TW200936499A - Highly dispersible carbon nanospheres in a polar solvent and methods for making same - Google Patents

Highly dispersible carbon nanospheres in a polar solvent and methods for making same Download PDF

Info

Publication number
TW200936499A
TW200936499A TW97136524A TW97136524A TW200936499A TW 200936499 A TW200936499 A TW 200936499A TW 97136524 A TW97136524 A TW 97136524A TW 97136524 A TW97136524 A TW 97136524A TW 200936499 A TW200936499 A TW 200936499A
Authority
TW
Taiwan
Prior art keywords
carbon
polar solvent
nanospheres
acid
nanosphere
Prior art date
Application number
TW97136524A
Other languages
Chinese (zh)
Inventor
Zhang Cheng
Bing Zhou
Original Assignee
Headwates Technology Innovation Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/860,323 external-priority patent/US7664132B2/en
Application filed by Headwates Technology Innovation Llc filed Critical Headwates Technology Innovation Llc
Publication of TW200936499A publication Critical patent/TW200936499A/en

Links

Abstract

The particle sizes of agglomerates of carbon nanospheres are reduced by dispersing the carbon nanospheres in a polar solvent. The carbon nanospheres are multi-walled, hollow, graphitic structures with an average diameter in a range from about 10 nm to about 200 nm, more preferably about 20 nm to about 100 nm. Spectral data shows that prior to being dispersed, the carbon nanospheres are agglomerated into clusters that range in size from 500 nm to 5 microns. The clusters of nanospheres are reduced in size by dispersing the carbon nanospheres in the polar solvent (e. g., water) using a surface modifying agent (e. g., glucose) and ultrasonication. The combination of polar solvent, surface modifying agent, and ultrasonication breaks up and disperses agglomerates of carbon nanospheres.

Description

200936499 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明一般而言係關於破奈米材料之製造。更具體而 言,本發明係關於在極性溶劑中之高分散性碳奈米球的製造方 法。 【先前技術】 [0002] 碳材料已被使用於各種不同領域之多種不同的應用。目 前使用碳材料之範例’其中包含顏料、填料、催化劑擔體及燃 料電池等。有機化合物之熱解係一已知製備碳材料之方法。例 如,碳材料可藉由在溫度60(TC以上熱解間笨二酚曱醛凝膠製 造。 [OOf]大部分藉由在溫度6〇〇_ 14〇〇aC之間熱解有機化合物所得 的,材料係傾向成為非晶形或有一不規則的結構。因為由石墨 展示的獨特性質,可有利的獲得高結晶或石墨碳材料。例如, 石墨材料可導熱或導電。 [00=4]近,,已發展出製造諸如碳奈米管之高度規則的碳結構200936499 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION [0001] The present invention relates generally to the manufacture of broken nanomaterials. More specifically, the present invention relates to a method for producing highly dispersible carbon nanospheres in a polar solvent. [Prior Art] [0002] Carbon materials have been used in many different applications in various fields. Examples of the current use of carbon materials include pigments, fillers, catalyst supports, and fuel cells. Pyrolysis of organic compounds is a known method for preparing carbon materials. For example, a carbon material can be produced by pyrolysis of a diphenoyl furfural gel at a temperature of 60 (TC or more). [OOf] Mostly obtained by pyrolysis of an organic compound at a temperature of 6 〇〇 14 〇〇 aC. The material tends to be amorphous or has an irregular structure. Because of the unique properties exhibited by graphite, it is advantageous to obtain a highly crystalline or graphitic carbon material. For example, the graphite material can be thermally or electrically conductive. [00=4] Highly regular carbon structures such as carbon nanotubes have been developed

ίίϋϋ墨奈米結構之紐係在金屬催賴存在下碳化 碳氣或碳樹脂)。該摧化劑典型上為與碳前驅物混 “Ινΐί四ϊΐί之鹽類。於碳化製心碳奈米結構係自 靜周生長以產生—良好的規則結構。金屬催化劑 猛“之氧=碳奈米材料移除。非晶形碳可使用諸如高 【發明内容】 3—f藉由在極性溶劑中分散碳奈米球以降 直徑自約㈣米至約施奈米之上 之前,碳奈米球係團範圍。光譜數據顯示在分散 係图t成為大小自5〇〇奈米至5微米之範圍的 ::ODMA\PCDOCS\TPEDMS\412〇l\i 4 200936499 族?發明之方法’該奈米球之目簇賴由在極性溶劑(例 i丰表面改質劑(例如’葡萄糖)及超音波分散碳 Hi=氏尺寸。極性溶劑、表面改質劑及超音波之組合可 :嫩f *散碳奈米球團聚體。出乎意料地,具有5〇0奈米至 私平均粒控之碳奈米球團聚體可使用本發明之方法分 月’產生使用光散射量測之平均粒徑小於約300奈米(更佳 H *^小_ 15G奈米)之奈米球及/或奈来 球團聚體。 [〇〇=]該錄_、表域f劑及超音波之組合可在極性溶劑 ❹ 31非常穩定的碳奈米球之分散。使用本發明方法分散之 石反不米球在極性溶劑中可穩定數小時、數日、數月或甚至更 ^。出乎意料地’粒徑分佈可以非常窄◎相較於只在水中音波 處理’在表面改質劑存在下,碳奈米球在極性溶劑中超音波處 理之,·且&可產生具有使用動態光散射量測之出乎意料地窄的 粒徑分佈之碳奈米材料。在—實施例,至少嶋的碳奈米材 料具有小於500奈米之平均粒徑,較佳小於3〇〇奈米,及最佳 小於200奈米。更佳’至少9G%的碳奈米材料具有一或多個 上述粒徑範圍内之平均粒徑。. Φ [0007]該小粒徑、窄粒徑分佈、及懸浮碳奈米球在溶劑中的穩 定性特別有利於在各種不_應財使㈣分散的碳奈米g 料,包含但不限於填料、顏料、超電容及高性能電極。 [0008]本發明所使用之表面改質劑係一可溶於極性溶劑及具 J一或多個可與碳奈米球鍵結的官能基之有機分子。該表面^ 質劑可以是表面活性劑、有機酸、碳水化合物、胺基酸及類似 物。適合的官能基之範例包含羧基、胺類、磺酸鹽及/或羥基。 可使用作為表面改質劑之化合物的特定範例包含葡萄糖、甘醇 酸、甘胺酸、抗壞血酸、十二炫;基苯續g复納、磷鶴酸、三氟乙 。在一實施例,該表面改質劑係一生物相容有機分子,諸如 但不限於葡萄糖、甘醇酸、甘胺酸、或抗壞血酸。使用生物相 ::ODMA\PCDOCS\TPEDMS\41201\1 5 200936499 望之粒徑分佈倾财利於供使用碳 =m細’該碳奈米魏含提供_位置給該表面改 面官綠可於碳奈米球之純化 之期料人。魏當表面氧濃度使用 ,:怳表面氧’更佳為至少約5wt%,甚佳 ί官Γ佳為至少約15 Wt%時,根據本發明該含 ❹ 不規則表面。該不規則表面有利於二 奈米球分散在紐频巾。' S ^及有助於奴 [⑻==面改_係溶解在概 含,於水、乙醇、四氫_二=:劑: 散碳奈米球之特別良好的溶劑。^ 混合成為親水性材料時,水性溶劑^佳的刀。散的故奈未材枓 f ^ ^ 吸附及/或表面改質劑之鍵社破壞 f超曰波期間’化學 =谢米球較小聚奈 =理合表㈣#鑛雜__科超音iii 射、表面咖、蝴蝴_===溶 [0013〗發現使用本發明方法 ,米球之有利的結構、=散 二高:的’其係有利於提供強度、導電性該;熱 =: ::ODMA\PCD〇CS\TPEDMS\412〇l\i 6 200936499 完全的減於以下的說明書 表達本糾上述和其他優點,將參考例 解的3,㈣=實補給予本發明之—更制的描述。可理 此不二於解釋本發明之典型的具體例,以及因 的特定及詳細地描述及說日^柯騰精由使騎圖,另外 【實施方式】 L介紹輿定| 表面活賴,將碳奈米 之平均粒徑。使降低以動態光散射量測 Ζ; , 枣毛月之方法,平均粒徑自大於約500奈米 平找^^細奈米,更佳小於約細奈米。該分散的碳夺 未球由於其大小及在極性溶劑之分紐而具有獨特的 =^丁、 [=7]為了贿本個’碳奈米材料之平均練 =散射蚊及對應至光散射光譜數據之 ❹ ,。過-明顯波峰’平均粒徑應意味加權平均根據二 峰之/。強度,除非有以其他方式指明。 丨 ‘ Π.用於製造分散的碳奈米球之成分 A.含有碳奈米球之破奈米材料 =]== 多碳壁奈r空=:r;範圍自約 ^至請奈米之範圍。該多壁形成-具;構中空= [0019]典型上’該侧的碳奈米球具有一小於約 比(即,寬比高小於3 : 1),較佳小於約2 :卜 1.75小最佳小於約1>5 :卜在—實施例,碳奈係^ ::ODMA\PCDOCS\TPEDMS\41201\1 7 200936499 -不規則表面。該不規則表面具有引起該 球形之,陷。石墨缺陷被認為是部分促二不完美 之不溶解性的因素。碳奈米球係高石墨,其齊Ji碳奈米球 優良的導電性及導熱性。 、、’、°疋5亥衩奈米材料 [0020]典型上,該碳奈米球壁之厚度係 米之間。細,較厚或㈣_可視需要作奈 之厚度係量測自壁之内徑至壁之外徑。在=权構壁 構具有介於約2與約1()()石墨層之_ f φ ❹ 50石墨層之間的壁,更佳介於約5與約2〇3二=5與約 $層之數目可隨著以下討論蝴碳奈㈣之^ 積度。作賴奴優_具有絲面奈結構集 叙縣形及乡雖質也可提供賊,使碳夺 ϊίίΐίίίΐϊ破損成不期望的職或不成形的石墨。維 ,奈未球之驗對於超時維持操作雜係重要的 = 夕壁性質亦允許該表面功能化,且同時 ^ 性r空中心提供奈 同2的孔^度。在-實施例’表面積係自約卿m2/g至約4〇〇 約—至約Ik [〇〇22]該碳奈米材料於分倾通常提供作為碳奈米球之圈聚 粒子。當個別的碳奈_具有小於奈米之直徑,碳奈米球 傾向團聚以形成具有大於5GG奈米之平均粒徑的祕(即,團 聚奈米球^子)。光譜數獅示該碳奈米球於分散前係團聚 成為大小範圍為自約5GG奈米至5微米之團簇。如第丨圖所 示,平均粒徑係使用動態光散射量測約14微米。 [0023]第2A及2B圖係奈米球之團簇的SEM影像。第2A及 2C圖中,至少一些實施例中,影像顯示碳奈米球係團簇在一 ::〇DMA\PCDOCS\TPEDMS\41201 \ 1 8 200936499 起以形成葡萄狀二次結構。第2Β圖係一些團簇之特寫鏡 具有一爆巧的團簇藉以暴露複數個碳奈米球。第2C圖之 影像更顯不團簇係由複數個較小的奈米球組成。該se^ TEM影像顯示奈米結構係中空及通常是類球形。 [0024^在-實施例’該碳奈米球可以是碳奈米材料之數成分之 一。碳奈米球之較高比例係通常較佳,如此該碳奈米材 碳奈米球之獨特性質而獲益。在一實施例,奈米球係至少約 l〇wt%奈米材料,較佳至少約5〇wt%,更佳約75树%,甚佳 ΟThe ίίϋϋMenami structure is a carbonized carbon or carbon resin in the presence of metal. The catalyzing agent is typically a salt of "Ινΐί四ϊΐί" mixed with a carbon precursor. The carbonized core carbon nanostructure is grown from a static period to produce a good regular structure. The metal catalyst is vigorously "oxygen = carbon na[iota] The rice material is removed. Amorphous carbon can be used, such as high [Abstract] 3-f, by dispersing the carbon nanospheres in a polar solvent to reduce the diameter from about (four) meters to about about Schneider, before the carbon nanospheres. The spectral data is shown in the range of the dispersion pattern t from 5 〇〇 to 5 μm:: ODMA\PCDOCS\TPEDMS\412〇l\i 4 200936499 Family? Method of Invention 'The cluster of nanospheres Depends on the polar solvent (such as i surface modifier (such as 'glucose) and ultrasonic dispersion carbon Hi = size. Polar solvent, surface modifier and ultrasonic combination can be: tender f * loose carbon nanosphere Agglomerates. Unexpectedly, carbon nanosphere aggregates having from 5 〇 0 nm to private average granules can be produced using the method of the present invention to produce an average particle size of less than about 300 nm using light scattering measurements. (better H * ^ small _ 15G nano) nanosphere and / or nai ball aggregate. [〇〇 =] the record _, table domain f agent and ultrasonic combination can be in the polar solvent ❹ 31 very Dispersion of Stable Carbon Nanospheres. Stones dispersed by the method of the present invention can be stabilized in polar solvents for hours, days, months or even more. Unexpectedly, the particle size distribution can be very narrow. ◎ Compared to the sound wave treatment only in water, the carbon nanosphere is supersonic in a polar solvent in the presence of a surface modifier. Processed, and & can produce a carbon nanomaterial having an unexpectedly narrow particle size distribution using dynamic light scattering measurements. In an embodiment, at least the tantalum carbon nanomaterial has less than 500 nanometers The average particle size, preferably less than 3 nanometers, and most preferably less than 200 nanometers. More preferably, at least 9G% of the carbon nanomaterial has an average particle size within one or more of the above particle sizes. Φ [ 0007] The small particle size, the narrow particle size distribution, and the stability of the suspended carbon nanospheres in the solvent are particularly advantageous for the carbon nanomaterials dispersed in various types of materials, including but not limited to fillers and pigments. Supercapacitor and high performance electrode. [0008] The surface modifier used in the present invention is an organic molecule which is soluble in a polar solvent and has one or more functional groups bondable with carbon nanospheres. The surface agent may be a surfactant, an organic acid, a carbohydrate, an amino acid, and the like. Examples of suitable functional groups include a carboxyl group, an amine, a sulfonate, and/or a hydroxyl group. It can be used as a surface modifier. Specific examples of compounds include glucose, glycolic acid, glycine Ascorbic acid, 12 sulphate; phenyl benzoate, hexanoic acid, trifluoroethylene. In one embodiment, the surface modifier is a biocompatible organic molecule such as, but not limited to, glucose, glycolic acid, glycine Amino acid, or ascorbic acid. Use bio-phase::ODMA\PCDOCS\TPEDMS\41201\1 5 200936499 The particle size distribution is expected to be good for the use of carbon = m fine 'the carbon nano-wei contains _ position to change the surface The facial green can be used in the purification of the carbon nanosphere. The surface oxygen concentration of Weidang is used: the surface oxygen is preferably at least about 5% by weight, and the good is preferably at least about 15 Wt%. According to the invention, the ruthenium-containing irregular surface facilitates the dispersion of the nano-nanospheres in the neon towel. 'S ^ and help slaves [(8) == face change _ is dissolved in the general, in water, ethanol, tetrahydro _ two =: agent: a particularly good solvent for carbon nanotubes. ^ When mixing into a hydrophilic material, the aqueous solvent is a good knife. The scattered Chennai unfinished material f ^ ^ adsorption and / or surface modifier agent damage f super chopping period 'chemistry = Xie Miqiu smaller polynai = Lihe table (four) #矿杂__科超音iii shooting, surface Coffee, butterfly _=== dissolve [0013] found that using the method of the invention, the advantageous structure of the rice ball, = scatter two high: 'the system is beneficial to provide strength, conductivity; heat =: ::ODMA\ PCD〇CS\TPEDMS\412〇l\i 6 200936499 The above and other advantages are fully expressed in the following description, and the description of the present invention will be given by the reference to the example of 3, (4) = actual compensation. It can be understood that the specific examples of the present invention are explained, as well as the specific and detailed descriptions of the present invention, and the introduction of the Japanese version of Ke Tengjing by the rider, and the other embodiments [introduction] The average particle size of carbon nanotubes. To reduce the measurement by dynamic light scattering ,; , jujube month method, the average particle size from more than about 500 nm flat to find ^ ^ fine nanometer, more preferably less than about fine nano. The dispersed carbon captures the ball due to its size and its distribution in the polar solvent. It has a unique = ^, [= 7] in order to bribe this 'carbon nano material' average practice = scattering mosquito and corresponding to light scattering spectrum The data is ❹. The over-obvious peak 'average particle size' should mean a weighted average based on the peak of the two peaks. Intensity, unless otherwise specified.丨' Π. A component used to make dispersed carbon nanospheres. A. A nano-material containing carbon nanospheres ==== Multi-carbon wall nr-space =:r; range from about ^ to please range. The multi-walled structure has a hollow structure. [0019] Typically, the carbon nanotubes on the side have a less than about ratio (ie, a width ratio of less than 3:1), preferably less than about 2: 1.75. Preferably less than about 1>5: Bu-in the embodiment, carbon-neutral ^::ODMA\PCDOCS\TPEDMS\41201\1 7 200936499 - Irregular surface. The irregular surface has a trap that causes the spherical shape. Graphite defects are considered to be factors that partially contribute to the imperfections of imperfections. The carbon nanosphere is high in graphite, and its Qi carbon nanosphere has excellent electrical conductivity and thermal conductivity. , , ', ° 疋 5 衩 衩 nanomaterial [0020] Typically, the thickness of the carbon nanosphere wall is between meters. Thin, thick or (4) _ can be used to measure the thickness from the inner diameter of the wall to the outer diameter of the wall. The wall having a structure of _f φ ❹ 50 between about 2 and about 1 () () of the graphite layer, more preferably between about 5 and about 2 〇 3 = 5 and about $ 层The number can be discussed as follows.赖奴优_ has a silk-faced structure set. The county shape and township quality can also provide thieves, so that carbon ϊ ΐ ί ίίίί ΐϊ ΐϊ 成 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不Dimensions, Naiqiu's test is important for maintaining the operational miscellaneous overtime = the nucleus property also allows the surface to be functionalized, and at the same time the ^r r center provides the hole 2 of the same. In the embodiment, the surface area is from about m2/g to about 4 Å to about 1 Å [〇〇22]. The carbon nanomaterial is usually provided as a circled particle as a carbon nanosphere. When the individual carbon nanotubes have a diameter smaller than the nanometer, the carbon nanosphere tends to agglomerate to form a secret having an average particle diameter of more than 5 GG nanometer (i.e., agglomerated nanospheres). The number of spectral lions indicates that the carbon nanospheres agglomerate before dispersing into clusters ranging in size from about 5 GG nm to 5 microns. As shown in the figure, the average particle size is about 14 microns using dynamic light scattering measurements. [0023] Figures 2A and 2B are SEM images of clusters of nanospheres. In Figures 2A and 2C, in at least some embodiments, the image shows that the carbon nanosphere clusters form a grape-like secondary structure at: ::〇DMA\PCDOCS\TPEDMS\41201 \1 8 200936499. The second figure is a close-up mirror of some clusters with a clever cluster to expose a plurality of carbon nanospheres. The image of Figure 2C is more clustered and consists of a plurality of smaller nanospheres. The se^ TEM image shows that the nanostructures are hollow and generally spheroidal. [0024] In the embodiment, the carbon nanosphere may be one of the components of the carbon nanomaterial. A higher proportion of carbon nanospheres is generally preferred, thus benefiting from the unique properties of the carbon nanosphere carbon nanospheres. In one embodiment, the nanospheres are at least about 1% by weight of nanomaterial, preferably at least about 5% by weight, more preferably about 75% by weight, very preferably Ο

^少約90wt°/〇,最佳至少約98 wt%。碳奈米材料之不為碳奈 米球的刀較佳係諸如石墨片或其他石墨奈米結構之石墨材 料。該碳奈米材料可包含非石墨非晶形碳。然而,通常最小化 非石墨非晶形碳之百分比是有利的(例如,#由於純化期間移 除及/或藉由於額外熱處理步驟將非石墨非晶形碳轉換為石 墨)。 ' [0025]^碳奈米球通常係包含提供用於表面改質劑的鍵結位 置之含氧表面官能基。根據本發明,發現含氧官能基可極有利 地。用於分散碳奈米球’當使用XPS量測表面氧之濃度至少約2 wt%,較佳至少約5 wt%,更佳至少約1〇切%,及使用xps 量測表面氧最佳至少約15 wt%。 [^0026]該碳奈米球可經處理而在表面上導入含氧官能基。適當 氧化劑之範例包含硫酸、KMnOA、H2〇2、5M或更濃的硝酸及 王^。上述之氧化劑傾向導入使用XPS量測小於約9 wt%氧 ,碳奈米球之表面。視需要,較高的wt%含氧官能基可使用強 氧化劑達成。導入含氧官能基可以是有利於提供表面改質劑可 鍵結至碳奈米球之期望位置的量。適合之強氧化劑之範例包含 $肖酸及硫酸之混合物、(ii)過氧化氫溶液、及(iii)硫 酸及過氧化氫之混合物。強氧化劑之適合濃度之特定範例,包 含,不限於硫酸及硝酸(70%)以3:1 v/v比例之混合物;30% 過氧化氫溶液;或>5危酸(98%)及過氧化氫(30%)以4:1 v/v 9 ::ODMA\PCD〇CS\TPEDMS\41201\1 200936499 比例之混合物。 B.表面改質劑^ less than about 90 wt ° / 〇, optimally at least about 98 wt%. A carbon nanotube material that is not a carbon nanosphere is preferably a graphite material such as a graphite sheet or other graphite nanostructure. The carbon nanomaterial may comprise non-graphite amorphous carbon. However, it is generally advantageous to minimize the percentage of non-graphitic amorphous carbon (e.g., #transition due to purification and/or conversion of non-graphite amorphous carbon to graphite by additional heat treatment steps). [0025] Carbon nanospheres typically comprise an oxygen-containing surface functional group that provides a bonding site for a surface modifying agent. According to the present invention, it has been found that oxygen-containing functional groups can be extremely advantageous. For dispersing carbon nanospheres' when using XPS to measure surface oxygen concentration of at least about 2 wt%, preferably at least about 5 wt%, more preferably at least about 1% cut, and using xps to measure surface oxygen at least optimally. About 15 wt%. [^0026] The carbon nanospheres can be treated to introduce oxygen-containing functional groups on the surface. Examples of suitable oxidizing agents include sulfuric acid, KMnOA, H2〇2, 5M or more concentrated nitric acid and Wang. The above oxidizing agent tends to be introduced into the surface of the carbon nanospheres using an XPS measurement of less than about 9 wt% oxygen. Higher wt% oxygenated functional groups can be achieved using strong oxidizing agents, as desired. Introduction of the oxygen-containing functional group can be an amount that facilitates providing a desired location at which the surface modifying agent can bond to the carbon nanosphere. Examples of suitable strong oxidizing agents include a mixture of acetic acid and sulfuric acid, (ii) a hydrogen peroxide solution, and (iii) a mixture of sulfuric acid and hydrogen peroxide. Specific examples of suitable concentrations of strong oxidizing agents include, without limitation, mixtures of sulfuric acid and nitric acid (70%) in a ratio of 3:1 v/v; 30% hydrogen peroxide solution; or >5 dangerous acid (98%) and Hydrogen peroxide (30%) was a mixture of 4:1 v/v 9 ::ODMA\PCD〇CS\TPEDMS\41201\1 200936499. B. Surface modifier

[0027]用於本發明之該表面改謂係—有機分子,其可溶於極 性溶劑中,以及具有一或多個能與碳奈米球鍵結之官能基。表 面改質劑可以是-表面活性劑、錢酸、碳水化合物、胺基酸 及類似物。適合用於與碳奈米球之表面鍵結的官能基之範例包 含羧基、胺類、確酸鹽及/或羥基。一些實施例中,該官能美 (例如,羧基或羥基)被選擇與碳奈米球之表面上的含氧官^ 号鍵結。1使用作為表面改質劑之化合物的特定範例,包含葡 萄糖、甘、甘胺酸、抗壞域n基料酸納、 酸、三氟乙酸及類似物。 C.極性溶劑 [0028]當碳奈米球塗佈表面改質劑時,該溶劑可以是能溶解表 面改質劑及轉碳奈轉之分散的任何紐溶劑。適合的極性 溶劑之範例包含但不限於水、乙醇、四氫対(ΤΗρ)及類似 物。出乎意、料地’發縣係—驗分散碳奈料之制良 溶劑。因為水性溶劑之生物應㈣有祕及其與分散的碳 材料混合成為親水性材料作成複合物,雜溶_較佳的。 III·破奈米球之分散方法 [=0^於本發明之綠,奈米球之κ鋪由將奈米球分散在極 如水”,使用表面改質劑(例如葡萄糖)及超音 波而降低其尺寸。 rf]該/法通常包含選擇—可與碳奈米球表面上之含氧官 改㈣㈣擇可轉㈣改f劑之極性溶 續、表紐㈣及碳奈米球之混合物以分散碳 不未球。/谷劑、表面改質劑及奈米球可以任何順序一起混人。 於-實施例,溶射之表面改_的濃度係在自約G5 wt=至 ::ODMA\PCDOCS\TPEDMS\412〇l\l 10 200936499 約20 wt°/〇之範圍,更佳自約5 wt%至約1〇 wt%之範圍。含有 碳奈米球之碳奈米材料典型上包含濃度範圍自約〇1 wt%至約 20 wt% ’更佳自約1 wt〇/❶至約1〇 wt%。 [0031] ¼奈米球係使用超音波分散於溶劑中。超音波可使用任 何適合技術進行,諸如超音波浴,以超音波頻率振盪碳奈米 球。一適用於分散碳奈米球之超音波裝置的範例為CR£ST ULTRASONICS TRU-SWEEPTM (頻率 68 kHz 及 5〇〇 瓦)。 ❹ ❿ [0032] 超音波通常持續進行至少3〇分鐘,較佳至少約丨小時, f更佳至少約2小時。進行該混合物之適合時職圍的 含約30分鐘至約6小時,及較佳自約!小時至約3小時 音波處理步驟可在室溫或其他適合的溫度下進行。 艇料狀岭可城壞及分散 厌不未球之眺體。出乎思料地,具有平均粒徑· 微米的碳奈米球之團聚體可使用本發财法產生1有使 射量測之平均粒徑小於約3⑻奈米,更佳小^ 米及最佳祕約15G奈米之奈料及/或奈树團聚體。 本米球之動態光散射數據說明使用本 徑明顯降低。第3圖係顯示詳細描述於 ^下實施例2之本發财法分触奈料料之動^ 射的,。如第3圖所示,在一實施例,本發明方法產生二 均粒徑147奈米之分散碳奈米球。第4Α及4 、 據本發縣碳絲球分散狀随及T 面之^=。該版比鋪示使用本發明方法 之ΐ善ί,,該分散之碳奈米球也傾向具有 侧,崎佈後的範圍自 ::〇DMA\PCD〇CS\TPEDMS\41201\1 200936499 [0036]根據本發明方 的性質,諸如多壁、中处刀二之叙奈米球,有利地保留其有利 原有尺寸。第4B圖二P:f閉結構、石墨性質及一次結構之 分散前的第2C圖之圖兹击*影像所示之碳奈米球顯示具有如 散的碳奈米球。 、妷奈米球相似的一次結構之高度分 穩定持續數月。本發明之之石厌奈未球可以在室溫下 約1小時,更佳ί實施例,碳奈米球可穩定持續至少 ❹ ❹ ν、'、勺1天’及最佳至少約1個月。 物嶋佩#絲。因為碳奈米 發a月之禮球可與其他材料混合而形成複合物。本 Σ、導電“發明碳奈米球之窄的粒徑分佈與包含強 度導電隨導熱性、孔隙度及表面積等之獨特性質而受益。 IV·製造碳奈米球 [0039] 用於本發明方法之碳奈米球可 μ 期望性質之碳奈米球的技術製造。於—實施例, 形成一前驅物混合物,其包含碳前驅物及複 數個催化她粒子’⑵碳化該前驅減合物轉成—中間竣 材料,其包含奴奈米結構、非晶形碳及催化金屬,(3)藉由移 除至少一部分非晶形碳及選擇性採用至少一部分催化金屬而 純化該t間碳㈣。下列成分可驗進行i述根據本發明之碳 奈米球的製造步驟。 A.用於作成碳奈米球之成分 (1)碳前驅物 [0040] 任何類型的碳材料可作為本發明之碳前驅物,只要其可 將模板粒子分散及基於熱處理碳化模板粒子的四周。適合的化 合物包含單一及多環芳香族化合物’諸如具有可聚合官能基之 ::ODMA\PCDOCS\TPEDMS\41201 \1 12 200936499 苯及萘衍生物。而且也包含經加熱可形成單一及多環芳香族化 合物之環化合物。可參與聚合反應之官能基包含c〇〇H、 00、OH、OC、S〇3、NH2、SOH、N=C=〇 及類似物。 [0041] 該碳前驅物可以是單一類型的分子(例如,可以與自身 聚合的化合物),或是該碳前驅物可以是一起共聚合之^或多 ^不同化合物之組合。例如’在一實施例’碳^驅:可以是間 苯二盼曱經凝膠。在此二化合物之實施例,甲駿藉由與間苯二 酚分子之羥基聚合而做為間苯二酚分子之間的交聯劑。 [0042] 適合的碳前驅物之其他範例包含間苯二酚、酚樹脂、三 ❹ 聚氰胺甲搭凝膠、聚(糠醇)、聚(丙缔腈)、細、石油遞^ 及類似物。其他可聚合的苯、苯醌及相似的化合物亦可被使用 作為碳前驅物及為熟悉本技術人士所熟知。 [0043] 在一實施例,碳前驅物係一水熱聚合有機化合物。此類 適合的有機化合物包含檸檬酸、丙烯酸、苯甲酸、丙烯酸醋、 丁二烯、苯乙烯、肉桂酸及類似物。 (2)催化模板奈米粒子 [0044] 催化模板奈米粒子係使用作為用於作成奈米結構之一 φ 模板。當與碳前驅物混合,模板奈米粒子提供碳化及/或聚合 可以開始或增加之成核位置。因為模板奈米粒子係自催化原子 做成,該模板粒子可有利作為成核位置及作為用於碳化及/戋 聚合之催化劑。 [0045] 該催化模板粒子可以超過一種方法形成。如以下描述, 於一實施例,該模板粒子係自團聚體形成粒子之金屬鹽而形 成。選擇性地,催化原子可與一分散劑複合以控制粒子的形 成。使用分散劑之模板奈米粒子傾向比未使用分散劑所形成之 模板粒子具有較統一的尺寸及形狀。 (i)催化劑原子 ::ODMA\PCDOCS\TPEDMS\41201 \1 13 200936499 [0046]用於形成模板奈米粒子之催化劑原子可以是能 促進碳化及/或碳前驅物之聚合的任何材料。於一 = 例’該催化劑係-過渡金屬催化劑’包含但不限於鐵、 該等過渡金屬催化劑特別有用於催化許多涉及上俨:: 物之聚合及/或碳化反應。 】驅 ⑻分散劑[0027] The surface modification used in the present invention is an organic molecule which is soluble in a polar solvent and has one or more functional groups capable of bonding with carbon nanospheres. Surface modifiers can be - surfactants, niacin, carbohydrates, amino acids, and the like. Examples of functional groups suitable for bonding to the surface of carbon nanospheres include carboxyl groups, amines, acid salts and/or hydroxyl groups. In some embodiments, the functional moiety (e.g., carboxyl or hydroxyl) is selected to bond to an oxygen-containing moiety on the surface of the carbon nanosphere. 1 A specific example of a compound which is used as a surface modifier, and comprises glucose, glycine, glycine, anti-bad domain n-base acid, acid, trifluoroacetic acid and the like. C. Polar Solvent [0028] When the carbon nanosphere is coated with a surface modifier, the solvent may be any solvent which is capable of dissolving the surface modifier and dispersing the carbon to be converted. Examples of suitable polar solvents include, but are not limited to, water, ethanol, tetrahydroanthracene (ΤΗρ), and the like. Unexpectedly, the material of the county is the best solvent for the dispersion of carbonaceous materials. Because the organism of the aqueous solvent should be (4) secret and mixed with the dispersed carbon material to form a composite of hydrophilic materials, miscible_better. III. Dispersion method of the nanospheres [=0^ In the green of the present invention, the κ of the nanosphere is dispersed by the nanosphere in the extreme like water, and is reduced by using a surface modifying agent (such as glucose) and ultrasonic waves. The size of the rf] / method usually contains the choice - can be mixed with the oxygen on the surface of the carbon nanosphere (4) (four) can be transferred (four) to change the polarity of the agent, the mixture of the four (four) and carbon nanosphere to disperse The carbon is not a ball. The cereal, the surface modifier and the nanosphere can be mixed together in any order. In the embodiment, the concentration of the surface of the spray is from about G5 wt= to::ODMA\PCDOCS\ TPEDMS\412〇l\l 10 200936499 is in the range of about 20 wt ° / 〇, more preferably in the range of about 5 wt % to about 1 〇 wt %. The carbon nanomaterial containing carbon nanospheres typically contains a concentration range from From about 1 wt% to about 20 wt% 'better from about 1 wt〇/❶ to about 1% by weight. [0031] The 1⁄4 nanosphere is dispersed in a solvent using ultrasonic waves. Ultrasonic waves can use any suitable technique. Performing, such as an ultrasonic bath, oscillating carbon nanospheres at ultrasonic frequencies. An example of an ultrasonic device suitable for dispersing carbon nanospheres is CR£ST ULTRASONICS TRU- SWEEPTM (frequency 68 kHz and 5 watts). ❹ ❿ [0032] Ultrasonic waves are usually continued for at least 3 minutes, preferably at least about 丨 hours, and more preferably at least about 2 hours. The process includes from about 30 minutes to about 6 hours, and preferably from about! hours to about 3 hours. The sonication step can be carried out at room temperature or other suitable temperature. The boat-like ridge can be broken and scattered. Carcass. Unexpectedly, agglomerates of carbon nanospheres with an average particle size and micron size can be produced using the present method. The average particle size of the measured particle size is less than about 3 (8) nm, preferably smaller. And the best secret 15G nano-nano and / or nai tree agglomerate. The dynamic light scattering data of the PMI ball shows that the use of this diameter is significantly reduced. Figure 3 shows the richness of the example 2 in detail. As shown in Fig. 3, in an embodiment, the method of the present invention produces dispersed carbon nanospheres having a two-average particle diameter of 147 nm. Sections 4 and 4, according to the present invention The distribution of the carbon spheroids of the county is accompanied by the T of the T surface. This edition is better than the use of the method of the present invention. The dispersed carbon nanosphere also tends to have a side, and the range after the surface is from: 〇DMA\PCD〇CS\TPEDMS\41201\1 200936499 [0036] According to the nature of the present invention, such as multi-wall, middle knife 2 The Sini nanosphere advantageously retains its advantageous original dimensions. Figure 4B Figure 2 P: f closed structure, graphite properties and the 2C figure before the dispersion of the primary structure The carbon nanospheres with the same dispersion are displayed. The height of the primary structure similar to that of the nanospheres is stable for several months. The stone of the present invention can be at room temperature for about one hour, and more preferably, the carbon nanosphere can be stably maintained for at least ❹ ν ν, ', spoon for 1 day' and optimally for at least about 1 month.嶋佩佩#丝. Because the carbon nano-a gift ball can be mixed with other materials to form a composite. Benton, Conductive "The narrow particle size distribution of the inventive carbon nanosphere and the intrinsic properties including the strength of electrical conductivity with thermal conductivity, porosity and surface area. IV. Manufacture of carbon nanospheres [0039] for use in the method of the invention The carbon nanosphere can be fabricated by the technique of a carbon nanosphere of a desired nature. In the embodiment, a precursor mixture is formed, which comprises a carbon precursor and a plurality of catalytic particles [2) carbonized to convert the precursor compound into - an intermediate tantalum material comprising a nana structure, an amorphous carbon and a catalytic metal, (3) purifying the inter t carbon (4) by removing at least a portion of the amorphous carbon and optionally employing at least a portion of the catalytic metal. The manufacturing steps of the carbon nanospheres according to the present invention are described. A. Components for forming carbon nanospheres (1) Carbon precursors [0040] Any type of carbon material can be used as the carbon precursor of the present invention. As long as it can disperse the template particles and carbonize the template particles based on heat treatment. Suitable compounds include single and polycyclic aromatic compounds such as those having polymerizable functional groups:: ODMA\PCDOCS\TPEDMS\41201 \1 12 200936499 Benzene and naphthalene derivatives. Also included are ring compounds which are heated to form single and polycyclic aromatic compounds. The functional groups which can participate in the polymerization include c〇〇H, 00, OH, OC, S〇3, NH2. SOH, N=C=〇 and the like. [0041] The carbon precursor may be a single type of molecule (for example, a compound that can be polymerized with itself), or the carbon precursor may be copolymerized together or more. ^ A combination of different compounds. For example, 'in an embodiment' carbon drive: may be a meta-phenylene sulfonate gel. In the embodiment of the two compounds, A is polymerized by hydroxyl groups with resorcinol molecules. As a cross-linking agent between resorcinol molecules. [0042] Other examples of suitable carbon precursors include resorcinol, phenolic resin, triterpene melamine gel, poly(sterol), poly (Cyanonitrile), fine, petroleum, and the like. Other polymerizable benzene, benzoquinone and similar compounds can also be used as carbon precursors and are well known to those skilled in the art. [0043] In one implementation For example, a carbon precursor is a hydrothermally polymerized organic compound. Suitable organic compounds include citric acid, acrylic acid, benzoic acid, acrylic acid acrylate, butadiene, styrene, cinnamic acid, and the like. (2) Catalytic Template Nanoparticles [0044] Catalytic Template Nanoparticles are used as Forming a φ template into a nanostructure. When mixed with a carbon precursor, the template nanoparticle provides a nucleation site where carbonization and/or polymerization can begin or increase. Since the template nanoparticle is made from a catalytic atom, the template particle It can be advantageously used as a nucleation site and as a catalyst for carbonization and/or ruthenium polymerization. [0045] The catalytic template particles can be formed in more than one method. As described below, in one embodiment, the template particles are formed from agglomerates of particles. Formed by a metal salt. Alternatively, the catalytic atom can be combined with a dispersant to control the formation of the particles. The template nanoparticles using a dispersant tend to have a more uniform size and shape than the template particles formed without the use of a dispersant. (i) Catalyst Atom :: ODMA\PCDOCS\TPEDMS\41201 \1 13 200936499 [0046] The catalyst atom used to form the template nanoparticle may be any material which promotes the polymerization of carbonization and/or carbon precursor. In the following, the catalyst system-transition metal catalysts include, but are not limited to, iron, and the transition metal catalysts are particularly useful for catalyzing a plurality of polymerization and/or carbonization reactions involving tops:. 】 drive (8) dispersant

[0047]選擇性地,分散劑可與催化劑原子複合以控制 粒子的形成。選擇分散_促進具有縫_定性、尺^及' 或統一性的奈米催化劑粒子之形成。本發明範圍内之分散 的有機分子、聚合物及絲物。該分散劑可藉由 包含離^鍵結、共價鍵結、凡得瓦力作用/鍵結、離子對電子 鍵結或氫鍵結之各種不同的機制與溶解或分散 載體内之催化劑原子互相作用及鍵結。 迥田岭齊丨次 [0048] 為提供分散劑及催化劑原子之間的鍵結,分散劑包含— 或多個適當的官能基。較佳的分散劑包含具有電 是-或多個離子對之官能基,其可用於複合 子,或其可形成其他型式之鍵結諸如氫鍵結。該等官基 分散劑具有與催化劑原子互相作用之強鍵結。 允許 [0049] 该分散劑可以是聽:或合成的化合物。於催化劑原子為 金屬及分細為有機化合物之情況τ,如此職催化劑複合 物’可以是有機金屬複合物。 [0050]在一實施例,分散剤之官能基包含選自羥基、羧基、羰 基、胺巧、醯胺類、丙烯腈、具有自由單獨電子對之氮、胺基 酸、硫醇、磺酸、磺齒化物或醯齒化物之群的一或多個組成分 子。該分散劑可以是單官能基、雙官能基或多官能基。 [2〇51]適合的單官能基分散劑之範例包含醇類諸如乙醇及丙 醇二以及紐=貞,諸如甲酸及乙酸。有⑽雙官能基分散劑包 含一酸,諸如草酸、蘋果酸、丙二酸、琥珀酸及類似物;二醇 ::ODMA\PCD〇CS\TPEDMS\41201 \1 14 200936499 類諸如乙二醇、丙二醇、1,3_丙二醇及類似物;羥基酸諸如甘 、乳酸及類似物。有用的多官能基分散劑包含,糖類諸如 葡萄糖,多官能基羥酸諸如檸檬酸、果膠、纖維素及類似物。 其他有用的分散劑包含乙醇胺、硫氫乙醇、2_硫氫乙酸酯、胺 基酸諸如甘胺酸及磺酸諸如磺基苯基醇、磺苯甲酸、磺苯硫醇 及磺苯胺。該分散劑甚至可包含無機成分(例如,矽基)。 [0052] 本發明範圍内之適合的聚合物及寡聚物,包含但不限於 聚丙烯酯、聚乙烯苯曱酸酯、聚乙烯醯蟑鹽、聚乙烯硫酸鹽、 聚乙烯磺酸鹽包含磺化苯乙烯、聚二酚碳酸鹽、聚苯咪唑、聚 Φ °比°疋、績化I對本二曱酸乙浠酯。其他適合的聚合物包含聚乙 烯醇、聚乙二醇、聚丙稀醇及類似物。 [0053] 除了該分散劑之特徵以外,其也是有利於在催化劑懸浮 液中控制分散劑對催化劑原子之莫爾比。更有用的量測係分散 劑官,基對催化劑原子之莫爾比。例如,共價金屬離子之情 況,單價官能基之二莫爾當量將是必須的,以提供理論上的化 學計量比。一較佳實施例,分散劑官能基對催化劑原子之莫爾 比,較佳在約0.01: 1至約100 :丨之範圍,更佳在約〇 〇5、: i 至約50 _ 1之範圍,及最佳在約〇」:丨至約2〇 :丨之範圍。 φ [0054]本發明之分散劑允許用於非常小的及統一的粒子之形 成。通常,分散劑存在下所形成之奈米催化劑粒子尺寸係小^ 1微米。較佳,奈米粒子係小於1〇〇奈米,更佳係小於約5〇 奈米’以及最佳係小於約2〇奈米。 [0055]於該碳前驅物熱解期間,該分散劑可防止催化劑粒子之 團聚及去活化。該防止去活化之能力可提高奈米催化劑能 及/或增加奈米催化劑在熱解極端條件下的使用壽命。即使 含分散劑只能維持催化劑活性額外數毫秒,或甚至數微秒,太 米催化劑之增加的時間在高溫之給定的碳化動力學下可非^ 有利。 ::ODMA\PCDOCS\TPEDMS\41201\l 15 200936499 (iii)溶劑及其他添加物 [0056] 可選擇性地採用溶劑以製備催化劑原子,用於與分散劑 及/或碳前驅物混合。其中製備有催化模板奈米粒子之液體介 質可含有各種不同的溶劑,包含水及有機溶劑。溶劑藉由提供 用於與催化劑原子及分散劑相互作用之液體介質而參與粒^ 的形成。於一些案例,溶劑可作為一二次分散劑而與不是作為 溶劑的一次分散劑結合。在一實施例,溶劑亦允許奈米粒子开^ 成一懸浮液。適合的溶劑包含水、甲醇、乙醇、n_丙醇、異^ 醇、乙腈、丙酮、四氫呋喃、乙二醇、二甲基曱胺、二甲基亞 φ 砜、二氯曱烷及類似物,以及包含其混合物。 [0057] 該催化劑組成物亦可包含協助形成奈米催化劑粒子之 添加物。例如可添加礦物酸及驗性化合物,較佳小量添加(例 如’小於5 wt%)。可被使用之礦物酸的範例,包含氫氯酸、 硝酸、硫酸、磷酸及類似物。鹼性化合物之範例,包含氫氧化 納、氫氧化鉀、氫氧化鈣、氫氧化銨及相似化合物。 [0058] 也可能添加固體物質以協助奈米粒子之形成。例如離子 父換柄^曰於催化劑形成期間可被添加至溶液。離子交換樹脂可 f代上述的酸或鹼。固體物質可輕易地使用諸如離心及過濾之 G 簡易技術自最終鐵催化劑溶液或懸浮液分離。 〜 (3)用於純化中間碳材料之試制 [0059] 可使用各種不同的試劑自碳奈米結構移除非晶形碳及, 或催化,屬,藉以純化中間物質。純化可使用任何試劑或試劑 組合進行’其可選擇性地移除非晶形碳(或選擇性催化金屬), 同時留下石墨材料。 [=060]用於移除非晶形碳之試劑係包含氧化酸類、氧化劑及其 奶合物。適用於移除非晶形碳之範例係包含硫酸、ΚΜη04、 H2〇2、5M或以上之hno3及王水。 ::ODMA\PCDOCS\TPEDMS\412〇1\i 16 200936499 [=1]催化金屬可使用任何能選擇性溶解作為催化劑之 ,但不會損壞碳奈米結構之試劑移除。硝,酸係適用n ίΐί屬諸如但不限於鐵、織錦。其他_試劑Ϊί ^理/驟以轉化所有或一些該殘留的== 理可在高於赋福度進行’更佳在高於靴 B·碳奈米球之製作程序Optionally, a dispersant can be combined with the catalyst atoms to control the formation of particles. The dispersion is selected to promote the formation of nanocatalyst particles having a slit-qualification, a size, and a uniformity. Dispersed organic molecules, polymers and filaments within the scope of the invention. The dispersant can interact with the catalyst atoms in the dissolved or dispersed carrier by various mechanisms including bonding, covalent bonding, van der Waals interaction/bonding, ion-pair electron bonding or hydrogen bonding. Function and bonding.迥田岭齐丨次 [0048] To provide a bond between the dispersant and the catalyst atoms, the dispersant comprises - or a plurality of suitable functional groups. Preferred dispersants comprise functional groups having an electro- or a plurality of ion pairs which can be used in the composite, or which can form other types of linkages such as hydrogen bonding. The officially based dispersants have a strong bond that interacts with the catalyst atoms. Allowed [0049] The dispersing agent can be an audible: or synthetic compound. In the case where the catalyst atom is a metal and the fine fraction is an organic compound τ, such a catalyst complex ' may be an organometallic composite. [0050] In one embodiment, the functional group that disperses ruthenium comprises a group selected from the group consisting of a hydroxyl group, a carboxyl group, a carbonyl group, an amine group, a guanamine, an acrylonitrile, a nitrogen having a free individual electron pair, an amino acid, a thiol, a sulfonic acid, One or more constituent molecules of the group of sulphonate or dentate. The dispersant may be a monofunctional, difunctional or polyfunctional group. [2〇51] Examples of suitable monofunctional dispersants include alcohols such as ethanol and propanol and neon, such as formic acid and acetic acid. The (10) difunctional dispersant comprises a monoacid such as oxalic acid, malic acid, malonic acid, succinic acid and the like; diol:: ODMA\PCD〇CS\TPEDMS\41201 \1 14 200936499 such as ethylene glycol, Propylene glycol, 1,3-propanediol and the like; hydroxy acids such as glycerol, lactic acid and the like. Useful polyfunctional dispersants include, sugars such as glucose, polyfunctional hydroxy acids such as citric acid, pectin, cellulose, and the like. Other useful dispersing agents include ethanolamine, thiolethanol, 2-sulfuric acid acetate, amino acids such as glycine and sulfonic acids such as sulfophenyl alcohol, sulfobenzoic acid, sulfophenylthiol and sulfanilide. The dispersant may even comprise an inorganic component (for example, a mercapto group). Suitable polymers and oligomers within the scope of the invention include, but are not limited to, polypropylene esters, polyvinyl benzoate, polyvinyl sulfonium salts, polyethylene sulfates, polyvinyl sulfonates containing sulfonates Styrene, polydiphenol carbonate, polybenzimidazole, poly Φ ° ratio ° 疋, 化 对 对 本 。 。 。 。 。 。 。. Other suitable polymers include polyvinyl alcohol, polyethylene glycol, polypropylene, and the like. In addition to the characteristics of the dispersant, it is also advantageous to control the molar ratio of the dispersant to the catalyst atoms in the catalyst suspension. A more useful measurement is the dispersant, based on the molar ratio of the catalyst atoms to the molar ratio. For example, in the case of covalent metal ions, a two-mole equivalent of a monovalent functional group would be necessary to provide a theoretical stoichiometric ratio. In a preferred embodiment, the molar ratio of the dispersant functional group to the catalyst atom is preferably in the range of from about 0.01:1 to about 100:丨, more preferably in the range of from about 、5, :i to about 50 _1. , and the best in the 〇 〇: 丨 to about 2 〇: 丨 range. φ [0054] The dispersant of the present invention allows for the formation of very small and uniform particles. Typically, the nanoparticle catalyst particles formed in the presence of a dispersant are small in size. Preferably, the nanoparticle system is less than 1 nanometer, more preferably less than about 5 nanometers and the best is less than about 2 nanometers. The dispersant prevents agglomeration and deactivation of the catalyst particles during pyrolysis of the carbon precursor. This ability to prevent deactivation can increase the lifetime of the nanocatalyst and/or increase the lifetime of the nanocatalyst under extreme conditions of pyrolysis. Even if the dispersant contains only a few milliseconds, or even a few microseconds, of catalyst activity, the increased time of the catalyst can be advantageous at a given carbonization kinetics at elevated temperatures. ::ODMA\PCDOCS\TPEDMS\41201\l 15 200936499 (iii) Solvents and Other Additives Solvents may be optionally employed to prepare catalyst atoms for mixing with dispersants and/or carbon precursors. The liquid medium in which the catalytic template nanoparticle is prepared may contain various solvents including water and an organic solvent. The solvent participates in the formation of the granules by providing a liquid medium for interaction with the catalyst atoms and dispersants. In some cases, the solvent can be combined as a primary dispersant with a primary dispersant that is not a solvent. In one embodiment, the solvent also allows the nanoparticles to be opened into a suspension. Suitable solvents include water, methanol, ethanol, n-propanol, iso-ol, acetonitrile, acetone, tetrahydrofuran, ethylene glycol, dimethyl decylamine, dimethyl sulfoxide, chlorin, and the like. And including mixtures thereof. [0057] The catalyst composition may also comprise an additive that assists in the formation of nanoparticles of catalyst particles. For example, mineral acids and test compounds may be added, preferably in small amounts (e.g., > less than 5 wt%). Examples of mineral acids that can be used include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like. Examples of basic compounds include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonium hydroxide and the like. It is also possible to add solid matter to assist in the formation of nanoparticles. For example, an ion parent handle can be added to the solution during catalyst formation. The ion exchange resin can be substituted for the acid or base described above. The solid material can be easily separated from the final iron catalyst solution or suspension using a simple technique such as centrifugation and filtration. ~ (3) Trial production for purification of intermediate carbon materials [0059] Amorphous carbons and/or catalysis can be removed from the carbon nanostructures using various reagents to purify the intermediate materials. Purification can be carried out using any reagent or combination of reagents' which selectively removes amorphous carbon (or selectively catalyzes the metal) while leaving the graphite material. [=060] The reagent for removing amorphous carbon contains an oxidizing acid, an oxidizing agent, and a milk composition thereof. Examples suitable for removing amorphous carbon include hno3 and aqua regia containing sulfuric acid, ΚΜη04, H2〇2, 5M or more. ::ODMA\PCDOCS\TPEDMS\412〇1\i 16 200936499 [=1] The catalytic metal can be removed using any reagent that selectively dissolves as a catalyst but does not damage the carbon nanostructure. Nitrate, acid is suitable for n ΐ 属 such as, but not limited to, iron, brocade. Other _ Reagents Ϊ ^ ^ 骤 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化 转化

[ΓΪΙΐΐ明之碳奈米結構可使用以下所有或部分的步驟: =形成則=混合物’包含—碳前驅物及複數個模板奈米 ^子/.20允許或引起碳前驅物於催化模板奈米粒子四周聚 ΐ ’二碳化前驅物混合物形成-包含複數個奈米結構(例 “,奴不米球)、非晶形碳及催化金屬之中間碳材料,及 藉由移除至少-部分非晶形碳及獅性的—部分催化金 ί ϊίΐϊίϊ料。純化步驟亦可包含移除在非晶形碳移除期 能基或添加額外的含氧官能基以賦與該碳奈 米球較大的親水性。 (1)形成前軀物混合物 [00=3]前驅物混合物储由獅碳前驅物及分散碳前驅物中 之複數個催化模板奈米粒子而形成。 [0064] 分β散在碳前驅物中之催化模板奈米粒子可以數種不同 的方法提供。模板奈米粒何形成在碳前驅物巾(即,臨場) 或形成在-分開的反應混合物及之後與碳前驅物混合。一些案 =,粒子形成可部分發生在—糾的反應及之後被完成,當 該模板粒子混合及/或在碳前驅物巾加熱(例如,在前驅物聚 合步驟二開始時)。模板奈米粒子亦可使用控制—或多種態樣 之粒子形成的分散細彡成,賴板奈米粒何由金屬鹽作成。 [0065] 於-實_ ’模板奈綠子係自—金屬卿成在碳前驅 ::ODMA\PCDOCS\TPEDMSV41201\1 17 200936499 前驅物ί上:=金 粒:由選擇-或多個可與碳 之後允許或狀二係與碳前驅物-合以及 Γΐ散劑可被選擇。接著,催化_子(例如,絲金屬 i戈二及分散劑(例如’猶或其鹽類型式)二起反 劑複合物。催化_合物通常鋪由首先 子係使时散劑形成以控制粒 别j 21實%例’—或多_式的催化綱子及-或多個[The carbon nanostructure of ΓΪΙΐΐ明 can use all or part of the following steps: = formation = mixture 'contains carbon precursors and a plurality of template nanometers / .20 allow or cause carbon precursors to catalyze template nanoparticles a surrounding ΐ 'dicarbonized precursor mixture formed - an intermediate carbon material comprising a plurality of nanostructures (eg, "nine glutinous rice balls"), amorphous carbon and catalytic metals, and by removing at least a portion of the amorphous carbon and The lion-partially catalyzed gold 。 ΐϊ ΐϊ 。. The purification step may also include removing the energy at the amorphous carbon removal stage or adding additional oxygen-containing functional groups to impart greater hydrophilicity to the carbon nanosphere. 1) Formation of a precursor mixture [00=3] The precursor mixture is formed by a plurality of catalytic template nanoparticles in a lion carbon precursor and a dispersed carbon precursor. [0064] Catalytic decomposition of β in a carbon precursor The template nanoparticle can be provided in several different ways. The template nanoparticle is formed in a carbon precursor towel (ie, on the spot) or formed in a separate reaction mixture and then mixed with a carbon precursor. In some cases, the particle formation can be Part of the reaction occurs after the correction and is completed, when the template particles are mixed and/or heated in the carbon precursor towel (for example, at the beginning of the precursor polymerization step 2). The template nano particles can also be controlled - or multiple The dispersion of fine particles formed by the morphology of the particles is formed by the metal salt. [0065] The solid-green _ 'template green chloroform system from the metal qingcheng in the carbon precursor:: ODMA\PCDOCS\TPEDMSV41201\ 1 17 200936499 Precursor ί上:=金粒: It can be selected by selecting - or multiple can be combined with carbon or with a carbon precursor and a dispersing agent. Next, the catalytic _ sub (for example, silk metal i Ge 2 and a dispersant (such as 'Jude or its salt type) two counter-reagent complexes. Catalysts are usually laid out by the first sub-system to form a powder to control the particle size. _ type of catalytic scheme and / or more

子及分散齡—適#溶射及之後允許該催 ==!:形 成分可以任』 之前預齡集何祕加其他成分 之'實侧,胁觀奈練子之成分係藉由 成,1小時至約14天之-段時間而允許或引起以形 ,不米粒子。此混合係通常於溫度範圍自約〇t至約2⑻。C進 實f例,溫度不超過i(xrc。粒子形成也可藉由使用 "1 丨誘發。例如,在一些案例,粒子或中間粒子之形成可藉由 通過催化劑複合物溶液之氣泡氫引起。 [0068]本發明之模板奈米粒子能催化碳前驅物之聚合及/或碳 化。:反則驅物中催化模板奈米粒子之濃度係通常被選擇以最大 士碳奈米結構所形成的數目。催化模板粒子的量隨著所用之碳 剷驅物之型式而不同。在一示範實施例,碳前驅物對催化原子 之莫爾比係約0.1 : 1至1〇〇 : 1,更佳為約1 : 1至約3〇 : 1。 (2)聚合該前驅物混合物 [0069]前驅物混合物係典型上允許硬化充足時間,如此複數個 中間%i奈米結構形成在模板奈米粒子之四周。因為模板奈米粒 子係催化活性的,模板奈米粒子可優先加速及/或起始在模板 奈米粒子表面附近之碳前驅物的聚合。 ::ODMA\PCDOCS\TPEDMS\41201\1 18 200936499 tff雜频需之咖視溫度、條糧料之型 ί度J :?之PH及所使用之碳前驅物的類型而定。於聚 5 /月間’中㈣奈米結構可為個別的有機結構或碳化期間破& 分離及/或非晶形碳之移除的奈米結構之聯合。 " 所添力 1 之氨亦可藉由增加聚合料及增加發生 在則驅物为子之間的父聯之量影響聚合。Sub-distribution age-suitable #solubilization and then allow the reminder ==!: formation points can be 』 before the pre-age set and secrets plus other components of the 'real side, the ingredients of the spectator Nai-nong are made by, 1 hour Allows or induces shaped, non-rice particles to a period of about 14 days. This mixing is typically in the temperature range from about 〇t to about 2 (8). In the case of C, the temperature does not exceed i (xrc. Particle formation can also be induced by using "1 。. For example, in some cases, the formation of particles or intermediate particles can be caused by bubble hydrogen through the catalyst complex solution. [0068] The template nanoparticle of the present invention is capable of catalyzing the polymerization and/or carbonization of a carbon precursor. The concentration of the catalytic template nanoparticle in the inverse is generally selected to be the number of the largest carbon nanotube structure. The amount of catalytic template particles varies with the type of carbon scraping used. In an exemplary embodiment, the carbon precursor to the catalytic atom has a molar ratio of about 0.1:1 to 1 〇〇:1, more preferably From about 1:1 to about 3:1. (2) Polymerizing the precursor mixture [0069] The precursor mixture typically allows for sufficient time for hardening, such that a plurality of intermediate %i nanostructures are formed around the template nanoparticle. Since the template nanoparticle is catalytically active, the template nanoparticle can preferentially accelerate and/or initiate polymerization of the carbon precursor near the surface of the template nanoparticle. ::ODMA\PCDOCS\TPEDMS\41201\1 18 200936499 Tff miscellaneous frequency needs coffee temperature The degree of grain and grain type depends on the type of PH and the type of carbon precursor used. In the case of poly 5 / month 's (four) nanostructures can be broken for individual organic structures or during carbonization And/or the combination of the nanostructures of the amorphous carbon removed. " The ammonia added to the force 1 can also affect the polymerization by increasing the amount of the polymer and increasing the amount of the parent that occurs between the precursors.

Ο [0072]關於水熱式可聚合的碳前驅物,聚合典型上發生在提高 的溫度。在-較佳實施例,碳前驅物係加熱至約此至約2〇〇ς 之溫度,及更佳在約25。(:與約120。(:之間。 [0_間苯二盼甲賴膠(例如,具有鐵粒子及溶液阳為 M4)聚合之適合條件的範例係溶液溫度在約〇£>c至約9〇它及 硬化時間小於1小時至約72小時。熟悉本技術領域人士可輕 易決定,在相同或不同參數下硬化其他碳前驅物所需之條件。 [0074^—實施例,該聚合不被允許連續完成。在整個溶液聚 合之前終止該硬化程序有助於形成複數個將導致個別奈米結 構之中間奈米結構,而不是單一碳化材料堆。然而,本發明包 含石反别驅物形成複數個互相鏈結或部分鏈結之中間碳奈米結 構之實施例。在此實施例,個別奈米結構係於碳化期間及/或 非晶形碳移除期間形成。 [0075] 自模板奈米粒子之分散形成中間碳奈米結構引起具有 獨特形狀及尺寸之複數個中間碳奈米結構之形成。最後,奈米 結構之性質至少部分可由中間碳奈米結構之形狀及尺寸決 定。因為中間碳奈米結構之獨特形狀及尺寸,最後的奈米結構 可具有諸如特別是高表面積及高孔隙度之有利的性質。 (3)碳彳b該前堪物混合物 [0076] 前驅物混合物係藉由加熱而碳化以形成包含複數個碳 奈米結構、非晶形碳及催化金屬之中間碳材料。該前驅物混合 19 ::ODMA\PCD〇CS\TPEDMS\41201\1 200936499 物可藉由加熱該混合物至溫度約50(rc至約25〇〇<t之間而碳 = <於t熱程序期間,諸如氧及氮原子係揮發或自中間奈米結 板奈米粒子四周的碳)移除,以及碳原子被重新排^ 或接S以形成碳基結構。 [=7]及碳化步驟通常係產生石S基奈米結構。該石墨基奈米 j具有制在—SP2混成礙原子之結構薄片中的碳原子’。、石 #層可提供諸如導電及賴強度及/或剛度之雜及有利的性 Ο ❹ (4)純化中間碳材料 材料藉由移除至少—部分非石墨非晶形碳純 =該純化步料增加㈣碳材料巾碳奈㈣構之重量百分 典型上藉由氧傾碳而移除。用於移除非晶 化舰韻擇,以氧化魏在非^墨非晶形碳令之鍵 米結構之pi鍵結具有較低的反應性。非 =叙可_施加氧化劑或混合物以—或多個連續純化步驟 選ΐϋ’實質上财或—部分催化金屬可被移除。催 m疋IS及被移除的催化金屬之純度將視最終產物中 板奈米粒子使用諸如硝酸、氫_或氫氧化 板太之板m子鱗師碳之移时法係視模 5粒子(例如,鐵粒子或原子)通常可藉由將複合物奈米= 在5.0Μ硝酸溶液回流持續約3_6小時移除。 可,__板奈米粒子及/或非晶形 妷/、要〜移除長序不會完全損壞碳奈米結構。於一些案例 ;:ODMA\PCDOCS\TPEDMS\41201 \1 20 200936499 二= 物可捕於自㈣奈糊歧少部分移除 化料躺,氧_及酸具有將水錢離子基及氧 1匕;诸=不限賤酸鹽、賴基及或嶋基導入至ί材; =氧;及條件爾入低於9 ❹ ❹ [=4]選雜地,純触序亦可包麵外的溫度及之孰户 ί步驟,其可轉化殘留的非晶形選擇= 驟,由於非晶形碳之實質部分已被移除,以及 至殘留的部分,殘留的碳係更容易轉m佳的=遞 含氧官能基可藉由使用強氧化劑處該中太二二被 導入至碳奈米球的表面。一般而古,為气z,十:材枓而被 的量(即’是否—先前^中 導的碳Λ下化 =劑的嶽^ r實咸:力r隨著氧化;;晶 在-實妃例,氧化處理係進行約2小時至約 段時間。為了幫助氧化,氧化處理可使用超音波進行。 [_5]使赠述綠製造之碳奈料料 1=睁t=r本發明。然而,熟 明瞭本發明可使用利用不同於前述方法製造的竣奈米 V.實施例 [0086]。 (實施例1) 麵之製備, ,、韦使用動態光散射量測之平均粒 ::ODM A\PCDOCS\TPEDMS\41201 \ 1 21 200936499 徑大於1微米。 (a) 鐵溶液之製備(01Μ) [0088] 0·1Μ鐵溶液係使用84克鐵粉末、289克檸檬酸及15公 升的水$備。該含鐵混合物係於一搖晃台上之密閉燒瓶中混合 3天’每天短暫巾斷丨或2:欠’以在繼續混合之前使用空氣清 除該燒瓶之蒸氣空間。 (b) 如驅物混合物之製備 Ο[0072] With regard to hydrothermally polymerizable carbon precursors, polymerization typically occurs at elevated temperatures. In a preferred embodiment, the carbon precursor is heated to a temperature of from about this to about 2 Torr, and more preferably at about 25. (: with an approximate condition of about 120. ( between: [0_ meta-benzoic acid (for example, having iron particles and solution cation is M4)), the temperature of the solution is about &£>c to It is about 9 Torr and the hardening time is less than 1 hour to about 72 hours. Those skilled in the art can easily determine the conditions required to harden other carbon precursors under the same or different parameters. [0074^ - Example, the polymerization is not It is allowed to continue in succession. Terminating the hardening procedure prior to polymerization of the entire solution helps to form a plurality of intermediate nanostructures that will result in individual nanostructures rather than a single carbonized material stack. However, the present invention includes the formation of a stone counterbore An embodiment of a plurality of inter-linked or partially-linked intermediate carbon nanostructures. In this embodiment, individual nanostructures are formed during carbonization and/or during amorphous carbon removal. [0075] From Template Nano The dispersion of particles forms an intermediate carbon nanostructure resulting in the formation of a plurality of intermediate carbon nanostructures having unique shapes and sizes. Finally, the properties of the nanostructure can be at least partially influenced by the shape and size of the intermediate carbon nanostructure. It is decided that because of the unique shape and size of the intermediate carbon nanostructure, the final nanostructure can have advantageous properties such as, in particular, high surface area and high porosity. (3) Carbon 彳b The former mixture of precursors [0076] Precursor The mixture is carbonized by heating to form an intermediate carbon material comprising a plurality of carbon nanostructures, amorphous carbon and a catalytic metal. The precursor is mixed with 19::ODMA\PCD〇CS\TPEDMS\41201\1 200936499 By heating the mixture to a temperature of about 50 (rc to about 25 Å < t and carbon = < during the t heat program, such as oxygen and nitrogen atom volatilization or from the middle nano-plate nanoparticle The carbon is removed, and the carbon atoms are re-arranged or connected to form a carbon-based structure. [=7] and the carbonization step usually produces a stone S-nine structure. The graphite-based nano-J has a system of -SP2 Mixing the carbon atoms in the structural thin film of the atom'. The layer #石# can provide impurities and favorable properties such as electrical conductivity and strength and/or stiffness. 4 (4) Purifying the intermediate carbon material by removing at least part of Non-graphite amorphous carbon pure = the purification step increases (four) carbon material The weight percentage of the carbon (4) structure is typically removed by oxygen decanting. It is used to remove the amorphized ship's rhyme selection, so as to oxidize the pi bond of the bond structure of the non-ink amorphous carbon. Low reactivity. Non-recommended _ application of oxidant or mixture to - or multiple successive purification steps to select 'substantially or partially - catalytic metal can be removed. 催 m疋IS and the removed catalytic metal Purity will depend on the plate nanoparticle in the final product using a plate such as nitric acid, hydrogen, or a hydroxide plate, the m-scaler carbon shifting process mode 5 particles (eg, iron particles or atoms) can usually be The composite nanometer = is removed in a 5.0 Μ nitric acid solution for about 3-6 hours. Yes, __ plate nano particles and / or amorphous 妷 /, ~ ~ removal of long order will not completely damage the carbon nanostructure. In some cases;: ODMA\PCDOCS\TPEDMS\41201 \1 20 200936499 two = the object can be captured from (four) Naiqiqiu part of the removal of the chemical lying, oxygen and acid have the water money ionic group and oxygen 1 匕; All = not limited to citrate, lysine and or sulfhydryl groups introduced to 395; = oxygen; and conditions below 9 ❹ = [= 4] selected heterogeneous, pure sequence can also be used outside the surface temperature and The ί ί step, which converts the residual amorphous selection = step, since the substantial part of the amorphous carbon has been removed, and to the residual part, the residual carbon system is easier to turn. The base can be introduced to the surface of the carbon nanosphere by using a strong oxidizing agent. Generally and ancient, the amount of gas z, ten: material ( (ie 'whether - the previous carbonization of the carbon = = agent of the Yue ^ r salty: force r with oxidation; crystal in the real For example, the oxidation treatment is carried out for about 2 hours to about a certain period of time. To aid oxidation, the oxidation treatment can be carried out using ultrasonic waves. [_5] The carbonaceous material produced by Green is made 1 = 睁t = r. It is apparent that the present invention can be carried out using a nanometer V. Example [0086] manufactured by using a method different from the foregoing method. (Example 1) Surface preparation, , Wei, average particle using dynamic light scattering measurement:: ODM A \PCDOCS\TPEDMS\41201 \ 1 21 200936499 The diameter is greater than 1 micron. (a) Preparation of iron solution (01Μ) [0088] 0. 1 bismuth iron solution uses 84 grams of iron powder, 289 grams of citric acid and 15 liters of water $ The iron-containing mixture was mixed in a closed flask on a shaking table for 3 days 'short towel break or 2: owed' to remove the vapor space of the flask with air before continuing mixing. (b) Preparation of the mixtureΟ

[0089] 916.6克間苯二紛與135〇克曱搭(37%水溶液)放置在 圓底燒瓶中。攪拌該溶液至間苯二酚完全溶解。來自步驟(a) 1鐵溶液15公升緩慢加入並攪拌之。及之後1〇25毫升氫氧化 銨(28-30%水溶液)逐滴加入並激烈攪拌之,所得懸浮液之 pH^l〇.26。該漿料係在8〇〜9〇t:(水浴)1〇小時而硬化。固 體碳前驅物混合物絲由職及祕細絲燥而收集。 (c) 碳化 [0090] 該聚合前驅物混合物係放置在—具有外蓋之糊中以 ^傳遞至-火爐。舰程序係在充足喊氣流下,制 〇 進行ρχ 2〇°C/分鐘之速率,由室溫至咖,在刪g a π *小時回到室溫。碳化步驟產生具有碳奈米結構、非 曰曰升)¼及鐵之中間碳材料。 户 (d)純化以移除非晶形碳及鐵 [0091] 碳化碳產物(即,中間碳材料)之純化係如下 = ηνο3中回流碳化產物約12小時,使用去離子水⑽ 潤=’使用ΚΜη〇4、氏犯4及Η2〇莫爾比〇 〇1 : 〇 2 物處理(在約9〇°C保持約12小時),使用去離 蚀(^2〇)潤渔’使用4MHC1處理(在、約9〇°C保持12小時 =33(職2〇)酿,收集該產物及在約⑽。c的供 ::〇DMA\PCDOCS\TPEDMS\41201 \ 1 22 200936499 (實施例2) [=92]實施例2描述使㈣雜、水及超音波製備分散碳奈米 球之方法。 [^3]將濃度為6 wt%之葡萄糖水溶液1〇〇毫升加入至在玻璃 容器中3克碳奈米材料(大於98%碳奈米球)。該溶液接著使 用超音波處理2小時。影響奈米球分散之超音波係使用CR£ST USTRASONICSTRU-SWEEPTM (68kHz 頻率及 5〇〇watt)進 行。洛液變黑表7F碳奈米球在水中之分散。3個月之後,2 3 wt% 为政碳奈米球持續保持穩定分散在水中。第4A及4B圖分別 © 艮據實施例2製造的碳奈米球之SEM及TEM影像。如上 a寸論,该SEM及TEM影像與顯示在第2A-2C圖中之未分散 之碳奈米材料她,顯示在分散方面之姻化的改良。 [0094]第3 ®提供實施例2之分散碳奈米球之動態光散射的 圖。動態光散射數據係使用MALVERN ZetaSizer ( Nan〇 senes)收集。樣品使用具有擷取時間為36〇秒之石英比色管 分析。如圖所示,實施例2之分散碳奈米球具有平均粒徑147 奈米。相對於此,分散前之碳奈米球具有如第丨圖所示之平均 粒徑1.4微米。 ® _5]第5 ®顯示碳奈米球只在水巾超音波。出乎意料,在水 中超音波2小時後之粒控分佈只顯示在5微米之波峰及另一 254微米之波峰。此結果係出乎意料,因為未超音波之結果不 會顯示5微米之波峰。因此,其顯示在一些案例,諸如使用純 水,超音波可引起粒徑降低及團聚。相對於此,根據本發明使 用水之超音波及表面改質劑可產生顯著較小的粒徑,但不是5 微米之較大團聚體。 (實施例3) [〇〇96]實施例3描述使用甘氨酸及水製備分散碳奈米球之方 法。 ::ODMA\PCD〇CS\TPEDMS\41201\1 23 200936499 ί缺水雜⑽編认至在玻璃 谷為中3克石厌奈未材枓(大於98%碳夺 時。影響奈米球分散之超音波係使用C騰 1SWEEPTM (68服頻率及喊)進 測之^东立:^^不太^球在水中之分散。使用動態光散射量 後,蘭分散碳奈米 ===可=他轉其騎或本#上_徵 ❹ ❿ ^,非以限制本發明之範圍。因此’本發明之範圍係$ Γιί=利ί圍表示:而非以前面的描述表示。在本發明申請專 •J範圍之意思及均等範圍内之所有改變係被包含在其範圍内。 【圖式簡單說明】 縣發啊奈料分餘雜賴前之動態 齡碳奈树®聚成為複數個_之高解析度的 bliM影像。 ,2B圖係顯不第2A圖中碳奈米球之個別的團簇較接近的高 影像’以及顯示—爆開的随,以露出組成該 團族之複數個碳奈米球。 ^ 2C圖係第2Α®之碳奈米材料的高解析度之ΤΕΜ影像,顯 不複數個碳奈米球®聚在―起及露出郷細簇之碳奈米球 之多壁及中空的性質。 ,3圖係根據本發明分散碳奈米球之動態級射的光譜圖。 第4Α圖為根據本發明之一實施例帛2Α目之碳奈米球分散在 極性溶劑中後的SEM影像。 第4Β圖為第4Α圖之碳奈米球之ΤΕΜ影像。 第5圖顯*碳奈米球在清水巾超音波2小時之轉光散射光譜 的比較圖。 ::ODMA\PCD〇CS\TPEDMS\41201\1 24 200936499 【主要元件符號說明】 益 * *»>[0089] 916.6 grams of meta-phenylene was placed in a round bottom flask with 135 grams of hydrazine (37% in water). The solution was stirred until the resorcinol was completely dissolved. From step (a) 1 15 liters of iron solution was slowly added and stirred. Thereafter, 1 〇 25 ml of ammonium hydroxide (28-30% aqueous solution) was added dropwise and vigorously stirred to obtain a pH of 0.16. The slurry was hardened at 8 Torr to 9 Torr: (water bath) for 1 hour. The solid carbon precursor mixture is collected by the job and the secret silk. (c) Carbonization [0090] The polymeric precursor mixture is placed in a paste with a cover to be transferred to a furnace. The ship program is squirting at a rate of ρχ 2〇 °C/min, from room temperature to coffee, and returning to room temperature after deleting g a π * hours. The carbonization step produces an intermediate carbon material having a carbon nanostructure, non-spike, and iron. Purification of household (d) to remove amorphous carbon and iron [0091] The carbonized carbon product (ie, intermediate carbon material) is purified as follows = ηνο3 refluxing carbonization product for about 12 hours, using deionized water (10) run = 'use ΚΜη 〇4, 氏4 and Η2〇 莫尔〇〇1 : 〇2 treatment (maintained at about 9 ° C for about 12 hours), using de-erosion (^2〇) Run fishing 'use 4MHC1 treatment (in , about 9 〇 ° C for 12 hours = 33 (2 〇) brewing, collecting the product and at about (10). c for:: 〇 DMA \ PCDOCS \ TPEDMS \ 41201 \ 1 22 200936499 (Example 2) [= 92] Example 2 describes a method for preparing (4) heterogeneous, water and ultrasonic waves to prepare dispersed carbon nanospheres. [^3] Adding 1 ml of a glucose solution having a concentration of 6 wt% to 3 g of carbon nevus in a glass container Rice material (greater than 98% carbon nanosphere). The solution was then treated with ultrasonic for 2 hours. The ultrasonic system that affects the dispersion of nanospheres was carried out using CR£ST USTRASONICSTRU-SWEEPTM (68 kHz and 5 〇〇 watt). Liquid blackened 7F carbon nanospheres dispersed in water. After 3 months, 2 3 wt% of the carbon nanotubes remained stable and dispersed in water. 4A 4BFig. SEM and TEM image of the carbon nanosphere produced according to Example 2. The SEM and TEM images and the undispersed carbon nanomaterial shown in Fig. 2A-2C, An improvement in the dispersion of the dispersion is shown. [0094] Figure 3 provides a diagram of dynamic light scattering of the dispersed carbon nanospheres of Example 2. The dynamic light scattering data was collected using MALVERN ZetaSizer (Nan〇senes). Quartz colorimetric tube analysis with a draw time of 36 sec. As shown, the dispersed carbon nanosphere of Example 2 has an average particle diameter of 147 nm. In contrast, the carbon nanosphere before dispersion has the same The average particle size shown in the figure is 1.4 μm. ® _5] The 5th shows that the carbon nanosphere is only supersonic in the water towel. Unexpectedly, the particle-controlled distribution after 2 hours of ultrasonic in water is only shown at 5 microns. The peak and another 254 micron peak. This result is unexpected, as the result of the non-ultrasonic wave does not show a peak of 5 microns. Therefore, it is shown in some cases, such as the use of pure water, ultrasonic waves can cause particle size Reduced and agglomerated. In contrast, used in accordance with the present invention Ultrasonic and surface modifiers can produce significantly smaller particle sizes, but are not larger agglomerates of 5 microns. (Example 3) [〇〇96] Example 3 describes the preparation of dispersed carbon nanotubes using glycine and water. The method of the ball. ::ODMA\PCD〇CS\TPEDMS\41201\1 23 200936499 ί The lack of water (10) is identified as being in the glass valley for 3 grams of stone and unrecognized (more than 98% carbon. The ultrasonic system that affects the dispersion of nanospheres is measured using C Teng 1SWEEPTM (68 service frequency and shouting) ^ Dongli: ^^ Not too much ^ The ball is dispersed in the water. After using the amount of dynamic light scattering, the blue-dispersed carbon nanometer === can be converted to the ride or the present #上_征 ❿ , ^, without limiting the scope of the invention. Thus, the scope of the invention is expressed as $ Γ ι ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί All changes that come within the meaning and range of the scope of the invention are intended to be embraced. [Simple description of the map] The dynamics of the prefectures in the prefectures of the county are mixed into the high-resolution bliM images. The 2B image shows that the individual clusters of the carbon nanospheres in Fig. 2A are closer to the high image' and the display-explosion is followed to reveal the plurality of carbon nanospheres constituting the group. ^ 2C image is the high-resolution image of the carbon nanotube material of the 2nd Α®, which is the multi-walled and hollow nature of carbon nanospheres that are concentrated in and exposed to fine clusters. . Figure 3 is a spectrum diagram of the dynamic grading of dispersed carbon nanospheres in accordance with the present invention. Fig. 4 is a SEM image of carbon nanotubes dispersed in a polar solvent according to an embodiment of the present invention. The fourth picture is the image of the carbon nanosphere in Figure 4. Figure 5 shows a comparison of the light scattering spectra of the carbon nanotubes in the water towel for 2 hours. ::ODMA\PCD〇CS\TPEDMS\41201\1 24 200936499 [Key component symbol description] Benefit * *»>

::ODMA\PCDOCS\TPEDMS\41201 \1 25::ODMA\PCDOCS\TPEDMS\41201 \1 25

Claims (1)

200936499 七、申請專利範圍: L —種碳奈米材料分散液之製造方法,包含·· (1)提供一包含有複數個多壁、石墨碳奈米球之碳奈米材 料,其中該等碳奈米球至少部分團聚成碳奈米球之複數個團簇; 以)形成—包含有一極性溶劑及一有機表面改質劑之溶液;200936499 VII. Patent application scope: L - A method for producing a carbon nanomaterial dispersion, comprising: (1) providing a carbon nanomaterial comprising a plurality of multi-walled, graphite carbon nanospheres, wherein the carbon The nanosphere is at least partially agglomerated into a plurality of clusters of carbon nanospheres; forming a solution comprising a polar solvent and an organic surface modifier; 將該奈米材料與該溶液混合及超音波處理該溶液至至 分裂該碳奈米球之團聚,以產生懸浮在該極性溶劑中之 申晴專利範圍第1項所述之方法,其中在步驟(i)之該 石厌不米材料具有使用動態光散射量測之平均粒徑大於 米。 不、 ^太&申請專利範圍第1項所述之方法,其中在步驟(iii)之該 石反不米材料具有使用動態光散射量測之平均粒徑小於500太 米。 不 太^申凊專利範圍第1項所述之方法,其中在步驟(出)之該 石反不米材料具有使用動態光散射量測之平均粒徑小於300 = 士。 不 5. #太專利細第1項所述之方法,其巾在步驟㈤之該 f不水材料具有使用動態光散射量測之平均粒徑小於200太 米。 不 6^ ^請專利範圍第丨項所述之方法,其巾該極 水、乙醇、THF或其組合。 ⑴匕3 i自料繼圍第1項所述之方法,其巾職面改質劑係 ϊίΐΐ面活性劑、有機酸、碳水化合物、胺基酸及其組合所 ::ODMA\PCD〇CS\TPEDMS\41201\1 26 200936499 8. 具有如生==範圍第1項所述之方法,其中該表面改質劑係 9.如申請專利範圍第1項所述之方法,其中該碳奈米材 表面具有使用X射線光電光譜(XPS)量測至少2加%'的氧。 申請專利範圍第1項所述之方法,其中將該碳奈 音波處理至少30分鐘。 11 項所述之^中該碳奈米球係藉 形成一包含有碳前驅物及複數個模板奈米粒子之前驅物混 合物,及聚合該碳前驅物,該模板奈米粒子包含一催化金屬p *碳化該前驅物混合物以形成一中間碳材料,其包含複數個 碳奈米結構、非晶形碳及選擇性殘留的催化金屬;及 藉由移除至少一部分非晶形碳及選擇性一部分任何殘留的 =金屬純化該㈣碳材料,藉以產生—包含有複數個 結構之碳奈米材料。Mixing the nanomaterial with the solution and ultrasonically treating the solution to agglomerate the carbon nanospheres to produce a method as described in claim 1, wherein the step is suspended in the polar solvent. (i) The stone-resistant material has an average particle size greater than meters using dynamic light scattering measurements. The method of claim 1, wherein the stone anti-rice material in step (iii) has an average particle size of less than 500 mils using dynamic light scattering measurements. The method of claim 1, wherein the stone material in the step (out) has an average particle diameter of less than 300 = ± using dynamic light scattering measurement. No. 5. The method described in item 1 of the patent specification, wherein the f-water-free material of the step (5) has an average particle diameter of less than 200 m. using dynamic light scattering measurement. The method described in the scope of the invention, which comprises the polar water, ethanol, THF or a combination thereof. (1) 匕3 i self-feeding according to the method described in item 1, the towel level modifier is ϊίΐΐ surfactant, organic acid, carbohydrate, amino acid and combination thereof: ODMA\PCD〇CS\ TPEDMS\41201\1 26 200936499 8. The method of claim 1, wherein the surface modification agent is the method of claim 1, wherein the carbon nanomaterial The surface has at least 2% by weight of oxygen measured using X-ray photoelectron spectroscopy (XPS). The method of claim 1, wherein the carbon nanowave is treated for at least 30 minutes. The carbon nanosphere according to Item 11 is formed by forming a precursor mixture comprising a carbon precursor and a plurality of template nano particles, and polymerizing the carbon precursor, the template nanoparticle comprising a catalytic metal p * carbonizing the precursor mixture to form an intermediate carbon material comprising a plurality of carbon nanostructures, amorphous carbon and selectively residual catalytic metal; and by removing at least a portion of the amorphous carbon and optionally a portion of any residual = The metal is purified from the (four) carbon material to produce a carbon nanomaterial comprising a plurality of structures. HI中料概圍第11項所述之方法,其巾賴板奈米粒子 係藉由以下步驟製備: (a) 使複數個前驅物催化劑原子與複數個有機分 反應以形成複合催化劑分子;及 (b) 允許或引起該複合催化劑分子以形成該模板奈米粒 子。 ί八:ΪΙΓϋ概目帛1項麟法製仅碳奈米材 蚪刀散液,,、匕3为散在一極性溶劑之複數個碳奈米結構。 14· 一種碳奈米材料分散液之製造方法,包含: 山^ f供一團聚體碳奈米材料,其包含有複數個多壁、石墨 石反不米球’該等碳奈米球具有平均粒#範圍自1〇奈米至2〇〇奈 ::ODMA\PCDOCS\TPEDMS\41201\1 27 200936499 米及具有一不規則表面; (11)形成一包含有極性溶劑、有機表面改質劑及碳奈米材料 之溶液;以及 (iii)將該溶液超音波處理以引起至少一部分的表面改質劑 鍵結至奈米球,以及使該碳奈米球懸浮在該極性溶劑中。 ❹The method of claim 11, wherein the towel nanoparticle is prepared by the following steps: (a) reacting a plurality of precursor catalyst atoms with a plurality of organic components to form a composite catalyst molecule; (b) allowing or causing the composite catalyst molecule to form the template nanoparticle.八八:ΪΙΓϋΪΙΓϋ目帛1 item Linfa system only carbon nano-materials 蚪刀散液,,,匕3 is a plurality of carbon nanostructures dispersed in a polar solvent. 14) A method for producing a carbon nanomaterial dispersion, comprising: a mountain-f for agglomerated carbon nanomaterial, comprising a plurality of multi-walled, graphite stone anti-meter balls, wherein the carbon nanospheres have an average粒# ranges from 1〇 nanometer to 2〇〇奈 ::ODMA\PCDOCS\TPEDMS\41201\1 27 200936499 meters and has an irregular surface; (11) forms a polar solvent, organic surface modifier and a solution of the carbon nanomaterial; and (iii) ultrasonically treating the solution to cause at least a portion of the surface modifier to bond to the nanosphere, and suspending the carbon nanosphere in the polar solvent. ❹ 15.如申請專利範圍第14項所述之方法,其中步驟〇)提供之 碳奈米材料具有使用動態光散射量測之平均粒徑範圍自5〇〇'奈 米至5奈米,以及其中步驟(诅)之該碳奈 態光散射量測之平均粒徑小於300奈米。 竹/另使用動 1$.如申請專利範圍第14項所述之方法,其中步驟提供之 碳奈米材·有使贿態光傭制之平均粒範 〇、 奈Λ;以及糾步驟㈤之該碳奈米材料具有使用i 態先散射1測之平均粒徑小於200奈米。 ^•。如㈣專利範圍第14項所述之方法,其巾該極性溶劑包含 2 利範圍第14項所述之方法,其中該表面改質劑包 ^了或夕個s能基選自由羧基、胺類、磺酸鹽及/或羥基組成之 利範圍第14項所述之方法,其中該表面改質_ 選自由葡萄糖、甘醇酸、甘胺酸、抗壞血酸、十二烷美缺 納、填鶴酸、三氟乙酸及其組合組成之群。 土* 20. —種碳奈米球分散液,包含: 一極性溶劑;及 •碾余示材料 球,苴中該碳太半:極性溶劑中之複數個碳奈米 面之複數個表面改質劑分?。 颂、、。至其表 ::ODMA\PCDOCS\TPEDMS\41201\1 28 200936499 21 奈米材 碳 i半專利細第2G猶述之碳奈米球分触,其τ中該碳 不木材料具有使用動態光散射量測之平均粒徑小於200奈米。 23. 如申請專利範圍第2〇項所述之碳奈米球分散液,其中該表 面改質劑係選自由葡萄糖、甘醇酸、甘胺酸、抗壞血酸、十二 烧基苯續酸鈉、磷鎢酸、三氟乙酸及其組合組成之群。 G 24. 如申請專利範圍第2〇項所述之碳奈来球分散液,其中該極 性溶劑包含水。 25· —種複合材料,包含申請專利範圍第20項之碳奈米材料分 散在一材料中。 ❹ ::〇DMA\PCDOCS\TPEDMS\41201\115. The method of claim 14, wherein the step of providing the carbon nanomaterial has an average particle size ranging from 5 〇〇 'nm to 5 nm using dynamic light scattering measurement, and wherein The average particle size of the carbon-neutral light scattering measurement of the step (诅) is less than 300 nm. Bamboo/other use 1$. For the method described in claim 14, the carbon nanomaterials provided in the steps include the average grain size of the bribes, the nephew; and the corrective steps (5) The carbon nanomaterial has an average particle size of less than 200 nm as measured by i-state first scattering. ^•. The method of claim 14, wherein the polar solvent comprises the method of claim 14, wherein the surface modifying agent comprises or the s-energy group is selected from the group consisting of a carboxyl group and an amine group. The method of claim 14, wherein the surface modification is selected from the group consisting of glucose, glycolic acid, glycine, ascorbic acid, dodecane, and sulphate a group consisting of trifluoroacetic acid and combinations thereof. Soil* 20. A carbon nanosphere dispersion comprising: a polar solvent; and a ball of residual material, the carbon in the crucible: a plurality of surface modifiers of a plurality of carbon nano surfaces in a polar solvent Minute? .颂,,. To the table:: ODMA\PCDOCS\TPEDMS\41201\1 28 200936499 21 Nano-carbon i semi-patented fine 2G narration of carbon nanospheres, the carbon in the τ has the use of dynamic light scattering The average particle size measured is less than 200 nm. 23. The carbon nanosphere dispersion according to claim 2, wherein the surface modifier is selected from the group consisting of glucose, glycolic acid, glycine, ascorbic acid, sodium dodecyl benzoate, a group consisting of phosphotungstic acid, trifluoroacetic acid, and combinations thereof. G 24. The carbon nanosphere dispersion of claim 2, wherein the polar solvent comprises water. 25. A composite material comprising carbon nanomaterials in the scope of claim 20 is dispersed in a material. ❹ ::〇DMA\PCDOCS\TPEDMS\41201\1
TW97136524A 2007-09-24 2008-09-23 Highly dispersible carbon nanospheres in a polar solvent and methods for making same TW200936499A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/860,323 US7664132B2 (en) 2001-01-02 2007-09-24 Random medium access methods with backoff adaptation to traffic

Publications (1)

Publication Number Publication Date
TW200936499A true TW200936499A (en) 2009-09-01

Family

ID=44880559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97136524A TW200936499A (en) 2007-09-24 2008-09-23 Highly dispersible carbon nanospheres in a polar solvent and methods for making same

Country Status (1)

Country Link
TW (1) TW200936499A (en)

Similar Documents

Publication Publication Date Title
US7666915B2 (en) Highly dispersible carbon nanospheres in a polar solvent and methods for making same
US7718156B2 (en) Method for manufacturing carbon nanostructures having minimal surface functional groups
Shi et al. Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes
JP5080482B2 (en) Carbon nanostructures made from catalytic template nanoparticles
Liang et al. TiO 2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials
Luo et al. Polyelectrolyte functionalization of graphene nanosheets as support for platinum nanoparticles and their applications to methanol oxidation
Ghosh et al. Graphene and functionalized graphene supported platinum catalyst for PEMFC
Wang et al. Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells
Bordbar et al. Preparation of MWCNT/TiO2–Co nanocomposite electrode by electrophoretic deposition and electrochemical study of hydrogen storage
Yin et al. Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells
WO2010111214A2 (en) Dispersible carbon nanospheres and methods for making same
KR20160092987A (en) Bulk preparation of holey carbon allotropes via controlled catalytic oxidation
Sun et al. Structural and electrochemical characterization of ordered mesoporous carbon-reduced graphene oxide nanocomposites
TW201240916A (en) Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
US7858691B2 (en) Functionalization of carbon nanoshperes by severe oxidative treatment
Liu et al. Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation
Huang et al. Monodisperse mesoporous carbon nanoparticles from polymer/silica self-aggregates and their electrocatalytic activities
Tang et al. The combination of metal-organic frameworks and polydopamine nanotubes aiming for efficient one-dimensional oxygen reduction electrocatalyst
Jena et al. A facile approach for morphosynthesis of Pd nanoelectrocatalysts
US20120286216A1 (en) Methods for mitigating agglomeration of carbon nanospheres using a long chain hydrocarbon surfactant
Kim et al. Graphitic spherical carbon as a support for a PtRu-alloy catalyst in the methanol electro-oxidation
Dassanayake et al. One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles
US7960440B2 (en) Highly dispersible carbon nanospheres in an organic solvent and methods for making same
Dai et al. Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes
Duraisamy et al. Architecture of large surface area N-doped mesoporous carbon sheets as sustainable electrocatalyst for oxygen reduction reaction in alkaline electrolyte