steeper peak. In this case, the c-plane disappears and the C-plane growth crystallization region 5y also disappears. According to the crystal 5 obtained in Patent Document 10, it has a strip-like expansion. · Dislocation reduction facet growth crystal region 5z/dislocation set crystal region 5h/dislocation reduction facet growth crystal region 5z/dislocation reduction c-plane growth Crystalline region 5y/dislocation reduction facet growth crystallization region 5z/dislocation set crystal region 5h/dislocation reduction 135248.doc •24- 200937499 2 surface growth crystallization region 5z/dislocation reduction Ct&amp; growth crystallization region 5y/dislocation Reduction ^ facet growth crystallization region 5z / dislocation set crystallization region 5h... structure, or scorpion strip expansion... dislocation reduction facet growth crystallization region Μ dislocation set crystallization region 5 h / dislocation reduction Surface growth crystallization region 5 z / dislocation set crystallization region 5 W dislocation reduction facet growth crystallization region 5z / dislocation set crystallization region 5h. The dislocations are concentrated in the dislocation set crystallization region 5h, and the dislocations reduce the facet growth crystal regions 5z and the dislocation reduction c-plane growth crystal regions 5y are single crystals and the dislocation density is low. ► According to the method of Patent Document 1Q, stripe masks which are parallel to each other are formed, and stripe dislocation crystal regions 5h which are parallel to each other are formed, so this method can be called stripe facet growth method. In the crystal obtained by this method, the dislocation-reduced J facet growth crystal region 52 is formed in a linear shape, so that it is easy to fabricate an element such as a semiconductor laser or a light-emitting diode. The facet growth method is completely different from the ELO method. The shape, size, function, and the like of the mask are also different. The shape and size of the EL 〇 mask and the stencil mask having a zigzag opening are different, and can be clearly distinguished. The mask width Ds of the stripe mask is about 20 μηι to 3 〇〇 μιη, and the pitch Qi is about 1 〇〇 μιη~2000 μηι. For example, the width of the stripe mask is assumed to be a curse and the distance Dp is 5 00 μπι. In the facet growth method using a dot type or stripe type mask, dislocations are concentrated in the dislocation collection crystal region 5h on the mask and surrounded by the grain boundary 5k, so that the dislocations are not dispersed again. The dislocations adjacent to the dislocation set crystallization region 汕 reduce the facet-grown crystallization region 5z and the dislocation-reduced facet-growth crystallization region &amp; adjacent dislocation reduction C-plane growth crystallization region 5y-series single crystal and dislocation density is I35248 .doc -25· 200937499 Low. This dislocation reduces the crystallization area and can be used as a fraction. ‘,、, the current circulation part of the component

GaN結晶中{1-100丨方向為劈開面, 故可藉由自缺错*明TT- 形成雷射之共振腔反射鏡。因捲 、“,摻雜氧而成為η型,故使電 、/瓜流通而可於底面形成η電極。钟 優於藍寶石基板。 ㈣點而言,⑽結晶更 則中,基底基板之露出部較小,於其上生長之結晶之 ❺In the GaN crystal, the {1-100 丨 direction is a cleavage plane, so the resonator mirror can be formed by self-error* TT-. Since the roll and "doped oxygen" to form an n-type, the electric or melon can be circulated to form an n-electrode on the bottom surface. The clock is superior to the sapphire substrate. (4) In terms of (10) crystal, the exposed portion of the base substrate is further Smaller, the crystallization of the growth on it

位錯密度較高,而被㈣(掩模部分)較大,於其上生長之 結晶之位錯密度較低。相對於此 此條紋型刻面法中,基底 基板之露出部較大,於其上生县 長之結晶之位錯密度較低, 而被覆部(掩模部分)較窄,於其上4具 、丹上生長之結晶之密度位錯 較高。The dislocation density is higher, and the (4) (mask portion) is larger, and the dislocation density of the crystal grown thereon is lower. In contrast to this stripe type facet method, the exposed portion of the base substrate is large, and the dislocation density of the crystal of the upper county is lower, and the covering portion (mask portion) is narrower, and four of them are provided thereon. The density of the crystals grown on Dan is higher.

關於專利文獻10之實施例中之生長條件,若以(生長溫 度Tq、NH3分壓P·3、hci分壓Phc丨、第五族/第三族之I R5/3)來表示’則為(1050T: 、30 kPa、2 kpa、15) '30 kPa 、 2 、(1030°C、25 (1030 C、30 kPa、2.5 kPa、12)、(1〇5〇。。 kPa、15)、(l〇i(TC、20 kPa、2.5 kPa、8) kPa、2 kPa、12.5)、(103(TC、25 kPa、2.5 kPa、i〇)。 曰本專利特開2005-306723號公報(以下稱作專利文獻i j ) 中提出了如下方法,藉由將Hr TMG、氨作為原料氣體、 將(CsH^Fe作為摻雜劑之MOCVD法或者是將h2、HC1、The growth conditions in the examples of Patent Document 10 are expressed as (growth temperature Tq, NH3 partial pressure P·3, hci partial pressure Phc丨, fifth group/third group I R5/3) (1050T: , 30 kPa, 2 kpa, 15) '30 kPa, 2, (1030 ° C, 25 (1030 C, 30 kPa, 2.5 kPa, 12), (1〇5〇. kPa, 15), ( L〇i (TC, 20 kPa, 2.5 kPa, 8) kPa, 2 kPa, 12.5), (103 (TC, 25 kPa, 2.5 kPa, i〇). 曰 Patent-Open Patent Publication No. 2005-306723 (hereinafter referred to as In the patent document ij), the following method is proposed, by using Hr TMG, ammonia as a raw material gas, MOCVD method using CsH^Fe as a dopant or h2, HC1

Ga熔融液、氨作為原料、且將作為摻雜劑之 HVPE法,而於藍寶石(0001)基板上使摻鐵GaN結晶生長, 從而獲得摻鐵GaN基板。 135248.doc -26- 200937499 關於專利文獻1 1之實施例(M0CVD法)中之生長條件,若 以(生長溫度Tq、NH3分壓pNH3、TMG分壓pTMG、第五族/ 第三族之比U來表示’則為(1〇〇〇°c、15 kpa、〇 3心、 50) ° 關於專利文獻11之實施例(HVPE法)中之生長條件,若 . 以(生長溫度Tq、NH3分壓Pmn、HC1分壓PHC1、第五族/第 三族之比R5/3)來表示’則為(1〇〇(rc、15 kPa、0.3 kPa、 50)。 © 【發明内容】 至此所敍述者,係用作藍色發光二極體、半導體雷射之 基板之η型GaN基板。雖亦嘗試製作含有少量μ及匕之 AlInGaN基板,但其用途係作為發光元件之基板。其係n型 且導電率較高,可流通高密度電流。摻雜劑有時係矽 (Si)、有時係氧(〇)。 然而,本發明之目的並非n型結晶,而係半絕緣性(semi_ insulating : SI)GaN基板結晶。其並非發光元件用n基板, 而係用於FET等用途之SI基板。 於發光元件之情形時,基板上會流動高密度之電流,故 可月b因位錯而導致劣化加劇。 於秩置式電子元件用之半絕緣性GaN基板(SI_GaN基板) 之情形時,必須具有耐高電壓、大電流之耐電壓性、及高 電阻。若基板具有較高之位錯密度則會導致洩漏電流,故 而不佳。較佳為,於基板上形成若干層具有規則的晶格構 汉之GaN、InGaN、AlGaN膜,以使位錯較少。於半絕緣 135248.doc -27- 200937499 性GaN基板之情形時,強烈期望係絕緣性較高、翹曲較 小、位錯密度較低且裂縫產生較少之基板。 先前技術(專利文獻1〜10)中所列舉之GaN基板均為低電 阻率。專利文獻iiGaN*板具有0〇〇5〜〇〇8 之電阻 率’專利文獻2之GaN基板具有0.0035〜0.0083. 之電阻 率’專利文獻3之G aN基板具有0.01〜0.017 r2cm之電阻率。 . 該等專利文獻中並未記載已添加η型摻雜劑,故認為第五 族之孔隙是否形成了施體能階、或者是否添加了原料氣體 © 中所含之η型摻雜劑元素。 專利文獻4中並未記載電阻率具體為多少。其係為了將 Si作為摻雜劑而製造低電阻^型GaN基板。因此,可推測其 電阻率較專利文獻1〜3更低。根據該等之記述,認為先前 之GaN結晶之比電阻之上限為0.08 Qcm左右。 對於作為橫置式電子元件用之基板之半絕緣性基板,如 此之低電阻者並不起作用。作為半絕緣性第三族〜第五族 ,氮化物基板,比電阻理想的是1〇5 ncm以上。根據不同目 的’有時亦要求1〇6 ncm以上或者1〇7 Qcm以上。 先A之GaN結ΘΒ製造技術無法製造如此之高電阻之結 晶。該如何來解決。第五族孔隙為施體,為防止第五族孔 隙之產生,增大第五族原料之供給即可。如上所述, M〇CVD法中第五族/第三族之比〜3為1000〜2000,若第五 族/第二族比Rw高於1〇〇〇〜2〇〇〇,則原料之浪費亦增大。 Η则之情形時之第五族/第三族之比大多為12〜5〇左 右。雖可進而提高第五族原科比率,但會導致原料之損 135248.doc -28- 200937499 失’故並不佳。 若使用高純度之原料且不含雜質,應可製造電阻更大之 氮化鎵結晶。然而,即便如此,結晶亦自然地成為n型, 無法獲得可用於橫置式電子元件之程度的半絕緣性。 作為其他選擇,考慮有藉由添加其他元素來抑制η型載 體之活動的方法。專利文獻U記載了摻鐵GaN結晶係半絕 緣性。因係氣相生長法,故必須於氣體狀態下提供鐵化合 物。專利文獻11中係於藍寶石基板上將二環戊二烯基鐵作 為摻雜劑,藉由MOCVD法而製作氮化鎵結晶。專利文獻 Π中係不使用掩模而使摻鐵GaN結晶生長於藍寶石基板 上。 藉由鐵來提咼GaN結晶之電阻率係新穎之觀點。根據專 利文獻11可知’對於製作半絕緣性GaN而言,摻鐵係有效 的方法。此外,為了作為FET等電子元件之基板,翹曲較 少、裂縫產生率較低亦係重要條件。專利文獻1 1中完全無 裂縫之產生或裂痕的相關記載。 本發明之半絕緣性氮化物半導體基板之製造方法包括如 下步驟:於基底基板上形成掩模之步驟,該掩模係由寬度 或直徑Ds為10 μηι〜100 μιη之點狀或條狀之被覆部以25〇 μιη〜2000 μηι之間隔Dw排列而成;藉由HVPE法,供給第 五族/第二族之比Rs/3為1〜1〇之第三族原料氣體及第五族原 料氣體、及含鐵之氣體,並於1040°C〜1150。(:之生長溫度 下,於基底基板上生長氮化物半導體結晶之步驟;以及除 去基底基板之步驟;從而,獲得比電阻為Ixl 〇5 Qcm以 135248.doc -29- 200937499 上、厚度為100 μπι以上之獨立的半絕緣性氮化物半導體基 板。此處,所謂生長溫度,係指用於結晶生長之基底基板 之溫度(基板溫度)。 作為基底基板’可使用(111)面Ga As晶圓、藍寶石晶 圓、SiC晶圓、及GaN晶圓等。 圖19係表示HVPE爐之概略縱剖面圖。於縱長之反應爐 102之外側設置有加熱器1 〇3。加熱器1 〇3可於縱向上延伸 且可分割為幾個部分,從而可於上下方向形成任意的溫度 为布。反應爐102具有熱壁。於反應爐1〇2之中上部設置有 儲存有Ga熔融液之Ga儲存器1〇〇於反應爐1〇2之下方設 有被旋轉升降自如的旋轉軸所支撐之晶座丨〇5。於晶座1 〇5 上載置基底基板1。第1原料氣體供給管1〇7向Ga儲存器1 〇4 供給氫(H2)與氯化氫(HC1)之氣體。HC1與Ga反應而產生 GaCl氣體。該GaCl氣體向下方移動。第2原料氣體供給管 1〇8向基底基板1之上方供給氫氣與氨(Nh3)氣體。 GaCl與NH3反應而生成GaN,且GaN結晶於基底基板1上生 長°第3原料氣體供給管no向反應爐内供給鐵(Fe)之氣體 化合物與載體氣體(HO之混合氣體。向生長的GaN結晶之 内部摻雜鐵。反應後’自排氣管109排出廢氣、以及未反 應氣體。 作為向GaN結晶中摻雜鐵之原料,係使用二環戊二烯基 (CsHAFe或者一曱基環戊一烯基(CH3C5H4)2Fe。該等為氣 體狀故自上方之氣體流路作為氣體而被吹入至反應爐 内。該等熱解後摻入至結晶中。或者與HC1反應成為 135248.doc • 30- 200937499The Ga melt and ammonia were used as raw materials, and the HVPE method as a dopant was used to crystallize the iron-doped GaN on a sapphire (0001) substrate to obtain an iron-doped GaN substrate. 135248.doc -26- 200937499 Regarding the growth conditions in the example of the patent document 1 (M0CVD method), if (the growth temperature Tq, the NH3 partial pressure pNH3, the TMG partial pressure pTMG, the fifth/third group ratio) U is expressed as '(1〇〇〇°c, 15 kpa, 〇3 core, 50) °. Regarding the growth conditions in the example of the patent document 11 (HVPE method), if (the growth temperature Tq, NH3 points) The pressure Pmn, the HC1 partial pressure PHC1, the fifth/third group ratio R5/3) are expressed as '(1 〇〇 (rc, 15 kPa, 0.3 kPa, 50). © [Summary] It is used as an n-type GaN substrate for a blue light-emitting diode or a semiconductor laser substrate. Although an AlInGaN substrate containing a small amount of μ and germanium is also attempted, its use is as a substrate for a light-emitting element. The conductivity is high, and a high-density current can flow. The dopant is sometimes bismuth (Si) and sometimes oxygen (〇). However, the object of the present invention is not n-type crystallization, but semi-insulating (semi-insulating) : SI) GaN substrate crystal. It is not an n-substrate for light-emitting elements, but is used for SI substrates such as FETs. In the case of a high-density current, a high-density current flows on the substrate, so that the deterioration of the monthly b is caused by dislocations. In the case of a semi-insulating GaN substrate (SI_GaN substrate) for an electronic device, it is necessary to have a high voltage resistance. High current withstand voltage and high resistance. If the substrate has a high dislocation density, it will cause leakage current, so it is not preferable. It is preferable to form a plurality of layers of GaN having a regular lattice structure on the substrate. InGaN, AlGaN film, so that the dislocation is less. In the case of semi-insulating 135248.doc -27- 200937499 GaN substrate, it is strongly expected to have higher insulation, less warpage, lower dislocation density and crack generation. The GaN substrate listed in the prior art (Patent Documents 1 to 10) has a low resistivity. Patent Document ii GaN* plate has a resistivity of 0 〇〇 5 〇〇 8 ' GaN substrate of Patent Document 2 The resistivity of 0.0035 to 0.0083. The G aN substrate of Patent Document 3 has a resistivity of 0.01 to 0.017 r2 cm. It is not described in the patent documents that the n-type dopant has been added, so whether the pore of the fifth group is considered to be Forming the body energy level, In addition, the n-type dopant element contained in the source gas © is added. The specificity of the specific resistance is not described in Patent Document 4. This is to produce a low-resistance GaN substrate by using Si as a dopant. It is presumed that the specific resistance is lower than those of Patent Documents 1 to 3. According to these descriptions, the upper limit of the specific resistance of the conventional GaN crystal is considered to be about 0.08 Qcm. The semi-insulating substrate which is a substrate for a horizontally mounted electronic component does not contribute to such a low resistance. As the semi-insulating group 3 to group 5, the nitride substrate preferably has a specific resistance of 1 〇 5 ncm or more. Depending on the purpose, sometimes it is required to be 1〇6 ncm or more or 1〇7 Qcm or more. The GaN crucible fabrication technique of A first cannot produce such high resistance crystals. How to solve it. The fifth group of pores is a donor body, and in order to prevent the generation of the fifth group of pores, the supply of the fifth group of raw materials can be increased. As described above, the ratio of the fifth group to the third group in the M〇CVD method is 3 to 1000, and if the fifth group/second group ratio Rw is higher than 1〇〇〇2 to 2〇〇〇, the raw material is Waste also increases. In the case of Sui Ze, the ratio of the fifth/third family is mostly 12~5〇. Although the fifth family's original rate can be increased, it will lead to the loss of raw materials 135248.doc -28- 200937499 is not good. If a high-purity raw material is used and impurities are not contained, a gallium nitride crystal having a larger electrical resistance should be produced. However, even in this case, the crystal is naturally n-type, and the semi-insulating property to the extent that it can be used for the horizontal electronic component cannot be obtained. As another option, a method of suppressing the activity of the n-type carrier by adding other elements is considered. Patent Document U describes the semi-insulating properties of the iron-doped GaN crystal system. Because of the vapor phase growth method, it is necessary to provide an iron compound in a gaseous state. In Patent Document 11, a dicyclopentadienyl iron is used as a dopant on a sapphire substrate, and a gallium nitride crystal is produced by an MOCVD method. In the patent document, iron-doped GaN crystals are grown on a sapphire substrate without using a mask. The electrical resistivity of GaN crystals is enhanced by iron. According to Patent Document 11, it is known that an iron-doped method is effective for producing semi-insulating GaN. Further, in order to use as a substrate for an electronic component such as an FET, warpage is small and a crack generation rate is low, which is an important condition. Patent Document 1 has no description of the occurrence of cracks or cracks. The method for fabricating a semi-insulating nitride semiconductor substrate of the present invention comprises the step of forming a mask on a base substrate, the mask being covered by dots or strips having a width or diameter Ds of 10 μηη to 100 μηη. The parts are arranged at intervals of 25 〇μηη to 2000 μηι; by the HVPE method, the third group/second group ratio Rs/3 is supplied to the third group of source gases and the fifth group source gases. And iron-containing gas, and at 1040 ° C ~ 1150. (the step of growing the nitride semiconductor crystal on the base substrate at the growth temperature; and the step of removing the base substrate; thereby obtaining a specific resistance of Ixl 〇 5 Qcm to 135248.doc -29-200937499, thickness 100 μπι The above-mentioned independent semi-insulating nitride semiconductor substrate. Here, the growth temperature refers to the temperature (substrate temperature) of the base substrate used for crystal growth. As the base substrate, a (111) plane Ga As wafer can be used. A sapphire wafer, a SiC wafer, a GaN wafer, etc. Fig. 19 is a schematic longitudinal cross-sectional view showing an HVPE furnace. A heater 1 〇3 is provided on the outer side of the vertically long reactor 102. The heater 1 〇3 can be used. The longitudinal direction extends and can be divided into several parts, so that an arbitrary temperature can be formed in the upper and lower direction. The reaction furnace 102 has a hot wall. The Ga reservoir in which the Ga melt is stored is disposed in the upper part of the reaction furnace 1〇2. A crucible 5 supported by a rotating shaft that is rotatably lifted and lowered is disposed below the reactor 1〇2. The base substrate 1 is placed on the wafer holder 1〇5. The first material gas supply pipe 1〇7 To Ga memory 1 〇 4 A gas of hydrogen (H2) and hydrogen chloride (HC1) is supplied. HC1 reacts with Ga to generate GaCl gas. The GaCl gas moves downward. The second material gas supply pipe 1〇8 supplies hydrogen gas and ammonia to the base substrate 1 (Nh3). GaCl reacts with NH3 to form GaN, and GaN crystal is grown on the base substrate 1. The third raw material gas supply pipe no supplies the gas compound of iron (Fe) and the carrier gas (HO mixed gas) into the reactor. The inside of the grown GaN crystal is doped with iron. After the reaction, the exhaust gas and the unreacted gas are discharged from the exhaust pipe 109. As a raw material for doping iron into the GaN crystal, a dicyclopentadienyl group (CsHAFe or a ruthenium) is used. Cyclopentylalkenyl (CH3C5H4)2Fe. These gases are gaseous, so that the gas flow path from above is blown into the reactor as a gas. After the pyrolysis, it is incorporated into the crystal or reacted with HC1. 135248.doc • 30- 200937499

FeCl、FeCl2或FeCl3後,被吹入至結晶中。 以上述方式製作而成之氮化物半導體基板中之鐵濃度 CFe為lxlO20 cm-32CFe2 1xl0丨6 cm-3。氮化物半導體基板 之電阻率為lxl〇5 Dcm以上。 掩模係由Si〇2、Si〇N、SiN、AIN、Ai2〇3等而形成。關 • 於掩模尺寸,就條紋掩模而言,被覆部(掩模3部分)之寬度 ' 仏為10 μΠ1〜100叫被覆部(掩模3部分)之間隔Dw為250 μιη〜2000 μπι,間距Dp為26〇 _〜21〇〇 _,此處,存在 φ Dp=Ds+Dw之關係。 就點狀掩模而言,被覆部(掩模3部分)之直徑…為1〇 μπι〜100 μιη,被覆部(掩模3部分)之間隔Dw=25〇 gm〜2〇〇〇 μηι’間距Dp為260 μηι〜21〇〇㈣,此處,存在d尸Ds+Dw 之關係。 基板溫度為iiMcrc-iosoi之狀態下,生長具有刻面玎 之凸形的結晶5(11型),該刻面5£於被覆部(掩模3部分)上較 • 低,而於基底基板1之露出部le上變高(圖2〇)。該結晶5 中,於掩模3上係位錯集合結晶區域讣,而接近掩模3之露 出邛le上之刻面5f的正下方係位錯減少刻面生長結晶區域 5z ° 圖2〇中,為了強調與圖2丨之對比,而將結晶表面僅描繪 成凸形之理想形狀。該理想形狀僅於使用條紋掩模且於特 別的條件下進行結晶生長時會實現。於使用點狀掩模之情 形時,因幾何學上之限制,無法形成上述形狀。無論使用 點狀掩模抑或使用條紋掩模,實際上較多情形時會於相鄰 135248.doc -31 - 200937499 之掩模3之中間位置上產生C^c(以虛線表示),且於該c 面5c之下方產生位錯減少C面生長結晶區域^。形成為混 合存在位錯集合結晶區域讣與位錯減少刻面生長結晶區域 5z、或者位錯集合結晶區域5h、位錯減少刻面生長結晶區 域5Z與位錯減少C面生長結晶區域5y此類不同者之構造, 故可緩和因位錯減少刻面生長結晶區域5z以及位錯減少c ·· 面生長結晶區域5 y中位錯減少而產生之内部應力所導致的 變形(拉伸)。 〇 圖20所示之11型結晶5中,於上表面具有刻面5f,且存在 通過刻面5f易於較多吸入氧之傾向。因此,存在因作為n 型雜質之氧而抵消摻鐵之效果之情形。若如此,亦存在必 須提高鐵之濃度’從而導致全體雜質之量增加之情形。 當基板溫度為更高之1〇8〇。(:〜1150。(:之狀態下,如圖21 所示’表面生長高度相同之丨型結晶5。結晶表面係大致平 坦之C面5c。圖2 1中亦描繪用以強調與圖2〇之對比之理想 形。實際上大多情形時掩模3上之部分會略微凹陷。其原 ® 因在於,掩模3上係位錯集合結晶區域5h e基底基板i之露 出部1 e上’混合存在成為位錯減少刻面生長結晶區域52與 位錯減少C面生長結晶區域5y。因係不同組織交替之構 造,故可緩和結晶内部之應力。 圖21所示之I型結晶5係於幾乎不具有刻面5f之狀態下生 長’故並不會摻雜氧。因此,摻鐵之效果變得顯著。可減 小整體之雜質濃度《因雜質較少,故I型結晶5具有内部應 力較小、更難以產生裂縫之優點。亦即,Ϊ型結晶係作為 135248.doc •32- 200937499 摻鐵氮化物半導體結晶之最佳構造,製作I型結晶時,較 佳為’於更高溫度下且第五族/第三族之比R5,3較小。例 如’將基板溫度設為1080。〇〜1150°C之高溫,並將第五族/ 第二族之比Rs/3設為1〜1〇。進而,將基板溫度設為 1090 C〜1150°C,並將第五族/第三族之比尺5,3設為卜5,則 可更切實地形成I型構造。 當第五族/第三族之比I,3為丨〜⑼、且基板溫度接近 i〇8〇°c(例如107(rc〜109(rc)之時,如圖24所示,形成1型 與II型之混合型之如具有梯形頂點之結晶。 ❷ 上述圖20、21以及24之三個剖面圖(圖2〇、21、24)中, 分別表示了具有三種類型(構造)之結晶,並不會產生於某 個生長溫度(基板溫度)下剖面形狀突然發生變化之相變Y 結晶之剖面形狀會根據生長溫度(基板溫度)及第五族/第三 族之比R5/3而連續地變化。當於基板溫度為mo〜115〇u 第五族/第二族之比r5/3為!〜3之狀態下進行結晶生長時, 可獲得如圖21之結晶表面較為理想之平坦型的工型結晶。 、“曰生長時’隨著生長溫度(基板溫度)之降低、且第五族/ 第三族之比R5/3之增大,自圖21心型(結晶表面為平扭)之 結晶向圖20之11型(結晶表面為山形)之結晶變化。 作為氮化物半導體結晶之氣相生長法之生長溫度, 1050 C〜1 150°C之基板溫度為較古者 皿復馮較间者。I型生長係表示,若 ^生長溫度(基板溫度),即便係大型 面平坦之結晶。 j j生長表 當第五族/第三族之比‘為〗,時,於氮化物半導體結 I35248.doc 33- 200937499 =氣相生長法中亦可認為係極其小之極限。藉由第五族 / 一族之比尺5/3、與高生長溫度而使摻鐵之氮化物半導體 結晶生長係本發明之思想。 7一為止之先月“列巾’關於生長溫度(基板溫度)與第五 族I〆二族之比〜3為何值,引用㈣文獻卜⑽行說明 時,係列舉基板溫度以及第五族/第三族之比。After FeCl, FeCl2 or FeCl3, it is blown into the crystal. The iron concentration CFe in the nitride semiconductor substrate produced in the above manner is lxlO20 cm-32CFe2 1x10 丨6 cm-3. The resistivity of the nitride semiconductor substrate is lxl 〇 5 Dcm or more. The mask is formed of Si〇2, Si〇N, SiN, AIN, Ai2〇3, or the like. Off • In the mask size, the width of the covered portion (the portion of the mask 3) 仏 is 10 μΠ1 to 100, and the interval between the covering portions (the portion of the mask 3) Dw is 250 μm to 2000 μπι. The pitch Dp is 26 〇 〜 21 〇〇 _, where there is a relationship of φ Dp = Ds + Dw. In the case of the dot mask, the diameter of the covering portion (the portion of the mask 3) is 1 μm to 100 μm, and the interval between the covering portions (the portion of the mask 3) is Dw = 25 〇 gm 〜 2 〇〇〇 μηι' Dp is 260 μηι~21〇〇(4), here, there is a relationship of d corpus Ds+Dw. When the substrate temperature is iiMcrc-iosoi, the crystal 5 (type 11) having a convex shape of the facet is grown, and the facet 5 is lower than the cover portion (the portion of the mask 3), and is on the base substrate 1 The exposed portion le becomes higher (Fig. 2〇). In the crystal 5, the crystallographic region 讣 is dislocated on the mask 3, and the dislocation below the facet 5f on the exposed 邛le of the mask 3 reduces the facet growth crystallization region 5z °. In order to emphasize the contrast with FIG. 2, the crystal surface is only depicted as a convex shape. This ideal shape is achieved only when a stripe mask is used and crystal growth is carried out under special conditions. When the dot mask is used, the above shape cannot be formed due to geometric limitations. Regardless of whether a dot mask is used or a stripe mask is used, in many cases, C^c (indicated by a broken line) is generated at a position intermediate to the mask 3 of the adjacent 135248.doc -31 - 200937499, and A dislocation below c face 5c is generated to reduce the C-plane growth crystallization region. Formed as a mixed dislocation set crystal region 讣 and dislocation reduction facet growth crystallization region 5z, or dislocation set crystal region 5h, dislocation reduction facet growth crystal region 5Z and dislocation reduction C-plane growth crystallization region 5y The structure of the different ones can alleviate the deformation (stretching) caused by the internal stress generated by the reduction of the distorted growth crystallization region 5z and the dislocation reduction c·· the reduction of dislocations in the surface growth crystallization region 5 y. In the 11-type crystal 5 shown in Fig. 20, the facet 5f is provided on the upper surface, and there is a tendency that oxygen is easily taken in by the facet 5f. Therefore, there is a case where the effect of iron doping is offset by oxygen as an n-type impurity. If so, there is also a case where the concentration of iron must be increased, resulting in an increase in the amount of all impurities. When the substrate temperature is higher, 1〇8〇. (:~1150. (In the state of Fig. 21, the 丨-type crystal 5 having the same surface growth height is the same. The crystal surface is substantially flat C-plane 5c. It is also depicted in Fig. 21 to emphasize and Fig. 2 The ideal shape of the contrast. In most cases, the portion of the mask 3 is slightly recessed. The original reason is that the mask 3 is discolored on the exposed portion 1 e of the base substrate i There is a dislocation-reducing facet-grown crystal region 52 and a dislocation-reducing C-plane growth crystal region 5y. Since the structure is alternated by different structures, the stress inside the crystal can be alleviated. The type I crystal 5 shown in Fig. 21 is almost It does not have oxygen when it has no facet 5f. Therefore, the effect of iron doping becomes remarkable. The impurity concentration of the whole can be reduced. "Since the impurities are less, the type I crystal 5 has internal stress. Small, more difficult to produce cracks. That is, the Ϊ-type crystal is the best structure for 135248.doc •32- 200937499 iron-doped nitride crystals. When making type I crystals, it is better to 'at higher temperatures. And the ratio of the fifth group/third group is smaller than R5,3. For example, 'the substrate temperature is set to 1080. 〇~1150 ° C high temperature, and the ratio of the fifth group / the second group Rs / 3 is set to 1 ~ 1 〇. Further, the substrate temperature is set to 1090 C ~ 1150 ° C, and the fifth or third family scale 5, 3 is set to Bu 5, then the I type structure can be formed more reliably. When the ratio of the fifth group / the third group I, 3 is 丨 ~ (9), When the substrate temperature is close to i〇8〇°c (for example, 107 (rc to 109 (rc)), as shown in FIG. 24, a mixed type of type 1 and type II is formed, such as a crystal having a trapezoidal apex. In the three cross-sectional views of 21, 24 and 24 (Fig. 2〇, 21, 24), the crystals having three types (structures) are respectively shown, and the shape of the cross section is not generated at a certain growth temperature (substrate temperature). The phase change of the phase change Y crystal is continuously changed according to the growth temperature (substrate temperature) and the ratio of the fifth/third group R5/3. When the substrate temperature is mo~115〇u, the fifth family/ When the ratio of the second group is r5/3, crystal growth is carried out in the state of ~3, and a flat type of crystal having an ideal crystal surface as shown in Fig. 21 can be obtained. The growth temperature (substrate temperature) is lowered, and the ratio of the fifth group/third group R5/3 is increased, and the crystal of the heart shape (the crystal surface is flat twisted) from Fig. 21 is directed to the type 11 of Fig. 20 (crystal surface) The crystal growth of the mountain shape). As the growth temperature of the vapor phase growth method of the nitride semiconductor crystal, the substrate temperature of 1050 C to 1 150 ° C is more than that of the ancient dish. The type I growth system indicates that if ^ Growth temperature (substrate temperature), even if the crystal is flat on a large surface. jj growth table when the ratio of the fifth/third group is 'yield', at the nitride semiconductor junction I35248.doc 33- 200937499 = vapor phase growth method It can also be considered to be an extremely small limit. The idea of the present invention is to crystallize the iron-doped nitride semiconductor by a fifth/group ratio of 5/3 and a high growth temperature. 7th, the first month of the "list towel" about the growth temperature (substrate temperature) and the fifth group I 〆 two families ratio ~ 3 why, quote (4) document (10) line description, the series of substrate temperature and the fifth family / The ratio of the three races.

❹ 圖22表示生長溫度(基板溫度)與第五族/第三族之比R5,3 之關係。橫軸係生長溫度(基板溫度)。縱軸係以對數表示 之第五族/第三族之比r5/”黑圓點表示先前例中之利用 HVPE法之生長溫度(基板溫度)與第五族/第三族之比r5/3。 白圓套黑圓點係先前例中之利用M〇CVD法之生長溫度(基 板溫度m第五族/第三族之比R5/3。下標表示所引用之專 利文獻之序號。一個點對應一個實施例。 例如,(生長溫度Tq、第五族/第三族之比u為(97〇t&gt;c、 1〇〇)處存在三個白黑圓點,且存在丨、丨、丨之數字。其表 不專利文獻1之MOCVD法之三個實施例為(97〇〇c、1〇〇)。 專利文獻1中,生長溫度(基板溫度)為95〇&lt;&gt;(:〜1〇2〇。〇之間 存在九個表示HVPE之實施例之黑圓點。 專利文獻4中並無明確的實施例,’ M〇CVD法中生長溫度 Tq具有96(TC〜105(rc之範圍,且第五族/第三族之比R5/3為 1000、800等,由此以連續之直線來表現結果。 關於本發明中之Π型結晶,以白三角來表示生長溫度(基 板溫度)以及第五族/第三族之比Rs/3之點。生長溫度為 1050 C且第五族/第三族之比尺的為2 5之點有14個。生長溫 135248.doc •34- 200937499 之比Rs/3為5之點有1個。生 二族之比Rs/3為10之點有1 度Tq為1050°C且第五族/第三族 長溫度Tq為l〇50°C且第五族/第 個0❹ Figure 22 shows the relationship between the growth temperature (substrate temperature) and the ratio of the fifth/third group R5,3. The horizontal axis growth temperature (substrate temperature). The vertical axis is a logarithm of the fifth/third group ratio r5/" black dot indicating the ratio of the growth temperature (substrate temperature) to the fifth/third group using the HVPE method in the previous example r5/3 The white round black dot is the growth temperature by the M〇CVD method in the previous example (the substrate temperature m is the fifth group/third family ratio R5/3. The subscript indicates the serial number of the cited patent document. One point Corresponding to an embodiment. For example, (the growth temperature Tq, the ratio of the fifth/third group u is (97〇t&gt;c, 1〇〇), there are three white and black dots, and there are 丨, 丨, 丨The three examples of the MOCVD method of Patent Document 1 are (97〇〇c, 1〇〇). In Patent Document 1, the growth temperature (substrate temperature) is 95 〇 &lt;&gt; There are nine black dots representing the embodiment of HVPE between 〇. There is no clear example in Patent Document 4, 'the growth temperature Tq in the M〇CVD method has 96 (TC~105 (rc) The range, and the ratio of the fifth group/third group R5/3 is 1000, 800, etc., thereby expressing the result in a continuous straight line. Regarding the Π type crystal in the present invention, the white triangle is used. The growth temperature (substrate temperature) and the ratio of the fifth group/third group ratio Rs/3 are shown. The growth temperature is 1050 C and the ratio of the fifth/third group is 14 points. Temperature 135248.doc •34- 200937499 The ratio of Rs/3 to 5 is 1. The ratio of the raw two is Rs/3 is 10, the degree is 1 degree Tq is 1050 °C and the temperature of the fifth/third family is long. Tq is l〇50°C and the fifth family/first 0

關於本發明中之!型結晶,以白圓點來表示生長溫度(基 板溫度)以及第五族/第三族之比之點。生長溫度^為 moc且第五族/第三族之比R5_2.5之點有_。生長溫 度Tq為1110°C且第五族/第三族之比〜3為3之點有_。生 長溫度Tq為UHTC且第五族/第三族之比㈣之點有i 個,生長溫度Tq為1 loot且第五族/第三族之比^為 之點有1個。 ’ 圖22中,以一虛線來包圍本發明之生長溫度(基板溫度)以 及第五族/第三族之比Rw之範圍。1〇8〇&lt;t係使〗型與Η型之 間的混合型結晶生長的較佳溫度。 專利文獻2、3中不使用間距較大之掩模。第五族/第三 族之比R5’3為3之實施例有8個。第五族/第三族之比r仍為4 之實施例有2個。第五族/第三族之比“為6之實施二、’ι〇 個。然而,基板溫度為97(rc、1020t、或1〇3(rc,均在 本發明之下限即1〇4〇。(:以下。專利文獻2、3中不使用間距 較大之掩模,且不進行摻鐵◊如此,本發明與專利文獻 2、3存在三處不同。 專利文獻8係最先提出刻面生長法者,但並不使用間距 較大之掩模。生長溫度為105(rc。第五族/第三族之比r… 為40。不摻鐵。本發明與專利文獻8存在三處不同。 專利文獻9、10中使用間距較大之掩模。當生長溫度為 135248.doc -35· 200937499 l〇3〇°C或1050°C時’第五族/第三族之比尺5/3為12、12 5、 或15。當第五族/第三族之比Rs/3為8時生長溫度為 1010°C。亦不摻鐵。本發明之Π型結晶與專利文獻9、1〇存 在兩處不同。本發明之I型結晶之結晶表面大致平坦,故 與專利文獻9、10存在三處不同。 專利文獻11係唯一摻鐵之文獻《於]V10CVD法中生長溫 度為1000C且第五族/第三族之比Rs/3為50。於HVPE法中 生長溫度為1000°C且第五族/第三族之比Rw為50。不使用 ® 掩模。本發明與專利文獻,於生長溫度(基板溫度)、第五 族/第三族之比Rs/3、及掩模之有無此存在三處不同。 因摻雜有鐵故可抵消内在的施體,從而可獲得比電阻為 107 Qcm以上之半絕緣性氮化物半導體基板。 於基底基板上形成重複間距較大之掩模並於其上進行結 晶生長’故可於内部產生位錯集合結晶區域5h或位錯減少 刻面生長結晶區域5z、位錯減少C面生長結晶區域5y等不 同組織之構造。其等會緩和結晶之内部應力,故可獲得. 曲較少之結晶。 將生長溫度設為1040 °C〜1150 °C之高溫,並將第五族/第 二族之比R5/3設為1〜1 〇之較低值,故即便於形成有重複間 • 距較大之掩模之基底基板上亦可生長表面相當平坦之結 ' 晶,由此可相當好地防止氧之混入。因此,結晶構造之混 亂較少,且翹曲、裂縫變少。 【實施方式】 結合附圖’自本發明之下述[實施方式]將易瞭解本發明 135248.doc 36· 200937499 之前述及其他目的、特徵、態樣及優點。 專利文獻11中,基板溫度設為1000〇c ,第五族/第三族 之比Rw設為50,並於藍寶石基板上生長摻鐵GaN結晶。 若如專利文獻11所述,直接於基底基板上使摻鐵GaN結晶 氣相生長,則異質之鐵會混入,從而導致晶格構造產生變 形。若雜質濃度(鐵濃度)較高則產生較大應力,無法緩和 應力,内部變形變大,且裂縫、翹曲變大。若不緩和内部 應力,則無法抑制翹曲、裂縫並高濃度地進行Fe摻雜。 專利文獻8、9、10中所提出之刻面生長法中,係於基底 基板上設置基底基板之露出部較大之掩模,並使位錯(結 晶缺陷)集中於掩模3上,藉此,具有減少周邊部(係指位錯 減少結晶區域5yz,即,位錯減少刻面生長結晶區域52以 及位錯減少C面生長結晶區域5y,以下相同)中之位錯的作 用。其等之意圖在於減少位錯。對於半絕緣性基板而言, 為了實現耐大電流、耐高電壓’較理想的是位錯密度較 低。進而’專利文獻8、9、10之刻面生長法係,於結晶中 產生不同構造之部分’即’位錯集合結晶區域5h、位錯減 少刻面生長結晶區域5z以及位錯減少c面生長結晶區域 5y,因此可緩和應力。因此,可知亦具有減少翹曲並抑制 裂縫產生之效果。 因此’本發明於製作摻鐵之GaN結晶時亦利用刻面生長 之方法。如專利文獻8所示’刻面生長法中並無掩模,但 可如專利文獻9、10般,將掩模3設於基底基板1上並預先 指定位錯集合結晶區域5h、位錯減少刻面生長結晶區域5z 135248.doc -37- 200937499 以及位錯減少C面生長結晶區域5y之部分的產生位置。 位錯集結之位錯集合結晶區域5h、與位錯較少之位錯減 少刻面生長結晶區域5z以及位錯減少(:面生長結晶區域々 父替之構造’可緩和結晶之内部應力。即便因雜質摻雜而 變形’亦可抵消其應力。 因此,於基底基板上設置掩模而進行刻面生長之方法, 對於咼濃度地摻雜雜質之摻鐵GaN結晶之製造而言較有 用。 掩模被覆部上結晶之生長緩慢,而基底基板之露出部上 生長較快,故產生刻面,位錯密度減小。然而,可知,若 存在刻面,則如專利文獻7所述,氧會通過刻面而過度地 摻雜至結晶内部。 如專利文獻6所述,氧係產生n型載體者,故會抵消摻鐵 之效果。若摻入氧,則為了補償上述氧而必須摻雜大量鐵 原子。若如此,則結晶中所含之氧、鐵均為高濃度。 氧、鐵均非GaN結晶之本來之構成要素。若大量摻雜則 會擾亂結晶之晶格構造。高濃度之氧、鐵之添加會使結晶 之規則性降低。從而會增大位錯密度,增大内部應力,並 增大翹曲。裂縫之產生率亦會上升。&amp; 了實現半絕緣性而 不得不摻鐵。但無需氧。由此,期望將氧濃度抑制為儘可 能地低。例如’必須儘可能地使原料氣體純化,除去氧、 水分。然而即便如此,亦難以完全除去水分。原料氣體中 會殘留少許之氧、水分。 士專利文獻7所述,氧難以自c面摻入但容易通過刻面而 135248.doc -38- 200937499 摻入。亦即’不形成刻面而於c面上進行生長之方去 有 望減少氧之摻入。 於專利文獻8、9、10之前應係進行C面生長。由此亦重 新考慮到專利文獻1〜5中之通常的C面生長。然而,結果與 專利文獻11相同。無法滿足裂縫及勉曲之方面。 專利文獻8、9、10之刻面生長法不僅具有減少位錯之作 用,亦具有減小結晶之内部應力、減小翹曲之作用。不僅Regarding the present invention! Type crystal, which is a white dot indicating the growth temperature (substrate temperature) and the ratio of the fifth/third group ratio. The growth temperature ^ is moc and the ratio of the fifth/third group ratio R5_2.5 has _. The growth temperature Tq is 1110 ° C and the ratio of the fifth/third group to 3 is 3. The growth temperature Tq is UHTC and the ratio of the fifth group/third group ratio (4) is i, the growth temperature Tq is 1 loot, and the ratio of the fifth group/third group is one. In Fig. 22, the growth temperature (substrate temperature) of the present invention and the range of the fifth/third group ratio Rw are surrounded by a broken line. 1 〇 8 〇 &lt; t is a preferred temperature for the mixed crystal growth between the type and the Η type. In Patent Documents 2 and 3, a mask having a large pitch is not used. There are eight embodiments in which the ratio of the fifth/third group R5'3 is three. There are two embodiments in which the ratio of the fifth/third group is still four. The ratio of the fifth/third group is "the implementation of the second and the second." However, the substrate temperature is 97 (rc, 1020t, or 1〇3 (rc, both at the lower limit of the present invention, that is, 1〇4〇). (: The following is a case where the mask having a large pitch is not used in Patent Documents 2 and 3, and the iron doping is not performed. The present invention differs from Patent Documents 2 and 3 in three places. Patent Document 8 is the first to propose a facet. The growth method, but does not use a mask having a large pitch. The growth temperature is 105 (rc. The ratio of the fifth group/third group is r... is 40. There is no iron. The present invention differs from Patent Document 8 in three places. In Patent Documents 9, 10, a mask having a large pitch is used. When the growth temperature is 135248.doc -35·200937499 l〇3〇°C or 1050°C, the fifth/third family scale 5/ 3 is 12, 12 5, or 15. When the ratio of the fifth group/third group Rs/3 is 8, the growth temperature is 1010 ° C. Iron is not doped. The quinoid crystal of the present invention and the patent document 9, 1 There are two differences in the enthalpy. The surface of the crystal of the type I crystal of the present invention is substantially flat, so there are three differences from the patent documents 9 and 10. Patent Document 11 is the only iron-doped document "in the V10CVD method". The long temperature is 1000 C and the ratio of the fifth/third group Rs/3 is 50. The growth temperature is 1000 ° C in the HVPE method and the ratio Rw of the fifth/third group is 50. The ® mask is not used. The present invention and the patent document differ in the growth temperature (substrate temperature), the ratio of the fifth/third group Rs/3, and the presence or absence of the mask. The doping with iron can offset the intrinsic donor body. Thus, a semi-insulating nitride semiconductor substrate having a specific resistance of 107 Qcm or more can be obtained. A mask having a large repeating pitch is formed on the base substrate and crystal growth is performed thereon, so that a dislocation-collecting crystal region 5h can be internally generated. Or the dislocation reduces the structure of different tissues such as the facet-grown crystal region 5z, the dislocation-reduced C-plane growth crystal region 5y, etc., etc., which moderates the internal stress of the crystal, so that a crystal with less curvature can be obtained. The high temperature of 1040 ° C to 1150 ° C, and the ratio of the fifth group / the second group R5 / 3 is set to a lower value of 1 to 1 ,, so even if a mask having a large repeat distance is formed A fairly flat junction crystal can also be grown on the base substrate, thereby preventing relatively well Therefore, the crystal structure is less confusing, and warpage and cracks are less. [Embodiment] The present invention will be easily understood from the following [Embodiment] of the present invention. 135248.doc 36· 200937499 The above and other objects, features, aspects and advantages. In Patent Document 11, the substrate temperature is set to 1000 〇c, the ratio of the fifth/third group Rw is set to 50, and the iron-doped GaN crystal is grown on the sapphire substrate. If the iron-doped GaN crystal is vapor-phase grown directly on the base substrate as described in Patent Document 11, the heterogeneous iron may be mixed, resulting in deformation of the lattice structure. If the impurity concentration (iron concentration) is high, a large stress is generated, the stress cannot be alleviated, the internal deformation becomes large, and cracks and warpage become large. If the internal stress is not alleviated, it is impossible to suppress warpage, cracks, and Fe doping at a high concentration. In the facet growth method proposed in Patent Documents 8, 9, and 10, a mask having a large exposed portion of the base substrate is provided on the base substrate, and dislocations (crystal defects) are concentrated on the mask 3, This has the effect of reducing the dislocations in the peripheral portion (the dislocation-reducing crystal region 5yz, that is, the dislocation-reducing facet-growing crystal region 52 and the dislocation-reducing C-plane growth crystal region 5y, the same below). Its intent is to reduce dislocations. In the case of a semi-insulating substrate, in order to achieve high current resistance and high voltage resistance, it is preferable that the dislocation density is low. Further, 'the facet growth method of Patent Documents 8, 9, and 10, which produces portions of different structures in crystallization, that is, 'dislocation crystallization region 5h, dislocation reduction facet growth crystallization region 5z, and dislocation reduction c-plane growth The crystallization region is 5y, so the stress can be alleviated. Therefore, it is known that it also has an effect of reducing warpage and suppressing generation of cracks. Therefore, the present invention also utilizes a method of faceted growth in the production of iron-doped GaN crystals. As shown in Patent Document 8, there is no mask in the facet growth method, but as in Patent Documents 9 and 10, the mask 3 is provided on the base substrate 1 and the dislocation-concentrated crystal region 5h is specified in advance, and the dislocation is reduced. The facet-grown crystallization region 5z 135248.doc -37- 200937499 and the position at which the dislocations reduce the portion of the C-plane growth crystallization region 5y. Dislocation assembly dislocations crystallization region 5h, dislocations with less dislocations, reduction of facet-grown crystallization regions 5z, and reduction of dislocations (the surface growth crystallization region, the structure of the scorpion) can alleviate the internal stress of crystallization. Even Deformation due to impurity doping can also offset the stress. Therefore, a method of providing a mask on a base substrate for faceted growth is useful for the fabrication of iron-doped GaN crystals doped with impurities at a concentration of germanium. The growth of the crystal on the mold-coated portion is slow, and the growth on the exposed portion of the base substrate is faster, so that the facet is generated and the dislocation density is reduced. However, it is understood that if there is a facet, as described in Patent Document 7, oxygen Excessively doping into the interior of the crystal by the facet. As described in Patent Document 6, the oxygen-based n-type carrier cancels the effect of iron doping. If oxygen is doped, it must be doped to compensate the oxygen. Iron atoms. If so, the oxygen and iron contained in the crystal are both high concentrations. Oxygen and iron are not the original constituent elements of GaN crystals. If a large amount of doping is used, the lattice structure of the crystal is disturbed. ,iron The addition causes a decrease in the regularity of crystallization, thereby increasing the dislocation density, increasing the internal stress, and increasing the warpage. The rate of occurrence of cracks also rises. &amp; However, oxygen is not required. Therefore, it is desirable to suppress the oxygen concentration as low as possible. For example, it is necessary to purify the raw material gas as much as possible to remove oxygen and moisture. However, even in this case, it is difficult to completely remove the water. Oxygen, water. As described in Patent Document 7, oxygen is difficult to incorporate from the c-plane but is easily incorporated by facet 135248.doc -38- 200937499. That is, 'no facet is formed and growth is performed on the c-plane. It is expected to reduce the incorporation of oxygen. C-plane growth should be carried out before Patent Documents 8, 9, and 10. The general C-plane growth in Patent Documents 1 to 5 is also reconsidered. However, the results and patent documents 11 is the same. The crack and distortion cannot be satisfied. The facet growth method of Patent Documents 8, 9, and 10 not only has the effect of reducing dislocations, but also has the effect of reducing internal stress of crystallization and reducing warpage.

要求位錯減少效果,亦要求内部應力減少效果。因此本發 明者考慮到’藉由如專利文獻9、1〇之掩模,該掩模中, 基底基板之露出部大於被覆部、被覆部以及露出部之間距 較大,而將基板溫度與第五族/第三族之比“控制於適當 之範圍内,以抑制刻面,藉此,進行翹曲較小、裂縫產生 較少之結晶生長。 例如,當為了將寬度50 μηι之平行掩模以5〇〇 之間隔 叹置於基板上且不形成刻面而使結晶生長時該如何進 行。因此可知使生長溫度更高、並供給更多第三族原料 (Ga等)即可。 可知^•於1080 C以上之較高之生長溫度(基板溫度) 使第五族/第二族之比低至丨〜1 〇,則即便於間距 較大之掩模上亦可保持。®而進行生長。若於1090。。以上 之基板溫度下使第五族/第三族之比R5/3為卜5,則可更切 實也維持c面而進行結晶生長。如圖21所示。於基板溫度 為且第五族/第三族之比R5/3為1〜1〇下不形成刻面而 進仃、”曰生長。若如此’則氧幾乎不會播入。氧會抵消摻 135248.doc -39- 200937499 鐵之作用但^氧不摻人則會顯著表現出摻鐵之效果。因 此氮化物半導體結晶成為半絕緣性。目使結晶於掩模上生 長,故會生成如位錯集合結晶區域5h、位錯減少刻面生長 結晶區域5z、位錯減少C面生長結晶區域巧之異質部分。 其等可減小内部應力,故可減少翹曲、裂縫。 e ❹ 即便有氧摻人,只要摻雜可抵消其之量的鐵即可。即便 有雜質大量摻入’只要内部應力較小即可。如上所述,若 為位錯集合結晶區域5h、位錯減少刻面生長結晶區域5z、 位錯減;C面生長結晶區域5丫等異質部分混合之構造,則 I減少翹曲及裂縫。因&amp;’即便略微降低生長溫度(基板 溫度)’只要有掩模構造均可減小應力。使基板溫度降低 至更低之1WC左右,並使氮化物半導體結晶於掩模構造 長右如Λ,則並非進行c面生長,而係刻面生長。 f為如圖20所示之情形。雖_邊形成刻面5f—邊生長,但 右第五族/第二族之比R5/3較低’則某種程度上可防止氧之 :入。進而,亦可以生長初期進行刻面生長之方式將基板 度第五族/第二族之比R5/3控制在適當範圍内,以減小 :曰曰之位錯及内部應力,繼而,卩進行C面生長之方式將 基板溫度、第五始_ / @ &gt; 、第二族之比R5,3控制在適當範圍内,以 減少氧之摻入量,仰為私, 從而較少之Fe摻雜量來製作高電阻之The effect of reducing the dislocation is required, and the internal stress reduction effect is also required. Therefore, the inventors considered that, by the mask of Patent Document 9, the mask, the exposed portion of the base substrate is larger than the distance between the covered portion, the covered portion, and the exposed portion, and the substrate temperature is the same as The ratio of the five/third group is "controlled within a proper range to suppress the facet, whereby the warpage is small and the cracks generate less crystal growth. For example, when a parallel mask of 50 μηι width is used It is possible to carry out the growth of crystals at a distance of 5 Å and to form a facet without forming a facet. Therefore, it is known that the growth temperature is higher and more third-group raw materials (Ga or the like) are supplied. • The higher growth temperature (substrate temperature) above 1080 C makes the ratio of the fifth/second group as low as 丨~1 〇, even if it is held on a mask with a large pitch. If the ratio of the fifth group/third group R5/3 is 5 in the above substrate temperature, crystal growth can be performed more reliably while maintaining the c-plane. As shown in Fig. 21, at the substrate temperature. For the fifth group/third family ratio R5/3 is 1~1, the facet is not formed. Ding, "said growth. If so, oxygen will hardly be broadcast. Oxygen will counteract the effect of iron doping 135248.doc -39- 200937499 but it will show the effect of iron doping. Therefore, the nitride semiconductor crystal is semi-insulating. Since the crystal grows on the mask, a heterogeneous portion such as a dislocation-collecting crystal region 5h, a dislocation-reducing facet-grown crystal region 5z, and a dislocation-reducing C-plane growth crystal region are formed. These can reduce internal stress, so warpage and cracks can be reduced. e 即便 Even if it is aerated with oxygen, it can be doped with iron that can offset it. Even if a large amount of impurities are incorporated, 'as long as the internal stress is small. As described above, if the dislocation-collecting crystal region 5h, the dislocation-reducing facet-growing crystal region 5z, the dislocation reduction, and the C-plane growth crystal region 5丫 and the like are mixed, the warp and crack are reduced. Since &amp;'s even slightly lowering the growth temperature (substrate temperature)', the stress can be reduced as long as the mask structure is present. When the temperature of the substrate is lowered to about 1 WC lower and the nitride semiconductor crystallizes in the mask structure, the right side is Λ, and the c-plane growth is not performed, but the facet growth is performed. f is the situation as shown in FIG. Although the _ side forms the facet 5f—the side grows, but the right fifth/second group ratio R5/3 is lower', it can prevent oxygen from entering to some extent. Further, the ratio of the fifth group/the second group of the substrate degree R5/3 in the initial stage of growth can be controlled within an appropriate range to reduce the dislocations and internal stress of the crucible, and then, the crucible is performed. The way of C-side growth is to control the substrate temperature, the fifth initial _ / @ &gt;, and the ratio of the second group R5, 3 within an appropriate range to reduce the amount of oxygen incorporated, to be private, and thus less Fe doping. Miscellaneous to make high resistance

GaN基板。 如圊21所示,將纟士曰*GaN substrate. As shown in 圊21, will be a gentleman*

、、、Ό日日生長後之表面平坦之結晶稱作I 型,而如圖20所示,膝志品也 7不將表面為凹凸形之結晶稱作II型,以 區分兩者。 135248.doc 200937499 於第五族/第二族之比R5,3低至1〜l〇、生長溫度(基板溫 度)為l〇4〇°C〜1070°C之情形時’形成π型結晶5(圖20)。位 錯集合結晶區域5h之表面較低,於其表面上繼而產生刻面 5f,之後於該刻面5f下方產生位錯減少刻面生長結晶區域 5z。該圖係表示使用條紋型掩模但無^面之極限情形時之 剖面圖。即便於條紋掩模之情形時,有時,於相鄰之掩模 3之中間位置上亦存在c面5c,且存在位錯減少(:面生長結 晶區域5y。於點狀掩模之情形時,必定存在(:面5(;,且於c 面5c下方存在位錯減少c面生長結晶區域5y。 右第五族/第二族之比R5,3低至丨〜…、生長溫度(基板溫 度)尚至1090。(:~1150。(:,則會形成丨型結晶5(圖21)。表面 平坦,且於掩模之正上方存在位錯集合結晶區域讣,其等 露出於表面。其他部分混合存在位錯減少刻面生長結晶區 域5z與位錯減少C面生長結晶區域5y。 曰於生長溫度(基板溫度)處於〗型結晶之生長溫度與Η型結 晶之生長溫度t間之情形時(1G7()&lt;t〜1()9(rc),形成Ζ型與 Π型之混合型結晶5 °开》成如圖24之梯形形狀之結晶5。於 掩模上形成位錯集合結晶區域5h。於基底基板k露出部 U上形成位錯減少刻面生長結晶區域5z、位錯減少C面生 長結晶區域5y。 之研究,對於掩模上生成之位錯集合結晶區域 5h已大體熟知。 取 w 〆『、口 、、,口 日日 心。位錯集合結晶區域5h係位錯集中之部分 位錯集合結晶區域5h存在三個不同之情形 心。位錯隼〜“ ’ 集口結晶區域讣僅稱作核 種係成為 13524S.doc -41 - 200937499 = 此之位錯集合結晶區域外被稱作多晶層。 其他部分(位錯減==二d形係成為㊈相對於 生長結晶區域々)而傾斜之單域形5Z以及位錯減少⑽ 係,朝向上方之單曰。此處’其他部分 作傾斜層。義之-合結晶區域5h被稱 匱形係成為C軸朝向下方之單晶之 L社!\’結晶抽之方向相對於其他部分(位錯減少刻面 ❹The crystals whose surface is flat after day-to-day growth are referred to as type I, and as shown in Fig. 20, the knee-shaped product 7 does not refer to a crystal having a concavo-convex shape as a type II to distinguish the two. 135248.doc 200937499 When the ratio of the fifth group/second group R5,3 is as low as 1~l〇, and the growth temperature (substrate temperature) is l〇4〇°C~1070°C, 'formation of π-type crystal 5' (Figure 20). The surface of the dislocation-collecting crystallization region 5h is low, and a facet 5f is subsequently formed on the surface thereof, after which a dislocation-reducing facet-growing crystal region 5z is generated below the facet 5f. This figure shows a cross-sectional view in the case where a stripe type mask is used but the surface is not limited. In other words, in the case of the stripe mask, the c-plane 5c is sometimes present at the intermediate position between the adjacent masks 3, and the dislocations are reduced (the surface-grown crystal region 5y. In the case of the dot mask) , must exist (: face 5 (;, and there is a dislocation below the c face 5c to reduce the c-plane growth crystallization region 5y. The ratio of the right fifth group / the second group R5, 3 as low as 丨 ~ ..., growth temperature (substrate The temperature is as long as 1090. (: ~1150. (:, 丨-type crystal 5 is formed (Fig. 21). The surface is flat, and there is a dislocation crystal region 讣 directly above the mask, which is exposed on the surface. The other part is mixed with dislocations to reduce the facet growth crystallization region 5z and the dislocation reduction C-plane growth crystallization region 5y. The growth temperature (substrate temperature) is between the growth temperature of the crystallization and the growth temperature t of the crystallization. When (1G7() &lt;t~1()9(rc), a mixed crystal of Ζ-type and Π-type is formed, 5° is formed into a trapezoidal shape crystal 5 as shown in Fig. 24. A dislocation set is formed on the mask. Crystallization region 5h. Dislocation reduction on the exposed portion U of the base substrate k reduces the facet growth crystal region 5z, and the dislocation reduction C The growth crystallization region 5y. The study has been generally known for the dislocation crystallization region 5h generated on the mask. Take w 〆 『, mouth, ,, mouth and day heart. Dislocation crystallization region 5h part of the dislocation concentration There are three different situations in the dislocation set crystallization region 5h. The dislocation 隼~" 'The crystallization region of the nucleus is only called the nuclear phylogeny becomes 13524S.doc -41 - 200937499 = This dislocation is called the crystallization region outside Polycrystalline layer. The other part (dislocation minus == two d-forms becomes nine relative to the growth crystallization region 々) and the inclined single-domain shape 5Z and the dislocation reduction (10) system, the upward direction of the single 曰. Here 'other parts As a sloping layer, the symmetry-combined crystallization region 5h is called the 匮-shaped system, and the L-axis of the single crystal whose C-axis faces downward! \'The direction of crystallization is relative to other parts (the dislocation reduces the facet ❹

^二日日區域5z以及位錯減少c面生長結晶區域⑼而言完 王之單晶之情形。如此之位錯集合結晶區域5h被稱作 反轉層。反轉層封閉位錯之力最大。繼而,傾斜層具有封 才1位錯之力。多晶層之預先捕獲位錯之力最小。 ” 0(1 2 棱、3〜5 μιη間距;露出部狹小)相比, 無論點型抑或條紋型’設置於基底基板上之掩模之間距相 當大’且露出部相當大。由此可具有由如位錯減少刻面生 長、^ aa區域5Ζ位錯減少C面生長結晶區域5y以及位錯集 合結晶區域5h之不同部分所構成之構造。 如圖25所示,於條紋掩模之情形時,掩模3之尺寸如 下,基底基板1之掩模3之被覆部之寬度〇3設為ι〇 μιη〜ι〇〇 μιη,相鄰之被覆部的間隔1)界設為25〇 μιη〜2〇〇〇 。 如圖26所示,於點狀掩模之情形時,掩模3之尺寸如 下,基底基板1之掩模3之被覆部之直徑!^設為1〇 μιη〜ι〇〇 μπι ’相鄰之被覆部的間隔Dw設為25〇 μπι〜2〇〇() μιη。當被 覆部(掩模部分)之直徑未滿10 |_1111時,位錯集合結晶區域 5h之形成維持地並不順利,即便產生位錯集合結晶區域% 135248.doc •42- 200937499 亦會於中途消失。即便被覆部(掩模部分)之間隔超過2〇〇〇 μηι,亦可形成位錯集合結晶區域5h/位錯減少刻面生長結 晶區域5z/位錯減少C面生長結晶區域巧之構造,但若結晶 不夠厚,則無法利用位錯集合結晶區域几來完全捕 錯0 如ELO法般掩模之尺寸較小之情形時,隨著結晶生長, 表面變得平坦(c面)且掩模之影響會立刻消失。然而,若^ The case of the second day of the area 5z and the dislocation reduction c-plane growth crystallization region (9). Such a dislocation set crystallization region 5h is referred to as an inversion layer. The inversion layer has the largest force for closing dislocations. In turn, the inclined layer has the force to seal the 1 dislocation. The polycrystalline layer has the least force to pre-catch dislocations. ” 0 (1 2 ribs, 3 to 5 μmη spacing; narrowing of the exposed portion) compared to the point-type or stripe type 'the distance between the masks disposed on the base substrate is quite large' and the exposed portion is quite large. A structure consisting of a difference in facet growth, a 5a dislocation in the ^aa region, a C-side growth crystallization region 5y, and a dislocation-collected crystallization region 5h. As shown in Fig. 25, in the case of a stripe mask The size of the mask 3 is as follows. The width 〇3 of the covering portion of the mask 3 of the base substrate 1 is ι〇μιη to ι〇〇μηη, and the interval 1) of the adjacent covering portions is set to 25〇μηη~2 As shown in Fig. 26, in the case of a dot mask, the size of the mask 3 is as follows, and the diameter of the covering portion of the mask 3 of the base substrate 1 is set to 1 〇 μιη to ι〇〇μπι 'The interval Dw of the adjacent coating portions is set to 25 〇μπι 2 2 〇〇 () μιη. When the diameter of the covering portion (mask portion) is less than 10 |_1111, the formation of the dislocation crystallization region 5h is maintained and Not smooth, even if the dislocation set crystallized area is generated 135248.doc •42- 200937499 will also be in The way disappears. Even if the interval between the covered portions (mask portions) exceeds 2 μm, the dislocation-collecting crystal regions can be formed 5h/dislocation reduction, the facet-growing crystal region 5z/dislocation reduction, the C-plane growth crystal region Structure, but if the crystal is not thick enough, it is impossible to completely capture the error by using the dislocation set crystal region. When the size of the mask is small as in the case of ELO, the surface becomes flat (c surface) as the crystal grows. The effect of the mask will disappear immediately. However, if

掩模之尺寸較大,則即便基板生長不斷進行,表面亦始終 無法平坦。刻面生長法(專利文獻9、1〇)中維持刻面直至最 後且可減少位錯。 進而’問題在於勉曲及裂縫。如專利文獻u所述,於無 掩模之基底基板上使摻鐵GaN進行c面生長並作為獨立基 板時’會裂開或者產生明顯翹曲。 本發明中’藉由使位錯減少刻面生長結晶區域&amp;、位錯 集合結晶區域5h、位錯減少。面生長結晶區域々等異質之 構造部混合存在於結晶内部,從而減小結晶之内部應力。 因此,使用間距Dp較大之(間隔Dw、寬度仏均較大; DP=DS+Dw)掩模,來製作位錯減少刻面生長結晶區域&amp;、 位錯集合結晶區域5h、位錯減少C面生長結晶區域5y等構 造物:然而’若刻面優良則氧會摻入,因&amp;,提高溫度並 降低第五族/第二族之比Rs/3,以便儘可能成為平坦表面之 1型,以此方式來製作結晶。更理想的是!型。 …、而較疋II型亦成為半絕緣性,處於亦滿足輕曲及 裂縫之範圍内,故亦可利用„型,屬於本發明之範圍。 135248.doc •43- 200937499 於基底基板上形成如上所述之直徑(寬度)、間隔較大之 掩模’並使基板溫度提高至1040。〇以上,藉由法, 邊供給第五族/第二族之比尺5,3為1〜10之第五族原料及第 三族原料以及鐵化合物氣體原料,一邊於基底基板上使氤 化物半導體結晶生長,之後除去基底基板《此處,關於自 _ 氮化物半導體結晶5除去基底基板丨之方法,並無特別限 - 制,可使用切割、研磨等方法。本發明之主旨係製作氧量 比較少、翹曲較少、且裂縫產生率較低之獨立摻鐵氮化物 ❹ 半導體結晶。 [實施例] (111)將Ga面之GaAs作為基底基板而形成點狀掩模或者 條紋掩模。掩模為si〇2,且厚度為60 nm〜2〇〇 nm。掩模之 尺寸(直徑或寬度Ds、間隔Dw、間距Dp)於下文敍述。藉 由HVPE法使GaN膜於上述掩模上生長。首先形成緩衝 層,繼而形成較厚之磊晶生長層。缓衝層之條件如下所 示。 緩衝層之生長之條件為,基板溫度為5〇〇t&gt;c ~55〇它, GaCl 分壓 PGaC1 為 80 Pa(〇 〇〇〇8 atm),NH3 分壓 為 μ . kPa(0.16atm)’且緩衝層之厚度為5〇nm。 、緩衝層生長時之第五族/第三族之比Rw為2〇〇。本發明 -雖重視生長溫度與第五族/第三族之比“,但其係磊晶生 長(厚膜生長)時之值,而緩衝層形成時之第五族/第三族之 比R5/3並無問題。 基板内「產生裂縫」,係指產生長度為2〇醜以上之表 135248.doc -44· 200937499 面線狀裂縫之情形、或者產生3條以上〇·5 mm〜2·0 mm之表 面線狀裂縫之情形、或者產生21條以上〇_3 mm〜〇,5 mm之 表面線狀裂縫之情形。 内未產生裂縫」,係指無2.0 mm以上之表面線狀 裂縫〇·5 mm〜2.0 mm之線狀裂縫為2條以下、〇.3 mm~0.5 mm之裂縫為2〇條以下之情形。 •,所謂裂縫產生率(%) ’係指所生長之基板中、產生裂縫 之基板之塊數除以全體基板之塊數並乘以後所得之 ❹ 值。所謂施體濃度CD係S η型雜質之遭度。此處不摻雜si 故施體為氧(〇)。亦即,所謂施體濃度Cd係指形成施體能 1¾之氧濃度。氧濃度、鐵濃度均藉由SIMS(二次離子質譜 刀析法 Secondary I〇n Mass Spectrography)而測定。基板 之翹曲係藉由曲率半徑R(單位:m)來表現。反覆進行大量 的實驗。 此處對45個試料進行敍述。對試料附上1〜45之序號。 1〜36、44、45為本發明之實施例。試料37〜43為比較例。 試料1〜36、44、45之實施例中,試料卜21、私為丨型(平坦 表面)。試料22〜36、45為II型(凹凸形表面)。 • 比較例中,不於基底基板上設置掩模,而係使結晶直接 • 於平坦基底基板上氣相生長。比較例37〜43係為了確認掩 模之影響而特別進行實驗者,並非先前技術。亦存在溫 度、弟五族/第二族之比RS/3處於本發明之限定範圍内之情 形。 表1中表示試料序號、掩模間隔(單位:μιη)、掩模寬度 135248.doc •45· 200937499 或直徑(單位:μΐΏ)、生長溫度fC)、PGa(表示GaCI分壓, 單位:kPa)、PN(表示氨分壓,單位:kpa)、基板尺寸(單 位· mm或者英吋(&quot;)、厚度(單位:μιη)、核心(位錯集合結 晶區域5h)之種類、結晶面類型、Fe濃度cFe(單位:cm·3)、 施體濃度Cd(相當於氧濃度,單位:cm·3)、比電阻(Qcm)、 裂縫產生率(°/。)、及翹曲之曲率半徑(單位:m)。 [表1] ❹ 135248.doc -46 - 200937499 ί’ Ό wS &lt;Ν *η Ο 00 &lt;Γ&gt; σ\ «ο 00 »η ν〇 »η Cs wS r-** »ri Os »n (S &gt;ri (N wS o &lt;) 〇s *〇 r- wS ΟΝ r*S m f*S ν-ν »η &lt;Ν uS i〇 o »n *r&gt; »〇 卜 V-» m &gt;τΐ 〇 »n r- »r&gt; 对 in 卜 »η ο vd VO «S w-&gt; »n 〇 uS ο «ο Ο »τί rt· \£&gt; ON 00 r—&lt; VO CN 〇 — • 寸 (Ν 00 CS (S »η so &lt;Ν 宕 卜 ψ-μ 卜 Os 2 00 00 卜 σ\ 卜 ν〇 卜 2 ON (S ON (S 00 &lt;N CO (N fS 00 &lt;s 〇\ CN 00 &lt;N ON &lt;Ν C0 (Ν r- tn 00 00 &amp; 00 VO § »n σ\ 00 Ίβρ| 〇 ο X r^ X *Μ X 0 Ο X — X Ο r—^ s Ο ψ-* 〇 X o X b F-^ o O o X ο X ο X ο 1··* ο X η Ο X Ο »«Μ X « 〇 X O X F&quot;·* 〇 X ο Ο X o X 〇 X r&gt; o X ο X ο X n 〇 X o X s 〇 A Ί o Τ&quot;&quot;&lt; Ο X ο X b »—&lt; X o b r^i o X 〇 〇 X η r^ η Ο X «1 1»Μ X »»Η η Ο X r» Ο X r&gt; Ο r-H η Ο X f\ Ο n 〇 X r&gt; 〇 r&gt; o X n 〇 X r» 〇 X r&gt; o X η Ο X η Ο τ—^ η Ο X η Ο X ο X ο X o rv o X n o X o X ο X h o X &gt;&gt; o »*H o X r&gt; Ο X η Ο X J\ 〇 X 7\ o X n 〇 X r&gt; o X ο X ο X η Ο X η Ο ^―&lt; r» 〇 X r\ o X o X o ο X η Ο 〇 〇 X v^t £ Ο X Ο X 卜 X ο Ο X »—Η ο Ο X Ο Ο «» &gt; Ο X &gt; o o X o F·^ o o 1-^ b o X ο X ο X Ο X Ο ««Η Γ&quot;Η ο h ο X ΪΝ 〇 *n o X 0 〇 X o X ο 云 Λ o X Λ o Ϊ o X ί\ Ο X Λ ο t\ o Λ o 00 JN o o 00 »\ Ο ϊ\ ο ά Ο X ο Ο X o X Λ o Ϊ o X Λ Ο X Λ Ο ϊ Ο X ο X Π= ^ &gt;—4 - ΗΜ ΝΜ ΝΜ NM — NM Nb« »-«4 ΝΜ Μ ΝΝ HH KH HH HH S s s Μ - S M - &gt;—( y@ U 电 υ 电 U v0 U \B U V0 U 电 υ »»4 ΜΗ 缕鄉 ^σ * 赛 〇|η #: 諱 D$D 觫 Q^D t 擊 t^t Q|B 觫 黎 (j〇 〇^Β Q|D 〇^η 翁 稼 {^D D|D 諱 〇|σ 諱 |^D 黎 {$〇 # 1 I 1 1 1 1 1 ήη 觫 ^ s' Ο Ο ο ο ο ο Ο ο Ο Ο Ο ο ο ο o o Ο ο o o o o o o o o o o ο ο ο ο Ο ο Ο ο Ο ο Ο ο o o o o o o o o 〇 〇 o o o o o o Ο Ο ο ο o o o o O o o o ο ο ο ο Ο Ο Ο Ο 〇 o 〇 o 〇 o Ο Ο Ο Ο Ο Ο ο ο 堪屮 I 00 &lt;Ν rn CS (Ν &lt;Ν (S CN (Ν (N (N (N &lt;N (S (Ν (Ν CS &lt;Ν fN &lt;N CN (N (N fS &lt;N &lt;N (N CN CN (S CN (N ΓΜ (Ν &lt;Ν &lt;Ν &lt;Ν (S (N CN (Ν (Ν (S (Ν Φ C0 S3 Ο Ο (ΰ S2 ο cd 52 Ο 1 PGa : lOkPa、ΡΝ : lOkPa | 1 PGa: 3.3 kPa、PN: lOkPa | 22 ο C〇 §2 o C3 §2 Ο I PGa : 4kPa.PN : lOkPa | §2 o ed o &amp; 〇 &amp; o α 52 Ο «ΰ &amp; Ο Sa Ο S2 Ο cd S2 Ο (β §2 Ο o &lt;d &amp; 〇 cQ §2 o 2a 〇 2a Ο eQ 刍 o §2 〇 Sa o §2 Ο δ ο a 52 〇 CQ o Λ §2 o cd &amp; o cd Sa Ο Λ Sa Ο rt §2 Ο 52 Ο &amp; o Λ §2 〇 52 〇 &lt;Λ 22 Ο Λ §2 Ο &amp; ο cd S2 ο ? Λ §2 寸 ? 22 ? cd §2 ? Λ 22 ? cd 22 寸 g , 52 寸 之 Ql« VS 22 寸 Z. Qu, §2 Cu, Λ §2 对 〇. cd Sa 叶 ? 22 ? Λ 22 g «ϋ S3 对 g ψ 22 Ζ CU r C3 §2 对 ? Λ 22 寸 ? 功 S3 寸 g c4 &amp; 对 g cd Sa Tf g Λ &amp; tJ* ? ¢0 &amp; g §2 ? (d 2a 对 g §2 g &amp; ? 22 g CO &amp; 寸 g C4 52 g CQ s ? §2 寸 g 〆 oi 对 g • a S3 &lt;Ν S , 22 cu • ed §2 寸 ? α cu • a 52 &lt;a S3 时 g 5a 〇Η rt &amp; τΐ- cd Sa 寸 ? ed &amp; 々 之 cd S3 cd Ο Ον ¢4 Ο CLn Ο α. δ 〇Η Λ Ο cu Ο cu cd Ο cu cd o filH cd O cu β CU cd ϋ IX &lt;ϋ Ο CU &lt;ϋ Ο (X 〇 α. a ο α. δ CO Ο (X vi o On cd o cu cd o CL, Ο Oh s (X cd o a. ϋ cu Λ Ο cu S CU Λ Ο cu Λ ο CU «5 O cu cd O Oh &lt;0 O fri Ο Λ ο Ον C&lt;3 Ο cm cd Ο cu cd o cu ed o a. ed o (X e4 Ο Oh cd Ο ce Ο CU Λ Ο Ρμ 靶 鴻G Ο ο »—Η *—Η ο Ο ο ο V&quot;M ο *&quot;Μ ο 1—4 ο ·—&lt; o o r—&lt; o o ο ο ο ο »—Η ο ^Η ο 2 o o s 沄 o 沄 Ο ο s o s 沄 ο ο s ί·Η Ο S ο S Ο s o s 〇 s o s 沄 ο Ο S S ο 沄 ο o S 1-M o s o o Ο »* F-^ 〇 ο 另 Ο (UIH) m% S 沄 沄 沄 沄 o &lt;N o r—&lt; 沄 沄 沄 s 沄 沄 ο 1 I 1 t 1 I 1 沄 ^ms 耸s?3 Ο ο 沄 ο ν-&gt; ο ο Ο 沄 ο ο 沄 Ο 沄 o o o s o 沄 ο •η &lt;s ο JQ ο 2 Ο § Ο 1 ο ο o 沄 o 沄 o 沄 ο ο o 沄 ο ο 沄 ο 沄 ο ο 沄 o 沄 o s o ο ο 銻 λ3 £ w 餐 £ ο ο ν*&gt; 实艏 (Ν m 寸 «ο Ό 卜 00 ON o ·—« »—4 rj 2 2 *η 卜 00 2 r3 ίΝ CN m (N «r&gt; (S \〇 CN CN 00 (Ν σ\ &lt;Ν m (N ΓΛ CO ΓΛ »η ΓΛ \〇 m Ρ; 00 m C\ cn ο qi 箐 !〇 对 .47- I35248.doc 200937499 [實施例A :半絕緣性基板之實施例] [試料1 (實施例;I型)] 於18 mm見方之GaAs基板上,形成掩模間隔〇评為5〇〇 pm、掩模寬度DS為50从„!之平行條紋掩模。試料丨之特徵 在於使用18 見方之晶圓作為基底基板。形成緩衝層 _ 後’使GaN結晶蟲晶生長。蟲晶生長溫度Tq為1 1 lot、 NH3 分壓?仙3為10 kPa(〇1 atm)、分壓 p^c丨為 4 (0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 以If the size of the mask is large, the surface will never be flat even if the substrate growth continues. The facet growth method (Patent Documents 9, 1) maintains the facet until the end and reduces dislocations. Further, the problem is distortion and cracks. As described in the patent document u, when the iron-doped GaN is c-plane grown on a maskless base substrate and used as a separate substrate, it is cracked or significantly warped. In the present invention, the dislocations are reduced by reducing the facet growth crystallization region &amp; dislocation aggregation crystal region 5h. A structural portion such as a surface growth crystal region is mixed in the crystal to reduce the internal stress of the crystal. Therefore, using a mask having a large pitch Dp (large spacing Dw, wide width ;; DP=DS+Dw) mask to produce dislocation-reducing facet-grown crystalline regions &amp; dislocation-collecting crystallization regions 5h, dislocation reduction Structure such as C-side growth crystallization region 5y: However, if the facet is excellent, oxygen is incorporated, and the temperature is increased and the ratio of the fifth/second group Rs/3 is lowered to make it as flat as possible. Type 1 is used to make crystals in this way. More ideal is the ! type. ..., and the type II is also semi-insulating, and it is also in the range of light curvature and crack, so it can also be used in the scope of the invention. 135248.doc •43- 200937499 is formed on the base substrate as above The diameter (width) and the mask with a large interval are used to increase the substrate temperature to 1040. Above the ,, by the method, the fifth/second family scale 5, 3 is 1 to 10 The fifth-group raw material, the third-group raw material, and the iron compound gas raw material are grown on the base substrate by crystallizing the vaporized semiconductor, and then the base substrate is removed. Here, the method of removing the base substrate from the nitride semiconductor crystal 5 is performed. There is no particular limitation, and methods such as cutting and polishing can be used. The gist of the present invention is to produce an independent iron-doped nitride semiconductor crystal having a relatively small amount of oxygen, less warpage, and a low crack generation rate. (111) Forming a dot mask or a stripe mask using GaAs on the Ga surface as a base substrate. The mask is si〇2 and has a thickness of 60 nm to 2 〇〇 nm. The size of the mask (diameter or width Ds) , interval Dw, spacing Dp) The GaN film is grown on the mask by the HVPE method. First, a buffer layer is formed, and then a thick epitaxial growth layer is formed. The conditions of the buffer layer are as follows. The growth condition of the buffer layer is the substrate. The temperature is 5〇〇t&gt;c ~55〇, the GaCl partial pressure PGaC1 is 80 Pa(〇〇〇〇8 atm), the NH3 partial pressure is μ. kPa(0.16atm)' and the buffer layer thickness is 5〇nm The ratio of the fifth group/third group Rw of the buffer layer growth is 2〇〇. The present invention - although the growth temperature is proportional to the ratio of the fifth group to the third group ", but it is epitaxial growth (thick film) The value at the time of growth, and the ratio of the fifth/third group R5/3 at the time of formation of the buffer layer is not problematic. "Cracking" in the substrate refers to the case where the surface is 135248.doc -44· 200937499 with a length of 2 〇 or more, or a surface line of 3 or more 〇·5 mm~2·0 mm. In the case of cracks, or in the case of 21 or more 线3 mm~〇, 5 mm surface linear cracks. There is no crack in the surface, which means that there is no linear crack in the surface of 2.0 mm or more, and the linear crack of 5 mm to 2.0 mm is 2 or less, and the crack of 3 mm to 0.5 mm is 2 or less. The term "crack generation rate (%)" refers to the ❹ value obtained by dividing the number of blocks of the substrate on which the crack is generated by the number of blocks of the entire substrate and multiplying them. The so-called donor concentration CD is the degree of S η type impurity. Here, the body is not doped with Si, so the donor body is oxygen (〇). That is, the so-called donor concentration Cd means the oxygen concentration at which the donor energy is formed. Both the oxygen concentration and the iron concentration were measured by SIMS (Secondary Ion Mass Spectrography). The warpage of the substrate is expressed by the radius of curvature R (unit: m). Repeat a lot of experiments. Here, 45 samples are described. Attach the serial number of 1 to 45 to the sample. 1 to 36, 44, and 45 are embodiments of the present invention. Samples 37 to 43 are comparative examples. In the examples of Samples 1 to 36, 44, and 45, the sample material 21 was a sputum type (flat surface). Samples 22 to 36 and 45 were type II (concave-convex surfaces). • In the comparative example, the mask is not placed on the base substrate, but the crystallization is directly grown on the flat base substrate. Comparative Examples 37 to 43 are particularly experimental in order to confirm the influence of the mask, and are not prior art. There is also a case where the temperature, the ratio of the five/family group RS/3 is within the limits of the present invention. Table 1 shows the sample number, mask interval (unit: μιη), mask width 135248.doc •45·200937499 or diameter (unit: μΐΏ), growth temperature fC), PGa (indicating GaCI partial pressure, unit: kPa) , PN (indicating ammonia partial pressure, unit: kpa), substrate size (unit · mm or inch (&quot;), thickness (unit: μιη), core (dislocation set crystal region 5h) type, crystal face type, Fe concentration cFe (unit: cm·3), donor concentration Cd (corresponding to oxygen concentration, unit: cm·3), specific resistance (Qcm), crack generation rate (°/.), and curvature radius of warpage ( Unit: m) [Table 1] 135 135248.doc -46 - 200937499 ί' Ό wS &lt;Ν *η Ο 00 &lt;Γ&gt; σ\ «ο 00 »η ν〇»η Cs wS r-** » Ri Os »n (S &gt;ri (N wS o &lt;) 〇s *〇r- wS ΟΝ r*S mf*S ν-ν »η &lt;Ν uS i〇o »n *r&gt; »〇卜V-» m &gt;τΐ 〇»n r- »r&gt; 对 in 卜»η ο vd VO «S w-&gt; »n 〇uS ο «ο Ο »τί rt· \£&gt; ON 00 r—&lt ; VO CN 〇— • inch (Ν 00 CS (S » η so &lt;Ν 宕 ψ ψ-μ Bu Os 2 00 00卜σ\卜ν〇卜 2 ON (S ON (S 00 &lt;N CO (N fS 00 &lt;s 〇\ CN 00 &lt;N ON &lt;Ν C0 (Ν r- tn 00 00 & 00 VO § »n σ\ 00 Ίβρ| 〇ο X r^ X *Μ X 0 Ο X — X Ο r—^ s Ο ψ-* 〇X o X b F-^ o O o X ο X ο X ο 1·· * ο X η Ο X Ο »«Μ X « 〇XOX F&quot;·* 〇X ο Ο X o X 〇X r&gt; o X ο X ο X n 〇X o X s 〇A Ί o Τ&quot;&quot;&lt ; Ο X ο X b »—&lt; X obr^io X 〇〇X η r^ η Ο X «1 1»Μ X »»Η η Ο X r» Ο X r&gt; Ο rH η Ο X f\ Ο n 〇X r&gt;〇r&gt; o X n 〇X r» 〇X r&gt; o X η Ο X η Ο τ—^ η Ο X η Ο X ο X ο X o rv o X no X o X ο X ho X &gt;&gt; o »*H o X r&gt; Ο X η Ο XJ\ 〇X 7\ o X n 〇X r&gt; o X ο X ο X η Ο X η Ο ^―&lt; r» 〇X r \ o X o X o ο X η Ο 〇〇X v^t £ Ο X Ο X 卜 X ο Ο X »—Η ο Ο X Ο Ο «» &gt; Ο X &gt; oo X o F·^ oo 1 -^ bo X ο X ο X Ο X Ο ««Η Γ&quot;Η ο h ο X ΪΝ 〇*no X 0 〇X o X ο 云Λ o X Λ o Ϊ o X ί\ Ο X Λ ο t \ o Λ o 00 JN oo 00 »\ Ο ϊ ο ά Ο X ο Ο X o X Λ o Ϊ o X Λ Ο X Λ Ο ϊ Ο X ο X Π= ^ &gt;—4 - ΗΜ ΝΜ ΝΜ NM — NM Nb« »-«4 ΝΜ Μ ΝΝ HH KH HH HH S ss Μ - SM - &gt;—( y@ U 电 电 U v0 U \BU V0 U eMule »»4 ΜΗ 缕乡^ σ *赛赛|η#: 讳D$D 觫Q^D t 击t^t Q|B 觫黎(j〇〇^Β Q|D 〇^η 翁稼{^DD|D 讳〇|σ 讳^ { { 1 1 1 1 1 1 1 1 1 1 1 1 1 1 觫 ο ο ο oo ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Oooooooo 〇〇 oooooo Ο ο ο ο ο 〇 〇 〇 Ο 〇 〇 〇 〇 Ο 〇 〇 〇 Ο ο rn rn rn rn (Ν(N (N (N &lt;N (S (Ν ( & CS &lt;Ν fN &lt;N CN (N (N fS &lt;N &lt;N (N CN CN (S CN (N ΓΜ (Ν &lt ;Ν &lt;Ν &lt;Ν (S (N CN (Ν (Ν (S (Ν Φ C0 S3 Ο Ο (ΰ S2 ο cd 52 Ο 1 PGa : lOkPa, ΡΝ : lOkPa | 1 PGa: 3.3 kPa, PN: lOkPa | 22 ο C〇§2 o C3 §2 Ο I PGa : 4kPa.PN : lOkPa | §2 o ed o &amp;〇&amp; o α 52 Ο «ΰ &amp; Ο Sa Ο S2 Ο cd S2 Ο (β §2 Ο o &lt;d &amp; 〇cQ §2 o 2a 〇2a Ο eQ 刍o §2 〇Sa o §2 Ο δ ο a 52 〇CQ o Λ §2 o cd &amp; o cd Sa Ο Λ Sa Ο rt §2 Ο 52 Ο &amp; o Λ §2 〇 52 〇&lt;Λ 22 Ο Λ §2 Ο &amp; ο cd S2 ο ? Λ §2 inch? 22 cd §2 Λ 22 cd 22 inch g, 52 inch Ql« VS 22 inch Z. Qu, § 2 Cu, Λ §2 〇. cd Sa Ye? 22 ? Λ 22 g «ϋ S3 vs g ψ 22 Ζ CU r C3 §2 ? 22 寸? 功 S3 寸 g c4 &amp; to g cd Sa Tf g Λ & tJ* ? ¢0 & g §2 ? (d 2a to g §2 g &amp; ? 22 g CO &amp; inch g C4 52 g CQ s ? §2 inch g 〆oi to g • a S3 &lt ;Ν S , 22 cu • ed § 2 inch ? α cu • a 52 &lt;a S3 when g 5a 〇Η rt & τΐ- cd Sa inch? ed & 々 cd S3 cd Ο Ον ¢4 Ο CLn Ο α δ 〇Η Λ cu cu Ο cu cd Ο cu cd o filH cd O cu β CU cd ϋ IX &lt;ϋ Ο CU &lt;ϋ Ο (X 〇α. a ο α. δ CO Ο (X vi o On Cd o cu cd o CL, Ο Oh s (X cd o a. ϋ Cu cu cu CU 5 cu cu Λ ο CU «5 O cu cd O Oh &lt;0 O fri Ο Λ ο Ον C&lt;3 Ο cm cd Ο cu cd o cu ed o a. ed o (X e4 Ο Oh Cd Ο ce Ο CU Λ Ο Ρμ Target G Ο ο » —Η *—Η ο Ο ο ο V&quot;M ο *&quot;Μ ο 1—4 ο ·—&lt;oor—&lt; oo ο ο ο ο » —Η ο ^Η ο 2 oos 沄o 沄Ο ο sos 沄ο ο s ί Η Ο S ο S Ο sos 〇sos 沄ο Ο SS ο 沄ο o S 1-M osoo Ο »* F-^ 〇ο Ο (UIH) m% S 沄沄沄沄o &lt;N or-&lt; 沄沄沄s 沄沄ο 1 I 1 t 1 I 1 沄^ms s?3 Ο ο 沄ο ν-&gt; ο ο 沄 沄ο ο 沄Ο 沄oooso 沄ο •η &lt;s ο JQ ο 2 Ο § Ο 1 ο ο o 沄o 沄o 沄ο ο o 沄ο ο 沄ο 沄ο ο 沄o 沄oso ο ο 锑Λ3 £ w meal £ ο ο ν*&gt; 实艏 (Ν m inch «ο Ό 卜 00 ON o ·—« »—4 rj 2 2 *η 卜 00 2 r3 ίΝ CN m (N «r&gt; (S \ 〇CN CN 00 (Ν σ\ &lt;Ν m (N ΓΛ CO ΓΛ »η ΓΛ \〇m Ρ; 00 m C\ cn ο qi 箐!〇对.47- I35248. Doc 200937499 [Example A: Example of semi-insulating substrate] [Sample 1 (Example; Type I)] On a GaAs substrate of 18 mm square, a mask spacer was formed and evaluated as 5 〇〇pm, mask width DS is a parallel stripe mask of 50 from „!. The sample is characterized in that an 18-square wafer is used as the base substrate. Forming a buffer layer _ after the GaN crystallized crystal growth. The crystal growth temperature Tq is 1 1 lot, NH3 partial pressure? Under the condition that 10 is kPa (〇1 atm) and the partial pressure p^c丨 is 4 (0.04 atm), epitaxial growth is carried out until the thickness is 4〇〇.

❹ 上。於掩模寬度為50 μπι之平行條紋掩模上,形成有GaN 結晶之核心寬度為50 μηΐ2平行條紋核心(位錯集合結晶區 域 5h)。 加工除去GaAs基板,而獲得厚度為4〇〇 μηι之GaN結晶之 獨立基板。第五族/第三族之比為2 5。該結晶獨立 基板包含以50 μΐη之核心寬度Ds、5〇〇 之核心間隔Dw* 重複之平行條紋核心(位錯集合結晶區域5 h)。該核心(位錯 集合結晶區域5h)之結晶種類為反轉層。結晶面類型為工 型。因生長溫度Tq較高,故成為!型。施體濃度為 lx\〇15 cm·3。施體濃度之值極其低。鐵濃度cFe為1χΐ〇π • cnT3。鐵之摻入量較少。比電阻為1χΐ〇7以爪。絕緣性略 低,其原因在於鐵濃度較低。然而,即便如此,亦可用作 - 半絕緣性基板。裂縫產生率尺為4%。裂縫產生率極其低, 係整體試料中之最小值。翹曲之曲率半徑尺為56 m。翹曲 非常小。 [試料2(實施例;I型)] 135248.doc -48- 200937499 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μπι、掩模寬度仏為5〇 平行條紋掩模。形成 缓衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1110 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μιη以上》於掩模寬度為5〇 μηι之平行條紋掩模上,形成有❹ On. On the parallel stripe mask having a mask width of 50 μm, a GaN crystal having a core width of 50 μηΐ2 parallel stripe core (dislocation set crystal region 5h) was formed. The GaAs substrate was processed to obtain a separate substrate of GaN crystal having a thickness of 4 μm. The ratio of the fifth/third family is 2 5 . The crystal-independent substrate comprises a parallel stripe core (dislocation set crystal region 5 h) having a core width Ds of 50 μΐη, a core spacing Dw* of 5 。. The crystal type of the core (dislocation aggregate crystal region 5h) is an inversion layer. The type of crystal face is the type of work. Because the growth temperature Tq is high, it becomes! type. The concentration of the donor is lx\〇15 cm·3. The value of the donor concentration is extremely low. The iron concentration cFe is 1 χΐ〇 π • cnT3. The amount of iron incorporated is small. The specific resistance is 1χΐ〇7 with claws. The insulation is slightly lower due to the lower iron concentration. However, even so, it can be used as a semi-insulating substrate. The crack generation rate is 4%. The crack generation rate is extremely low, which is the minimum value in the overall sample. The radius of curvature of the warp is 56 m. The warpage is very small. [Sample 2 (Example; Type I)] 135248.doc -48- 200937499 On a GaAs substrate having a diameter of 2 inches (50 mm), a mask interval Dw of 500 μm is formed, and a mask width 仏 is 5 〇 parallel. Stripe mask. After the buffer layer is formed, the GaN crystal is epitaxially grown. The epitaxial growth temperature Tq is 1110 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4 〇〇 μιη or more. Formed on a parallel stripe mask having a mask width of 5 〇μηι

GaN結晶之核心寬度為5〇 μπΐ2平行條紋核心(位錯集合結 晶區域5h)。 除去GaAs基板,而獲得厚度為4〇〇 μηι之GaN結晶之獨立 基板。第五族/第三族之比R5,3為2.5。該GaN結晶獨立基板 包含以50 μιη之核心寬度Ds、500 μηι之核心間隔Dw而重複 之平行條紋核心(位錯集合結晶區域5 h)。該核心(位錯集合 結晶區域5h)之結晶種類為反轉層。結晶面類型為I型。因 生長溫度Tq較高,故成為工型。施體濃度(:13為1&gt;&lt;1〇15 cm·3。 施體濃度之值極其低。鐵濃度CFe為1 X 1 〇17 cm·3。鐵之摻入 量較少。比電阻為1 X 1 〇7 Qcm。絕緣性略低,其原因在於 鐵濃度較低。然而,即便如此,亦可用作半絕緣性基板。 裂縫產生率K為12%。裂縫產生率極其低,翹曲之曲率半 徑R為5.2 m。龜曲非常小。 [試料3(實施例;丨型)] 於直徑為3英吋(75 mm)之GaAS基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。該試 料3之特徵在於基板之尺寸較大。形成緩衝層後,使GaN 結晶為晶生長。磊晶生長溫度Tq為丨丨丨〇。〇、nh3分壓Pnh3 135248.doc •49· 200937499 為 10 kPa(0.1 atm)、GaCl 分壓 PGaC 丨為 4 kPa(0.04 atm)之條 件下,進行磊晶生長直至厚度為400 μιη以上。於掩模寬度 為50 μπι之平行條紋掩模上,形成有GaN結晶之核心寬度 為50 μιη之平行條紋核心(位錯集合結晶區域5h)。 除去GaAs基板,而獲得厚度為4〇〇 μηι之GaN結晶之獨立 基板。第五族/第三族之比r5/3為2.5。該GaN結晶獨立基板 ·. 包含以μιη之核心寬度Ds、500 μηι之核心間隔Dw而重複 之平行條紋核心(位錯集合結晶區域5hp該核心(位錯集合 〇 結晶區域5h)之結晶種類為反轉層。結晶面類型為I型。因 生長溫度Tq較高,故成為I型。施體濃度(^為lxl〇is cm-3。 施體濃度之值極其低。鐵濃度CFe為lxio丨7 cm·3。鐵之摻入 量較少。比電阻為1 X 1 〇7 Qcm。絕緣性略低,其原因在於 鐵濃度較低。然而,即便如此,亦可用作半絕緣性基板。 裂缝產生率K為18%。裂縫產生率極其低。翹曲之曲率半 徑R為6.0 m。紐曲非常小。 [試料4(實施例;I型)] 9 於直徑為2英叶(5〇麵)之GaAS基板上,形成掩模間隔The core width of the GaN crystal is 5 〇 μπΐ2 parallel stripe core (dislocation aggregate crystal region 5h). The GaAs substrate was removed to obtain a separate substrate of GaN crystal having a thickness of 4 μm. The ratio of the fifth/third group R5,3 is 2.5. The GaN crystal-independent substrate includes parallel stripe cores (dislocation-collected crystal regions 5 h) which are repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type I. Since the growth temperature Tq is high, it becomes a work type. The concentration of the donor body (: 13 is 1 &gt;&lt; 1 〇 15 cm·3. The value of the donor concentration is extremely low. The iron concentration CFe is 1 X 1 〇 17 cm·3. The amount of iron incorporated is small. The specific resistance is 1 X 1 〇7 Qcm. The insulation is slightly lower due to the lower iron concentration. However, even this can be used as a semi-insulating substrate. The crack generation rate K is 12%. The crack generation rate is extremely low, warpage The radius of curvature R is 5.2 m. The tortoise is very small. [Sample 3 (Example; 丨 type)] On a GaAS substrate having a diameter of 3 inches (75 mm), a mask interval Dw of 500 μm is formed, and a mask is formed. The parallel stripe mask having a width Ds of 50 μm is characterized in that the size of the substrate is large. After the buffer layer is formed, GaN crystals are crystal grown. The epitaxial growth temperature Tq is 丨丨丨〇. 〇, nh3 Pnh3 135248.doc •49· 200937499 10 kPa (0.1 atm), GaCl partial pressure PGaC 丨 4 kPa (0.04 atm), epitaxial growth until the thickness is 400 μηη or more. The mask width is 50 On the parallel stripe mask of μπι, a parallel stripe core with a core width of 50 μm is formed on the GaN crystal (dislocation set) Crystal region 5h). The GaAs substrate is removed to obtain a separate substrate of GaN crystal having a thickness of 4 〇〇μηι. The ratio of the fifth group/third group r5/3 is 2.5. The GaN crystal independent substrate is contained in μιη The parallel stripe core of the core width Ds and the core interval Dw of 500 μm is repeated (the dislocation set crystallization region 5 hp, the crystal type of the core (dislocation set 〇 crystal region 5h) is the inversion layer. The crystal face type is type I. The growth temperature Tq is high, so it is type I. The concentration of the donor body (^ is lxl〇is cm-3. The value of the donor concentration is extremely low. The iron concentration CFe is lxio丨7 cm·3. The iron incorporation is less. The specific resistance is 1 X 1 〇7 Qcm. The insulation is slightly lower due to the lower iron concentration. However, even this can be used as a semi-insulating substrate. The crack generation rate K is 18%. The crack generation rate is extremely high. Low. The radius of curvature of the warp is 6.0 m. The new curve is very small. [Sample 4 (Example; Type I)] 9 Mask spacing is formed on a GaAS substrate with a diameter of 2 inches (5 sides).

Dw為500 μΐη、掩模寬度^為50 μιη&lt;平行條紋掩模。形成 • 緩衝層後,使⑽結晶^曰曰生H曰曰生長溫度TqA - 111〇°C、NH3 分壓 PnH3 為 10 kPa(〇.l atm)、GaC1 分壓 pGaC1 為4kPa(G.G4atm)之條件下,進行蟲^長直至厚度為_ pm以上。於掩模寬度為50 μηι之平行條紋掩模上,形成有Dw is 500 μΐη, mask width ^ is 50 μηη &lt; parallel stripe mask. After forming the buffer layer, (10) crystallizes the growth temperature TqA - 111〇°C, NH3 partial pressure PnH3 is 10 kPa (〇.l atm), and GaC1 partial pressure pGaC1 is 4kPa (G.G4atm) Under the conditions, the insects are grown until the thickness is _ pm or more. Formed on a parallel stripe mask having a mask width of 50 μηι

GaN結晶之核心寬度為5〇 μιη之平行你好 Ρ 丁仃條紋核心(位錯集合結 晶區域5h)。 135248.doc -50- 200937499 除去GaAs基板’而獲得厚度為400 μηι之GaN結晶之獨立 基板。第五族/第三族之比R5,3為2.5。該GaN結晶獨立基板 包含以50 μιη之核心寬度Ds、500 μπι之核心間隔Dw而重複 之平行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合 結晶區域5h)之結晶種類為反轉層。結晶面類型為I型。因 生長溫度Tq較高’故成為I型。施體濃度0〇為1x1〇h cm-3。 •.施體濃度之值極其低。鐵濃度CFe為1 X 1〇16 cm_3。鐵之摻入 量較少。比電阻為lxl〇6 Qcm。絕緣性略低,其原因在於 ❹ 鐵濃度較低。然而’即便如此,亦可用作半絕緣性基板。 裂縫產生率K為12%。裂縫產生率極其低。翹曲之曲率半 徑R為5.8 m。勉曲非常小。 [試料5(實施例;I型)] 於直徑為2英吋(5Ό mm)之GaAs基板上,形成掩模間隔 Dw為5 00 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1110C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 pGaC1 β 為10 kPaP.1 atm)之條件下,進行磊晶生長直至厚度為400 μηι以上*於掩模寬度為5〇 μιη之平行條紋掩模上,形成有 - GaN結晶之核心寬度為5〇 μιη之平行條紋核心(位錯集合結The core width of the GaN crystal is 5 〇 μηη parallel hello Ρ 仃 仃 stripe core (dislocation set crystal region 5h). 135248.doc -50- 200937499 A GaAs substrate was removed to obtain a GaN crystal independent substrate having a thickness of 400 μm. The ratio of the fifth/third group R5,3 is 2.5. The GaN crystal independent substrate includes a parallel stripe core (dislocation set crystal region 5h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type I. Since the growth temperature Tq is high, it is type I. The donor concentration 0〇 is 1x1〇h cm-3. • The value of the donor concentration is extremely low. The iron concentration CFe is 1 X 1 〇 16 cm_3. The amount of iron incorporated is small. The specific resistance is lxl 〇 6 Qcm. The insulation is slightly lower due to the lower concentration of ferroniobium. However, even in this case, it can be used as a semi-insulating substrate. The crack generation rate K was 12%. The crack generation rate is extremely low. The radius of curvature of the warp is 5.8 m. The distortion is very small. [Sample 5 (Example; Type I)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 μm (5 μm). After the buffer layer is formed, the GaN crystal is epitaxially grown. The epitaxial growth temperature Tq is 1110C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure pGaC1 β is 10 kPaP.1 atm), and epitaxial growth is performed until the thickness is 400 μηι or more*. A parallel stripe mask having a core width of 5 〇μηη formed on a parallel stripe mask having a mold width of 5 〇μιη (dislocation set knot)

: 晶區域讣)。除去GaAs基板,而獲得厚度為400 μπι之GaN ^ 結晶之獨立基板。 第五族/第三族之比心^為丨。該試料5之特徵在於第五族/ 第三族之比尺的為!。GaN結晶之生長中,第五族/第三族之 比Rw如此般較低之情形未曾發生過。該GaN結晶獨立基 135248.doc 51 200937499 板包含以50 μϊη之核心寬度Ds、500 μηι之核心間隔Dw而重 複之平行條紋核心(位錯集合結晶區域5h)。該核心(位錯集 合結晶區域5h)之結晶種類為反轉層。結晶面類型為〗型。 因生長溫度Tq較高,故成為丨型《施體濃度cm·3。 施體濃度之值極其低。鐵濃度(:〜為lxl〇i6 cm-3。鐵之摻入 量較少。比電阻為lxl〇6 nCm。絕緣性略低,其原因在於 • 鐵濃度較低。然而,即便如此,亦可用作半絕緣性基板。 裂縫產生率K為12%。裂縫產生率極其低。翹曲之曲率半 ❹ 徑R為5.9 m。组曲非常小。 [試料6(實施例;I型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度仏為5〇 μιΠ2平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度丁。為: Crystal area 讣). The GaAs substrate was removed to obtain a separate substrate of GaN ^ crystal having a thickness of 400 μm. The ratio of the fifth/third family is 丨. The sample 5 is characterized by the ratio of the fifth/third family! . In the growth of GaN crystals, the case where the ratio Rw of the fifth group/third group is so low has not occurred. The GaN crystal independent group 135248.doc 51 200937499 The plate comprises a parallel stripe core (dislocation set crystal region 5h) repeated with a core width Ds of 50 μϊη and a core interval Dw of 500 μηι. The crystal type of the core (dislocation-collecting crystal region 5h) is an inversion layer. The crystal face type is type. Since the growth temperature Tq is high, it becomes a 丨 type "body concentration cm·3. The value of the donor concentration is extremely low. The iron concentration (:~ is lxl〇i6 cm-3. The amount of iron is less. The specific resistance is lxl〇6 nCm. The insulation is slightly lower, because the iron concentration is lower. However, even so, It is used as a semi-insulating substrate. The crack generation rate K is 12%. The crack generation rate is extremely low. The radius of curvature of the warp is 5.9 m. The composition is very small. [Sample 6 (Example; Type I)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width of 5 μmΠ2 was formed on a 2 inch (50 mm) GaAs substrate. After the buffer layer was formed, GaN crystal epitaxial growth was performed. Temperature D.

1110C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 pGaU 為3.3 kPa(0.033 atm)之條件下,進行磊晶生長直至厚度為 400 μΠ1以上。於掩模寬度為5〇 μηι之平行條紋掩模上,形 成有GaN結晶之核心寬度為50 4爪之平行條紋核心(位錯集 合結晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 μπΐ2 • GaN結晶之獨立基板。第五族/第三族之比R5/3為3。該試料 : 之特徵在於第五族/第三族之比R5/3為3。 . 該GaN結晶獨立基板包含以50 μιη之核心寬度Ds、5〇〇 μηι之核心間隔Dw而重複之平行條紋核心(位錯集合結晶區 域5h)。該核心(位錯集合結晶區域5h)之結晶種類為反轉 層。結晶面類型為1型。因生長溫度Tq較高,故成為〗型。 135248.doc •52- 200937499 施體濃度CD為lx l〇15 cm·3。施體濃度之值極其低。鐵濃度 CFe為lxi0i6 cm.3。鐵之摻入量較少。比電阻為1110C, NH3 partial pressure PNH3 is 1 kPa (0.1 atm), GaCl partial pressure pGaU is 3.3 kPa (0.033 atm), epitaxial growth is carried out until the thickness is 400 μΠ1 or more. On the parallel stripe mask having a mask width of 5 Å μη, a parallel stripe core having a core width of 50 4 claws of GaN crystals (dislocation-collecting crystallization region 5h) was formed. The GaAs substrate was removed to obtain a separate substrate having a thickness of 4 〇〇 μπΐ2 • GaN crystal. The ratio of the fifth/third group R5/3 is 3. This sample is characterized in that the ratio of the fifth group/third group R5/3 is 3. The GaN crystal-independent substrate comprises a parallel stripe core (dislocation set crystallization region 5h) which is repeated with a core width Ds of 50 μm and a core interval Dw of 5 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type 1. Since the growth temperature Tq is high, it becomes a type. 135248.doc •52- 200937499 The donor concentration CD is lx l〇15 cm·3. The value of the donor concentration is extremely low. The iron concentration CFe is lxi0i6 cm.3. The amount of iron incorporated is small. Specific resistance

Dcm。絕緣性略低,其原因在於鐵濃度較低。然而,即便 如此’亦可用作半絕緣性基板。裂縫產生率κ為15%。裂 縫產生率極其低。翹曲之曲率半徑r為5_8 m。赵曲非常 小 0 [試料7(實施例;I型w 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μηι、掩模寬度Ds為5〇 μΓη之平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度”為 1110C、NH3 分壓 PNH3 為 10 kPa(0.1 atm)、GaCl 分壓 pGaC| 為4 kPa(〇.〇4 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μιη以上。於掩模寬度為5〇 μιη之平行條紋掩模上,形成有 GaN結晶之核心寬度為5〇 μπι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 結晶之獨立基板。 第五族/第二族之比rs,3為2.5。該GaN結晶獨立基板包含 以50 μπι之核心寬度Ds、5〇〇 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為][型^因生長 。施體濃度CD為lxlO15 cm·、施Dcm. The insulation is slightly lower due to the lower iron concentration. However, even this can be used as a semi-insulating substrate. The crack generation rate κ was 15%. The rate of crack production is extremely low. The curvature radius r of the warp is 5_8 m. Zhao Qu is very small 0 [Sample 7 (Example; Type I w on a GaAs substrate having a diameter of 2 inches (50 mm), forming parallel stripes with a mask interval Dw of 500 μm and a mask width Ds of 5 〇μΓη After forming a buffer layer, GaN crystal epitaxial growth is performed. The epitaxial growth temperature is 1110 C, the NH3 partial pressure PNH3 is 10 kPa (0.1 atm), and the GaCl partial pressure pGaC| is 4 kPa (〇.〇4 atm). Under the conditions, epitaxial growth is performed until the thickness is 4 〇〇μηη or more. On the parallel stripe mask having a mask width of 5 μm, a parallel stripe core having a core width of 5 μm is formed on the GaN crystal (dislocation) The crystallization substrate is collected 5h). The GaAs substrate is removed to obtain a separate substrate having a thickness of 4 Å. The ratio of the fifth group to the second group rs, 3 is 2.5. The GaN crystal independent substrate contains a core width Ds of 50 μm , the parallel stripe core of the core interval Dw of 5〇〇μιη (dislocation set crystal region 5h). The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is [[type ^ Due to growth, the donor concentration CD is lxlO15 cm·,

135248.doc 溫度Tq較高,故成為I型。 體濃度之值極其低。鐵濃j 較多β比電阻為1x10&quot;仏 •53· 200937499 基板。裂縫產生率K為26%。裂縫產生率略低。翹曲之曲 率半徑R為5.6 m。翹曲非常小》該試料7之特徵在於絕緣 性較高。 [試料8(實施例;I型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 • 〇〜為5〇〇 μπι、掩模寬度仏為別μηΐ2平行條故掩模。形成 緩衝層後’使GaN結晶蟲晶生長。蟲晶生長溫度丁口為 1110 C、NH3 分壓 pNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 Pr **· O s C1 ❹ 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度成為 400 μηι以上。於掩模寬度為5〇 μηι之平行條紋掩模上,形 成有GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集 合結晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 μπΐ2 GaN結晶之獨立基板。 第五族/第三族之比Rw為2.5。該GaN結晶獨立基板包含 以50 μιη之核心寬度ds、500 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h) ^該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為。因生長 溫度Tq較高,故成為I型。施體濃度CD為lxio” cm-3。施 • 體濃度之值極其低。鐵濃度CFe為5xl019 cm·、鐵之摻入量 • 極其多。比電阻為1χ1〇12 Qcm。絕緣性相當高。絕緣性較 • 尚之原因在於氧(施體)較少而鐵濃度較高。可用作半絕緣 性基板。裂縫產生率尺為2〇%。裂縫產生率略低。翹曲之 曲率半徑R為5.9 m。翹曲非常小。該試料8之特徵在於絕 緣性特別高、 135248.doc •54- 200937499 [試料9(實施例;i型)] 於直徑為2英吋(50 mm)2GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Dsg5〇从爪之平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度丁口為 1110 C NH3 刀壓 pNH3 為 1 〇 kPa(0.1 atm)、GaCl 分壓 pGaC| : 為4 kPa(0·04 atm)之條件下,進行磊晶生長直至厚度為400 μιη以上。於掩模寬度為5〇 μιη之平行條紋掩模上,形成有135248.doc The temperature Tq is high, so it becomes type I. The value of the body concentration is extremely low. Iron thick j more β specific resistance is 1x10&quot;仏•53· 200937499 substrate. The crack generation rate K was 26%. The crack generation rate is slightly lower. The curvature radius R of the warp is 5.6 m. The warpage is very small. The sample 7 is characterized by high insulation. [Sample 8 (Example; Type I)] On a GaAs substrate having a diameter of 2 inches (50 mm), a mask interval is formed. • 〇~ is 5〇〇μπι, and the mask width is μμηΐ2 parallel strip. mold. After the buffer layer is formed, GaN crystallized crystal grains are grown. Epitaxial growth was carried out under the conditions of a growth temperature of 1110 C for the crystal growth, 1 kPa (0.1 atm) for the NH3 partial pressure pNH3, and a partial pressure of PrCl **· O s C1 ❹ of 4 kPa (0.04 atm). The thickness is 400 μηι or more. On the parallel stripe mask having a mask width of 5 μm, a parallel stripe core having a core width of 50 μm of GaN crystal (dislocation-collecting crystal region 5h) was formed. The GaAs substrate was removed to obtain a separate substrate having a thickness of 4 〇〇 μπΐ2 GaN crystal. The ratio of the fifth/third group Rw is 2.5. The GaN crystal independent substrate comprises a parallel stripe core (dislocation set crystal region 5h) repeated with a core width ds of 50 μm and a core interval Dw of 500 μm. ^The crystal type of the core (dislocation set crystal region 5h) is reversed Transfer layer. The crystal face type is . Since the growth temperature Tq is high, it is type I. The donor concentration CD is lxio" cm-3. The concentration of the donor body is extremely low. The iron concentration CFe is 5xl019 cm·, the amount of iron incorporated is extremely large, and the specific resistance is 1χ1〇12 Qcm. The insulation is quite high. Insulation is better because the oxygen (donor) is less and the iron concentration is higher. It can be used as a semi-insulating substrate. The crack generation rate is 2〇%. The crack generation rate is slightly lower. The curvature radius of curvature is R. 5.9 m. The warpage is very small. The sample 8 is characterized by a particularly high insulation, 135248.doc • 54- 200937499 [sample 9 (example; i type)] on a 2 inch (50 mm) 2 GaAs substrate A mask spacer having a mask interval Dw of 500 μm and a mask width Dsg5〇 from the claw is formed. After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature is 1110 C NH3, and the knife pressure pNH3 is 1 〇kPa (0.1 atm), GaCl partial pressure pGaC| : 4 kPa (0·04 atm), epitaxial growth to a thickness of 400 μm or more. Parallel stripe mask with a mask width of 5 μm On, formed

GaN結晶之核心寬度為5〇 μηΐ2平行條紋核心(位錯集合結 眷 晶區域5h)。 除去GaAs基板’而獲得厚度為4〇〇 μιη之GaN結晶之獨立 基板第五族/第二族之比尺5/3為2.5。該GaN結晶獨立基板 i含以50 μηι之核心寬度Ds、5〇〇 之核心間隔ο*而重複 之平仃條紋核心(位錯集合結晶區域5h)。該核心(位錯集合 結晶區域讣)之結晶種類為多晶層。結晶面類型為丨型。因 生長溫度Tq較高,故成為I型。施體漢度C4lxl〇15 cm.3。 〇 =體濃度之值極其低。鐵濃度CFe為lxl0”cm-3。鐵之摻入 里相虽多。比電阻為i X 1〇7 Qcm。絕緣性並不高。然而亦 可用作半絕緣性基板。裂縫產生率〖為16%。裂縫產生率 極其低。翹曲之曲率半徑“ 5·7 m。麵曲非常小。該試料 特徵在於掩模上之結晶並非為反轉層而係多晶層。裂 ,曲、比電阻等與掩模上之結晶為反轉層之情形相比 並無明顯變化。 [試料1〇(實施例;I型)] 於直徑為2英吋(50 mm)之GaAS基板上,形成掩模間隔 135248.doc -55· 200937499The core width of the GaN crystal is 5 〇 μη ΐ 2 parallel stripe core (dislocation aggregate 眷 crystal region 5h). The GaAs substrate was removed to obtain a GaN crystal having a thickness of 4 μm, and the fifth substrate/second family scale 5/3 was 2.5. The GaN crystal-independent substrate i contains a striated stripe core (dislocation crystallization region 5h) which is repeated at a core width Ds of 50 μm and a core interval ο* of 5 μ. The crystal type of the core (dislocation crystal region 讣) is a polycrystalline layer. The crystal face type is 丨 type. Since the growth temperature Tq is high, it is type I. The body is C4lxl〇15 cm.3. 〇 = The value of body concentration is extremely low. The iron concentration CFe is lxl0"cm-3. Although iron is incorporated into the inner phase, the specific resistance is i X 1〇7 Qcm. The insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate is 16%. The crack generation rate is extremely low. The radius of curvature of the warp is "5·7 m. The face is very small. The sample was characterized in that the crystal on the mask was not an inversion layer but a polycrystalline layer. The crack, the curvature, the specific resistance, and the like are not significantly changed as compared with the case where the crystal on the mask is an inversion layer. [Sample 1 〇 (Example; Type I)] On a GaAS substrate having a diameter of 2 inches (50 mm), a mask interval was formed 135248.doc -55· 200937499

Dw為500 nm、掩模寬度Ds為50 μηΐ2平行條紋掩模。形成 緩衝層後’使GaN結晶蟲晶生長。磊晶生長溫度Tq為 1110C、NH3 分壓 PNH3 為 10 kPa(0.1 atm)、GaCl 分壓 PGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μηι以上。於掩模寬度為50 μΓη之平行條紋掩模上,形成有 - GaN結晶之核心寬度為5〇 μιη之平行條紋核心(位錯集合結The Dw is 500 nm and the mask width Ds is 50 μηΐ2 parallel stripe mask. After the buffer layer is formed, GaN crystallized crystal grains are grown. The epitaxial growth temperature Tq is 1110C, the NH3 partial pressure PNH3 is 10 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4 〇〇 μηι or more. On the parallel stripe mask with a mask width of 50 μΓ, a parallel stripe core with a core width of 5 μm is formed with a GaN crystal (dislocation junction)

·_ 晶區域5h)^除去GaAs基板,而獲得厚度為4〇〇 μιη之GaN 結晶之獨立基板。 〇 第五族/第三族之比Rs/3為2.5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、500 μηι之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h) ^該核心(位錯集合結晶 區域5h)之結晶種類為傾斜層。結晶面類型為丨型。因生長 溫度Tq較高,故成為I型》施體濃度心為lxl〇ls em_3 ^施 體濃度之值極其低。鐵濃度(:卜為1&gt;&lt;1〇丨7 cm-3。鐵之摻入量 相當多。比電阻為1 X 1 〇7 i2cm。絕緣性並不高《然而亦可 用作半絕緣性基板。裂縫產生率κ為丨7%。裂縫產生率極 ® 其低。翹曲之曲率半徑R為5.9 m。翹曲非常小。該試料1 〇 之特徵在於掩模上之結晶並非為反轉層而係傾斜層。裂縫 及翹曲、比電阻等與掩模上之結晶為反轉層之情形相比並 無明顯變化。 [試料11(實施例;I型)] 於直徑為2英忖(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度以為1〇 μηΐ2平行條紋掩模。該試 料11之特徵在於條紋掩模寬度Ds窄至1〇 pm(〇.〇1 mm)。形 135248.doc -56 - 200937499 成緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 1110 C、NH3 分麼 PNH3 為 1 〇 kPa(〇. 1 atm)、GaCl 分壓 pGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μηι以上。於掩模寬度為1〇 μιη之平行條紋掩模上,形成有 GaN結晶之核心寬度1 〇 μηι之平行條紋核心(位錯集合結晶 - 區域5h)。除去GaAs基板,而獲得厚度為400 μηι之GaN結 . 晶之獨立基板。 第五族/第三族之比Rw為2.5。該GaN結晶獨立基板包含 ❿ 以10 之核心寬度Ds、500 μπι之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5 h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為I型。因生長 溫度Tq較高’故成為1型。施體濃度〇〇為lxl〇i5 cm_3。施 體濃度之值極其低。鐵濃度CFe為1 xlO17 cm·3 »鐵之摻入量 相當多。比電阻為1 X 107 Qcm。絕緣性並不高。然而亦可 用作半絕緣性基板。裂縫產生率K為17%。裂縫產生率極 其低。想曲之曲率半徑R為5.2 m。翹曲非常小。遮若罩寬 度Ds較小,則可能導致輕曲更大或者更小,但即便掩模寬 度Ds設為10 μιη,翹曲亦不會過大。無論掩模寬度仏為⑺ • μηι、或50 μπι,輕曲相差不大。 : [試料12(實施例;I型)] ' 於直徑為2英吋(5〇 mm)之GaAs基板上’形成掩模間隔· _ Crystal region 5h) ^ Remove the GaAs substrate to obtain a separate substrate of GaN crystals having a thickness of 4 μm.第五 The ratio of the fifth/third family is Rs/3 of 2.5. The GaN crystal independent substrate includes a parallel stripe core (dislocation set crystal region 5h) which is repeated with a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is inclined. Floor. The crystal face type is 丨 type. Since the growth temperature Tq is high, the value of the donor concentration is lxl〇ls em_3. The value of the donor concentration is extremely low. The iron concentration (: is 1) &lt;1〇丨7 cm-3. The amount of iron incorporated is quite large. The specific resistance is 1 X 1 〇7 i2 cm. The insulation is not high. However, it can also be used as a semi-insulating property. The substrate has a crack generation rate κ of 丨7%, a crack generation rate of extremely low, and a curvature radius R of 5.9 m. The warpage is very small. The sample 1 is characterized in that the crystal on the mask is not inverted. The layer is an inclined layer. Cracks and warpage, specific resistance, and the like are not significantly changed as compared with the case where the crystal on the mask is an inversion layer. [Sample 11 (Example; Type I)] The diameter is 2 inches. On the GaAs substrate of (50 mm), a mask gap Dw of 500 μm and a mask width of 1 〇μηΐ2 parallel stripe mask were formed. The sample 11 was characterized in that the stripe mask width Ds was as narrow as 1 〇. 1 mm). Shape 135248.doc -56 - 200937499 After the buffer layer is formed, GaN crystal epitaxial growth is carried out. The epitaxial growth temperature Tq is 1110 C, NH3 is divided, PNH3 is 1 〇 kPa (〇. 1 atm), GaCl Under the condition of pressure pGaC1 of 4 kPa (0.04 atm), epitaxial growth is carried out until the thickness is 4 〇〇μηι or more. The mask width is 1 〇 μιη parallel On the pattern mask, a parallel stripe core having a core width of 1 〇μηι of GaN crystal (dislocation crystal-region 5h) is formed. The GaAs substrate is removed to obtain a GaN junction having a thickness of 400 μm. The family/third group ratio Rw is 2.5. The GaN crystal-independent substrate comprises 平行 a parallel stripe core (dislocation set crystal region 5 h) repeated with a core width Ds of 10 and a core interval Dw of 500 μm. The crystal type of the dislocation aggregate crystal region 5h) is an inversion layer. The crystal plane type is type I. Since the growth temperature Tq is high, it is type 1. The donor concentration 〇〇 is lxl〇i5 cm_3. Extremely low. The iron concentration CFe is 1 x lO17 cm·3 » The amount of iron is quite large. The specific resistance is 1 X 107 Qcm. The insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K is 17%. The crack generation rate is extremely low. The curvature radius R of the desired curve is 5.2 m. The warpage is very small. If the cover width Ds is small, it may cause the light curve to be larger or smaller, but even if the mask width Ds is set For 10 μm, the warpage will not be too large. Regardless of the mask width It is ⑺ • μηι, or 50 μπι, light music or less: [Sample 12 (Example; the I Type)] 'on a GaAs substrate of 2 inches in diameter (5〇 mm) of' forming a mask spacer.

Dw為500 μηι、掩模寬度Ds為25 μπι之平行條紋掩模《該試 料12之特徵在於條紋掩模寬度Ds窄至25 μηι(〇.〇25 mm)。 形成緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 135248.doc -57- 200937499 mrC、NH3分壓‘3為10叫〇1帅_分壓pGaCi 為4kPa(〇.〇4atm)之條件下,進行遙晶生長直至厚度為4〇〇 μΐη以上。於掩模寬度為25 μπι之平行條紋掩模上,形成有 GaN結晶之核心寬度為25㈣之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板’而獲得厚度為4〇〇 之 . 結晶之獨立基板。第五族/第三族之比R5/3為2.5。 •-該GaN結晶獨立基板包含以25 μπι之核心寬度Ds 5〇〇 μιη之核心間隔Dw而重複之平行條紋核心(位錯集合結晶區 〇 域5h)。該核〜(位錯集合結晶區域5h)之結晶種類為反轉 層。結晶面類型為I型。因生長溫度Tq較高,故成為㈤。 施體濃度〇^為1&gt;&lt;1015 cm·3。施體濃度之值非常低。鐵濃度 CFe為IxlO17 cm·3。鐵之摻入量相當多。比電阻為ΐχΐ〇7 ncrn。絕緣性並不高。然而亦可用作半絕緣性基板。裂縫 產生率K為19/。。裂縫產生率極其低。麵曲之曲率半徑尺為 5.2 m。翹曲非常小。若掩模寬度Ds較小則翹曲可能更大 ^ 或者更小,但即便掩模寬度Ds設為25 μπι,翹曲亦不會過 大。無論掩模寬度Ds為25 μπι、或50 μιη,,鍾曲相差不 大。 • [試料13(實施例;I型)] .於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μηι、掩模寬度Ds為100 μπι之平行條紋掩模。該 試料1 3之特徵在於條紋掩模寬度Ds擴展至丨〇〇 μιη(〇」 mm)。形成緩衝層後,使GaN結晶磊晶生長。磊晶生長溫 度 Tq為 lll〇°C、NH3 分壓卩則為 10 kp^.i atm)、GaC1分 135248.doc -58- 200937499 壓PGaci為4 kPa(0.04 atm)之條件下,進行遙晶生長直至厚 度為400 pm以上。於掩模寬度為100 μηΐ2平行條紋掩模 上’形成有GaN結晶之核心寬度為1GG帅之平行條紋核心 (位錯集合結晶區域5h)。除去GaAs基板,而獲得厚度為 400 μηι之GaN結晶之獨立基板。第五族/第三族之比ha為 2.5。該GaN結晶獨立基板包含以100 μιη之核心寬度Ds、 500 μπι之核心間隔Dw而重複之平行條紋核心(位錯集合結 晶區域5h)。該核心(位錯集合結晶區域5h)之結晶種類為反 轉層。結晶面類型為I型。因生長溫度Tq較高,故成為ι 型。 施體濃度CD為1X1 〇15 cm·3。施體濃度之值極其低。鐵濃 度CFe為lxio17 cm-3。鐵之摻入量相當多。比電阻為1&gt;&lt;1〇7 Qcm。絕緣性並不高。然而亦可用作半絕緣性基板。裂縫 產生率K為19%。裂縫產生率極其低。翹曲之曲率半徑尺為 5.1 m。翹曲非常小《若掩模寬度Ds較大則翹曲可能更大 或者更小,但即便掩模寬度Ds設為1〇〇 μιη ,翹曲亦不會過 大。無渝掩模寬度Ds為100 μιη或者5〇 μπι,翹曲相差不 大。 [試料14(實施例;I型)] 於直徑為2英吋(5〇 mm)2GaAs基板上,形成掩模間隔 Dw為250 μπι、掩模寬度仍為5〇 μιη之平行條紋掩模。該試 料14之特徵在於掩模間隔dw窄至250 0^(0.25 mm)。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 iiioc、nh3 分壓?_為10 kPa(01 atm)、GaC1 分壓匕似 I35248.doc -59- 200937499 為4kPa(0.〇4at啦條件了,進行蟲晶生長直至厚度為彻 μΓΠ以上。於掩模寬度為50 μηι之平行條紋掩模上,形成有 GaN結晶之核心寬度為50卜爪之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 ^m2GaN 結晶之獨立基板。 第五族/第三族之比R5/3為2·5。該GaN結晶獨立基板包含 以50 μΐπ之核心寬度Ds、250 μηι之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h^該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為〗型。因生長 溫度Tq較高,故成為〖型。施體濃度Cd為lxl〇ls⑽-3。施 體濃度之值較低。鐵濃度CFe為ixio]7 cm-3。鐵之摻入量相 备多。比電阻為1 X 1 〇7 ncm。絕緣性並不高。然而夺可用 作半絕緣性基板。裂縫產生率艮為丨8%。裂縫產生率極其 低。勉曲之曲率半徑R為6.0 m。翹曲非常小。若掩模間隔 Dw較小,則翹曲可能更小、且裂縫可能進而減少,但無 論掩模間隔Dw為500 μηι或者250 μιη,魅曲及裂縫相差不 大。 [試料15(實施例;I型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為75 0 μηι、掩模寬度Ds為50 μιη之平行條紋掩模。該試 料15之特徵在於掩模間隔Dw擴展至75〇 μηι(〇 75 mm)。形 成緩衝層後’使GaN結晶磊晶生長。於掩模寬度為5〇 μΓη 之平行條紋掩模上,形成有GaN結晶之核心寬度為5 0 μιη 之平行條紋核心(位錯集合結晶區域5h)。磊晶生長溫度Tq 135248.doc -60- 200937499 為 1110°C、NH3 分壓 pNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGac丨為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度 為400 μιη以上。除去GaAs基板,而獲得厚度為400 μηι之A parallel stripe mask having a Dw of 500 μm and a mask width Ds of 25 μm "This sample 12 is characterized in that the stripe mask width Ds is as narrow as 25 μηι (〇.〇 25 mm). After the buffer layer is formed, GaN crystal epitaxial growth is performed. Epitaxial growth temperature Tq is 135248.doc -57- 200937499 mrC, NH3 partial pressure '3 is 10 〇1 handsome _ partial pressure pGaCi is 4kPa (〇.〇4atm), the crystal growth is carried out until the thickness is 4 〇〇μΐη or more. On the parallel stripe mask having a mask width of 25 μm, a parallel stripe core (dislocation aggregate crystal region 5h) having a core width of 25 (four) of GaN crystal was formed. The GaAs substrate was removed to obtain a crystallized individual substrate having a thickness of 4 Å. The ratio of the fifth/third group R5/3 is 2.5. • The GaN crystal-independent substrate comprises a parallel stripe core (dislocation set crystal region 5 domain 5h) repeated with a core spacing Dw of a core width Ds 5 〇〇 μη of 25 μm. The crystal type of the core ~ (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type I. Since the growth temperature Tq is high, it becomes (5). The donor concentration 〇^ was 1&gt;&lt; 1015 cm·3. The value of the donor concentration is very low. The iron concentration CFe is IxlO17 cm·3. The amount of iron incorporated is quite large. The specific resistance is ΐχΐ〇7 ncrn. Insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K is 19/. . The crack generation rate is extremely low. The radius of curvature of the face curve is 5.2 m. The warpage is very small. If the mask width Ds is small, the warpage may be larger or smaller, but even if the mask width Ds is set to 25 μm, the warpage will not be excessive. Regardless of the mask width Ds of 25 μm, or 50 μm, the clock curvature is not much different. • [Sample 13 (Example; Type I)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 100 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). The sample 13 is characterized in that the stripe mask width Ds is extended to 丨〇〇 μηη (〇" mm). After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is lll〇°C, the NH3 partial pressure 卩 is 10 kp^.i atm), and the GaC1 is 135248.doc -58- 200937499. The pressure PGaci is 4 kPa (0.04 atm). Grow until the thickness is above 400 pm. On the parallel stripe mask having a mask width of 100 μηΐ2, a parallel stripe core having a core width of 1 GG handsome (dislocation set crystal region 5h) was formed. The GaAs substrate was removed to obtain a separate substrate of GaN crystal having a thickness of 400 μm. The ratio of the fifth/third family ha is 2.5. The GaN crystal-independent substrate comprises parallel stripe cores (dislocation-gathered crystal regions 5h) which are repeated with a core width Ds of 100 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is a reverse layer. The crystal face type is type I. Since the growth temperature Tq is high, it becomes ι type. The donor concentration CD is 1X1 〇 15 cm·3. The value of the donor concentration is extremely low. The iron concentration CFe is lxio 17 cm-3. The amount of iron incorporated is quite large. The specific resistance is 1 &gt;&lt; 1 〇 7 Qcm. Insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K was 19%. The crack generation rate is extremely low. The radius of curvature of the warp is 5.1 m. The warpage is very small. If the mask width Ds is large, the warpage may be larger or smaller, but even if the mask width Ds is set to 1 〇〇 μιη, the warpage will not be excessive. The flawless mask width Ds is 100 μm or 5 〇 μπι, and the warpage is not much different. [Sample 14 (Example; Type I)] A parallel stripe mask having a mask interval Dw of 250 μm and a mask width of 5 μm was formed on a 2 Å (5 〇 mm) 2 GaAs substrate. The sample 14 is characterized in that the mask interval dw is as narrow as 250 Ω (0.25 mm). After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is iiioc, nh3 partial pressure? _ is 10 kPa (01 atm), GaC1 partial pressure is similar to I35248.doc -59- 200937499 is 4kPa (0. 〇 4at condition, the crystal growth is carried out until the thickness is more than ΓΠ. The mask width is 50 μηι On the parallel stripe mask, a parallel stripe core of a GaN crystal having a core width of 50 claws (dislocation-collecting crystal region 5h) is formed. The GaAs substrate is removed to obtain a separate substrate having a thickness of 4 μm 2 GaN crystal. The ratio of the five-group/third-group R5/3 is 2.5. The GaN crystal-independent substrate comprises a parallel stripe core repeated with a core width Ds of 50 μΐπ and a core interval Dw of 250 μηι (dislocation set crystal region 5h^ The crystal type of the core (dislocation crystal region 5h) is an inversion layer. The crystal surface type is a type. Since the growth temperature Tq is high, it is a type. The donor concentration Cd is lxl〇ls(10)-3. The concentration of the concentration is low. The iron concentration CFe is ixio]7 cm-3. The iron is mixed in a large amount. The specific resistance is 1 X 1 〇7 ncm. The insulation is not high. However, it can be used as semi-insulating. The substrate has a crack occurrence rate of 丨8%, and the crack generation rate is extremely low. The curvature radius R of the distortion 6.0 m. The warpage is very small. If the mask spacing Dw is small, the warpage may be smaller and the crack may be further reduced, but the meditation and crack are not much different regardless of the mask interval Dw of 500 μηι or 250 μηη. [Sample 15 (Example: Type I)] A parallel stripe mask having a mask interval Dw of 75 0 μm and a mask width Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). The sample 15 is characterized in that the mask interval Dw is extended to 75 〇μηι (〇75 mm). After the buffer layer is formed, the GaN crystal is epitaxially grown. On the parallel stripe mask having a mask width of 5 〇μΓ, GaN is formed. The core of the crystal has a width of 50 μιη of parallel stripe core (dislocation set crystal region 5h). Epitaxial growth temperature Tq 135248.doc -60- 200937499 is 1110 ° C, NH3 partial pressure pNH3 is 1 kPa (0.1 atm) After the GaCl partial pressure PGac is 4 kPa (0.04 atm), epitaxial growth is performed until the thickness is 400 μm or more. The GaAs substrate is removed to obtain a thickness of 400 μηι.

GaN結晶之獨立基板。第五族/第三族之比Rs/3為2 5。該 GaN結晶獨立基板包含以5〇 μπι之核心寬度Ds、75〇卩瓜之 核心間隔Dw而重複之平行條紋核心(位錯集合結晶區域 5h)。該核心(位錯集合結晶區域5h)之結晶種類為反轉層。 結晶面類型為I型。因生長溫度Tq較高,故成為〗型。 施體濃度CD為lxlO15 cm-3。施體濃度之值較低。鐵濃度 CFe為lxlO17 cm·3。鐵之摻入量相當多。比電阻為1χ1〇7 Qcm。絕緣性並不高。然而亦可用作半絕緣性基板。裂縫 產生率K為18%。裂縫產生率極其低。趣曲之曲率半徑尺為 5.9 m。翹曲非常小。若掩模間隔Dw較大則翹曲可能更 大’但即便掩模間隔Dw為750 μηι,輕曲亦不會變大。 [試料1 6 (實施例;I型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為1000 μιη、掩模寬度以為5〇 ^^之平行條紋掩模。該 試料16之特徵在於掩模間隔Dw擴展至1〇〇〇 μιη(ι⑺叫。形 成緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 11KTC、NH3分壓P則為10 kPa(〇」_)、以㈣壓匕们 為4kPa(0.()4atm)之條件下,進行蟲晶生長直至厚度為柳 μ^η以上。於掩模宽度為50 之平行條紋掩模上,形成有 G a N結晶之核心寬度為5 〇 μ m之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇叫^之^^ 135248.doc •61 · 200937499 結晶之獨立基板。 第五族/第二族之比Rs/3為2·5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、1〇〇〇 μηι之核心間隔Dw而重複之 平行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結 晶區域5h)之結晶種類為反轉層。結晶面類型為I型。因生 長溫度Tq較高,故成為1型》施體濃度。為lxl〇!5 cm-3。 施體濃度之值較低。鐵濃度CFe為lxl0】7 cm·3 ^鐵之摻入量 相當多。比電阻為1 X 1 〇7 Qcm。絕緣性並不高。然而亦可 β 用作半絕緣性基板。裂縫產生率Κ為1 7%。裂縫產生率極 其低。翹曲之曲率半徑R為5.7 m。翹曲非常小。若掩模間 隔Dw較大則翹曲可能變大,但即便掩模間隔Dwg 1〇〇〇 μπι,翹曲亦不會變大。 [試料17(實施例;I型)] 於直徑為2英叶(50 mm)之GaAs基板上,形成掩模間隔 Dw為1500 μπι、掩模寬度1^為5〇 μπΐ2平行條紋掩模。該 試料17之特徵在於掩模間隔Dw擴展至15〇〇 μπι〇.5瓜⑷。 形成緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 1110 C、NH3 分壓 pNH3 為 1 〇 kPa(0.1 atm)、GaCl 分壓 pGaC1 • 為4 kPa(〇,〇4 atm)之條件下,進行磊晶生長直至厚度為400 • μηι以上。於掩模寬度為5〇 μπι之平行條紋掩模上,形成有 . GaN結晶之核心寬度為5〇 μηι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 結晶之獨立基板。 第五族/第二族之比R5,3為2.5。該GaN結晶獨立基板包含 135248.doc -62- 200937499 以50 μιη之核心寬度Ds、1500 μιη之核心間隔dw而重複之 平行條紋核心(位錯集合結晶區域5h)。該核心(位錯集人幹 晶區域5h)之結晶種類為反轉層。結晶面類型為I型。因生 長溫度Tq較高,故成為I型。施體濃度“為^丨^5 。A separate substrate for GaN crystals. The ratio of the fifth/third group Rs/3 is 25. The GaN crystal-independent substrate comprises a parallel stripe core (dislocation set crystal region 5h) which is repeated with a core width Ds of 5 〇 μπι and a core interval Dw of 75 〇卩. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type I. Since the growth temperature Tq is high, it becomes a type. The donor concentration CD is lxlO15 cm-3. The value of the donor concentration is low. The iron concentration CFe is lxlO17 cm·3. The amount of iron incorporated is quite large. The specific resistance is 1χ1〇7 Qcm. Insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K was 18%. The crack generation rate is extremely low. The radius of curvature of the quasi music is 5.9 m. The warpage is very small. If the mask interval Dw is large, the warpage may be larger'. However, even if the mask interval Dw is 750 μm, the light curvature does not become large. [Sample 1 6 (Example; Type I)] A parallel stripe mask having a mask interval Dw of 1000 μm and a mask width of 5 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). The sample 16 is characterized in that the mask interval Dw is extended to 1 〇〇〇μιη (1 (1). After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is 11 KTC, and the NH3 partial pressure P is 10 kPa ( 〇"_), under (4) pressures of 4kPa (0. (4atm)), the growth of the crystals until the thickness is more than ^μηη. On the parallel stripe mask with a mask width of 50, formed A parallel stripe core with a core width of 5 μm of G a N crystal (dislocation set crystal region 5h). The GaAs substrate is removed to obtain a thickness of 4 〇〇 ^ ^ 135248.doc • 61 · 200937499 Crystallization The independent substrate. The ratio of the fifth group to the second group Rs/3 is 2.5. The GaN crystal independent substrate comprises a parallel stripe core which is repeated with a core width Ds of 50 μm and a core interval Dw of 1 〇〇〇μηι. (Dislocation crystal region 5h) The crystal type of the core (dislocation crystal region 5h) is an inversion layer. The crystal surface type is type I. Since the growth temperature Tq is high, it is a type 1 donor concentration. Is lxl〇! 5 cm-3. The value of the donor concentration is lower. The iron concentration CFe is lxl0] 7 cm·3 ^ iron incorporation The specific resistance is 1 X 1 〇7 Qcm. The insulation is not high. However, β can also be used as a semi-insulating substrate. The crack generation rate is 7%. The crack generation rate is extremely low. The curvature radius of warpage R is 5.7 m. The warpage is very small. If the mask interval Dw is large, the warpage may become large, but even if the mask interval Dwg 1 〇〇〇 μπι, the warpage does not become large. [Sample 17 (Example ; Type I)] On a GaAs substrate having a diameter of 2 inches (50 mm), a parallel stripe mask having a mask interval Dw of 1500 μm and a mask width of 1 μm of 5 〇μπΐ2 is formed. The sample 17 is characterized by masking The die spacing Dw is extended to 15 〇〇μπι〇.5 melon (4). After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is 1110 C, and the NH3 partial pressure pNH3 is 1 〇 kPa (0.1 atm), GaCl Partial pressure pGaC1 • Under 4 kPa (〇, 〇 4 atm), epitaxial growth is carried out until the thickness is 400 • μηι or more. On the parallel stripe mask with a mask width of 5 μμπι, GaN crystals are formed. The core stripe width is 5〇μηι parallel stripe core (dislocation set crystal region 5h). A substrate having a thickness of 4 Å crystals. The ratio of the fifth group to the second group R5, 3 is 2.5. The GaN crystal independent substrate comprises 135248.doc -62- 200937499 with a core width of 50 μm Ds, a core of 1500 μm A parallel stripe core (dislocation set crystal region 5h) repeated at intervals dw. The crystal type of the core (dislocation set person's dry crystal region 5h) is an inversion layer. The crystal face type is type I. Since the growth temperature Tq is high, it is type I. The concentration of the donor body is "^^^5.

施體濃度之值較低。鐵濃度CFe為lxlO17 cm.3。鐵之捧入量 相當多。比電阻為1 X 1〇7 Qcm。絕緣性並不高。然而亦可 用作半絕緣性基板。裂縫產生率K為1 9%。裂縫產生率極 其低。翹曲之曲率半徑R為3.9 翹曲略大。輕曲較大之 原因在於掩模間隔Dw較大(Dw=l 500 μιη)。當容許最大輕 曲之曲率半徑為2 m〜3,5爪之情形時,亦可使用該試料之 基板。當容許最大翹曲之曲率半徑為4 m〜5爪之情形時, 該試料不合格。容許之翹曲值根據目的而有所不同。 [試料1 8(實施例;I型)] 於直徑為2英吋(50 mm)2GaAs基板上,形成掩模間隔The value of the donor concentration is low. The iron concentration CFe is lxlO17 cm.3. The amount of iron is quite large. The specific resistance is 1 X 1 〇 7 Qcm. Insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K was 19.9%. The rate of crack generation is extremely low. The curvature radius of the warp is 3.9 and the warp is slightly larger. The reason why the light curve is larger is that the mask interval Dw is large (Dw = 1 500 μιη). The substrate of the sample can also be used when the maximum radius of curvature is allowed to be 2 m to 3, 5 claws. When the radius of curvature of the maximum warpage was allowed to be 4 m to 5 claws, the sample failed. The allowable warpage value varies depending on the purpose. [Sample 1 8 (Example; Type I)] Forming a mask interval on a 2 Å (50 mm) 2 GaAs substrate

Dw為2000 μΐη、掩模寬度Ds為5〇 μιη之平行條紋掩模。該 試料18之特徵在於掩模間隔Dw擴展至2〇〇〇 μιη(2 形 成緩衝層後,使GaN結晶羼晶生長。遙晶生長溫度^為 llioc、NH3 分壓 pNH3 為 1〇 kPa(〇.l atm)、GaC1 分壓 為4kPa(〇.〇4atm)之條件了,進行蟲晶生長直至厚度為4〇〇 μπι以上。於掩模寬度為5〇 μηι之平行條紋掩模上,形成有 GaN結晶之核心寬度為5G _之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板’而獲得厚度為柳叫之⑽ 結晶之獨立基板。第五族/第 二族之比R5/3為2.5。該GaN結 晶獨立基板包含以5 〇 μηΐ之核心寬度Ds、2000 μηι之核心 135248.doc •63· 200937499 心(位錯集合結晶區域5h)。該A parallel stripe mask having a Dw of 2000 μΐη and a mask width Ds of 5 μm. The sample 18 is characterized in that the mask interval Dw is extended to 2 〇〇〇μιη (2, after the buffer layer is formed, the GaN crystal twins are grown. The crystal growth temperature is llioc, and the NH3 partial pressure pNH3 is 1 kPa (〇. l atm), GaC1 partial pressure is 4kPa (〇.〇4atm), the crystal growth is carried out until the thickness is 4〇〇μπι or more. On the parallel stripe mask with the mask width of 5〇μηι, GaN is formed. The core width of the crystal is 5G _ parallel stripe core (dislocation set crystal region 5h). The GaAs substrate is removed to obtain a separate substrate with a thickness of (10) crystal. The ratio of the fifth group to the second group R5/3 is 2.5. The GaN crystal independent substrate comprises a core width Ds of 5 〇μηΐ, a core of 135248.doc • 63·200937499 core of 2000 μm (dislocation set crystal region 5h).

間隔Dw而重複之平行條紋核心丨 核心(位錯集合結晶區域5h)之結 ® (DW=2〇〇〇 μΓη)。當容許最大翹曲之曲率半徑為2 m〜3 m之The knot of the parallel stripe core 丨 core (dislocation set crystallization region 5h) repeated at intervals Dw ® (DW=2〇〇〇 μΓη). When the maximum warpage is allowed, the radius of curvature is 2 m~3 m.

It形時,亦可使用該試料之基板。當容許最大勉曲之曲率 半徑為3.5 m〜5 m之情形時,該試料不合格。容許翹曲之 值根據目的而有所不同。 [試料19(實施例;I型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μηι、掩模寬度Ds為50 μηι之平行條紋掩模。形成 $ 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1110 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 pGaC1 為4 kPa(0.04 atm)之條件下’進行磊晶生長直至厚度為4〇〇 • μιη以上。於掩模寬度為5 0 μηι之平行條紋掩模上,形成有In the case of the It shape, the substrate of the sample can also be used. When the radius of curvature of the maximum distortion is allowed to be 3.5 m to 5 m, the sample is unacceptable. The value of the allowable warpage varies depending on the purpose. [Sample 19 (Example: Type I)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). After the formation of the $buffer layer, the GaN crystal is epitaxially grown. When the epitaxial growth temperature Tq is 1110 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure pGaC1 is 4 kPa (0.04 atm), the epitaxial growth is performed until the thickness is 4 〇〇 • μιη or more. . On a parallel stripe mask having a mask width of 50 μm, formed with

GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μηι之GaN 結晶之獨立基板。 第五族/第三族之比R·5,3為2.5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 135248.doc -64· 200937499 订條紋核〜(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為〗型。因生長 溫度Tq較高,故成為丨型,施體濃度^為卜丨^7⑽·、施 體濃度之值相當高。鐵濃度(::1^為1&gt;&lt;1〇]7(;111.3。鐵之摻入量 #當多°比電阻為1x1Q5 Qem。絕緣性極其低^即便如此 : ,亦可用作半絕緣性基板。裂縫產生率〖為24%。裂縫產生 略多,但仍係可使用之半絕緣性基板。翹曲之曲率半徑R 為5.5 m ^勉曲較小。 ® [試料20(實施例;I型)] 於直徑為2英吋(50 mm)2GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1110C、NH3 分壓 PNH3 為 1〇 kPa(〇」atm)、GaC1 分壓 p〜ci 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μιη以上。於掩模寬度為5〇 μηι之平行條紋掩模上,形成有 $ GaN結晶之核心寬度為50 μπι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 pmiGaN 結晶之獨立基板。 第五族/第二族之比Rw為2.5。該GaN結晶獨立基板包含 • 以50 μιη之核心寬度Ds、500 μηι之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)〇該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為了型。因生長 溫度Tq較高,故成為I型。施體之濃度(^為lxl〇n cm_3。 施體濃度之值相當高。鐵濃度CFe為lx 10]9 cm·3。摻雜較多 135248.doc -65- 200937499 之鐵。比電阻為1 X 1 〇7 Qcm。絕緣性不太高。即便如此亦 可用作半絕緣性基板。裂縫產生率K為16%。裂縫產生較 少’係良好之半絕緣性基板。翹曲之曲率半徑r為5 2 m。 麵曲較小。 [試料21(實施例;zs)] -於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 ' DwS 500 、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶蟲晶生長。首先,於蠢晶生長溫度 © Tq 為 1050 C、NH3 分壓 PNH3 為 10 kPa(0.1 atm)、GaCl 分壓The GaN crystal has a core stripe width of 50 μηη parallel stripe core (dislocation aggregate crystal region 5h). The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 400 μm. The ratio of the fifth/third group R·5,3 is 2.5. The GaN crystal-independent substrate comprises a flat rib nucleus ~ (dislocation crystallization region 5h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type. Since the growth temperature Tq is high, it becomes a sputum type, and the concentration of the donor body is 丨^7(10)·, and the value of the donor concentration is relatively high. Iron concentration (::1^ is 1&gt;&lt;1〇]7(;111.3. Incorporation of iron# When the specific resistance is 1x1Q5 Qem. The insulation is extremely low. Even so: it can also be used as a semi-insulation. The substrate has a crack rate of 24%. The crack is slightly generated, but it is still a semi-insulating substrate that can be used. The radius of curvature R of the warp is 5.5 m ^the distortion is small. ® [Sample 20 (Example; Type I)] A parallel stripe mask with a mask spacing Dw of 500 μm and a mask width Ds of 50 μm is formed on a 2 inch (50 mm) 2 GaAs substrate. After the buffer layer is formed, the GaN crystal is epitaxially formed. Growth. The epitaxial growth temperature Tq is 1110C, the NH3 partial pressure PNH3 is 1 kPa (〇" atm), and the GaC1 partial pressure p~ci is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4〇. 〇μιη or more. On a parallel stripe mask having a mask width of 5 〇μηι, a parallel stripe core having a core width of 50 μπι of GaN crystals (dislocation crystallization region 5h) is formed. The GaAs substrate is removed to obtain a thickness. It is a separate substrate of 4 〇〇pmiGaN crystal. The ratio of the fifth group to the second group Rw is 2.5. The GaN crystal independent substrate Included: Parallel stripe core (dislocation set crystal region 5h) repeated with a core width Ds of 50 μηη and a core interval Dw of 500 μηι 〇 The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The surface type is type. Because the growth temperature Tq is high, it is type I. The concentration of the donor body (^ is lxl〇n cm_3. The value of the donor concentration is quite high. The iron concentration CFe is lx 10]9 cm·3. More than 135248.doc -65- 200937499 iron. The specific resistance is 1 X 1 〇7 Qcm. The insulation is not too high. Even so, it can be used as a semi-insulating substrate. The crack generation rate K is 16%. Less 'good semi-insulating substrate. The radius of curvature r of the warp is 5 2 m. The surface curvature is small. [Sample 21 (Example; zs)] - GaAs with a diameter of 2 inches (50 mm) On the substrate, a parallel stripe mask with a mask spacing 'DwS 500 and a mask width Ds of 50 μm is formed. After the buffer layer is formed, 'the GaN crystal crystallites are grown. First, the growth temperature of the stray crystals is © 1050 C, NH3. Partial pressure PNH3 is 10 kPa (0.1 atm), GaCl partial pressure

Pcaci為4 kPa(0.04 atm)之條件下,進行蟲晶生長直至厚度 為400 μιη以上後,於磊晶生長溫度Tq為11〇(rc、Nh3分壓 PNH3 為 10 kPa(0.1 atm)、GaCl分壓 pGaC|為 4 kPa(0.04 atm)之 條件下’進行磊晶生長直至厚度為1000 μΓη以上。於掩模 寬度為50 μηι之平行條紋掩模上,形成有GaN結晶之核心 寬度為50 μηι之平行條紋核心(位錯集合結晶區域5h)。除 • 去GaAs基板’自以ll〇(Tc生長之部分中切出GaN基板,從 而獲得厚度為400 μηι之GaN結晶之獨立基板。 第五族/第三族之比Rw為2.5。該GaN結晶獨立基板包含 •以50 μιη之核心寬度Ds、500 μηι之核心間隔dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 Q域5h)之結晶種類為反轉層。結晶面類型為工型。因生長 溫度Tq較高,故成為I型。施體濃度C]^lxl〇i7 cm-3。施 體濃度之值相當高。鐵濃度CFe為5xl019 cm·3。鐵之換入量 較多。比電阻為lxl 08 Qcm。絕緣性略高。可用作半絕緣 135248.doc -66 - 200937499 性基板。裂縫產生率K為27%。半絕緣性基板上產生相當 多的裂缝,但仍係可使用。翹曲之曲率半徑尺為5 3 m。翹 曲較小。 [試料22(實施例;η型)〕 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μηι、掩模寬度〇8為5〇从爪之平行條紋掩模。形成 緩衝層後’使GaN結晶蟲晶生長。蟲晶生長溫度丁口為 1050 C、NH3 分壓 pNH3 為 1〇 kPa(0_l atm)、GaCl 分壓 pGaCiPcaci is 4 kPa (0.04 atm), and after the growth of the crystallites until the thickness is 400 μm or more, the epitaxial growth temperature Tq is 11 〇 (rc, Nh3 partial pressure PNH3 is 10 kPa (0.1 atm), GaCl The pressure of pGaC| is 4 kPa (0.04 atm), and the epitaxial growth is performed until the thickness is 1000 μΓη. On the parallel stripe mask with a mask width of 50 μη, the core width of the GaN crystal is 50 μηι. Parallel stripe core (dislocation set crystallized region 5h). Except • De-GaAs substrate 'self-cut GaN 〇 〇 〇 GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN GaN The ratio of the third group Rw is 2.5. The GaN crystal independent substrate comprises: a parallel stripe core (dislocation set crystal region 5h) which is repeated with a core width Ds of 50 μηη and a core interval dw of 500 μηι. The crystal type of the aggregate crystal Q domain 5h) is an inversion layer. The crystal surface type is a work type. Since the growth temperature Tq is high, it is type I. The donor concentration is C]^lxl〇i7 cm-3. The value is quite high. The iron concentration CFe is 5xl019 cm·3. More than 1. The specific resistance is lxl 08 Qcm. The insulation is slightly higher. It can be used as a semi-insulating 135248.doc -66 - 200937499 substrate. The crack generation rate K is 27%. There are quite a lot of cracks on the semi-insulating substrate, but It is still usable. The radius of curvature of the warp is 5 3 m. The warpage is small. [Sample 22 (Example; n-type)] A mask is formed on a GaAs substrate having a diameter of 2 inches (50 mm). The spacing Dw is 500 μm, and the mask width 〇8 is 5 〇 from the parallel stripe mask of the claw. After the buffer layer is formed, 'the GaN crystal crystal growth is grown. The crystal growth temperature is 1050 C, and the NH3 partial pressure pNH3 is 1. 〇kPa(0_l atm), GaCl partial pressure pGaCi

為4 kPa(0.04 atm)之條件下’進行磊晶生長直至厚度為4〇〇 μπι以上。於掩模寬度為5〇 μιη之平行條紋掩模上,形成有 GaN結晶之核心寬度為5 〇 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板’而獲得厚度為400 μιη之GaN 結晶之獨立基板。 第五族/第三族之比Rs/3為2.5。該GaN結晶獨立基板包含 以50 μιη之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為。因生長 溫度Tq略低,故成為Π型。施體濃度Cd為lxl〇i5 cm-3 ^施 體濃度之值極其低。鐵濃度CFe* 1 X 1 〇17 cm·3。鐵之摻入量 相當多。比電阻為1 X1 〇7 Qcm。絕緣性不太高。然而,即 便如此’亦可用作半絕緣性基板。裂縫產生率尺為丨7〇/〇。 裂縫產生較少’係良好之半絕緣性基板。翹曲之曲率半徑 R為5.0m。纽曲較小。 [試料23(實施例;π型)] 135248.doc -67- 200937499 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050°C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為400 μιη以上。於掩模寬度為5〇 μηι之平行條紋掩模上,形成 GaN結晶之核心寬度為5〇 μπι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μηι之GaN ® 結晶之獨立基板。 第五族/第三族之比R5/3為2.5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5hp該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為卩型。因生長 溫度Tq略低’故成為π型。施體濃度(^為lxl〇i5 cni·3。施 體濃度之值極其低。鐵濃度CFe為1x1016 cm·3。鐵之摻入量 相當多。比電阻為1 X 1 〇6 Qcm。絕緣性略低,但即便如此 響 亦可用作半絕緣性基板。裂縫產生率K為1 3%。裂縫產生 較少’係良好之半絕緣性基板。魅曲之曲率半徑尺為5 5 • m。魅曲較小。 . [試料24(實施例;II型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Dsg50 μΓη之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 pNH3 為 1 〇 kPa(0· 1 atm)、GaCl 分壓 pGaC1 135248.doc -68 - 200937499 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為400 μπι以上。於掩模寬度為50 μπι之平行條紋掩模上,形成有 GaN結晶之核心寬度為50 μπι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μπι之GaN 結晶之獨立基板. 第五族/第三族之比R5/3為2.5。該GaN結晶獨立基板包含 - 以50 μιη之核心寬度Ds、500 μπι之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 ® 區域5h)之結晶種類為反轉層。結晶面類型為II型。因生長 溫度Tq略低,故成為II型。施體濃度CD為lxlO17 cnT3。該 值相當高。鐵濃度CFe為lxlO19 cm_3。鐵之摻入量較多。比 電阻為1 X 107 Qcm。絕緣性並不高。然而亦可用作半絕緣 性基板。裂縫產生率K為16%。裂縫產生較少,係良好之 半絕緣性基板。翹曲之曲率半徑R為5.7 m。翹曲較小。 [試料25(實施例;II型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為5 00 μπι、掩模寬度Ds為50 μπι之平行條紋掩模。形成 緩衝層後*使GaN結晶蟲晶生長。蠢晶生長溫度Tq為 • 1050°C、NH3 分壓 PNH3 為 10 kPa(0.1 atm)、GaCl 分壓 PGaC1 • 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為400 , μπι以上。於掩模寬度為50 μπι之平行條紋掩模上,形成有Epitaxial growth was carried out under conditions of 4 kPa (0.04 atm) until the thickness was 4 〇〇 μπι or more. On the parallel stripe mask having a mask width of 5 μm, a parallel stripe core (dislocation aggregate crystal region 5h) having a core width of 5 〇 μη of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate of GaN crystal having a thickness of 400 μm. The ratio of the fifth/third group Rs/3 is 2.5. The GaN crystal-independent substrate includes a parallel stripe core (dislocation-collecting crystal region 5h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is . Since the growth temperature Tq is slightly lower, it becomes a Π type. The application concentration Cd was lxl〇i5 cm-3 ^ The value of the donor concentration was extremely low. Iron concentration CFe* 1 X 1 〇 17 cm·3. The amount of iron incorporated is quite large. The specific resistance is 1 X1 〇 7 Qcm. Insulation is not too high. However, even this can be used as a semi-insulating substrate. The crack generation rate is 丨7〇/〇. The crack produces less than a good semi-insulating substrate. The curvature radius R of the warp is 5.0 m. The new song is smaller. [Sample 23 (Example; π type)] 135248.doc -67- 200937499 On a GaAs substrate having a diameter of 2 inches (50 mm), a mask interval Dw of 500 μm and a mask width Ds of 50 μm were formed. Parallel stripe mask. After the buffer layer is formed, the GaN crystal is epitaxially grown. The epitaxial growth temperature Tq is 1050 ° C, the NH 3 partial pressure PNH 3 is 1 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 400 μm or more. On the parallel stripe mask having a mask width of 5 〇 μη, a parallel stripe core (dislocation crystallization region 5h) having a core width of 5 〇 μπι of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate of GaN ® crystals having a thickness of 400 μm. The ratio of the fifth/third group R5/3 is 2.5. The GaN crystal independent substrate includes a parallel stripe core which is repeated with a core width Ds of 50 μm and a core interval Dw of 500 μm (dislocation set crystal region 5 hp, crystal type of the core (dislocation set crystal region 5h) is an inversion layer The crystal surface type is 卩 type. Because the growth temperature Tq is slightly lower, it is π type. The donor concentration (^ is lxl〇i5 cni·3. The value of the donor concentration is extremely low. The iron concentration CFe is 1x1016 cm·3. The amount of iron incorporated is quite large. The specific resistance is 1 X 1 〇 6 Qcm. The insulation is slightly lower, but even if it is so loud, it can be used as a semi-insulating substrate. The crack generation rate K is 13.3%. A good semi-insulating substrate. The radius of curvature of the fascinating curve is 5 5 • m. The enchantment is small. [Sample 24 (Example; Type II)] GaAs substrate with a diameter of 2 inches (50 mm) A parallel stripe mask having a mask interval Dw of 500 μm and a mask width of Dsg 50 μΓ is formed. After the buffer layer is formed, 'the GaN crystal is epitaxially grown. The epitaxial growth temperature Tq is 1050 C, and the NH3 partial pressure pNH3 is 1 〇. kPa (0· 1 atm), GaCl partial pressure pGaC1 135248.doc -68 - 200937499 is 4 kPa (0.0 Under the condition of 4 atm), epitaxial growth is carried out until the thickness is 400 μπι or more. On the parallel stripe mask with a mask width of 50 μπι, a parallel stripe core with a core width of 50 μπι is formed on the GaN crystal (dislocation set) Crystallization region 5h). The GaAs substrate is removed to obtain a GaN crystal independent substrate having a thickness of 400 μm. The ratio of the fifth group to the third group R5/3 is 2.5. The GaN crystal independent substrate contains - a core width of 50 μm Ds, 500 μπι core spacing Dw and repeating parallel stripe core (dislocation set crystal region 5h). The crystal type of the core (dislocation crystallisation® region 5h) is the inversion layer. The crystal surface type is type II. The growth temperature Tq is slightly lower, so it is type II. The donor concentration CD is lxlO17 cnT3. The value is quite high. The iron concentration CFe is lxlO19 cm_3. The iron is incorporated in a large amount. The specific resistance is 1 X 107 Qcm. It is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K is 16%. The crack is less generated and is a good semi-insulating substrate. The curvature radius R of the warpage is 5.7 m. The warpage is small. Sample 25 (Example; Type II)] A parallel stripe mask having a mask spacing Dw of 500 μm and a mask width Ds of 50 μm is formed on a GaAs substrate having a diameter of 2 inches (50 mm). After the buffer layer is formed, * GaN crystal crystallites are grown. The crystal growth temperature Tq is 1.050 ° C, the NH3 partial pressure PNH3 is 10 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 400 μm or more. Formed on a parallel stripe mask having a mask width of 50 μm

GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μπι之GaN 結晶之獨立基板。 135248.doc -69- 200937499 第五族/第三族之比Rw為2.5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、500 μΓη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5 h)之結晶種類為反轉層。結晶面類型為η型。因生長 溫度Tq略低,故成為π型。施體濃度(^為lxl〇i7 cm-3。該 值相當尚。鐵濃度CFe為5x 1019 cm.3。鐵之摻入極其多。比 電阻為1 X 108 Qcm。絕緣性略高。可用作半絕緣性基板。 裂縫產生率K為29%。該值相當大,但仍係有用之基板。 ❿ 翹曲之曲率半徑R為5.3 m。翹曲較小。 [試料26(實施例;II型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Ds為50 μηι之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 pG C1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 ❹ μηι以上。於掩模寬度為50 μιη之平行條紋掩模上,形成有The GaN crystal has a core stripe width of 50 μηη parallel stripe core (dislocation aggregate crystal region 5h). The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 400 μm. 135248.doc -69- 200937499 The ratio of the fifth/third family Rw is 2.5. The GaN crystal-independent substrate includes a parallel stripe core (dislocation-collecting crystal region 5h) which is repeated with a core width Ds of 50 μm and a core interval Dw of 500 μΓ. The crystal type of the core (dislocation crystal region 5 h) is an inversion layer. The crystal face type is n type. Since the growth temperature Tq is slightly lower, it becomes a π type. The concentration of the donor body (^ is lxl〇i7 cm-3. This value is quite satisfactory. The iron concentration CFe is 5x 1019 cm.3. The iron is incorporated in a very large amount. The specific resistance is 1 X 108 Qcm. The insulation is slightly higher. As a semi-insulating substrate, the crack generation rate K is 29%. This value is quite large, but it is still a useful substrate. 曲率 The curvature radius of the warp is 5.3 m. The warpage is small. [Sample 26 (Example; II Type)] A parallel stripe mask with a mask spacing Dw of 500 μm and a mask width Ds of 50 μηι is formed on a GaAs substrate having a diameter of 2 μm (50 mm). After the buffer layer is formed, the GaN crystal is epitaxially formed. Growth. The epitaxial growth temperature Tq is 1050 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure pG C1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4〇〇. ❹ μηι or more. Formed on a parallel stripe mask with a mask width of 50 μm

GaN結晶之核心寬度為50 μηι之平行條紋核心(位錯集合结 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 μηι之GaN 結晶之獨立基板。 第五族/第三族之比Rs/3為2.5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合妹晶 區域5h)之結晶種類為反轉層。結晶面類型為η型。因生長 溫度Tq略低’故成為II型。施體濃度心為lxl〇i9 cm-3 ^該 135248.doc -70· 200937499 值極其高。鐵濃度cFe為7xl0i9cm-3。鐵之摻入量極其多。 比電阻為1 X l〇5 絕緣性極其低。然而亦可用作半絕 緣性基板。裂縫產生率K為29%。該值相當大,但仍係有 用之基板。翹曲之曲率半徑r為6.〇 m。翹曲較小。 [試料27(實施例;Π型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度D05O μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶為晶生長。蟲晶生長溫度丁口為 ❹ 1 〇5〇 C、NH3 分壓 PNH3 為 1 〇 kPa(0.1 atm)、GaCl 分壓 pG C1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μηι以上。於掩模寬度為50 μηι之平行條紋掩模上,形成有 GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 0爪之GaN 結晶之獨立基板。 第五族/第三族之比Rs/3為2.5。該GaN結晶獨立基板包含 以50 μιη之核心寬度Ds、500 μηι之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為II型。因生長 • 溫度Tq略低,故成為II型。施體濃度CD為lx 1019 cm·3。該 : 值極其高。鐵濃度CFe為8xl019 cm·3。鐵之摻入量極其多。 , 比電阻為1 X 107 Qcm。絕緣性並不高。然而亦可用作半絕 緣性基板。裂縫產生率K為28%。該值相當大,但仍係有 用之基板。翹曲之曲率半徑R為5.1 m。翹曲較小。 [試料28(實施例;II型)] 135248.doc •71 _ 200937499 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 ' 以上。於掩模寬度為5〇 μηι之平行條紋掩模上,形成有 - GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇 μη^^Ν © 結晶之獨立基板。 第五族/第三族之比Rw為2.5。該GaN結晶獨立基板包含 以50 μιη之核心寬度Ds、500 μιη之間隔核心dw而重複之平 行條紋核心(位錯集合結晶區域5 h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為π型。因生長 溫度Tq略低,故成為Π型。施體濃度Cd為1χ1〇π cm_3。該 值相當尚。鐵濃度0^為1 X 1〇17 cm·3。鐵之換入量略少。比 電阻為1 X 105 ncm。絕緣性極其低。然而亦可用作半絕緣 性基板。裂縫產生率K為23°/〇。該值相當大,但仍係有用 之基板。翹曲之曲率半徑R為5.7 m。翹曲較小。 •[試料29(實施例;II型)] : 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 • Dw為500 μιη、掩模寬度以為5〇 μπι之平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度以為 1050 C、NH3 分壓卩則為1〇 kPa(〇.l atm)、GaCl 分壓 pGaC1 為4 kPa(0.04 atm)之條件下,進存磊晶生長直至厚度為4〇〇 135248.doc -72- 200937499 μιη以上。於掩模寬度為50 μιη之平行條紋掩模上,形成有 GaN結晶之核心寬度為5 0 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μιη之GaN 結晶之獨立基板。 第五族/第三族之比R5/3為2.5。該GaN結晶獨立基板包含 ' 以50 μιη之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 - 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為II型。因生長 ® 溫度Tq略低,故成為II型。施體濃度CD為lxlO15 cm_3。該 值較低。鐵濃度CFe為1 X 1019 cm_3。鐵之摻入量較多。比電 阻為1x10&quot; Qcm。絕緣性極其高。可用作半絕緣性基板。 裂縫產生率K為27%。該值相當大,但仍係有用之基板。 輕曲之曲率半徑R為5.4 m。勉曲較小。 [試料30(實施例;II型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為5 00 μιη、掩模寬度Ds為50 μηι之平行條紋掩模。形成 〇 緩衝層後’使GaN結晶蟲晶生長。蟲晶生長溫度Tq為 1050°C、NH3 分壓 PNH3 為 10 kPa(0.1 atm)、GaCl 分壓 PGaC1 • 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為400 . μιη以上。於掩模寬度為5 0 μιη之平行條紋掩模上,形成有 ' GaN結晶之核心寬度為50 μηι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μπι之GaN 結晶之獨立基板。 第五族/第三族之比R5/3為2.5。該GaN結晶獨立基板包含 135248.doc -73- 200937499 以50 μιη之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5hp該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為π型。因生長 溫度Tq略低,故成為Π型。施體濃度(^為lxlO15 cm·3。該 值較低。鐵濃度CFe為5 xlO19 cm-3。鐵之摻入量極其多。比 電阻為1χ1〇12 Qcm。絕緣性極其高。裂縫產生率〖為 18°/^該值相當低。翹曲之曲率半徑R為5.7 m。翹曲較 /J&gt; 〇 © [試料31(實施例;II型)] 於直徑為2英叫&quot;(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μηι、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 pGaC1 為4 kPa(0.04 atm)之條件下’進行磊晶生長直至厚度為400 μηι以上。於掩模寬度為5〇 μπι之平行條紋掩模上,形成有 Ο GaN結晶之核心寬度為5〇 μπι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 pn^GaN 結晶之獨立基板。 . 第五族/第三族之比為2.5。該GaN結晶獨立基板包含 • 以50 μπι之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 ' 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為η型。因生長 溫度Tq略低’故成為Π型。施體濃度心為lxl〇!9 cm·3 ^該 值非常高。鐵濃度&lt;:以為7 xlO19 cnT3。鐵之摻入量極其多。 135248.doc •74· 200937499 比電阻為1 χ 1 〇5 Qcm。 27%。該值相當高,但 絕緣性極其低。裂縫產生率K為 即便如此亦係有用之基板。翹曲之 曲率半徑R為6.0m。勉曲較小。 [試料32(實施例;II型)] 於直徑為2英吋(50 mm)2GaAs*板上’形成掩模間隔 Dw為500 μΐη、掩模寬度^為5〇 μπι之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度為 1050 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaC1 分壓The core of the GaN crystal has a width of 50 μηι parallel stripe core (dislocation aggregate crystal region 5h). The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 4 μm. The ratio of the fifth/third group Rs/3 is 2.5. The GaN crystal-independent substrate includes a parallel stripe core (dislocation-concentrated crystal region 5h) which is repeated with a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set sister crystal region 5h) is an inversion layer. The crystal face type is n type. Since the growth temperature Tq is slightly lower, it becomes type II. The concentration of the donor body is lxl〇i9 cm-3 ^ The value of 135248.doc -70· 200937499 is extremely high. The iron concentration cFe is 7xl0i9cm-3. The amount of iron incorporated is extremely large. The specific resistance is 1 X l〇5 and the insulation is extremely low. However, it can also be used as a semi-insulating substrate. The crack generation rate K was 29%. This value is quite large, but it is still a useful substrate. The curvature radius r of the warp is 6. 〇 m. The warpage is small. [Sample 27 (Example: Π type)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width of D05O μη was formed on a GaAs substrate having a diameter of 2 inches (50 mm). After the buffer layer is formed, GaN is crystallized for crystal growth. The crystal growth temperature is ❹ 1 〇 5〇C, NH3 partial pressure PNH3 is 1 〇kPa (0.1 atm), GaCl partial pressure pG C1 is 4 kPa (0.04 atm), epitaxial growth is carried out until the thickness is 4〇〇μηι or more. On the parallel stripe mask having a mask width of 50 μm, a parallel stripe core (dislocation aggregate crystal region 5h) having a core width of 50 μm of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 400 Å. The ratio of the fifth/third group Rs/3 is 2.5. The GaN crystal-independent substrate includes a parallel stripe core (dislocation-collecting crystal region 5h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type II. Due to growth • The temperature Tq is slightly lower, so it is type II. The donor concentration CD was lx 1019 cm·3. This: The value is extremely high. The iron concentration CFe is 8xl019 cm·3. The amount of iron incorporated is extremely large. , the specific resistance is 1 X 107 Qcm. Insulation is not high. However, it can also be used as a semi-insulating substrate. The crack generation rate K was 28%. This value is quite large, but it is still a useful substrate. The curvature radius R of the warp is 5.1 m. The warpage is small. [Sample 28 (Example; Type II)] 135248.doc •71 _ 200937499 On a GaAs substrate having a diameter of 2 inches (50 mm), a mask interval Dw of 500 μm and a mask width Ds of 50 μm were formed. Parallel stripe mask. After the buffer layer is formed, the GaN crystal is epitaxially grown. The epitaxial growth temperature Tq is 1050 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4 〇〇 ' or more. On the parallel stripe mask having a mask width of 5 〇 μη, a parallel stripe core (dislocation crystallization region 5h) having a core width of 50 μm of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate having a thickness of 4 μm. The ratio of the fifth/third group Rw is 2.5. The GaN crystal-independent substrate comprises a parallel stripe core (dislocation set crystal region 5 h) which is repeated at a core width Ds of 50 μm and a core dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is π type. Since the growth temperature Tq is slightly lower, it becomes a Π type. The donor concentration Cd is 1χ1〇π cm_3. This value is quite good. The iron concentration 0^ is 1 X 1 〇 17 cm·3. The amount of iron exchange is slightly less. The specific resistance is 1 X 105 ncm. Insulation is extremely low. However, it can also be used as a semi-insulating substrate. The crack generation rate K was 23°/〇. This value is quite large, but it is still a useful substrate. The curvature radius R of the warp is 5.7 m. The warpage is small. • [Sample 29 (Example; Type II)]: A mask stripe was formed on a GaAs substrate having a diameter of 2 inches (50 mm). • A parallel stripe mask with a Dw of 500 μm and a mask width of 5 μm. . After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature is 1050 C, the NH3 partial pressure is 1 kPa (〇.l atm), and the GaCl partial pressure pGaC1 is 4 kPa (0.04 atm), and the epitaxial growth is carried out until the thickness is 4〇〇. 135248.doc -72- 200937499 μιη or more. On the parallel stripe mask having a mask width of 50 μm, a parallel stripe core (dislocation aggregate crystal region 5h) having a core width of 50 μm of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 400 μm. The ratio of the fifth/third group R5/3 is 2.5. The GaN crystal-independent substrate comprises a flat-line stripe core (dislocation-collected crystal region 5h) which is repeated with a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type II. Due to the growth ® temperature Tq is slightly lower, it becomes type II. The donor concentration CD is lxlO15 cm_3. This value is lower. The iron concentration CFe is 1 X 1019 cm_3. The amount of iron incorporated is high. The specific resistance is 1x10&quot; Qcm. Insulation is extremely high. Can be used as a semi-insulating substrate. The crack generation rate K was 27%. This value is quite large, but it is still a useful substrate. The curvature radius R of the light curve is 5.4 m. The distortion is small. [Sample 30 (Example; Type II)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). After the formation of the buffer layer, the GaN crystal crystallites are grown. The crystal growth temperature Tq is 1050 ° C, the NH3 partial pressure PNH3 is 10 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 400 μm or more. On the parallel stripe mask having a mask width of 50 μm, a parallel stripe core of a 'GaN crystal having a core width of 50 μη (the dislocation aggregate crystal region 5h) was formed. The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 400 μm. The ratio of the fifth/third group R5/3 is 2.5. The GaN crystal independent substrate comprises 135248.doc -73- 200937499 parallel stripe core repeated with a core width Ds of 50 μm and a core interval Dw of 500 μm (dislocation set crystal region 5 hp the core (dislocation set crystal region 5h) The crystal type is the inversion layer. The crystal surface type is π type. Because the growth temperature Tq is slightly lower, it becomes the Π type. The donor concentration (^ is lxlO15 cm·3. The value is lower. The iron concentration CFe is 5 x lO19 cm -3. The amount of iron is extremely high. The specific resistance is 1χ1〇12 Qcm. The insulation is extremely high. The crack generation rate is 18°/^ which is quite low. The curvature radius of warping is 5.7 m. Warpage约/J&gt; 〇© [sample 31 (example; type II)] on a GaAs substrate having a diameter of 2 inches &quot; (50 mm), a mask interval Dw of 500 μm and a mask width Ds of 50 μm are formed. Parallel stripe mask. After forming a buffer layer, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is 1050 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure pGaC1 is 4 kPa (0.04 atm). Under the conditions of 'epitaxial growth until the thickness is 400 μηι or more. The mask width is 5〇μ On the parallel stripe mask of πι, a parallel stripe core (dislocation crystallization region 5h) having a core width of 〇 GaN crystal of 5 μm is formed. The GaAs substrate is removed to obtain a separate substrate having a thickness of 400 pn^ GaN crystal. The ratio of the fifth/third group is 2.5. The GaN crystal independent substrate comprises: a flat stripe core (dislocation set crystal region 5h) repeated with a core width Ds of 50 μπι and a core interval Dw of 500 μηη The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal surface type is η type. Because the growth temperature Tq is slightly lower, it becomes a Π type. The donor concentration center is lxl〇!9 cm·3 ^The value is very high. The iron concentration &lt;: is considered to be 7 xlO19 cnT3. The amount of iron is extremely high. 135248.doc •74· 200937499 The specific resistance is 1 χ 1 〇5 Qcm. 27%. The value is quite high, but The insulating property is extremely low. The crack generation rate K is a substrate which is useful even in this case. The curvature radius R of the warpage is 6.0 m, and the distortion is small. [Sample 32 (Example; Type II)] The diameter is 2 inches. (50 mm) 2GaAs* plate 'forming mask spacing Dw is 500 μΐη, mask width ^ 5〇 μπι of parallel stripes of the mask. After forming the buffer layer 'so that epitaxial growth of a GaN crystal. Epitaxial growth temperature of 1050 C, NH3 partial pressure PNH3 was 1〇 kPa (0.1 atm), GaC1 dividing

❹ 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μιη以上。於掩模寬度為50 μηι之平行條紋掩模上,形成有 GaN結晶之核心寬度為50 μπΐ2平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為4〇〇叫之^… 結晶之獨立基板》 第五族/第三族之比Rs/3為2.5。該GaN結晶獨立基板包含 以50 μιη之核心寬度Ds、500 μηι之核心間隔Dw而重複之平 ^亍條紋核心(位錯集合結晶區域5 h)。該核心(位錯集合辞晶 區域5h)之結晶種類為反轉層。結晶面類型為π型。因生長 溫度Tq略低’故成為II型。施體濃度Cd為lxl〇〗9 。該 值極其局。鐵濃度CFe為8 X 1 019 cm-3。鐵之推入量極复多。 比電阻為1 X 1 O7 ncm。絕緣性並不高。裂縫產生率κ為 29°/。。該值相當高,但即便然如此亦係有用之基板。魅曲 之曲率半徑R為5.6 m。勉曲較小。 [試料33(實施例;II型)] 於直徑為2英叶(50 mm)之GaAs基板上,形成掩模間隔 135248.doc •75- 200937499❹ Under conditions of 4 kPa (0.04 atm), epitaxial growth is carried out until the thickness is 4 〇〇 μηη or more. On the parallel stripe mask having a mask width of 50 μm, a GaN crystal having a core width of 50 μπΐ2 parallel stripe core (dislocation aggregate crystal region 5h) was formed. The GaAs substrate was removed to obtain a single substrate having a thickness of 4 Å... Crystallization. The ratio of the fifth group to the third group was Rs/3 of 2.5. The GaN crystal-independent substrate comprises a flat-ringed core (dislocation-concentrated crystal region 5 h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystallized region 5h) is an inversion layer. The crystal face type is π type. Since the growth temperature Tq is slightly lower, it becomes type II. The donor concentration Cd is lxl〇〗 9. This value is extremely bureaucratic. The iron concentration CFe is 8 X 1 019 cm-3. The amount of iron pushed is much more. The specific resistance is 1 X 1 O7 ncm. Insulation is not high. The crack generation rate κ is 29°/. . This value is quite high, but even this is a useful substrate. The radius of curvature R of the enchantment is 5.6 m. The distortion is small. [Sample 33 (Example; Type II)] Mask spacing was formed on a GaAs substrate having a diameter of 2 inches (50 mm) 135248.doc •75- 200937499

Dw為500 μηι、掩模寬度Ds為50 μηι之平行條紋掩模。形成 緩衝層後’使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 PNH3 為 10 kPa(0.1 atm)、GaCl 分壓 PGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μηι以上。於掩模寬度為50 μηι之平行條紋掩模上,形成有 GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 ymiGaN 結晶之獨立基板》 β 第五族/第三族之比Rw為2.5。該GaN結晶獨立基板包含 以50 μηι之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 行條紋核心(位錯集合結晶區域5 h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層◊結晶面類型為η型。因生長 溫度Tq略低’故成為π型。施體濃度Cd為lxl〇i5 cm-3。施 體濃度較低。鐵濃度CFe為7 xlO19 cm·3。鐵之摻入量極其 多。比電阻為3 X 1012 Qcm。絕緣性極其高。裂縫產生率κ 0 為27%。該值相當高,但即便如此亦係有用之基板。翹曲 之曲率半徑R為5.5 m。魍曲較小。 [試料34(實施例;π型)] 於直徑為2英吋(50 mm)之GaAS基板上,形成掩模間隔 Dw為500 μηι、掩模寬度Ds為50 μηι之平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 pNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGaC1 為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μιη以上。於掩模寬度為5〇 pm之平行條紋掩模上’形成有 135248.doc -76- 200937499A parallel stripe mask having a Dw of 500 μm and a mask width Ds of 50 μm. After the buffer layer is formed, the GaN crystal is epitaxially grown. The epitaxial growth temperature Tq is 1050 C, the NH3 partial pressure PNH3 is 10 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4 〇〇 μηι or more. On the parallel stripe mask having a mask width of 50 μm, a parallel stripe core (dislocation aggregate crystal region 5h) having a core width of 50 μm of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate having a thickness of 400 ymiGaN crystals. The ratio of β to Group 5/Group III Rw was 2.5. The GaN crystal-independent substrate comprises a parallel stripe core (dislocation set crystal region 5 h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is the inversion layer, and the crystal face type is n type. Since the growth temperature Tq is slightly lower, it becomes a π type. The donor concentration Cd was lxl〇i5 cm-3. The concentration of the donor is low. The iron concentration CFe is 7 x lO19 cm·3. The amount of iron incorporated is extremely large. The specific resistance is 3 X 1012 Qcm. Insulation is extremely high. The crack generation rate κ 0 was 27%. This value is quite high, but even this is a useful substrate. The curvature radius R of the warp is 5.5 m. The distortion is small. [Sample 34 (Example: π type)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 50 μm was formed on a GaAS substrate having a diameter of 2 inches (50 mm). After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is 1050 C, the NH3 partial pressure pNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure PGaC1 is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 4 〇〇 μηη or more. 135248.doc -76- 200937499 formed on a parallel stripe mask with a mask width of 5 pm

GaN結晶之核心寬度為50 μηι之平行條紋核心(位錯集合結 晶區域5h)。除去GaAs基板,而獲得厚度為400 μιη之GaN 結晶之獨立基板。 第五族/第三族之比R5/3為2.5。該GaN結晶獨立基板包含 以50 μιη之核心寬度Ds、500 μιη之核心間隔Dw而重複之平 • 行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為II型。因生長 溫度Tq略低,故成為II型。施體濃度CD為lxlO15 cm·3。該 © 值較低。因係II型,故摻雜有大量之氧。鐵濃度CFe為 8xl019 cnT3。鐵之摻入量極其多。比電阻為5xl012 Qcm。 絕緣性極其高。裂縫產生率K為28%。該值相當高,但即 便如此亦係有用之基板。麵曲之曲率半徑R為5.0 m。翹曲 較小。 [試料35(實施例;II型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為5 00 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後’使GaN結晶蠢晶生長。羞晶生長溫度Tq為 1050°C、NH3 分壓 P則 3 為 10 kPa(0.1 atm)、GaCl 分壓 PGaCi • 為2 kPa(0.02 atm)之條件下,進行磊晶生長直至厚度為400 . μηι以上。於掩模寬度為5 0 μιη之平行條紋掩模上,形成有 • GaN結晶之核心寬度為50 μιη之平行條紋核心(位錯集合結 晶區域5 h )。 除去GaAs基板,而獲得厚度為400 μιη之GaN結晶之獨立 基板。第五族/第三族之比R5/3為5。該GaN結晶獨立基板包 135248.doc -77- 200937499 含以50 μηι之核心寬度Ds、500 μιη之核心間隔Dw而重複之 平行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合結 晶區域5h)之結晶種類為反轉層。結晶面類型為。因生 長溫度Tq略低,故成為π型。施體濃度cD為lxi〇!9 cm·3。 因係Π型故摻雜有大量之氧。鐵濃度cFe為7xl〇19 cm-3。鐵 之摻入量極其多。比電阻為IxlO5 i2cm。絕緣性極其低。 裂縫產生率K為29%。該值相當高,但即便如此亦係有用 之基板。翹曲之曲率半徑R為5,0 m。翹曲較小。 ® [試料36(實施例·,II型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模寬度Ds為50 μιη之平行條紋掩模。形成 緩衝層後,使GaN結晶磊晶生長。磊晶生長溫度Tq為 1050 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 pGaC| 為1 kPa(0.01 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μηι以上。於掩模寬度為5〇 μπι之平行條紋掩模上,形成有The core of the GaN crystal has a width of 50 μηι parallel stripe core (dislocation aggregate crystal region 5h). The GaAs substrate was removed to obtain a separate substrate of GaN crystals having a thickness of 400 μm. The ratio of the fifth/third group R5/3 is 2.5. The GaN crystal-independent substrate comprises a flat stripe core (dislocation set crystal region 5h) which is repeated at a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type II. Since the growth temperature Tq is slightly lower, it becomes type II. The donor concentration CD was lxlO15 cm·3. The © value is lower. Because of the type II, it is doped with a large amount of oxygen. The iron concentration CFe is 8xl019 cnT3. The amount of iron incorporated is extremely large. The specific resistance is 5xl012 Qcm. Insulation is extremely high. The crack generation rate K was 28%. This value is quite high, but it is also a useful substrate. The radius of curvature R of the face curvature is 5.0 m. The warpage is small. [Sample 35 (Example; Type II)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). After the buffer layer is formed, the GaN crystal growth crystal is grown. When the growth temperature Tq is 1050 ° C, NH 3 partial pressure P is 3 kPa (0.1 atm), GaCl partial pressure PGaCi • 2 kPa (0.02 atm), epitaxial growth is carried out until the thickness is 400. μηι the above. On the parallel stripe mask having a mask width of 50 μm, a parallel stripe core having a core width of 50 μm of GaN crystal (dislocation aggregate crystal region 5 h) was formed. The GaAs substrate was removed to obtain a GaN crystal independent substrate having a thickness of 400 μm. The ratio of the fifth/third group R5/3 is 5. The GaN crystal independent substrate package 135248.doc -77- 200937499 includes a parallel stripe core (dislocation set crystal region 5h) which is repeated with a core width Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation aggregate crystal region 5h) is an inversion layer. The crystal face type is . Since the growth temperature Tq is slightly lower, it becomes a π type. The donor concentration cD was lxi〇!9 cm·3. Because of the type of the system, it is doped with a large amount of oxygen. The iron concentration cFe is 7xl 〇 19 cm-3. The amount of iron incorporated is extremely large. The specific resistance is IxlO5 i2cm. Insulation is extremely low. The crack generation rate K was 29%. This value is quite high, but even this is a useful substrate. The curvature radius R of the warp is 5,0 m. The warpage is small. ® [Sample 36 (Example, Type II)] A parallel stripe mask having a mask interval Dw of 500 μm and a mask width Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). After the buffer layer is formed, GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is 1050 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure pGaC| is 1 kPa (0.01 atm), and epitaxial growth is performed until the thickness is 4 〇〇μηι or more. . Formed on a parallel stripe mask having a mask width of 5 μ μm

GaN結晶之核心寬度為5〇 μιη之平行條紋核心(位錯集合結 晶區域5h)。 除去GaAs基板,而獲得厚度為400 μηι之GaN結晶之獨立 . 基板。第五族/第三族之比尺5,3為10。該GaN結晶獨立基板 • 包3以50 μηι之核心寬度Ds、5〇〇 核心間隔Dw而重複 -之平行條紋核心(位錯集合結晶區域5h)。該核心(位錯集合 結晶區域5h)之結晶種類為反轉層。結晶面類型為〗〗型。因 生長溫度Tq略低,故成為!!型。施體濃度ΐχΐ〇〗9 。 該值極其高。因係11型故摻雜有大量之氧。鐵濃度CFe為 135248.doc -78· 200937499 …〇 cm'鐵之摻入量極其多。比電阻為ΐχΐ〇7Ω_ 絕緣性並不高。裂縫產生率〖為28%。該值相當高,但即 便如此亦係有用之基板。輕曲之曲率半徑汉為5 () 趣曲 較小。 [試料3 7(比較例;無掩模)] 於直徑為2英忖(5〇mm)之GaAs基板上,並不形成掩模, ·. 巾形成緩衝層’之後’使GaN結晶磊晶生長。磊晶生長溫 度 Tq 為 1〇5(TC、NH3 分壓!&gt;_為1〇 kPa(〇」_)、以口分 Ο 壓PGaC1為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚 度為400 μιη以上。因無掩模故不存在核心(位錯集合結晶 區域5hp平坦之C面之結晶以相同之方式於基板上生長。 除去GaAs基板,而獲得厚度為4〇〇 gmiGaN結晶之獨立基 板。 第五族/第二族之比rs,3為2.5。表面所露出之結晶面為c 面。C面為平坦面。因無掩模故進行c面生長。施體濃度 _ CD為lxl〇】5 em·3。因係c面生長,故氧(施體)難以進入結 晶内部,施體濃度極其低。基本上不摻雜氧。鐵濃度 為IxlO17 Cm-3。鐵之摻入量相當多。比電阻為1χ1〇7 Qcm。絕緣性並不高。裂縫產生率κ為77%。該值極其 高。翹曲之曲率半徑尺為]^ m。翹曲非常大。其原因在於 未於基底基板上製作掩模而使GaN結晶生長。不適合作為 於其上形成元件之基板。 [試料38(比較例;無掩模)] 於直徑為2英吋(50 mm)之GaAS基板上,不形成掩模, !35248.doc -79· 200937499 而形成緩衝層,之後,使GaN結晶磊晶生長。磊晶生長溫 度 Tq為 l050t:、NH3 分壓 1&gt;_3為10 kPa(〇」atm)、GaC1* 壓PGaCI為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚 度為400 μιη以上。因無掩模故不存在核心(位錯集合結晶 區域5h)。平坦之C面之結晶以相同之方式於基板上生長。 除去GaAs基板,而獲得厚度為4〇〇 μιη之GaN結晶之獨立基 板。 第五族/第二族之比rs/3為2.5。表面所露出之結晶面為c 面。C面為平坦面。因無掩模故進行c面生長。施體濃度 CD為lxio15 cm-3。因係c面生長故氧(施體)難以進入結晶 内部,施體濃度極其低。基本上不摻雜氧。鐵濃度CFe為 HO16 cm·3。鐵之摻入量非常少。比電阻為lxl〇6 Qcm。 絕緣性略低。裂縫產生率K為75%。該值極其高。翹曲之 曲率半徑R為1.6 m。翹曲非常大。其原因在於未於基底基 板上製作掩模而使GaN生長。不適合作為於其上形成元件 之基板。 [試料39(比較例;無掩模)] 於直徑為2英叶(50 mm)之GaAs基板上,不形成掩模,而 形成緩衝層’之後’使GaN結晶磊晶生長。磊晶生長溫度The core of the GaN crystal has a core stripe width of 5 μ μηη (the dislocation aggregate crystal region 5h). The GaAs substrate was removed to obtain a GaN crystal having a thickness of 400 μm. The fifth/third family scale 5, 3 is 10. The GaN crystal independent substrate • The package 3 is repeated with a core width Ds of 50 μm and a core spacing Dw of 5 Å - a parallel stripe core (dislocation crystallization region 5h). The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is 〗 〖. Because the growth temperature Tq is slightly lower, it becomes! !type. The concentration of the donor is ΐχΐ〇〗 9. This value is extremely high. Because of the type 11 type, it is doped with a large amount of oxygen. The iron concentration CFe is 135248.doc -78· 200937499 ... 〇 cm' iron is intensively added. The specific resistance is ΐχΐ〇7Ω_ and the insulation is not high. The crack generation rate is 28%. This value is quite high, but it is also a useful substrate. The radius of curvature of the light curvature is 5 (). [Sample 3 7 (Comparative Example; No Mask)] On a GaAs substrate having a diameter of 2 inches (5 〇 mm), no mask was formed, and the towel was formed into a buffer layer 'after' to cause GaN crystal epitaxial growth. . The epitaxial growth temperature Tq is 1 〇 5 (TC, NH 3 partial pressure! &gt; _ is 1 kPa (〇 _ _)), and epitaxial growth is performed under the condition that the pressure PGaC1 is 4 kPa (0.04 atm). Until the thickness is 400 μm or more. Since there is no mask, there is no core (the dislocation crystal region 5 hp flat C-plane crystal grows on the substrate in the same manner. The GaAs substrate is removed to obtain a thickness of 4 〇〇gmiGaN crystal The independent substrate. The ratio of the fifth group to the second group rs, 3 is 2.5. The crystal surface exposed on the surface is c-plane. The C-plane is a flat surface. C-plane growth is performed without masking. It is lxl〇]5 em·3. Because of the growth of c-plane, it is difficult for oxygen (donor) to enter the interior of the crystal, and the concentration of the donor is extremely low. It is basically not doped with oxygen. The iron concentration is IxlO17 Cm-3. The input is quite large. The specific resistance is 1χ1〇7 Qcm. The insulation is not high. The crack generation rate κ is 77%. This value is extremely high. The radius of curvature of the warp is ^^ m. The warpage is very large. The GaN crystal growth is not performed by forming a mask on the base substrate, and is not suitable as a substrate on which an element is formed. [Sample 38 (Comparative example; no mask)] On a GaAS substrate having a diameter of 2 inches (50 mm), a mask layer is formed without forming a mask, !35248.doc -79·200937499, and then GaN crystal epitaxial growth is performed. The epitaxial growth temperature Tq is l050t:, NH3 partial pressure 1&gt;_3 is 10 kPa (〇"atm), and GaC1* pressure PGaCI is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 400 μm or more. Since there is no mask, there is no core (dislocation crystal region 5h). The flat C-plane crystal grows on the substrate in the same manner. The GaAs substrate is removed to obtain a GaN crystal with a thickness of 4 μm. The ratio of rs/3 of the fifth group to the second group is 2.5. The crystal surface exposed on the surface is c-plane. The C-plane is a flat surface. The c-plane growth is performed without a mask. The donor concentration CD is lxio15 cm. -3. Oxygen (donor) is difficult to enter the interior of the crystal due to the growth of the c-plane, and the concentration of the donor is extremely low. The oxygen is not doped. The iron concentration CFe is HO16 cm·3. The amount of iron incorporated is very small. The resistance is lxl〇6 Qcm. The insulation is slightly lower. The crack generation rate K is 75%. This value is extremely high. The curvature of warping is half. R is 1.6 m. The warpage is very large. The reason is that GaN is not grown on the base substrate, and it is not suitable as a substrate on which the element is formed. [Sample 39 (Comparative Example; No Mask)] On a GaAs substrate of 2 inches (50 mm), a mask is not formed, and a buffer layer 'after' is formed to cause epitaxial growth of GaN crystals. Epitaxial growth temperature

Tq 為 1030 C、NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGaci為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度 為400 μιη以上。因無掩模故不存在核心(位錯集合結晶區 域5h)。平坦之C面之結晶以相同之方式於基板上生長。除 去GaAs基板,而獲得厚度為400 μιη之GaN結晶之獨立臭 135248.doc -80 - 200937499 板。 第五族/第二族之比R5,3為2.5。表面所露出之結晶面為c 面。c面為平坦面。因無掩模故進行c面生長。施體濃度 CD為lxlO15 cm-3„因係c面生長故氧(施體)難以進入結晶 内部,施體濃度極其低。基本上不摻雜氧。鐵濃度Ch為 10 cm 。鐵係以相當面之濃度而推入。比電阻為 lxl〇n Qcm。絕緣性較高.裂縫產生率κ為88%。該值極The Tq is 1030 C, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure PGaci is 4 kPa (0.04 atm), and epitaxial growth is performed until the thickness is 400 μm or more. Since there is no mask, there is no core (dislocation set crystallization region 5h). The flat C-plane crystals grow on the substrate in the same manner. In addition to the GaAs substrate, an independent odor of GaN crystal having a thickness of 400 μm was obtained 135248.doc -80 - 200937499. The ratio of the fifth/second group R5,3 is 2.5. The crystal face exposed on the surface is the c-plane. The c surface is a flat surface. C-plane growth was performed because there was no mask. The concentration of CD is lxlO15 cm-3. Because of the growth of c-plane, oxygen (donor) is difficult to enter the interior of the crystal, and the concentration of the donor is extremely low. It is basically not doped with oxygen. The iron concentration Ch is 10 cm. The concentration of the surface is pushed in. The specific resistance is lxl〇n Qcm. The insulation is high. The crack generation rate κ is 88%.

其高。翹曲之曲率半徑尺為^ me翹曲非常大。不適合作 為於其上形成元件之基板。 [試料40(比較例;無掩模 於直徑為2英吋(50 mm)之GaAs基板上,不形成掩模,而 形成緩衝層’之後’使GaN結晶磊晶生長。磊晶生長溫度 Tq為103(TC、顺3分壓!&gt;則為1〇 kPa(〇」_)、如!分壓 PGaCA4 kPa(〇.〇4 atm)之條件下,I晶生長直至厚度為彻 μπι以上。因無掩模故不存在核心(位錯集合結晶區域讣)。 平坦之C面之結晶以相同之方式於基板上生長。除去 基板,而獲得厚度為400 pm2GaN結晶之獨立基板。 第五族/第三族之比r5/3為2.5。表面所露出之結晶面為。 面。C面為平坦面。因無掩模故進行c面生長^農度 因係c面生長故氧(施體)難以進入結2 内部,施體濃度極其低。基本上不掺雜氧。鐵濃度〜為 5x1〇19 cm·3。鐵係以相當高之濃度而摻入。比電阻為 絕緣性較高。裂縫產生率以97%。該值極 其高,曲之曲率半徑R41.8 m。趣曲非常大。不適合作 135248.doc 200937499 為於其上形成元件之基板。 [試料41 (比較例;無掩模)] 於直徑為2英吋(50mm)之GaAs基板上,不形成掩模,而 形成緩衝層,之後,使㈣結晶遙晶生長。遙晶生長溫度 Tq為 1〇nrc、nh3分壓!&gt;刪為10 kPa(〇」atm)、Gaci分壓 P㈤為4 kPa(0.04 atm)之條件下,進行暴晶生長直至厚度 為400 μιη以上。因無掩模故並不存在核心(位錯集合結晶 區域5h)。平坦之c面之結晶以相同之方式於基板上生長。 ® 除去GaAs基板,而獲得厚度為400 μιη之GaN結晶之獨立基 板。 第五族/第三族之比Rs/3為2.5。表面所露出之結晶面為C 面。C面為平坦面。因無掩模故進行c面生長。施體濃度 CD為1X1 〇n cm·3 〇雖係c面生長但施體濃度相當高&amp;鐵濃 度CFe為lxlO17 cm-3。鐵之摻入量相當多。比電阻為ι&gt;&lt;ι〇5 Qcm。絕緣性非常低。裂縫產生率〖為68%。該值較高。 翹曲之曲率半徑R為1.4 m。翹曲非常大。不適合作為於其 上形成元件之基板。 [試料42(比較例;無掩模)] 於直徑為2英吋(50 mm)之GaAs基板上,不形成掩模,而 :形成緩衝層,之後,使GaN結晶磊晶生長。磊晶生長溫度 4為1010。(:、Nh3分壓匕幻為…kpa(〇1 atm)、分壓 PGaC1為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度 為400 μιη以上。因無掩模無不存在核心(位錯集合結晶區 域5h)。平坦之c面之結晶以相同之方式於基板上生長。除 135248.doc -82- 200937499 去GaAs基板,而獲得厚度為400 μηι之GaN結晶之獨立基 板。 第五族/第三族之比R5,3為2·5。表面所露出之結晶面為c 面。C面為平坦面。因無掩模故進行c面生長。施體濃度 CD為1x1 〇17 cm·3。雖係C面生長但施體濃度相當高。鐵濃 度CFe為lxio丨9 cm·3。鐵係以高濃度而摻入。比電阻為 1 x 1 〇7 Qcm。絕緣性並不高《裂縫產生率κ為90%。該值極 其高。翹曲之曲率半徑R為1.4 m。翹曲非常大。不適合作 為於其上形成元件之基板。 [試料43(比較例;無掩模)] 於直徑為2英吋(50 mm)之GaAs基板上,不形成掩模,而 形成緩衝層’之後,使GaN結晶磊晶生長。磊晶生長溫度It is high. The radius of curvature of the warp is very large. Discomfort is the substrate on which the components are formed. [Sample 40 (Comparative Example; maskless on a GaAs substrate having a diameter of 2 inches (50 mm), without forming a mask, forming a buffer layer 'after 'forming GaN crystal epitaxial growth. The epitaxial growth temperature Tq is 103 (TC, cis 3 partial pressure! &gt; is 1 kPa (〇 _ _), such as! Partial pressure PGaCA4 kPa (〇. 〇 4 atm), I crystal growth until the thickness is more than μπι. The mask is absent so that there is no core (dislocation set crystal region 讣). The flat C-plane crystal is grown on the substrate in the same manner. The substrate is removed to obtain a separate substrate having a thickness of 400 pm2 GaN crystal. The tri-family ratio r5/3 is 2.5. The crystal surface exposed on the surface is the surface. The C surface is a flat surface. The c-plane growth is performed because there is no mask. The agricultural degree is difficult due to the c-plane growth. Entering the inside of the junction 2, the donor concentration is extremely low. Basically, it is not doped with oxygen. The iron concentration is 5x1〇19 cm·3. The iron system is doped at a relatively high concentration. The specific resistance is higher in insulation. The rate is 97%. The value is extremely high, and the curvature radius of the curve is R41.8 m. The interest is very large. I don't cooperate with 135248.doc 200937499 A substrate on which an element is formed. [Sample 41 (Comparative Example; Maskless)] On a GaAs substrate having a diameter of 2 inches (50 mm), a buffer layer is formed without forming a mask, and then (4) crystallized crystal is formed. Growth. The crystal growth temperature Tq is 1〇nrc, nh3 partial pressure!&gt; is deleted as 10 kPa (〇) atm), Gaci partial pressure P (five) is 4 kPa (0.04 atm), and the growth is carried out until the thickness is 400 μιη or more. There is no core due to no mask (dislocation set crystal region 5h). The flat c-plane crystal grows on the substrate in the same way. ® Remove GaAs substrate to obtain GaN with a thickness of 400 μηη The independent substrate of the crystal. The ratio of the fifth group to the third group is Rs/3 of 2.5. The crystal surface exposed on the surface is the C surface. The C surface is a flat surface. The c-plane growth is performed without masking. It is 1X1 〇n cm·3 〇 although it is c-plane growth, but the donor concentration is quite high &amp; iron concentration CFe is lxlO17 cm-3. The amount of iron is quite large. The specific resistance is ι&gt;&lt;ι〇5 Qcm. The insulation is very low. The crack generation rate is 68%. This value is higher. The radius of curvature of the warp is 1.4 m. The warpage is very large. Collaboration is a substrate on which components are formed. [Sample 42 (Comparative Example; Maskless)] On a GaAs substrate having a diameter of 2 inches (50 mm), no mask is formed, but a buffer layer is formed, and thereafter, GaN crystal epitaxial growth. Epitaxial growth temperature 4 is 1010. (:, Nh3 partial pressure 匕 magic is ... kpa (〇 1 atm), partial pressure PGaC1 is 4 kPa (0.04 atm), epitaxial growth Until the thickness is above 400 μηη. There is no core due to no mask (dislocation set crystallization region 5h). The flat c-plane crystal grows on the substrate in the same manner. Except for 135248.doc -82- 200937499, a GaAs substrate was obtained, and a separate substrate of GaN crystal having a thickness of 400 μm was obtained. The ratio of the fifth/third group R5,3 is 2.5. The crystal face exposed on the surface is the c-plane. The C surface is a flat surface. C-plane growth was performed because there was no mask. The donor concentration CD is 1x1 〇 17 cm·3. Although the C surface is grown, the donor concentration is quite high. The iron concentration CFe is lxio 丨 9 cm·3. Iron is incorporated at a high concentration. The specific resistance is 1 x 1 〇 7 Qcm. Insulation is not high "The crack generation rate κ is 90%. This value is extremely high. The curvature radius R of the warp is 1.4 m. The warpage is very large. Discomfort is the substrate on which the components are formed. [Sample 43 (Comparative Example; No Mask)] On a GaAs substrate having a diameter of 2 inches (50 mm), a GaN crystal was epitaxially grown after a buffer layer was formed without forming a mask. Epitaxial growth temperature

Tq 為 1050°C、NH3 分壓 PNH3 為 10 kPa(〇.l atm)、GaCl 分壓 PGaci為4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度 為400 μπι以上。因無掩模故不存在核心(位錯集合結晶區 域5h)。平坦之c面之結晶以相同之方式於基板上生長。除 SGaAs基板,而獲得厚度為400 μιη之GaN結晶之獨立基 板。 第五族/第二族之比Rw為2.5。表面所露出之結晶面為匸 面。C面為平坦面。因無掩模故進行C面生長。施體濃度 CD為lxl〇P cm-3 ^雖係^面生長但施體濃度相當高。鐵濃 度CFe為5x1〇b em·3。鐵係以高濃度而摻入。比電阻為 1X108 Qcm。絕緣性略高。裂縫產生率K為95%。該值極其 尚。翹曲之曲率半徑R為1.6 m。翹曲非常大。其原因在於 135248.doc •83- 200937499 未形成掩模。不適合作為於其上形成元件之基板。 [試料44(實施例;I型點狀類型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μηι、掩模直徑Ds為50 μιη之點狀掩模。形成緩衝 層後’使GaN結晶磊晶生長《磊晶生長溫度Tq為丨丨〇〇〇c、 NH3 分壓 PNH3 為 1〇 kPa(0.1 atm)、GaCl 分壓 PGaC丨為 4 kPa(0.04 atm)之條件下,進行磊晶生長直至厚度為4〇〇 μιη 以上。於掩模直徑50 μιη之點狀掩模上,形成有GaN結晶 之核心直徑50 μπι之點狀核心(位錯集合結晶區域5h)。 除去GaAs基板’而獲得厚度為4〇〇 pmiGaN結晶之獨立 基板。第五族/第三族之比R5,3為2.5。該GaN結晶獨立基板 包含以50 μιη之核心直徑Ds、500 μπι之核心間隔Dw而重複 之點狀核心(位錯集合結晶區域5h)。該核心(位錯集合結晶 區域5h)之結晶種類為反轉層。結晶面類型為I型。因生長 溫度Tq較高,故成為I型。施體濃度(^為lxl〇ls cm-3。施 體濃度之值極其低。鐵濃度CFe為lx 1〇〗7 cm.3。鐵之摻入量 並不多。比電阻為lxl〇7 Qcm。絕緣性略低,其原因在於 鐵濃度較低。然而,即便如此,亦可用作半絕緣性基板。 裂縫產生率K為20%。裂縫產生率極其低。翹曲之曲率半 徑R為3.2 m。 [試料45(實施例;II型點狀類型)] 於直徑為2英吋(50 mm)之GaAs基板上,形成掩模間隔 Dw為500 μιη、掩模直徑仏為50 μηι之點狀掩模。形成緩衝 層後,使GaN結晶遙晶生長。為晶生長溫度Tq為丨〇5〇〇c、 I35248.doc -84- 200937499 NH3 分壓卩仙3為10 kPa(〇1 atm)、GaCi 分壓 hac丨為 4 kpa (0.04 atm)之條件下,進行磊晶生長直至厚度為 400 μηι以 上。於掩模直徑為50 μηι之點狀掩模上,形成有QaN結晶 之核心直徑為50 μιη之點狀核心(位錯集合結晶區域5h)。 除去GaAs基板,而獲得厚度為4〇〇 結晶之獨立基 板。 第五族/第三族之比R5,3為2.5。該GaN結晶獨立基板包含 以50 μηι之核心直徑Ds、5〇〇 μιη之核心間隔Dw而重複之點 狀核〜(位錯集合結晶區域5h)。該核心(位錯集合結晶區域 5h)之結晶種類為反轉層。結晶面類型為。因生長溫度 Tq略低,故成為Π型。施體濃度匕為1χ1〇15 em_3。施體濃 度之值極其低。鐵濃度CFe為lx 1017 cm·3。鐵之摻入量並不 多。比電阻為1 X 1 Ο7 Qcm。絕緣性不太高。然而,即便如 此,亦可用作半絕緣性基板。裂縫產生率κ為丨8%。裂縫 產生較少’係良好之半絕緣性基板。翹曲之曲率半徑r為 4-0 m。翹曲較小。 [實施例B :使用半絕緣性基板之元件的實施例] [使用條紋核心型半絕緣性基板之元件之製作] [元件試料46(實施例;I型)] 藉由有機金屬氣相生長法(OMVPE法,organometaUic vapor phase epitaxy),於使用試料3而製作之結晶類型為j 型之直径3英吋的半絕緣性GaN基板(條紋核心(位錯集合結 晶區域5h)間隔500 μηι、核心寬度為50 μιη、比電阻ixl07 Gem)上’製作 HEMT(High Electron MobiHty Transist〇r, 135248.doc 85 - 200937499 高電子遷移率電晶體)構造之磊晶晶圓(圖28)。具體而言, 參照圖28,於OMVPE裝置之反應器(未圖示)中放置半絕緣 性GaN基板5s,向反應器内供給含有氫氣、氮氣、氨之氣 體,並於半絕緣性GaN基板5s之溫度為1100°C下進行20分 鐘之熱處理。其次,使半絕緣性GaN基板5s之溫度上升至 ' 1130°C,向反應器中供給氨、三曱基鎵(TMG),從而於半 : 絕緣性GaN基板5s上生長厚度為1.5 μιη之GaN磊晶層202。 向反應器中供給三甲基紹(TMA,Trimethyl Aluminium)、 O TMG、氨,從而於GaN磊晶層202上生長厚度為30 nm、且 A1之組成為20%之AlGaN磊晶層204。藉由該等步驟而製作 遙晶基板210。 其次,參照圖29,藉由以下步驟而製作HEMT元件200。 於磊晶基板210之AlGaN磊晶層204上,藉由光微影、 EB(電子束,electron beam)蒸鑛、及脫膜而製作源極電極 206以及汲極電極207。電極係使用Ti/Al/Ti/Au(各自之厚 度為20/100/20/300 nm)。脫膜後於600°C下進行1分鐘之合 金化熱處理。 繼而,藉由相同之步驟而製作閘極電極208。閘極電極 • 208係以配置於條紋核心(位錯集合結晶區域5h)之平行方向 : 上而並不形成於條紋核心上之方式來製作。閘極電極208 • 係使用Ni/Au(各自之厚度為50/500 nm)。閘極長度為2 μιη(將其作為元件試料46)。 [元件試料47(比較例)] 比較試料47中係同樣地於Fe摻雜半絕緣性隨機核心基板 135248.doc -86- 200937499 上進行HEMT構造磊晶生長,從而製作HEMT。所謂隨機 核心,係指位錯集合結晶區域5h隨機分布之結晶》若基底 基板上不設置掩模而進行刻面生長,則會隨機產生刻面凹 夫几’且成為位錯集合結晶區域5h ’故位錯集合結晶區域 5h(核心)為隨機分布。 [元件試料48(比較例)] 又’參照圖30,作為元件試料48,於藍寶石基板7上同 樣生長用以形成HEMT構造之磊晶層。磊晶層之生長步驟After Tq is 1050 ° C, NH 3 partial pressure PNH 3 is 10 kPa (〇.l atm), GaCl partial pressure PGaci is 4 kPa (0.04 atm), epitaxial growth is carried out until the thickness is 400 μπι or more. Since there is no mask, there is no core (dislocation set crystallization region 5h). The flat c-plane crystal grows on the substrate in the same manner. In addition to the SGaAs substrate, a separate substrate of GaN crystal having a thickness of 400 μm was obtained. The ratio of the fifth/second group Rw is 2.5. The crystal surface exposed on the surface is the surface. The C surface is a flat surface. C-plane growth was performed because there was no mask. The concentration of donor CD was lxl〇P cm-3 ^ although the surface growth was very high. The iron concentration CFe is 5x1〇b em·3. Iron is incorporated at a high concentration. The specific resistance is 1X108 Qcm. The insulation is slightly higher. The crack generation rate K was 95%. This value is extremely good. The curvature radius R of the warp is 1.6 m. The warpage is very large. The reason is that 135248.doc •83- 200937499 no mask is formed. Not suitable as a substrate on which components are formed. [Sample 44 (Example; Type I dot type)] A dot mask having a mask interval Dw of 500 μm and a mask diameter Ds of 50 μm was formed on a GaAs substrate having a diameter of 2 inches (50 mm). . After the buffer layer is formed, 'the GaN crystal epitaxial growth is made. The epitaxial growth temperature Tq is 丨丨〇〇〇c, the NH3 partial pressure PNH3 is 1 kPa (0.1 atm), and the GaCl partial pressure PGaC 丨 is 4 kPa (0.04 atm). Under the conditions, epitaxial growth was carried out until the thickness was 4 〇〇 μηη or more. On the dot mask having a mask diameter of 50 μm, a dot core (dislocation crystal region 5h) having a core diameter of 50 μm of GaN crystal was formed. The GaAs substrate was removed to obtain a separate substrate having a thickness of 4 Å pmiGaN crystals. The ratio of the fifth/third group R5,3 is 2.5. The GaN crystal-independent substrate includes a dotted core (dislocation-concentrated crystal region 5h) which is repeated at a core diameter Ds of 50 μm and a core interval Dw of 500 μm. The crystal type of the core (dislocation set crystal region 5h) is an inversion layer. The crystal face type is type I. Since the growth temperature Tq is high, it is type I. The concentration of donor body (^ is lxl〇ls cm-3. The value of donor concentration is extremely low. The iron concentration CFe is lx 1〇〗 7 cm.3. The amount of iron is not much. The specific resistance is lxl〇7 Qcm. The insulation is slightly lower because of the lower iron concentration. However, even this can be used as a semi-insulating substrate. The crack generation rate K is 20%. The crack generation rate is extremely low. The curvature radius R of the warpage is 3.2. m. [Sample 45 (Example; Type II dot type)] On a GaAs substrate having a diameter of 2 inches (50 mm), a mask interval Dw of 500 μm and a mask diameter of 50 μηι were formed. Mask. After forming the buffer layer, the GaN crystal is grown by crystal growth. The crystal growth temperature Tq is 丨〇5〇〇c, I35248.doc -84- 200937499 NH3, and the partial pressure is 3 kPa (〇1 atm). GaCi is divided into 4 kpa (0.04 atm) for epitaxial growth until the thickness is 400 μηι or more. On a dot mask with a mask diameter of 50 μη, the core diameter of QaN crystal is 50. The point core of μιη (dislocation set crystal region 5h). The GaAs substrate was removed to obtain a separate substrate having a thickness of 4 Å. The ratio of the five-group/third-group R5,3 is 2.5. The GaN crystal-independent substrate comprises a dot-like core repeated at a core interval Ds of 50 μm, a core interval Dw of 5 μm, and a (dislocation set crystal region 5h) The crystal type of the core (dislocation-concentrated crystal region 5h) is an inversion layer. The crystal surface type is: Since the growth temperature Tq is slightly lower, it becomes a Π type. The donor concentration 匕 is 1χ1〇15 em_3. The value of iron is very low. The iron concentration CFe is lx 1017 cm·3. The amount of iron is not much. The specific resistance is 1 X 1 Ο7 Qcm. The insulation is not too high. However, even this can be used as a semi-insulation. The substrate has a crack occurrence rate κ of 丨8%. The crack produces less 'good semi-insulating substrate. The curvature radius r of the warp is 4-0 m. The warpage is small. [Example B: Semi-insulation is used. Example of Element of Substrate Substrate] [Production of Element Using Stripe Core Type Semi-Insulating Substrate] [Component Sample 46 (Example; Type I)] By OMFPE method, OMMPE method, organometa Uic vapor phase epitaxy ), the crystal type of the type J produced by using the sample 3 is 3 inches in diameter. EDGE GaN substrate (striped core (dislocation crystallization region 5h) interval 500 μηι, core width 50 μηη, specific resistance ixl07 Gem) on the fabrication of HEMT (High Electron MobiHty Transist〇r, 135248.doc 85 - 200937499 high electrons The emissivity wafer is constructed of mobility transistor (Figure 28). Specifically, referring to Fig. 28, a semi-insulating GaN substrate 5s is placed in a reactor (not shown) of an OMVPE apparatus, and a gas containing hydrogen, nitrogen, and ammonia is supplied into the reactor, and the semi-insulating GaN substrate is 5s. The temperature was heat treated at 1100 ° C for 20 minutes. Next, the temperature of the semi-insulating GaN substrate 5s is raised to '1130 ° C, and ammonia and trimethyl gallium (TMG) are supplied to the reactor to grow GaN having a thickness of 1.5 μm on the half: insulating GaN substrate 5s. Epitaxial layer 202. Trimethyl Aluminium (TMA), O TMG, and ammonia were supplied to the reactor to grow an AlGaN epitaxial layer 204 having a thickness of 30 nm and a composition of A1 of 20% on the GaN epitaxial layer 202. The remote crystal substrate 210 is fabricated by these steps. Next, referring to Fig. 29, the HEMT element 200 is fabricated by the following steps. The source electrode 206 and the drain electrode 207 are formed on the AlGaN epitaxial layer 204 of the epitaxial substrate 210 by photolithography, EB (electron beam) evaporation, and stripping. The electrodes were Ti/Al/Ti/Au (each having a thickness of 20/100/20/300 nm). After the film was removed, the alloying heat treatment was carried out at 600 ° C for 1 minute. Then, the gate electrode 208 is formed by the same steps. Gate electrode • The 208 system is fabricated in such a manner that it is disposed in the parallel direction of the stripe core (dislocation-collecting crystal region 5h) without being formed on the stripe core. Gate electrode 208 • Ni/Au (each with a thickness of 50/500 nm) is used. The gate length was 2 μηη (this was taken as the component sample 46). [Component Sample 47 (Comparative Example)] In the comparative sample 47, HEMT structural epitaxial growth was performed on the Fe-doped semi-insulating random core substrate 135248.doc-86-200937499 to produce a HEMT. The so-called random core refers to the crystals randomly distributed in the crystallized region of the dislocations at 5h. If the facet is grown without a mask on the base substrate, the facet is slightly generated and becomes the dislocation set crystal region 5h ' Therefore, the dislocation crystallization region 5h (core) is randomly distributed. [Component Sample 48 (Comparative Example)] Referring to Fig. 30, as the element sample 48, an epitaxial layer for forming a HEMT structure was grown on the sapphire substrate 7. Growth step of epitaxial layer

中’以1170。(:對藍寶石基板7進行1 〇分鐘之熱處理,其 -人’生長GaN籽晶層201 ’之後與GaN基板之情形相同,生 長GaN磊晶層202、A1GaN磊晶層2〇4,從而形成磊晶基板 3 10。繼而’參照圖3丨,藉由同樣之步驟來製作hemt元件 3〇〇(圖 31) 對π件試料46、47、48之閘極洩漏電流進行比較。於5 v之閘極電壓下,試料46中閘極電流密度獲得ΐχΐ〇6 A/em2 之較小之值’試料47中閘極電流密度為1χΐ〇3 A/cm2,試料 48中問極電流密度為j χ 1〇2 A/cm2,與言式料相比,閉極汽 漏電机有較大增力σ。問極攻;爲電流較小則冑晶體之夹止良 好,故可實現高性能之電晶體。 關於元件5式料47中閘極洩漏電流增加之原因,通常認為 係閘極電極下存在隨機核心,且因位錯而引起之泡漏電流 關於元件試料48中 係因基板為藍寶 閘極洩漏電流增加之原因,通常認為 石故磊晶層中之位錯密度增大 135248.doc -87· 200937499 (〜1 x 1 〇9/cm2),且因位錯而引起之茂漏電流增大。如上所 述,根據本發明可實現閘極洩漏電流較小之高性能的 HEMT及HEMT磊晶基板。 [實施例C :使用點狀類型半絕緣性基板之元件的實施例] [使用點狀核心型半絕緣性基板之元件之製作] • [元件試料49(實施例;I型點狀類型)] :藉由有機金屬氣相生長法(OMVPE法),於使用試料44所 製作之結晶類型為I型之2英吋之半絕緣GaN基板(點狀核心 © (位錯集合結晶區域5h)間隔500 μηι、核心直徑50 μπι、比 電阻lxlO7 Qcm)上,製作HEMT(高電子遷移率電晶體)構 造之磊晶晶圓(圖28)。具體而言,參照圖28,於OMVPE裝 置之反應器中放置半絕緣性GaN基板5s,並向反應器中供 給含有氫氣、氮氣、氨氣之氣體,於半絕緣性GaN基板5s 之溫度為1100°C下進行20分鐘之熱處理。其次,使半絕緣 性GaN基板5s之溫度上升至11 30°C,向反應器中供給氨、 三曱基鎵(TMG),從而於半絕緣性GaN基板5s上生長厚度 W 為1.5 μπι之GaN磊晶層202。向反應器中供給三曱基鋁 (TMA)、TMG、氨,從而於GaN磊晶層202上生長厚度為30 • nm、且A1之組成為20%之AlGaN磊晶層204。藉由該等步 ; 驟而製作磊晶基板210。 - 繼而,參照圖29,藉由以下步驟來製作HEMT元件200。 於磊晶基板210之AlGaN磊晶層204上,藉由光微影、EB蒸 鍍、脫膜而製作源極電極206以及汲極電極207。電極係使 用Ti/Al/Ti/Au(各自之厚度為20/100/20/300 nm)。脫膜後於 135248.doc -88- 200937499 600°C下進行1分鐘之合金化熱處理。 其次,藉由相同之步驟來製作閘極電極2〇8。閘極電極 2 0 8係以不形成於點狀核心區域(位錯集合結晶區域5 h )上之 方式而製作。閘極電極208係使用Ni/Au(各自之厚度為 50/50〇nm)。閘極長度為2 μηι(將其作為元件試料49)。 • [元件試料50(比較例)] ' 比較5式料50係於Fe摻雜半絕緣性隨機核心基板上同樣進 行HEMT構造蟲晶生長,從而製作hemt。 © [元件試料5 1 (比較例)] 又’參照圖30,作為元件試料51,係於藍寳石基板7上 同樣生長用以形成HEMT構造之磊晶層。磊晶層之生長步 驟中’以1170。(:對藍寶石基板7進行1〇分鐘之熱處理,其 次生長GaN籽晶層201後,與半絕緣性GaN板之情形相同, 生長GaN蟲晶層202、AlGaN磊晶層204,從而形成磊晶基 板3 1 0。繼而’參照圖3 1,藉由相同步驛而製作hemT元件 300 〇Medium 'to 1170. (: The sapphire substrate 7 is heat-treated for 1 minute, and the human-growth GaN seed layer 201' is grown in the same manner as in the case of the GaN substrate, and the GaN epitaxial layer 202 and the A1GaN epitaxial layer 2〇4 are grown to form a Lei. Crystal substrate 3 10. Then, referring to Fig. 3, the hept element 3〇〇 (Fig. 31) is fabricated by the same procedure to compare the gate leakage currents of the π-piece samples 46, 47, 48. At the extreme voltage, the gate current density in sample 46 is the smaller value of ΐχΐ〇6 A/em2'. The gate current density in sample 47 is 1χΐ〇3 A/cm2, and the sample current density in sample 48 is j χ 1 〇 2 A/cm2, compared with the speech material, the closed-pole steam leakage motor has a large boosting force σ. The pole attack is required; for the smaller current, the clamping of the 胄 crystal is good, so that a high-performance transistor can be realized. Regarding the increase of the gate leakage current in the element 5 material 47, it is generally considered that there is a random core under the gate electrode, and the bubble leakage current due to the dislocation is related to the leakage of the substrate due to the substrate in the sample sample 48. The reason for the increase in current is generally considered to increase the dislocation density in the epitaxial layer of the stone 135248.doc -87 · 200937499 (~1 x 1 〇9/cm2), and the leakage current due to dislocations increases. As described above, high-performance HEMT and HEMT epitaxy with small gate leakage current can be realized according to the present invention. [Example C: Example of an element using a dot-type semi-insulating substrate] [Production of an element using a dot-shaped core type semi-insulating substrate] • [Component sample 49 (Example; Type I dot type) )] : A semi-insulating GaN substrate of type I in the form of a type I made by the organometallic vapor phase growth method (OMVPE method) (point-shaped core © (dislocation-collecting crystallization region 5h)] An epitaxial wafer of HEMT (high electron mobility transistor) structure was fabricated at intervals of 500 μm, core diameter 50 μm, and specific resistance lxlO7 Qcm). Specifically, referring to FIG. 28, the reaction in the OMVPE device was performed. A semi-insulating GaN substrate was placed for 5 s, and a gas containing hydrogen, nitrogen, and ammonia was supplied to the reactor, and heat treatment was performed for 20 minutes at a temperature of 1100 ° C on the semi-insulating GaN substrate 5 s. The temperature of the insulating GaN substrate 5s rises to 11 30 ° C, Ammonia, trimethyl sulfide (TMG) is supplied to the reactor to grow a GaN epitaxial layer 202 having a thickness W of 1.5 μm on the semi-insulating GaN substrate 5s. Trimethyl hydride (TMA), TMG is supplied to the reactor. And ammonia, thereby growing an AlGaN epitaxial layer 204 having a thickness of 30 nm and a composition of A1 of 20% on the GaN epitaxial layer 202. The epitaxial substrate 210 is formed by the steps; - and then, 29, the HEMT element 200 is fabricated by the following steps. The source electrode 206 and the drain electrode 207 are formed on the AlGaN epitaxial layer 204 of the epitaxial substrate 210 by photolithography, EB evaporation, and stripping. The electrodes were Ti/Al/Ti/Au (each having a thickness of 20/100/20/300 nm). After the film was removed, an alloying heat treatment was performed for 1 minute at 135248.doc -88 - 200937499 at 600 °C. Next, the gate electrode 2〇8 is fabricated by the same steps. The gate electrode 2 0 8 is formed so as not to be formed in the dot core region (dislocation crystal region 5 h). The gate electrode 208 is made of Ni/Au (each having a thickness of 50/50 〇 nm). The gate length is 2 μηι (this is taken as component sample 49). • [Component Sample 50 (Comparative Example)] 'Comparative 5 type 50 is based on the Fe-doped semi-insulating random core substrate and the HEMT structure is also grown to produce hemt. © [Component Sample 5 1 (Comparative Example)] Referring to Fig. 30, as the element sample 51, an epitaxial layer for forming a HEMT structure was grown on the sapphire substrate 7. In the growth step of the epitaxial layer, '1170'. (: The sapphire substrate 7 is heat-treated for 1 minute, and after the GaN seed layer 201 is grown, as in the case of the semi-insulating GaN plate, the GaN worm layer 202 and the AlGaN epitaxial layer 204 are grown to form an epitaxial substrate. 3 1 0. Then, referring to Figure 3 1, the hemt element 300 is fabricated by phase synchronization.

D 對7L件試料49、50、5 1之閘極洩漏電流進行比較。於5 V之閘極電壓下,試料49中閘極電流密度獲得1χ1〇6 A/cm2 之較小值’試料50中閘極電流密度為1 x 1〇3 A/Cm2,試料5 1 中閘極電流密度為1 X 1 〇2 A/cm2,與試料49相比,閘極茂漏 電流有較大增加。閘極洩漏電流較小則電晶體之夾止良 好’故可實現高性能之電晶體。 關於元件試料50中閘極洩漏電流增加之原因,通常認為 係閘極電極下存在隨機核心’且因位錯而引起之茂漏電流 I35248.doc -89- 200937499 增加。 關於元件試料51中閘極流增加之腳,通常認為 ,、=板為藍寶石故磊晶層中之位錯密度增大 (1X10 /cm ),J_因位錯引起之茂漏電流增大。如上所 述,根據本發明,可實現閉_漏電流較小之高性㈣ HEMT及HEMT蟲晶基板。D Compare the gate leakage currents of 7L samples 49, 50, and 51. At a gate voltage of 5 V, the gate current density in sample 49 is a small value of 1χ1〇6 A/cm2. The gate current density in sample 50 is 1 x 1〇3 A/Cm2, and the sample 5 1 is in the gate. The polar current density is 1 X 1 〇 2 A/cm 2 , and the gate leakage current is greatly increased compared with the sample 49. When the gate leakage current is small, the transistor is clamped well, so a high-performance transistor can be realized. Regarding the increase in the gate leakage current in the component sample 50, it is generally considered that there is a random core under the gate electrode and the leakage current due to the dislocation is increased by I35248.doc -89-200937499. Regarding the foot in which the gate current is increased in the component sample 51, it is generally considered that the plate is made of sapphire, so the dislocation density in the epitaxial layer is increased (1×10 /cm), and the leakage current due to the dislocation is increased by J_. As described above, according to the present invention, it is possible to realize a high (four) HEMT and HEMT crystal substrate having a small closed-leakage current.

❹ 關於以上之試料㈣、44、45之實施例,圖22中將溫 又第五族/第二族之比尺…之值以白圓點(II型)與白三角(I 型)來表示。均處於虛線所包圍之範圍内⑽桃〜⑴代、 第五族/第二族之比Rw = 1〜1〇)e比較例p〜,關於溫 度與第五族/第三族之比R5/3,有時處於虛線框之内,亦有 時不處於虛線框之内。即便處於虛線框之内,該等比較例 亦會因裂縫及趣曲而不適合。其原因在於未設置掩模。比 車父例係用以檢測掩模之效果者。 圖23係針對試料1〜45,以橫軸表示翹曲之曲率半徑 (m) ’以縱軸表示裂縫產生率(%),藉由點來表示翹曲、裂 縫產生率。下標表示試料之序號。白圓點表示〗型試料 1〜21、44。白三角表示Π型試料22〜36、45。白四角對應 於比較例之試料37〜43。 比較例之試料37〜43具有較大之翹曲(曲率半徑為1 m〜2 m),且裂縫產生率為68〜97%,不適合作為半導體元件製 作之基板。其原因在於基底基板上無掩模。 若將1型與11型相比可知,翹曲(曲率半徑)處於5 m〜6 m 之間,無顯著變化。無論I型、II型,翹曲之曲率半徑均為 135248.doc -90- 200937499 m以上。分布於3 m〜7 m之間。裂縫產生率均為3〇%以 下。I型之裂縫產生率處於4。/。〜27%之間,大部分分布於 10%〜20%之間。II型之裂縫產生率處於13%〜29%之間,大 部分處於25%〜29%之間。就裂縫而言,j型優於π型。】 型、II型均可用作半絕緣性基板。❹ With regard to the above examples of samples (4), 44, and 45, the values of the temperature and the fifth family/second family scale in Fig. 22 are represented by white dots (type II) and white triangles (type I). . Both are in the range surrounded by the dotted line (10) peach ~ (1) generation, fifth group / second group ratio Rw = 1 ~ 1 〇) e comparison example p ~, about the ratio of temperature to the fifth / third family R5 / 3, sometimes within the dashed box, and sometimes not within the dashed box. Even within the dashed box, these comparative examples are not suitable for cracks and interesting pieces. The reason is that no mask is provided. More than the car father's example to detect the effect of the mask. Fig. 23 shows the crack occurrence rate (%) on the vertical axis and the crack occurrence rate (%) on the horizontal axis of the curvature radius (m) of the sample, and the warpage and crack generation rate are indicated by dots. The subscript indicates the serial number of the sample. White dots indicate the type of sample 1 to 21, 44. The white triangle indicates the sputum samples 22 to 36 and 45. The white squares correspond to the samples 37 to 43 of the comparative examples. The samples 37 to 43 of the comparative example had a large warpage (curvature radius of 1 m to 2 m) and a crack generation rate of 68 to 97%, which was not suitable as a substrate for a semiconductor element. The reason for this is that there is no mask on the base substrate. When the type 1 and the type 11 are compared, the warpage (radius of curvature) is between 5 m and 6 m without significant change. Regardless of Type I or Type II, the radius of curvature of the warp is 135248.doc -90- 200937499 m or more. Distributed between 3 m and 7 m. The crack generation rate is below 3〇%. The type I crack generation rate is 4. /. Between ~27%, most of them are distributed between 10% and 20%. The crack rate of type II is between 13% and 29%, and most of it is between 25% and 29%. In terms of cracks, j type is superior to π type. Both type and type II can be used as semi-insulating substrates.

圖27中以圖表來表示試料丨〜45之施體濃度與鐵 ㈣濃度(cm·3)之分布。橫軸表示施體(氧)濃度,縱轴表示 鐵濃度。白圓點表示I型,白三角表示„型,而白四角則表 不比較例。下標表示試料之序號。可知(白三角)之施 體濃度較南。I型中亦存在施體濃度較高者(試料19、2〇、 21) ’但大多數I型之施體濃度較低。 II型中摻鐵量與施體量大體上成正比例地增大’但j型中 即便施體較少,鐵量亦可較多。就該點而言,〗型更優 良。 進而,使用磷酸及硫酸之蝕刻溶液於2〇〇tT進行蝕 刻,藉此來測定I、II型1〜36之試料與比較例37〜43之試料 之位錯密度。測定中係、使用微分干涉式光學顯微鏡之物鏡 100倍,計算100X100 μιη之區域中姓刻凹坑之數量。其結 果為,比較例3 7〜43之試料之位 為2χ107〜108/cm2,相對於此,] 錯密度(蝕刻凹坑密度)均 〜36之試料均為5xl〇6/cm2 以下’尤其係結晶之勉曲之曲率束似扣、风/1 卿叫午平徑超過4 m者的位錯密 度為 2xl06/cm2 以下,超過 e 芍迴3 的位錯密度為l〇5/cm2以 下 結 之一半。然而,試料21之 生長初期為刻面生長,故 ’結晶面之類型為II者約為I型 晶面類型並不侷限於I型,因 135248.doc -91 - 200937499 '曲率半徑大致同等之試料^、^加相比’位錯密 度、、々為一半,若為類型π則位錯密度與曲率半徑同等之試 料25相同。又’代替製作試料1〜36時使用之GaAs基板, 而使用藍寶石基板或Sic基板,亦可獲得具有與試料卜刊 同等之結晶面、Fe濃度、施體濃度、比電阻、裂縫產生 率、魅曲之曲率半徑之基板。又,將試料1〜36之GaN基板 乍為基底基板並於與試料1〜%相同之條件下進行生長其 結果為,可獲得具有與試料卜冗同等之結晶面、以濃度、 施體濃度、比電阻、裂縫產生率、翹曲之曲率半徑之基 板。 二土 儘管已詳細描述並說明本發明,但是顯然其只用於說明 及舉例,而非限制,本發明之精神及範疇僅受附加申請專 利範圍之條款限制。 【圖式簡單說明】 圖1係表示形成於基底基板1上之掩模之一例之平面圖。 圖2A〜2G係表示利用掩模法之結晶生長步驟之剖面圖。 圖3係表示藉由刻面生長法而生長之結晶之一部分的立 體圖。 圖4係用以說明刻面生長過程中位錯集結於凹坑底部之 凹坑立體圖。 圖5係用以說明刻面生長過程中位錯集結於凹坑底部之 凹坑平面圖。 圖6係表示為了進行刻面生長而形成於基底基板上的具 有點狀被覆部之點型掩模之一部分的平面圖。 135248.doc • 92· 200937499 圖7係表示於設置有點型掩模之基底基板上進行刻面生 長之GaN結晶之一例的立體圖。 圖8係表示於設置有點型掩模之基底基板上進行刻面生 長之GaN結晶之一例的平面圖。 圖9A〜9F係表示利用使用點型掩模之刻面生長法進行 GaN結晶之生長步驟之縱剖面圖。 • 圖10係表示為了進行刻面生長而於基底基板上形成之條 紋型掩模之一部分之平面圖。 ® 圖11係表示於設置有條紋型掩模之基底基板上進行刻面 生長之GaN結晶之一例的平面圖。 圖12係表示於設置有條紋型掩模之基底基板上進行刻面 生長之GaN結晶之一例的立體圖。 圖13係表示於設置有條紋型掩模之基底基板上進行刻面 生長之GaN結晶之其他例的平面圖。 圖14係表示於設置有條紋型掩模之基底基板上進行刻面 生長之GaN結晶之其他例的立體圖。 ❹ 圖15A〜15F係表示利用使用條紋型掩模之刻面生長法進 行GaN結晶之生長步驟之縱剖面圖。 . 圖16A以及16B係表示利用使用條紋型掩模之刻面生長 : 法進行GaN結晶之進一步生長步驟的縱剖面圖。 . ® 17係表示專敎獻7中揭示之GaN結晶之-例之剖面 圖。 圖18係表示專利文獻7中揭示之㈣結晶之其他例 面圖。 135248.doc •93· 200937499 圖19係表示本發明中所使用之HVPE爐之一例之剖面 圖。 圖2〇係表示本發明令獲得之„塑氮化物半導體結晶 面圖。 σ 圖21係表不本發明中獲得之氮化物半導體結晶之 面圖。 圖22係綠製專利文獻卜叫及本發明之氣相生長法之實 施例中生長溫度、與第五族/第三族之比R5,3之關係的圖 表。該圖表中,橫軸表示生長溫度,縱軸表示以對數尺標 而表不之第五族/第三族之比R5,3。各圖上所附之數值表示 專利文獻序號。 圖23係描緣作為本發明之實施例及比較例之試料丨〜中 的翹曲之曲率半徑與裂縫產生率之關係的圖表。該圖表 中’橫軸表示翹曲之曲率半徑、縱軸表示裂縫產生率。 又’各圖上所附之數字表示試料序號。關於繪圖記號,白 圓點表不1型結晶之實施例,白三角表示II型結晶之實施 例’白四角表示比較例。再者,本圖表中之比較例並非為 眾所周知者。 圖24係表示本發明中獲得之混合型i化物半導體結晶之 剖面圖。 ®25係表示形成於基底基板上之條狀掩模的寬度Ds以及 間隔Dw之尺寸的平面圖。 ® 26係表示形成於基底基板上之點狀掩模的直徑Ds以及 間隔Dw之尺寸的平面圖。 135248.doc 94· 200937499Fig. 27 is a graph showing the distribution of the donor concentration and the iron (iv) concentration (cm·3) of the samples 丨 to 45. The horizontal axis represents the donor (oxygen) concentration, and the vertical axis represents the iron concentration. The white dot indicates type I, the white triangle indicates „type, and the white square indicates no comparison. The subscript indicates the serial number of the sample. It can be seen that the concentration of the application (white triangle) is higher than that of the south. The highest (samples 19, 2, 21) 'but most of the type I has a lower concentration. The amount of iron in type II increases substantially proportional to the amount of donor body', but even in the form of j In addition, the amount of iron may be more. In this case, the type is more excellent. Further, an etching solution of phosphoric acid and sulfuric acid is used for etching at 2 〇〇 tT, thereby measuring samples of type I and type II 1 to 36. The dislocation density of the samples of Comparative Examples 37 to 43 was measured by using an objective lens of a differential interferometric optical microscope 100 times, and the number of pits in the region of 100×100 μm was calculated. As a result, Comparative Example 3 7~ The position of the sample of 43 is 2χ107~108/cm2, whereas the sample with the wrong density (etched pit density) of ~36 is 5xl〇6/cm2 or less, especially the curvature of the crystal is buckled. , wind / 1 Qing called the flat diameter of more than 4 m, the dislocation density is 2xl06 / cm2 or less, more than e 芍 back 3 The dislocation density is one half of the junction below l〇5/cm2. However, the initial growth of the sample 21 is facet growth, so the type of the crystal face is II, and the type I face is not limited to the type I. 135248.doc -91 - 200937499 'The sample with the same radius of curvature is the same as ^, plus the dislocation density, and 々 is half. If the type is π, the dislocation density is the same as the sample 25 with the same radius of curvature. The GaAs substrate used in the preparation of samples 1 to 36, and the sapphire substrate or the Sic substrate can be used to obtain the same crystal surface, Fe concentration, donor concentration, specific resistance, crack generation rate, and curvature of the sacred curvature as the sample. In addition, the GaN substrate of Samples 1 to 36 was used as a base substrate and grown under the same conditions as the sample 1 to %. As a result, a crystal surface having the same level as that of the sample was obtained, and concentration was obtained. Substrate concentration, specific resistance, crack generation rate, and radius of curvature of the substrate. The present invention has been described and illustrated in detail, but it is intended to be illustrative and not restrictive, The domain is only limited by the terms of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing an example of a mask formed on a base substrate 1. Figs. 2A to 2G show a crystal growth step by a mask method. Fig. 3 is a perspective view showing a portion of crystals grown by the facet growth method. Fig. 4 is a perspective view showing the pits in which the dislocations are gathered at the bottom of the pit during the facet growth process. A plan view of a pit in which dislocations are gathered at the bottom of the pit during the facet growth is illustrated. Fig. 6 is a plan view showing a portion of a dot mask having a dot-like portion formed on the base substrate for facet growth. 135248.doc • 92·200937499 Fig. 7 is a perspective view showing an example of GaN crystals which are faceted on a base substrate on which a dot mask is provided. Fig. 8 is a plan view showing an example of GaN crystals which are faceted on a base substrate provided with a dot mask. 9A to 9F are longitudinal cross-sectional views showing a step of growing a GaN crystal by a facet growth method using a dot mask. • Fig. 10 is a plan view showing a portion of a stripe type mask formed on a base substrate for facet growth. ® Fig. 11 is a plan view showing an example of GaN crystals facet grown on a base substrate provided with a stripe type mask. Fig. 12 is a perspective view showing an example of GaN crystals which are facet grown on a base substrate provided with a stripe type mask. Fig. 13 is a plan view showing another example of GaN crystal which is faceted on a base substrate provided with a stripe type mask. Fig. 14 is a perspective view showing another example of GaN crystal which is faceted on a base substrate provided with a stripe type mask. 15A to 15F are longitudinal cross-sectional views showing a growth step of GaN crystal by a facet growth method using a stripe type mask. 16A and 16B are longitudinal cross-sectional views showing a further growth step of GaN crystal by a facet growth using a stripe type mask. The ® 17 series is a cross-sectional view of an example of GaN crystals disclosed in detail. Fig. 18 is a view showing another example of the crystal of (4) disclosed in Patent Document 7. 135248.doc • 93· 200937499 Fig. 19 is a cross-sectional view showing an example of an HVPE furnace used in the present invention. Fig. 2 is a view showing a crystal plane of a plastic nitride semiconductor obtained by the present invention. σ Fig. 21 is a view showing a crystal of a nitride semiconductor obtained in the present invention. Fig. 22 is a green patent document and the present invention. A graph showing the relationship between the growth temperature and the ratio of the fifth group to the third group R5, 3 in the embodiment of the vapor phase growth method. In the graph, the horizontal axis represents the growth temperature, and the vertical axis represents the logarithmic scale. The ratio of the fifth/third group R5, 3. The numerical values attached to the respective figures indicate the number of the patent documents. Fig. 23 is the curvature of the warp in the sample of the embodiment and the comparative example of the present invention. A graph showing the relationship between the radius and the crack occurrence rate. In the graph, the horizontal axis represents the radius of curvature of the warp and the vertical axis represents the crack generation rate. The numbers attached to the respective figures indicate the sample numbers. Regarding the drawing marks, the white dots The embodiment in which the type 1 crystal is shown, the white triangle indicates the embodiment of the type II crystal, and the white square indicates the comparative example. Further, the comparative examples in the graph are not well known. Fig. 24 shows the hybrid type obtained in the present invention. Crystallized semiconductor Cross-sectional view: ®25 is a plan view showing the width Ds of the strip mask formed on the base substrate and the size of the interval Dw. ® 26 indicates the diameter Ds of the dot mask formed on the base substrate and the size of the interval Dw. Floor plan. 135248.doc 94· 200937499

圖27係描繪作為本發明之實施例及比較例之試 施體濃度與鐵濃度之關係㈣表。㈣表中, IFig. 27 is a table showing the relationship (4) between the test body concentration and the iron concentration as an example and a comparative example of the present invention. (d) in the table, I

對數尺標而表示之施舯,* Λ ^ U 施體喊度,縱軸則表示以對數尺標而表 不之鐵濃度。X,各圖上所附之數字表示試料序號。關於 繪圖記號’白圓點表示1型結晶之實施例,白三角表示π型 結晶之實施例,白四角表示比較例。再者,本圖表中之比 較例並非為眾所周知者。 ❹The logarithm of the scale is indicated by *, Λ ^ U, and the vertical axis indicates the iron concentration expressed by the logarithmic scale. X, the number attached to each figure indicates the sample number. Regarding the drawing symbol 'the white dot indicates an example of the type 1 crystal, the white triangle indicates an example of the π-type crystal, and the white square indicates the comparative example. Moreover, the comparative examples in this chart are not well known. ❹

圖28係表示於半絕緣性GaN基板上生長GaN薄膜而獲得 之磊晶基板之縱剖面圖。 圖29係表示於半絕緣性GaN基板上生長GaN膜而成之磊 晶基板上形成電極後所得之Hemt的縱剖面圖。 圖30係表示於藍寶石基板上生長GaN薄膜而獲得之磊晶 基板之縱剖面圖。 圖31係表示於藍寶石基板上生長GaN膜而成之磊晶基板 上形成電極後所得之HEMT的縱剖面圖。 【主要元件符號說明】 1 基底基板 1 e 露出部 3 掩模 3w 開口 5 結晶 5b 邊界線 5c C面 5f 刻面 135248.doc -95- 200937499Fig. 28 is a longitudinal sectional view showing an epitaxial substrate obtained by growing a GaN thin film on a semi-insulating GaN substrate. Fig. 29 is a longitudinal cross-sectional view showing Hemt obtained by forming an electrode on an epitaxial substrate on which a GaN film is grown on a semi-insulating GaN substrate. Fig. 30 is a longitudinal sectional view showing an epitaxial substrate obtained by growing a GaN thin film on a sapphire substrate. Fig. 31 is a longitudinal sectional view showing a HEMT obtained by forming an electrode on an epitaxial substrate obtained by growing a GaN film on a sapphire substrate. [Description of main component symbols] 1 Base substrate 1 e Exposure part 3 Mask 3w Opening 5 Crystal 5b Boundary line 5c C surface 5f Facet 135248.doc -95- 200937499

5h 5k 5p 5pd 5s 5t 5v 5y 5z 7 102 103 104 105 107 108 109 110 200 、 300 201 202 204 206 207 線狀之位錯集合結晶區域 晶界 凹坑 面狀之位錯集合結晶區域 半絕緣性GaN基板 位錯 法線方向 位錯減少C面生長結晶區域 位錯減少刻面生長結晶區域 藍寶石基板 反應爐 加熱器5h 5k 5p 5pd 5s 5t 5v 5y 5z 7 102 103 104 105 107 108 109 110 200 , 300 201 202 204 206 207 Linear Dislocation Aggregation Crystalline Grain Bump Surface Dislocation Collection Crystalline Region Semi-Insulating GaN Substrate dislocation normal direction dislocation reduction C surface growth crystallization region dislocation reduction facet growth crystallization region sapphire substrate reactor heater

Ga儲存器 晶座 第1原料氣體供給管 第2原料氣體供給管 排氣管 第3原料氣體供給管 HEMT元件 GaN籽晶層 GaN磊晶層 AlGaN磊晶層 源極電極 汲極電極 135248.doc -96- 200937499 208 閘極電極 210 ' 310 蟲晶基板 Dp 間距 Ds 掩模寬度 Dw 間隔 Hkmn 非C面Ga memory crystal holder first material gas supply pipe second material gas supply pipe exhaust pipe third material gas supply pipe HEMT element GaN seed layer GaN epitaxial layer AlGaN epitaxial layer source electrode drain electrode 135248.doc - 96- 200937499 208 Gate electrode 210 ' 310 Insect substrate Dp Pitch Ds Mask width Dw Interval Hkmn Non-C surface

135248.doc 97-135248.doc 97-

Claims (1)

200937499 十、申請專利範圍: 1· 一種半絕緣性氮化物半導體基板之製造方法,其包括: 於基底基板(1)上形成掩模(3)之步驟,該遮罩(3)係將寬 度或直徑Ds為10 μιη〜100 μπι之點狀或條狀被覆部排列成 間隔Dw為250 μιη〜2000 μηι者;藉由HVPE法,供給第五 族/第三族之比Rw為1〜10之第三族原料氣體及第五族原 料氣體、以及含鐵之氣體,並於1040°C〜1150°C之生長 溫度下,於上述基底基板(1)上生長氮化物半導體結晶 © (5)之步驟;以及除去上述基底基板(1)之步驟;且 獲得比電阻為lxlO5 Qcm以上、厚度為100 μϊη以上之 獨立之半絕緣性氮化物半導體基板。 2. 如請求項1之半絕緣性氮化物半導體基板之製造方法, 其中 第五族/第二族之比Rw為1〜5、生長溫度為1〇9〇。〇〜 11 50°C,使除上述被覆部以外結晶表面大致平坦之上述 氮化物半導體結晶(5)生長。 3. 如請求項丨之半絕緣性氮化物半導體基板之製造方法, 其中 第五族/第二族之比R5,3為卜丨❶、生長溫度為1〇4〇。〇〜 • 1070 C,生長具有刻面(5f)之上述氮化物半導體結晶 ' (5)’該刻面(5f)係以上述被覆部為底、以相鄰之上述被 覆部之中間為頂部。 4· 一種半絕緣性氮化物半導體基板,其包含: 點狀或條狀之位錯集合結晶區域(5h、5h),其以ι〇 135248.doc 200937499 μπι~100 μιη之直徑或寬度Ds、250 μιη〜2000 μιη之間隔 Dw而重複;位錯減少刻面生長結晶區域、5ζ),其於 相鄰之上述位錯集合結晶區域(5h、5h)之間重複存在; 以及位錯減少C面生長結晶區域(5y),其存在於上述位錯 減少刻面生長結晶區域(5z、5z)之間;且,比電阻為 lxlO5 Qcm以上,厚度為100 μιη以上,且翹曲之曲率半 ·_ 徑為3 m以上。 5. —種氮化物半導體磊晶基板,其具備: © 半絕緣性氮化物半導體基板(5s),比電阻為1 X 1 〇5 Qcm 以上’厚度為100 μηι以上’且包含:點狀或條狀之位錯 集合結晶區域(5h、5h),其以10 μπι〜1〇〇 μηι之直徑或寬 度Ds、250 μηι〜2000 μηι之間隔Dw而重複;位錯減少刻 面生長結晶區域(5z、5z),其於相鄰之上述位錯集合結 曰曰Εΐ域(5h、5h)之間重複存在,及位錯減少CI面生長结晶 區域(5y) ’其存在於上述位錯減少刻面生長結晶區域 (5z、5z)之間;及 翁 氮化物半導體磊晶層(202、204),設置於上述半絕緣 性氮化物半導體基板(5s)上;且 • 翹曲之曲率半徑為3m以上。 6· 一種場效電晶體,其具備: •半絕緣性氮化物半導體基板(5s),比電阻為丨x丨〇5 Qcm 以上,且包含:點狀或條狀之位錯集合結晶區域(5h、 5h) ’其以1〇 μιη〜100,之直徑或寬度Ds、25〇 μηι之間隔Dw而重複;位錯減少刻面生長結晶區域(5z、 135248.doc 200937499 5z),其於相鄰之上述位錯集合結晶區域(5h、5h)之間重 複存在;以及位錯減少C面生長結晶區域(5y),其存在於 上述位錯減少刻面生長結晶區域(5z、5z)之間; 氮化物半導體磊晶層(202、204),設置於上述半絕緣 性氮化物半導體基板(5s)之上;及 -閘極電極(208)、源極電極(206)及汲極電極(207),分 : 別設置於上述氮化物半導體磊晶層(202、204);且 上述閘極電極(208)形成於位錯集合結晶區域(5h)以外 φ 之結晶區域上。 135248.doc200937499 X. Patent Application Range: 1. A method for manufacturing a semi-insulating nitride semiconductor substrate, comprising: a step of forming a mask (3) on a base substrate (1), the mask (3) being width or The dot-shaped or strip-shaped covering portion having a diameter Ds of 10 μm to 100 μm is arranged such that the interval Dw is 250 μm to 2000 μηι; and the ratio of the fifth group/third group Rw is 1 to 10 by the HVPE method. Step of growing nitride semiconductor crystals (5) on the above-mentioned base substrate (1) at a growth temperature of 1040 ° C to 1150 ° C for a group of source gases, a Group 5 source gas, and a gas containing iron And a step of removing the base substrate (1); and obtaining a semi-insulating nitride semiconductor substrate having a specific resistance of 1×10 5 cm or more and a thickness of 100 μϊη or more. 2. The method of producing a semi-insulating nitride semiconductor substrate according to claim 1, wherein the ratio of the fifth group to the second group Rw is 1 to 5, and the growth temperature is 1 〇 9 〇. From 〇 to 11 50 ° C, the above-described nitride semiconductor crystal (5) having a crystal surface which is substantially flat except for the above-mentioned coating portion is grown. 3. The method for producing a semi-insulating nitride semiconductor substrate according to claim 5, wherein the ratio of the fifth group/second group R5,3 is diurnal and the growth temperature is 1〇4〇. 〇〜• 1070 C, the nitride semiconductor crystal '(5)' having the facet (5f) is grown. The facet (5f) is the top of the covered portion, and the middle of the adjacent covered portion is the top. 4. A semi-insulating nitride semiconductor substrate comprising: a dot-like or strip-shaped dislocation set crystal region (5h, 5h) having a diameter or width Ds, 250 of ι 135248.doc 200937499 μπι~100 μηη Between μιη and 2000 μιη intervals Dw; dislocations reduce the facet-grown crystallization region, 5ζ), which is repeated between the adjacent dislocation set crystal regions (5h, 5h); and dislocations reduce C-plane growth a crystallization region (5y) existing between the above-mentioned dislocation-reducing facet-grown crystal regions (5z, 5z); and a specific resistance of lxlO5 Qcm or more, a thickness of 100 μm or more, and a curvature half-_ diameter of warpage It is 3 m or more. 5. A nitride semiconductor epitaxial substrate comprising: a semi-insulating nitride semiconductor substrate (5s) having a specific resistance of 1 X 1 〇 5 Qcm or more and a thickness of 100 μηι or more and comprising: dots or strips The dislocations are crystallized (5h, 5h), which are repeated with a diameter of 10 μπι to 1〇〇μηι or a width Ds of 250 μηι to 2000 μηι; dislocations reduce the area of faceted growth crystallization (5z, 5z), which is repeated between the adjacent dislocation set junction domains (5h, 5h), and dislocations reduce the CI surface growth crystallization region (5y) 'which exists in the above dislocation reduction facet growth Between the crystallization regions (5z, 5z) and the bismuth nitride semiconductor epitaxial layers (202, 204) are provided on the semi-insulating nitride semiconductor substrate (5s); and the curvature radius of the warp is 3 m or more. 6. A field effect transistor comprising: • a semi-insulating nitride semiconductor substrate (5 s) having a specific resistance of 丨x 丨〇 5 Qcm or more and comprising: a dot-like or strip-shaped dislocation crystallization region (5h) , 5h) 'It is repeated at a spacing Dw of 1〇μιη~100, diameter or width Ds, 25〇μηι; dislocation reduces the facet-grown crystalline region (5z, 135248.doc 200937499 5z), which is adjacent to The dislocation-receiving crystallization regions (5h, 5h) are repeatedly present; and the dislocations reduce the C-plane growth crystallization region (5y), which exists between the dislocation-reducing facet-growing crystallization regions (5z, 5z); a semiconductor semiconductor epitaxial layer (202, 204) disposed on the semi-insulating nitride semiconductor substrate (5s); and - a gate electrode (208), a source electrode (206), and a drain electrode (207), The sub-layer is not disposed on the nitride semiconductor epitaxial layer (202, 204); and the gate electrode (208) is formed on the crystal region of φ other than the dislocation crystal region (5h). 135248.doc
TW97140054A 2007-10-24 2008-10-17 Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor TW200937499A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007275889 2007-10-24
JP2008113287A JP4985533B2 (en) 2007-10-24 2008-04-24 Method for manufacturing semi-insulating nitride semiconductor substrate

Publications (1)

Publication Number Publication Date
TW200937499A true TW200937499A (en) 2009-09-01

Family

ID=40726362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97140054A TW200937499A (en) 2007-10-24 2008-10-17 Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor

Country Status (4)

Country Link
JP (1) JP4985533B2 (en)
CN (1) CN101441999A (en)
RU (1) RU2008142153A (en)
TW (1) TW200937499A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735420B2 (en) * 2009-06-30 2015-06-17 日本碍子株式会社 Method for producing group III metal nitride single crystal
JP2012074544A (en) * 2010-09-29 2012-04-12 Ngk Insulators Ltd Semiconductor element, and method of manufacturing the same
JP5559669B2 (en) * 2010-12-09 2014-07-23 日本碍子株式会社 Group III nitride single crystal manufacturing method and seed crystal substrate used therefor
JP5333479B2 (en) 2011-02-15 2013-11-06 住友電気工業株式会社 Manufacturing method of semiconductor device
JP2013206976A (en) * 2012-03-27 2013-10-07 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same
JP2015070085A (en) * 2013-09-27 2015-04-13 Dowaエレクトロニクス株式会社 Epitaxial substrate for electronic device and manufacturing method therefor
KR102523231B1 (en) * 2015-02-23 2023-04-18 미쯔비시 케미컬 주식회사 C-PLANE GaN SUBSTRATE
KR20210125551A (en) * 2019-02-22 2021-10-18 미쯔비시 케미컬 주식회사 GaN crystals and substrates
JP7469051B2 (en) 2020-01-15 2024-04-16 住友化学株式会社 METHOD OF PRODUCING NITRIDE CRYSTAL SUBSTRATE, NITRIDE CRYSTAL SUBSTRATE AND LAMINATED STRUCTURE
US20220199817A1 (en) 2020-12-18 2022-06-23 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same
CN113130645A (en) * 2020-12-18 2021-07-16 英诺赛科(苏州)科技有限公司 Semiconductor device and method of manufacturing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801125B2 (en) * 2001-10-09 2006-07-26 住友電気工業株式会社 Single crystal gallium nitride substrate, method for crystal growth of single crystal gallium nitride, and method for manufacturing single crystal gallium nitride substrate
JP4117156B2 (en) * 2002-07-02 2008-07-16 日本電気株式会社 Method for manufacturing group III nitride semiconductor substrate
JP4720125B2 (en) * 2004-08-10 2011-07-13 日立電線株式会社 III-V nitride semiconductor substrate, method of manufacturing the same, and III-V nitride semiconductor
JP5260831B2 (en) * 2006-01-05 2013-08-14 古河機械金属株式会社 Group III nitride semiconductor crystal manufacturing method, group III nitride semiconductor substrate manufacturing method, and semiconductor device manufacturing method
JP2007191321A (en) * 2006-01-17 2007-08-02 Sumitomo Electric Ind Ltd Method for producing nitride substrate, nitride substrate, and nitride-based semiconductor device

Also Published As

Publication number Publication date
JP2009120465A (en) 2009-06-04
JP4985533B2 (en) 2012-07-25
RU2008142153A (en) 2010-04-27
CN101441999A (en) 2009-05-27

Similar Documents

Publication Publication Date Title
TW200937499A (en) Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP5180189B2 (en) Method of zinc oxide film growth on epitaxial laterally abnormally grown gallium nitride templates
JP4117156B2 (en) Method for manufacturing group III nitride semiconductor substrate
TW480705B (en) Base substrate for crystal growth and manufacturing method of substrate by using the same
TWI233217B (en) Method for producing semiconductor crystal
Kim et al. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition
US20110254048A1 (en) Group iii nitride semiconductor epitaxial substrate
TW200921764A (en) Non-polar III-V nitride material and production method
TW200901284A (en) Production of semiconductor devices
TW201041016A (en) Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the p
JP5296255B1 (en) Nitride semiconductor device, nitride semiconductor wafer, and method of forming nitride semiconductor layer
KR101503618B1 (en) Method for producing substrate for group iii nitride semiconductor element fabrication, method for producing group iii nitride semiconductor free-standing substrate or group iii nitride semiconductor element, and group iii nitride growth substrate
TW200834670A (en) Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp
JP4860736B2 (en) Semiconductor structure and method of manufacturing the same
US20090108297A1 (en) Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor
TW201213239A (en) Light emitting element and method of manufacturing a semiconductor substrate
CN107403859B (en) III nitride semiconductor and its manufacturing method
CN103367589A (en) Method for producing Ga-containing group III nitride semiconductor
TWI294189B (en) Gallium nitride-based semiconductor stacked structure, method for fabrication thereof, gallium nitride-based semiconductor device and lamp using the device
WO2002080243A1 (en) Production method of iii nitride compound semiconductor, and iii nitride compound semiconductor element based on it
JP2007317752A (en) Template substrate
JP4984557B2 (en) Method for manufacturing vertical gallium nitride semiconductor device, method for manufacturing epitaxial substrate
TW200939536A (en) Nitride semiconductor and method for manufacturing same
JP2007314360A (en) Template substrate