TW200935503A - Production method of light emitting diode (LED) with photonic crystal - Google Patents

Production method of light emitting diode (LED) with photonic crystal Download PDF

Info

Publication number
TW200935503A
TW200935503A TW97104036A TW97104036A TW200935503A TW 200935503 A TW200935503 A TW 200935503A TW 97104036 A TW97104036 A TW 97104036A TW 97104036 A TW97104036 A TW 97104036A TW 200935503 A TW200935503 A TW 200935503A
Authority
TW
Taiwan
Prior art keywords
photonic crystal
emitting diode
electrode
producing
liquid medium
Prior art date
Application number
TW97104036A
Other languages
Chinese (zh)
Inventor
Wei-Han Li
jian-qing Chen
Original Assignee
jian-qing Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by jian-qing Chen filed Critical jian-qing Chen
Priority to TW97104036A priority Critical patent/TW200935503A/en
Publication of TW200935503A publication Critical patent/TW200935503A/en

Links

Abstract

A production method of light emitting diode (LED) with photonic crystal is used to produce photonic crystal structures on a light emitting diode. The method mainly forms mutually-isolated first electrode and second electrode in a reaction tank and put the medium in the reaction tank to cover and contact with both the first electrode and the second electrode. Then a plurality of micro/nano-particles with uniform diameter (50nm to 5μ m) are disposed in the liquid medium so that a substrate can be suspended in the medium for performing electrophoresis and be contacted with one of the electrodes, enabling the micro-/nano-particles to be periodically arranged in single or multiple layers covering on the surface of the substrate for forming the photonic crystal structure. By this way, the production time can be greatly reduced, and the mass production problem of large-area substrates can be solved effectively.

Description

200935503 九、發明說明: 【發明所屬之技術領域】 製造 (LED ) 、有效 希望 光、 端應 體、 中的 化學 亦可 特定 質的 波長 人工 )g i e 光子 本發明係一種「含光子晶體之發光二極體ό 方法」,尤指一種含有光子晶體之發光二極體 之製程,而成為一種可以提高外部量子效應 改善將電能轉換為光能效能的LED之製程。 【先前技術】 按在光電子技術領域中,我們通常 藉由特定物質改變光的行為(例如:偏 電激發光、光學導波等),以相對產生终 用產品,例如:液晶顯示器、發光二極 光纖通訊及太陽能電池。上述光的行為 大部分特性係以改變物質分子尺度内在 結構達成,但光波在物質中的電磁特性 藉由在波長尺度(約lOOnm〜/zm) 上之 物理結構加以改變,即於不需要改變物 内在化學結構的前題下,利用電磁波的 尺度下製造出週期排列的人工晶體,該 晶體由於類似於電子的物質波(De-Br( wave) 與原子晶格的大小,故被通稱為 晶體(photonic crystal)0 光子晶體的概念首先由S. John (Phys. Rev. Lett. , 58 ( 1 98 7 ) 2486 )和 E. Yablonovitch 200935503 1987 由介 排列 由於 率振 卜結 因衰 多種 光學 全吸 光子 s十開 變色 子絕 0目 池、 製備 (Phys. Rev. Lett., 58 (1987) 2059),在 年分別提出,當物質具有週期性結構,n 質與孔隙空氣之不同介電常數呈現週期性 形成之三維介質,光波(電磁波)進入時, 反射波對入射波造成干涉,將阻擋某些頻 堡之光波通過,而產生一個光子能隙 (Photonic Band Gap; PBG;或者稱為能;ξ 構),此能隙頻率範圍内之光波破壞性干射 β 減無法傳遞而在頻譜上產生間隙。 利用光子晶體的能帶結構特性,可製造 光、電、聲學元件(Nature 436, ρ. 993 (2 0 0 5 ).)’例如:利用光子晶體,可進行 上共振腔、波導、濾波、分光、全反射、 收等調整,並且其能量損失近乎於零,故 晶體可廣泛應用於新穎的光通訊元件之設 發,包括低啟動功率之雷射、波導器、光 材質、光子電晶體、共振腔、滤波器、光 緣體、光子晶體光纖、粒子加速器等項目 前科學家亦將其嘗試應用於諸如太陽能電 發光二極體等光電材料領域,並提出多種 光子晶體結構的技術。 近年來’以自我級裝(Self_Assembly或稱為 200935503200935503 IX. Description of the invention: [Technical field of invention] Manufacturing (LED), effective desired light, end-effect body, medium chemistry can also be a specific wavelength of wavelength artificial gie photon The present invention is a "photonic crystal containing light II The polar body method, especially the process of a light-emitting diode containing a photonic crystal, becomes a process for improving the external quantum effect and improving the performance of converting electrical energy into light energy. [Prior Art] In the field of optoelectronic technology, we usually change the behavior of light by a specific substance (for example, partial excitation light, optical guided wave, etc.) to relatively produce end products, such as liquid crystal displays and light-emitting diodes. Optical fiber communication and solar cells. Most of the behavior of the above-mentioned light is achieved by changing the structure within the molecular scale of the substance, but the electromagnetic properties of the light wave in the substance are changed by the physical structure at the wavelength scale (about 100 nm to /zm), that is, no change is required. Under the premise of the intrinsic chemical structure, periodic arrays of intraocular lenses are produced on the scale of electromagnetic waves. The crystals are commonly referred to as crystals because of the electron-like material waves (De-Br(wave) and the size of the atomic lattice. Photonic crystal) The concept of photonic crystals was firstly spliced by S. John (Phys. Rev. Lett., 58 (1 98 7 ) 2486 ) and E. Yablonovitch 200935503 1987 by a variety of optical total photons. The ten-color disintegrator is prepared and prepared (Phys. Rev. Lett., 58 (1987) 2059). It is proposed in the year that when the substance has a periodic structure, the dielectric constants of the n-mass and the pore air are periodic. The three-dimensional medium formed, when the light wave (electromagnetic wave) enters, the reflected wave interferes with the incident wave, and blocks the light wave of some frequency castles, thereby generating a photonic energy gap (Photonic Band) Gap; PBG; or energy; ξ), the light-wave destructive dry-spray β in the band gap frequency can not be transmitted and generate a gap in the spectrum. Using the energy band structure characteristics of the photonic crystal, light and electricity can be produced. , acoustic elements (Nature 436, ρ. 993 (2 0 0 5 ).) ' For example: using photonic crystals, can perform upper cavity, waveguide, filtering, splitting, total reflection, gain adjustment, and its energy loss is close to Zero, so the crystal can be widely used in the design of novel optical communication components, including low starting power laser, waveguide, optical material, photonic crystal, resonant cavity, filter, optical edge, photonic crystal fiber, particle Scientists such as accelerators have also tried to apply them to photovoltaic materials such as solar electroluminescent diodes, and have proposed a variety of photonic crystal structures. In recent years, 'self-Assembly or called 200935503

Self-Organization)方式產生光子晶體可以達 到快速、便宜以及降低缺陷的目的。目前利用 粒子自組裝現象所開發的製程,列舉如下: (一)重力沈澱法。(二)表面張力法。 (三)震盪排列法。 # (四)離心力排列法。 (五) 遽滲透法。 (六) 綜合法。 這幾種製備方式不易進行大面積光子晶體之 製作。 ❹ 此外,習知的LED照明用具,其技術瓶頸有 二:首先,LED照明時會產生相當之熱量,為 了達到適當照明的目的,又常常將LED元件大 量集中置放於照明器具中。於是,LED照明器 具散熱遂成為技術瓶頸之一。再者,LED製作 成本雖逐年下降,且具有省電環保等優勢,不 過當其照明能力未達到市場的商業化標準時, 7 200935503 尚還無法全面取代一般白熾燈、日光燈、螢光 燈等種種照明用具及光源。綜合來說,各廠商 為了能夠提升LED商業價值,均極力於燈具之 設計,LED材質的改善,散熱鰭片形式材料的 改變、等各種方向上進行研發與技術的改進。 是故,如何提供一種克服以往習知技藝設計 製造的LED之缺陷,卻並不同時增加能量之消 耗,以及能夠同時降低習知LED產品產生高熱 之障礙,實為目前此產業中亟待解決的問題。 【發明内容】 有鑒於此,本發明的目的,旨在提供一種「含 光子晶體之發光二極體的製造方法」,以針對 LED光能利用的效率加以改進,於是在未增加 LED發光單元元件的情形下,可以增加LED燈 具亮度,並於提高亮度之同時,不會造成更多 的熱能產生。 本發明之次一目的,旨在提供一種經濟有效的電泳 自組裝製程,可提供大面積含光子晶體基板之製 作、及省略繁瑣程序之技術,以量產具有光子晶體 8 月係提供一 光二極體上 供一反應 一電極與 態介質係 觸該第一 内植入分 粒徑顆 進行電泳 微/奈球均 J並披覆 一電極及該 相對該底部 電極與該第 「微/奈米均 或含有無機 聚合物係選 組成者;該 二氧化鈦、 〇 板係選自單 200935503 的LED。 為了達到上述之目的,本發 種光子晶體的製造方法,係應用於一發 製備光子晶體結構,其步驟包括:提 槽,該反應槽内設有相互隔離之第 第二電極;提供一液態介質,該液 容置於該反應槽内,並同時覆蓋接 電極及該第二電極;於該液態介質 佈有複數個微/奈米(50nm〜5/zm)均一 ® 粒;將一基板懸游於該液態介質内 並與該其一電極電性接觸,使該等 一粒徑顆粒以單層或複數層周期性排5 於該基板表面形成光子晶體結構。 於本發明之一較佳實施例中,該第 第二電極分別設置於反應槽之底部以及 游離於該液態介質内;且理想之該第一 二電極的間距係介於0 . 5〜5 0 c m之間。 於本發明之一較佳實施例中,該具习 一徑粒顆粒的組成係具有機單體聚合物 元素成分之氧化物;其中,該有機單體 自苯乙烯、丙烯酸以及馬來酸…等系列 無機元素氧化物包括選自:二氧化矽、 二氧化锆、氧化鋅、氧化鋁、或其組合 於本發明之一較佳實施例中,該基 晶石夕(single crystal silicon)、多晶石夕 200935503 (polycrystal silicon)、非晶石夕(amorphous silicon)、導電玻璃、III-V族、II-VI族元素材質 其中之一者。 於本發明之一較佳實施例中,其中,該微/奈米 均一粒徑顆粒相對於液態介質的重量百分比濃度範 圍係介於0 . 5〜6 0 wt % ;該液態介質為液相水溶液 或液相有機溶液;該液態介質之酸鹼值介於1〜9;該 液態介質之操作溫度係介於1 0〜1 5 0 °C。 於本發明之一較佳實施例中,其中該反應槽外 提供一介於卜1,000伏特壓差之定電壓源,且該反 應槽係為垂直型、水平型、傾斜型或其他結構及型 式之電泳槽。 於本發明之一較佳實施例中,係利用電泳法製備 具有光子晶體結構之基板,將其應用於發光二極體 光線出射層、内部結構或背側全反射層之製作,以 改變發光二極體之外部量子效率。 【實施方式】 為使貴審查委員能瞭解本發明之技術内 容,及所能達成之功效,玆配合圖式列舉諸較 佳實施例詳細說明如后。 本發明係應用於一發光二極體上製備光子晶體 10 200935503 結構,依據本發明,可藉由電化學及微/奈米顆粒之 物理及化學特性,而調控所得光子晶體的特性,例 如全吸收、全反射及調整光線行進路徑以改善光 電轉換之效率。 請參閱第5圖及第6圖所示,係揭露本發明光子 晶體之製造方法之係光子晶體自組裝電泳法示意 圖。如圖所示,本發明係透過一反應槽(5)(6)進行 電泳’且該反應槽(5) (6)内形成相互隔離之第一 電極(51) (61)與第二電極(54) (64),並於該反 應槽(5) (6)内充填容置一液態介質(56 ) ( 66 )至 同時覆蓋接觸該第一電極(61)及該第二電極 (54 ) ( 64)為止’接著,於該液態介質(56 ) ( 66 ) 内植入分佈有複數個微/奈米(5〇nm〜…均一粒徑 顆粒(53) (63),接著,再將一基板(52) (62)懸 游於該液態介質(5 6 )( 6 6 )内進行電泳並與該第一 電極(5 1 )( 6 1 )電性接觸,使該等微/奈球均一粒徑 顆粒( 53 ) ( 63 )以單層或複數層周期性排列並彼覆於 該基板(52) (62)表面形成光子晶體結構。 具體而言,該反應槽(5) (6)係可為垂直型、 水平型、傾斜型或其他結構及型式之電泳槽,且該 反應槽(5) (6)外提供一定電壓源,其中該第一電 極(51) (61)係游離於該液態介質(56) (66)内’ 該第二電極(54) (64)則設置於該反應槽(5) (6) 之底部(55) (65)上。較佳地’該第一電極(51) 11 200935503 (6 1)係為一帶有電荷(在第6圖例中,係為負電荷) 之導電柄,以當將該基板(52) (62)懸游於該液態 介質(56) (66)内時,透過該導電柄與該基板(52) (62)表面接觸後,藉由通電所產生之電泳效應使該 等微/奈球均一粒徑顆粒(53) ( 63 )以單層或複數層 周期性排列並披覆於該基板(5 2 )( 6 2 )表面形成光 子晶體結構,其中理想之該第一電極(51) (61)與 該第二電極(54) (64)的間距係介於0.5〜50 cm之 ® 間,而該反應槽(5 ) ( 6 )外提供之定電壓係介於 1〜1,000伏特之間。 承上述,該具有微/奈米均一徑粒顆粒的組成係 具有機單體聚合物或含有無機元素成分之氧化物; 其中,該有機單體聚合物係選自苯乙烯、丙烯酸以 及馬來酸…等的系列組成而具有高透光率/極低損 耗之有機聚合微/奈米高分子粒子者;該無機元素氧 _ 化物包括選自:二氧化矽、二氧化鈦、二氧化锆、 氧化鋅、氧化鋁、或其組合。 該基板則係可選自單晶石夕(s i n g 1 e c r y s t a 1Self-Organization) produces photonic crystals that are fast, inexpensive, and reduce defects. The processes currently developed using particle self-assembly phenomena are listed below: (1) Gravity precipitation method. (2) Surface tension method. (3) Oscillation arrangement method. # (4) Centrifugal force arrangement method. (5) 遽Infiltration method. (vi) Comprehensive law. These preparation methods are not easy to fabricate large-area photonic crystals. ❹ In addition, the conventional LED lighting appliances have two technical bottlenecks: First, LED lighting generates considerable heat. In order to achieve proper lighting, LED components are often placed in large quantities in lighting fixtures. As a result, LED luminaires have become a technical bottleneck. In addition, LED manufacturing costs have been declining year by year, and have the advantages of energy saving and environmental protection. However, when the lighting capacity does not meet the commercialization standards of the market, 7 200935503 still cannot completely replace all kinds of lighting such as incandescent lamps, fluorescent lamps and fluorescent lamps. Appliances and light sources. In summary, in order to enhance the commercial value of LEDs, manufacturers are striving to improve the design of LEDs, the improvement of LED materials, the change of materials in the form of heat-dissipating fins, and the improvement of R&D and technology in various directions. Therefore, how to provide a kind of LED that overcomes the conventional design and manufacture of LEDs, but does not increase the consumption of energy at the same time, and can simultaneously reduce the obstacles of high heat generated by conventional LED products, which is an urgent problem in the industry. . SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a "method for manufacturing a light-emitting diode containing photonic crystal" to improve the efficiency of utilizing LED light energy, so that the LED light-emitting unit element is not added. In this case, the brightness of the LED lamp can be increased, and the brightness is increased without causing more heat generation. The second object of the present invention is to provide a cost-effective electrophoretic self-assembly process, which can provide a large-area photonic crystal substrate and a technique for omitting cumbersome procedures, and mass production of photonic crystals for providing a photodiode in August. The body is provided with a reaction-electrode and the medium medium contacts the first inner implanted particle size particle for electrophoresis micro/nanosphere J and covers an electrode and the opposite bottom electrode and the first "micro/nano" Or the inorganic polymer is selected as a component; the titanium dioxide and the ruthenium plate are selected from the LED of 200935503. In order to achieve the above object, the method for producing the photonic crystal of the present invention is applied to the preparation of a photonic crystal structure in one step. The method includes: a trough, wherein the reaction tank is provided with a second electrode that is isolated from each other; and a liquid medium is provided, the liquid container is disposed in the reaction tank, and simultaneously covers the electrode and the second electrode; and the liquid medium cloth a plurality of micro/nano (50 nm~5/zm) uniform® particles; a substrate is suspended in the liquid medium and electrically contacted with the one electrode, so that the one particle size particles are Or a plurality of layers of the periodic row 5 form a photonic crystal structure on the surface of the substrate. In a preferred embodiment of the present invention, the second electrode is disposed at the bottom of the reaction tank and is free from the liquid medium; The spacing between the first and second electrodes is between 0.5 and 50 cm. In a preferred embodiment of the invention, the composition of the particles of the first-order particles has a polymer element component of the organic monomer. An oxide; wherein the organic monomer is selected from the group consisting of styrene, acrylic acid, and maleic acid, and the like includes: cerium oxide, zirconium dioxide, zinc oxide, aluminum oxide, or a combination thereof. In a preferred embodiment, the single crystal silicon, the polycrystal silicon, the amorphous silicon, the conductive glass, the III-V, the II-VI element 5〜6 0 wt % ; The weight ratio of the micro/nano uniform particle size to the liquid medium is in the range of 0.5 to 6 0 wt %; Liquid medium is liquid An aqueous solution or a liquid phase organic solution; the liquid medium has a pH of from 1 to 9; and the liquid medium has an operating temperature of from 10 to 150 ° C. In a preferred embodiment of the invention, wherein The reaction vessel is provided with a constant voltage source having a pressure difference of 1,000 volts, and the reaction tank is a vertical type, a horizontal type, a tilt type or another structure and type of electrophoresis tank. In a preferred embodiment of the present invention The substrate having the photonic crystal structure is prepared by electrophoresis, and is applied to the light emitting diode light emitting layer, the internal structure or the back side total reflection layer to change the external quantum efficiency of the light emitting diode. [Embodiment] In order to enable the reviewing committee to understand the technical content of the present invention and the achievable effects, the preferred embodiments will be described in detail with reference to the drawings. The invention is applied to the preparation of photonic crystal 10 200935503 structure on a light-emitting diode. According to the invention, the characteristics of the obtained photonic crystal, such as total absorption, can be controlled by the physical and chemical properties of the electrochemical and micro/nano particles. , total reflection and adjust the light path to improve the efficiency of photoelectric conversion. Referring to Figures 5 and 6, a schematic diagram of a photonic crystal self-assembly electrophoresis method for fabricating a photonic crystal of the present invention is disclosed. As shown in the figure, the present invention performs electrophoresis through a reaction tank (5) (6) and the first electrode (51) (61) and the second electrode (separated) are formed in the reaction tank (5) (6). 54) (64), and filling a reaction medium (5) (6) with a liquid medium (56) (66) to cover the first electrode (61) and the second electrode (54) simultaneously ( 64) So, in the liquid medium (56) (66), a plurality of micro/nano (5 〇 nm~... uniform particle size (53) (63) are implanted, and then a substrate is implanted. (52) (62) electrophoresing in the liquid medium (5 6 ) (6 6 ) and electrically contacting the first electrode (5 1 ) ( 6 1 ) to make the micro/negative spheres uniform The diameter particles (53) (63) are periodically arranged in a single layer or a plurality of layers and form a photonic crystal structure on the surface of the substrate (52) (62). Specifically, the reaction tank (5) (6) is Is a vertical type, a horizontal type, a tilt type or other structure and type of electrophoresis tank, and a certain voltage source is provided outside the reaction tank (5) (6), wherein the first electrode (51) (61) is free from the liquid state Medium (56) (66) inside ' The two electrodes (54) (64) are disposed on the bottom (55) (65) of the reaction tank (5) (6). Preferably, the first electrode (51) 11 200935503 (6 1) is a belt a conductive handle having a charge (in the sixth example, a negative charge) to pass through the conductive handle when the substrate (52) (62) is suspended in the liquid medium (56) (66) After the surface of the substrate (52) (62) is contacted, the micro/nanospherical uniform particle size (53) (63) is periodically arranged and coated in a single layer or a plurality of layers by an electrophoretic effect generated by energization. The surface of the substrate (5 2 ) ( 6 2 ) forms a photonic crystal structure, wherein the distance between the first electrode (51) (61) and the second electrode (54) (64) is preferably 0.5 to 50 cm. And the constant voltage supplied outside the reaction tank (5) (6) is between 1 and 1,000 volts. According to the above, the composition having the micro/nano uniform diameter particles has an organic monomer polymerization. Or an oxide containing an inorganic element component; wherein the organic monomer polymer is selected from the group consisting of styrene, acrylic acid, and maleic acid, etc., and has high light transmittance/very low loss. Organically polymerizing micro/nano polymer particles; the inorganic element oxygen compound comprises: selected from the group consisting of ceria, titania, zirconia, zinc oxide, aluminum oxide, or a combination thereof. The substrate may be selected from a single crystal. Shi Xi (sing 1 ecrysta 1

silicon)、多日日秒(p〇iyCryStai siiicon)、非晶石夕 (amorphous silic〇n)、導電玻璃、族、ii-VI 族元素材質’但不以此為限。 承上述’該微/奈米均一粒徑顆粒相對於液態介 質的重量百分比濃度範圍係介於〇 5〜6 〇 wt % ;該 液態介質(56) (66)為液相水溶液或液相有機溶液; 12 200935503 該液態介質(56) (66)之酸鹼值介於丨〜9;該液態介 質( 56) (66)之操作溫度係介於丨〇〜I” ,俾於反 應時間在0. 1〜3 0分鐘下’如條件控制得當,即可 在基板(5 2 ) ( 6 2 )上生成二維或三維之光子晶體結 構。Silicon), multi-day second (p〇iyCryStai siiicon), amorphous silic〇n, conductive glass, family, ii-VI element material 'but not limited to this. The concentration range of the micro/nano uniform particle size relative to the liquid medium is in the range of 〇5~6 〇wt%; the liquid medium (56) (66) is a liquid phase aqueous solution or a liquid phase organic solution. 12 200935503 The liquid medium (56) (66) has a pH of 丨~9; the liquid medium (56) (66) has an operating temperature of 丨〇~I" and the reaction time is 0. 1~3 0 minutes under the condition of proper control, a two-dimensional or three-dimensional photonic crystal structure can be generated on the substrate (5 2 ) ( 6 2 ).

第1圖至第4圖係本創作之四種實施例,惟,電 泳自組裝光子晶體應用於發光二極體(LED)之製 造’其可設置於LED之光子晶體全反射鏡面層、光 子晶體窗口層、光子晶體導電坡璃層或其任意組 合,故當不以該四項實施例為限。 請參閱第1圖及第5圖,係為本發明應用光子晶 體結構之發光二極體第一種實施例之剖面圖。如圖 1所示,首先s史置一背面導電極n型電接觸(N-Type Contact)(17),於該導電極(17)之工作面上,設置 基板(Substrate) (16) ’上述二者遂組成一板體。 該板體的工作面朝向電泳槽之介質(56)置放,並 使用電泳法被覆光子晶體全反射鏡(p h 〇 t ο n i c Crystal 0mni-reflector)(l5),接著利用習知技 術,如化學氣相沉積法,依序製作N型半導體 (N-type semiconductor Layer)(14)、活性層 (Active Layer)(13)及 P 型半導體層(p-type Semiconductor Layer)(12),最後再與 P 型電接觸 (P-Type Contact)(ll)電性連結。如此即形成含光 子晶體的發光二極艎(1)之第一種實施例 13 200935503 請參閱第2圖及第5圖’係為本發明應用光子晶 體結構之發光二極體另一種實施例之剖面圖。如圖 2所示,設置工作基板。將該基板之背面與導電柄 (5 1 )電性結合,基板工作面朝向電泳槽之介質 (5 6 ),接著使用電泳法於工作基板製作單數或複數 層光子晶體基板層(26)’這樣的複合層再以習知方 法,如化學氣相沉積法,依序製作N型半導體層 (N-type Semiconductor Layer)(25),活性層(23), 以及P型半導體層(P-type Semiconductor Layer)(22)’最後分別將N型電接觸(24)與N型半 導體層(25)、及P型電接觸(21)與p型半導體層(22) 做電性接觸。如此即可形成另一含.光子晶體的led 之實施例(2 )。這樣的發光二極體(2 )利用單或複數 層光子晶體基板(2 6 )可以將光全反射,並使 p-type/n-type活性層得以充分發揮光電轉換的效 率,將光線有效集中於工作面射出。 請參閱第3圖及第5圖’係為本發明應用光子晶 體結構之發光二極體再一種實施例之剖面圖。如圖 3所示’設置基板(3 6 ),並以習知半導體磊晶技術, 如氣相沉積法依序製作N型半導體層(N-typeFig. 1 to Fig. 4 are four embodiments of the present invention, except that an electrophoretic self-assembled photonic crystal is applied to the manufacture of a light-emitting diode (LED), which can be disposed on a photonic crystal total reflection mirror layer of an LED, a photonic crystal. The window layer, the photonic crystal conductive layer or any combination thereof is not limited to the four embodiments. Referring to Figures 1 and 5, there is shown a cross-sectional view of a first embodiment of a light-emitting diode of the present invention using a photonic crystal structure. As shown in FIG. 1, first, a back-type n-type contact (N-type contact) (17) is placed on the working surface of the conductive electrode (17), and a substrate (Substrate) (16) is provided. The two form a board. The working surface of the plate is placed toward the medium (56) of the electrophoresis tank, and the photonic crystal total mirror (l5) is coated by electrophoresis, followed by a conventional technique such as chemistry. In the vapor deposition method, an N-type semiconductor layer (14), an active layer (13), and a p-type semiconductor layer (12) are sequentially formed, and finally, P-type contact (ll) is electrically connected. Thus, the first embodiment 13 of the photonic crystal-containing light-emitting diode (1) is formed. 200935503 Please refer to FIG. 2 and FIG. 5 'is another embodiment of the light-emitting diode using the photonic crystal structure of the present invention. Sectional view. As shown in Fig. 2, a working substrate is provided. The back surface of the substrate is electrically coupled to the conductive handle (5 1 ), and the working surface of the substrate faces the medium (5 6 ) of the electrophoresis tank, and then the singular or plural photonic crystal substrate layer (26) is fabricated on the working substrate by electrophoresis. The composite layer is then sequentially fabricated into a N-type semiconductor layer (25), an active layer (23), and a P-type semiconductor layer (P-type Semiconductor) by a conventional method such as chemical vapor deposition. Layer) (22)' finally electrically contacts the N-type electrical contact (24) with the N-type semiconductor layer (25) and the P-type electrical contact (21) and the p-type semiconductor layer (22), respectively. Thus, another embodiment (2) of the LED containing the photonic crystal can be formed. Such a light-emitting diode (2) can totally reflect light by using a single or multiple photonic crystal substrate (2 6 ), and enables the p-type/n-type active layer to fully utilize the efficiency of photoelectric conversion to effectively concentrate the light. Shot at the work surface. Please refer to Fig. 3 and Fig. 5' for a cross-sectional view showing still another embodiment of the light-emitting diode of the photonic crystal structure of the present invention. As shown in FIG. 3, the substrate (3 6 ) is disposed, and an N-type semiconductor layer (N-type) is sequentially formed by a conventional semiconductor epitaxial technique such as vapor deposition.

Semiconductor Layer)(35),活性層(Active Layer)(34)、P.型半導體層(p_type Semi.conductorSemiconductor Layer) (35), Active Layer (34), P. Type Semiconductor Layer (p_type Semi.conductor)

Layer) (33) ’上述之複合板體其背側與導電柄(51) 電性結合,將其工作面朝向電泳介質(5 6 )置放,利 14 200935503 用電泳法製作光子晶體層(32 ),並以習知工法處理 以形成光子晶體導電玻璃層(Photon i c Cry sta 1 I T0 f i 1 m) ( 3 2 )。最後的夾層結構分別於其基板端與N 型電接觸(N-type Contact)(37)、P型電接觸 (P-type Contact)(31)進行電性連結。如此則又完 成一含光子晶體之發光二極體(3)的實施例。 請參閱第4圖及第5圖,係為本發明應用光子晶 體結構之發光二極體又一種實施例之剖面圖。如圖 | p 4所示,設置基板(4 6 ),並以習知半導體磊晶技術, 如氣相沉積法依序製作N型半導體層(N-type Semiconductor .Layer)(45),活性層(Active Layer)(44)、P 型半導體層(P-type Semiconductor Layer)(43),上述之複合板體其背側與導電柄(51) 電性結合,將其工作面朝向電泳介質(5 6 )置放,利 用電泳法製作光子晶體窗口層(Photonic Crystal _ Window Film)(42),並以習知工法處理以形成導電 玻璃層(ITO f i lm) (48)。最後的夾層結構分別於其 基板端與N型電接觸(N-tyPe (:〇1^3〇1:)(47)、?型 電接觸(P-type Contact)(41)進行電性連結。如此 則再完成一含光子晶體之發光二極體(4 )的實施例。 光子晶體實例之SEM圖,如第7圖所示。 光子晶體實例之SEM圖,亦可如第8圖所示。 請參閱第1圖至第4圖,如圖所示,太陽電池晶 片可為任何A族元素製備之或p -或n-type材質。 15 200935503 請參閱第1圖至第4圖,如圖所示,此技術可用 於矽晶太陽電池、I I I - V族太陽電池與I V - V I族太 陽電池,以提升其光電轉換效率。 雖然本創作已以具體之較佳實施例揭露如上, 然其並非用以限定本發明,即舉凡依本發明申請 專利範圍所作之均等變化與潤飾,在不脫離本發 明之精神和範圍下,皆仍應屬本發明所涵蓋之專 Θ 利範圍内,合予陳明。 ❹ 16 200935503 圖 式 簡 單 說 明 I 第 1 圖 係 含 光 子 晶 體 施 例 示 意圖。 1 第 2 圖 係 含 光 子 晶 體 施 例 示 意圖C > 第 3 圖 係 含 光 子 晶 體 施 例 示 意圖^ > 第 4 圖 係 含 光 子 晶 體 施 例 示 意圖c ) 第 5 圖 係 介 電 泳 法 電 第 6 圖 係 電 泳 法 _ _ 實 第 7 圖 係 光 子 晶 體 掃 第 8 圖 係 光 子 晶 體 掃Layer) (33) 'The above composite plate body is electrically coupled with the conductive handle (51), and its working surface is placed toward the electrophoretic medium (5 6 ). Li 14 14 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 And processed by a conventional method to form a photonic crystal conductive glass layer (Photon ic Cry sta 1 I T0 fi 1 m) ( 3 2 ). The final sandwich structure is electrically connected to the N-type contact (37) and the P-type contact (31) at the substrate end. In this way, an embodiment of a photodiode (3) containing a photonic crystal is completed. Referring to Figures 4 and 5, there is shown a cross-sectional view of another embodiment of a light-emitting diode of the present invention using a photonic crystal structure. As shown in Fig. | p 4, the substrate (4 6 ) is disposed, and an N-type semiconductor layer (N) is sequentially formed by a conventional semiconductor epitaxial technique such as vapor deposition, and an active layer is formed. (Active Layer) (44), P-type semiconductor layer (43), the composite plate body of the above-mentioned composite plate is electrically coupled with the conductive handle (51), and the working surface thereof faces the electrophoretic medium (5) 6) Placement, photonic crystal window layer (Photonic Crystal _ Window Film) (42) is prepared by electrophoresis, and processed by a conventional method to form a conductive glass layer (ITO fi lm) (48). The final sandwich structure is electrically connected to the N-type electrical contact (N-tyPe (: 〇1^3〇1:)) (47) and P-type contact (41) at the substrate end. Thus, an embodiment of a photonic crystal-containing light-emitting diode (4) is completed. An SEM image of a photonic crystal example is shown in Fig. 7. The SEM image of the photonic crystal example can also be as shown in Fig. 8. Please refer to Figures 1 to 4. As shown, the solar cell wafer can be made of any Group A element or p- or n-type material. 15 200935503 Please refer to Figure 1 to Figure 4, as shown in the figure. It is shown that this technology can be used for twinned solar cells, III-V solar cells and IV-VI solar cells to enhance its photoelectric conversion efficiency. Although the present disclosure has been disclosed above in the specific preferred embodiment, it is not used In order to limit the present invention, it is intended that the equivalents and modifications of the scope of the present invention should be included in the scope of the present invention. ❹ 16 200935503 Simple illustration of the diagram I The first picture contains photons Schematic diagram of the embodiment 1. 1 Figure 2 shows a photonic crystal with a schematic diagram C > Figure 3 shows a photonic crystal with a schematic diagram ^ > Figure 4 shows a photonic crystal with a schematic diagram c) Figure 5 is a dielectric Swim method electric 6th image electrophoresis _ _ real 7th picture photonic crystal sweep 8th picture photonic crystal sweep

之發光二極體之第一實 之發光二極體之第二實 之發光二極體之第三實 之發光二極體之第四實 泳槽配置示意圖。 施例示意圖。 描式電子顯微鏡相片圖 描式電子顯微鏡相片圖 【主要元件符號說明】 1The second real light-emitting diode of the first real light-emitting diode is the second real light-emitting diode. Schematic diagram of the example. Tracing electron microscope photograph Tracing electron microscope photograph [Main component symbol description] 1

11 P 型電接觸(P-Type Contact) 12 P 型半導體層(P-Type Semiconductor Layer) 13 活性層(Active Layer) 14 N 型半導體層(N-Type Semiconductor Layer) 15光子晶體全反射鏡 (Photonic Crystal Omni-reflector) 17 200935503 16 基板(Substrate) 17 N 型電接觸(N-Type Contact) 2 21 P 型電接觸(P-Type Contact) 2 2 P 型半導體層(P - T y p e S e m i c ο n d u c t o r Layer) 23 活性層(Active Layer) 24 N 型電接觸(N-Type Contact) 25 N 型半導體層(N-Type Semiconductor Layer) 26光子晶體全反射鏡 (Photonic Crystal Omni-reflector)以及基板(Substrate) 3 31 P 型電接觸(P-Type Contact) 32光子晶體導電玻璃層 (Photonic Crystal ITO film) 33P型半導體層 (P-Type Semi conductor Layer) 34 活性層(Active Layer) 35N型半導體層 (N-Type Semi conductor Layer) 36 基板(Substrate) 37 N 型電接觸(N-Type Contact) 4 18 200935503 41 P 型電接觸(P-Type Contact) 42光子晶體窗口層 (Photonic Crystal Window film) 43 P型半導體層 (P-Type Semiconductor Layer) 44 活性層(Active Layer) 45 N型半導體層 (N-Type Semiconductor Layer) 46 基板(Substrate) 47 N 型電接觸(N-Type Contact) 48導電玻璃層(Window f i lm) 5電泳槽 51導電柄 5 2晶片(並可成為電極) 5 3微/奈米球 5 4相對另一電極 5 5絕緣層 56介質 6電泳槽 61導電柄(帶負電) 6 2晶片(為負極) 6 3微/奈米球 64正極 6 5絕緣層 19 20093550311 P-type contact (P-Type Contact) 12 P-Type Semiconductor Layer 13 Active Layer 14 N-Type Semiconductor Layer 15 Photonic Crystal Total Mirror (Photonic Crystal Omni-reflector) 17 200935503 16 Substrate 17 N-Type Contact 2 21 P-type Contact 2 2 P-type semiconductor layer (P - T ype S emic ο nductor Layer) 23 Active Layer 24 N-Type Contact 25 N-Type Semiconductor Layer 26 Photonic Crystal Omni-reflector and Substrate 3 31 P-type contact 32 Photonic Crystal ITO film P-Type Semi-conductor layer 34 Active layer 35N-type semiconductor layer (N- Type Semi conductor Layer) 36 Substrate 37 N-Type Contact 4 18 200935503 41 P-Type Contact 42 Photonic Crystal Window Layer (Photonic Crystal Window fi Lm) 43 P-Type Semiconductor Layer 44 Active Layer 45 N-Type Semiconductor Layer 46 Substrate 47 N-Type Contact 48 Conductive glass layer (Window fi lm) 5 electrophoresis tank 51 conductive handle 5 2 wafer (and can be an electrode) 5 3 micro / nanosphere 5 4 relative to the other electrode 5 5 insulating layer 56 medium 6 electrophoresis tank 61 conductive handle (band Negative power) 6 2 wafer (for negative electrode) 6 3 micro/nano ball 64 positive electrode 6 5 insulating layer 19 200935503

φ 66介質 第7圖為光子晶體結構之掃描式電子顯微鏡照 相圖片。 第8圖為光子晶體結構之掃描式電子顯微鏡照 相圖片。 20φ 66 medium Fig. 7 is a photomicrograph of a scanning electron microscope of a photonic crystal structure. Figure 8 is a photomicrograph of a scanning electron microscope of a photonic crystal structure. 20

Claims (1)

200935503 十、申請專利範圍: 1.含光子晶體之發光二極體的製造方法,係應用 於一發光二極體上製備光子晶體結構,其步 驟包括: 提供一反應槽,該反應槽内形成相互 隔離之第一電極與第二電極; 提供一液態介質,該液態介質係容置於 該反應槽内,並同時覆蓋接觸該第 一電極及該第二電極; 於該液態介質内植入分佈有複數個微/ 奈米(50nm〜5/zm)均一粒徑顆粒; 將一基板懸游於該液態介質内進行電 泳並與該其一電極電性接觸,使該 等微/奈球均一粒徑顆粒以單層或複 數層周期性排列並披覆於該基板表 面形成光子晶體結構。 2.如申請專利範圍第1項所述之含光子晶體之 發光二極體的製造方法,其中,該該第一電 極及該第二電極分別設置於反應槽之底部以 及相對該底部游離於該液態介質内。 21 200935503 • 3· #申明專利範圍帛】項所述之含光子晶體之發 光二極體的製造方法,其中,該具有微/奈米均 徑粒顆粒的組成係具有機單體聚合物。 4 ·如申明專利範圍帛i項所述之含光子晶體之發 光^極體的製造方法,其中,該具有微/奈米均 徑粒顆粒的組成係為含有無機元素成分之氧 化物。 • 5."請專利範圍第Μ所述之含光子晶體之發光二極體的 製造方法,其中’該基板係選自單晶石夕(single crystal SlllC〇n)、多晶矽(polycrystal silicon)、非晶矽 (amorphous silicon)、導電玻璃、m_v族、n_VI族元 素材質其中之一者。 6.如申請專利範圍第1項所述之含光子晶體之發光二極體的 製造方法,其中,該有機單體聚合物係選自苯乙烯、丙烯 酸以及馬來酸…等系列組成者。 ❿ 7.如申請專利範圍第1項所述之含光子晶體之發 光二極體的製造方法’其中,該無機元素氧化 物包括選自:二氧化矽、二氧化鈦、二氧化錯、 氧化鋅、氧化銘、或其組合。 8.如申請專利範圍第1項所述之含光子晶體之發 光二極體的製造方法,其中,該微/奈米均一粒 徑顆粒相對於液態介質的重量百分比濃度範圍 係介於0.5〜60 wt %。 22 200935503 9.如申請專利範圍第1項所述之含光子晶體之發 光二極體的製造方法,其中,該反應槽係為垂直 型、水平型、傾斜型或其他結構及型式之 電泳槽。 1 0.如申請專利範圍第1項所述之含光子晶體之發 光二極體的製造方法,其中,該液態介質為液相 水溶液或液相有機溶液。11.如申請專利範圍 第1項所述之光子晶體的製造方法,其中,該 液態介質之酸驗值介於1~9。 1 1.如申請專利範圍第1項所述之含光子晶體之發 光二極體的製造方法,其中,該液態介質之操作 溫度係介於1 0〜1 5 0 °C。1 3.如申請專利範圍第 1項所述之光子晶體的製造方法,其中,該第一 電極與該第二電極的間距係介於0.5〜50cm之 間。 12.如申請專利範圍第1項所述之含光子晶體之發 光二極體的製造方法,其中,該反應槽外提供 一介於1〜1,000伏特壓差之定電壓源。 1 3.如申請專利範圍第1項所述之含光子晶體之 發光二極體的製造方法,其中,該光子晶體 結構係排列成二維(2 - D )週期性結構。 14.如申請專利範圍第1項所述之含光子晶體之發 23 200935503 光二極體的製造方法,其中,該光子晶體結構 '排列成或三維(3 - D )週期性結構。 1 5.如申請專利範圍第1項所述之含光子晶體之 發光二極體的製造方法,其中,該光子晶體 可設置於發光二極體的表面窗口層、導電玻 璃層、光子晶體全反射鏡面層、基板層或上 述各層之任意組合。 ❹ 24200935503 X. Patent application scope: 1. A method for manufacturing a light-emitting diode containing a photonic crystal, which is applied to a photodiode structure for preparing a photonic crystal structure, the steps comprising: providing a reaction tank, the mutual formation of the reaction tank Separating the first electrode and the second electrode; providing a liquid medium, the liquid medium is placed in the reaction tank and simultaneously covering the first electrode and the second electrode; and the liquid medium is implanted and distributed a plurality of micro/nano (50 nm~5/zm) uniform particle size particles; a substrate suspended in the liquid medium for electrophoresis and electrically contacting the electrode thereof to make the micro/nanosphere uniform particle size The particles are periodically arranged in a single layer or a plurality of layers and are coated on the surface of the substrate to form a photonic crystal structure. 2. The method of manufacturing a photonic crystal-containing light-emitting diode according to claim 1, wherein the first electrode and the second electrode are respectively disposed at a bottom of the reaction tank and are separated from the bottom portion. Inside the liquid medium. The method for producing a photonic crystal-containing light-emitting diode according to the invention, wherein the composition having micro/nano-average particle particles has an organic monomer polymer. 4. The method for producing a photonic crystal-containing light-emitting body according to the invention, wherein the composition having micro/nano-average particle particles is an oxide containing an inorganic element component. 5. The method for manufacturing a photonic crystal-containing light-emitting diode according to the third aspect of the invention, wherein the substrate is selected from the group consisting of single crystal sled C〇n, polycrystalline silicon, One of amorphous silicon, conductive glass, m_v family, and n_VI element materials. 6. The method of producing a photonic crystal-containing light-emitting diode according to claim 1, wherein the organic monomer polymer is selected from the group consisting of styrene, acrylic acid, and maleic acid. 7. The method for producing a photonic crystal-containing light-emitting diode according to claim 1, wherein the inorganic element oxide is selected from the group consisting of: ceria, titania, dioxins, zinc oxide, oxidation. Ming, or a combination thereof. 8. The method for producing a photonic crystal-containing light-emitting diode according to claim 1, wherein the micro/nano uniform particle size concentration of the particle relative to the liquid medium ranges from 0.5 to 60. Wt %. The method for producing a photonic crystal-containing light-emitting diode according to the first aspect of the invention, wherein the reaction tank is a vertical type, a horizontal type, a tilt type or an electrophoresis tank of another structure and type. The method for producing a photonic crystal-containing light-emitting diode according to the first aspect of the invention, wherein the liquid medium is a liquid phase aqueous solution or a liquid phase organic solution. 11. The method of producing a photonic crystal according to claim 1, wherein the liquid medium has an acidity value of from 1 to 9. 1 1. The method for producing a photonic crystal-containing light-emitting diode according to claim 1, wherein the liquid medium has an operating temperature of from 10 to 150 °C. The method of manufacturing a photonic crystal according to claim 1, wherein the distance between the first electrode and the second electrode is between 0.5 and 50 cm. 12. The method of producing a photonic crystal-containing light-emitting diode according to claim 1, wherein a constant voltage source of a voltage difference of 1 to 1,000 volts is provided outside the reaction vessel. The method of producing a photonic crystal-containing light-emitting diode according to claim 1, wherein the photonic crystal structure is arranged in a two-dimensional (2-D) periodic structure. 14. The method of manufacturing a photodiode according to claim 1, wherein the photonic crystal structure is arranged in a three-dimensional (3-D) periodic structure. The method for manufacturing a photonic crystal-containing light-emitting diode according to claim 1, wherein the photonic crystal can be disposed on a surface window layer, a conductive glass layer, and a photonic crystal total reflection of the light-emitting diode. Mirror layer, substrate layer or any combination of the above. ❹ 24
TW97104036A 2008-02-01 2008-02-01 Production method of light emitting diode (LED) with photonic crystal TW200935503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97104036A TW200935503A (en) 2008-02-01 2008-02-01 Production method of light emitting diode (LED) with photonic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97104036A TW200935503A (en) 2008-02-01 2008-02-01 Production method of light emitting diode (LED) with photonic crystal

Publications (1)

Publication Number Publication Date
TW200935503A true TW200935503A (en) 2009-08-16

Family

ID=44866601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97104036A TW200935503A (en) 2008-02-01 2008-02-01 Production method of light emitting diode (LED) with photonic crystal

Country Status (1)

Country Link
TW (1) TW200935503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038459A (en) * 2020-09-14 2020-12-04 扬州乾照光电有限公司 Photonic crystal LED structure and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038459A (en) * 2020-09-14 2020-12-04 扬州乾照光电有限公司 Photonic crystal LED structure and manufacturing method

Similar Documents

Publication Publication Date Title
Jiang et al. Efficient colorful perovskite solar cells using a top polymer electrode simultaneously as spectrally selective antireflection coating
Zhou et al. Application of patterned sapphire substrate for III-nitride light-emitting diodes
Gao et al. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing
Wang et al. Photon management in nanostructured solar cells
US20120305061A1 (en) Transparent conductive porous nanocomposites and methods of fabrication thereof
Zhan et al. Micro‐Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications
US20200152899A1 (en) Organic thin-film solar cell and organic thin-film solar cell manufacturing method
Wang et al. Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays
Wang et al. CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO 2 nanotube arrays
Lin et al. Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates
Fallahazad et al. Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate
Omar et al. Effects of electrochemical etching time on the performance of porous silicon solar cells on crystalline n-type (100) and (111)
CN111525036B (en) Self-driven perovskite photoelectric detector and preparation method thereof
Peng et al. Light efficiency enhancement of deep ultraviolet light-emitting diodes packaged by nanostructured silica glass
Wang et al. Fabrication of well-aligned ZnO nanorod photoanodes for perovskite solar cells
Hsieh et al. Realizing omnidirectional light harvesting by employing hierarchical architecture for dye sensitized solar cells
KR101714904B1 (en) Photoelectronic device using hybrid structure of silica nano particles-graphene quantum dots and method of manufacturing the same
Jiang et al. Colored Silicon Heterojunction Solar Cells Exceeding 23.5% Efficiency Enabled by Luminescent Down‐Shift Quantum Dots
TWI476144B (en) Method for preparing a periodic nanohole structure array and the use thereof
TW200935503A (en) Production method of light emitting diode (LED) with photonic crystal
TWI472059B (en) A method of forming a surface plasma using a microstructure
Yan et al. Enhanced light absorption of kinked nanowire arrays for high-performance solar cells
Wang et al. All-optical logic gates based on hierarchical photonic crystal modulated photoluminescence of perovskite nanocrystals
TW200935502A (en) Production method of photonic crystal
Du et al. Enhanced Light Emission of Light-Emitting Diodes with Silicon Oxide Nanobowls Photonic Crystal without Electrical Performance Damages