TW200934067A - Single magnetic track two axis positioning system - Google Patents

Single magnetic track two axis positioning system

Info

Publication number
TW200934067A
TW200934067A TW097139030A TW97139030A TW200934067A TW 200934067 A TW200934067 A TW 200934067A TW 097139030 A TW097139030 A TW 097139030A TW 97139030 A TW97139030 A TW 97139030A TW 200934067 A TW200934067 A TW 200934067A
Authority
TW
Taiwan
Prior art keywords
rolling bearing
air gap
linear
linear air
drive
Prior art date
Application number
TW097139030A
Other languages
Chinese (zh)
Inventor
Georgo Zorz Angelis
Hendrikus Martinus Wilhelmus Goossens
Peter Gerard Henri Menten
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200934067A publication Critical patent/TW200934067A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/90Two-dimensional encoders, i.e. having one or two codes extending in two directions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/95Three-dimensional encoders, i.e. having codes extending in three directions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Abstract

A positioning system (100, 120) employs a magnetic motor and a roller bearing assembly. The magnetic motor includes a magnetic track (101, 121) having a linear air gap, and a forcer (102, 122) having a plurality of coils disposed within the linear air gap. The roller bearing assembly includes an integration of a base roller bearing unit (106-108, 126, 127) and a carrier roller bearing unit (103-105, 123-125) for facilitating a two degrees of freedom of the magnetic motor based on a superimposition of commutation laws that are orthogonal.

Description

200934067 九、發明說明: 【發明所屬之技術領域】 . 本發明一般係關於磁馬達。本發明明確係關於一種採用 . 一單磁軌與具有雙自由度之多個3相及/或多個2相動子的 定位系統。 【先前技術】 由本發明之受讓人擁有且其全部内容以引用的方式併入 本文中的Angelis等人之國際公開案第WO 2007/026270 A1 ❿ 號(下文中稱為"Angelis公開案")教示一磁軌之一線性氣隙 内的多個3相及/或多個2相動子之各種方位,該磁軌用於 促進係正交之一(2)個換向法則之一曼加,因而在二(2) 個正交方向中獲得獨立促動力(下文中稱為"正交力磁馬 達")。Angelis公開案因此克服僅可在唯--方向中獲得單 一促動力(下文中稱為"一單力磁馬達")之該磁軌之該線性 氣隙内的多個3相及/或多個2相動子之先前已知方位的缺 點。一此缺點係要求將類似於Angelis公開案之該正交力磁 ❿ 馬達的二(2)個單力磁馬達分類以便在二(2)個正交方向中 獲得獨立促動力《為進一步克服單自由度馬達之此缺點, - 本發明提供一種併入如Angelis公開案所教示之—正交力磁 馬達的改良定位系統。 【發明内容】 在本發明之一形式中,一定位系統包括—磁馬達及耦合 至該馬達之一滚動軸承總成^該磁馬達包含具有一線性氣 隙之一磁軌與具有設置於該線性氣隙内之線圈的一動子。 134666.doc 200934067 該滾動軸承總成包含用於促進該磁馬達之一雙自由度的一 基底滾動Μ單元與一載架滾動#承單元的一整合 - #中’該基底滾動轴承單元回應施加於該等線圈以產生平 • 行於該線性氣隙的該X驅動轴之-驅動力的換向驅動電 流,而促進該動子於該線性氣隙内且平行於該線性氣隙之 X驅動軸進行-線性媒動移動,而且,該載架滾動抽承 丨元回應在施加於該等線圈以產生正交於該線性氣隙的該 X驅動轴之-力的該等換向驅動電流上疊加及從該等換向 〇 ㈣電流相移之正交換向電流’而促進該動子於該線性氣 隙内且正交於該線性氣隙之該χ驅動轴進行一線性正交移 動0 -本發明之前述形式及其他形式以及本發明之各種特徵及 優點自以下結合附圖讀取的本發明之各種具體實施例的實 施方式而將變得進-步明瞭。實施方式及圖式僅係說明本 發明’而並非限制由隨附申請專利範圍及其等效範圍所定 義的本發明之範疇。 β 【實施方式】 參考圖1Α至2Β,正如Angeiis公開案所教示的一磁馬達 1〇 ’其採用-磁軌20與-動子30。磁軌2〇包含相反磁陣列 N、S ’用於橫跨—線性氣隙產生—磁場,且動子30之線圈 (由電流路徑Ιχ/Ιζ表示)係設置於磁軌2〇之該線性氣隙内(該 等磁陣列Ν、S之一部分係顯示於圖2八與2Β中以支持動子 3〇之該等線圈的一概觀)。正如Angelis公開案所教示,當 換向驅動電流ιχ上之換向懸浮電流Iz的一疊加之一相移施 134666.doc 200934067 加於動子30之該等線圈時,獲得一驅動力^(圖μ與2B)與 一正交懸浮力FZ(圖1A與1B)之一最大解柄合(若非-完全 • 解耦合)。為促進(即,為增加可能性、強度或有效性)如 . 〜❿公開案所教示之馬達_ -雙自由度,本發明之一 滚動軸承總成40採用一載架滾動轴承單元5〇與一基底滾動 軸承單元6〇的—整合(即,用於將單元50、60組合為-體 • 之任何方式)。 如圖1A與1B中最佳顯不,載架滾動軸承單元50促進動 β 子30在由該等磁陣列N、s之高度界定的—最小㈣浮轴位 置ZMIN(圖1A)與—最大Z懸浮軸位置ΖΜΑχ (圖ib)之間於磁 軌20之該線性氣隙内之一線性懸浮移動。實際上,除(若 -有)不顯著的干擾外,本發明未對載架滾動軸承單元5〇或 本發明之任何其他載架滾動軸承單元的結構組態及磁軌2〇 與動子30之該等線圈之間的磁交互作用強加任何限制或任 何約束。 ❹如圖2A與2B中最佳顯示,基底滚動軸承單元6〇促進動 子30在由磁軌20之長度界定的一最小χ驅動軸位置 (圖2A)與一最大X驅動軸位置Xmax (圖2B)之間於磁軌“之 ' 該線性氣隙内之一線性驅動移動。實際上,除(若有)不顯 -著的干擾外,本發明未對基底滾動轴承單元6〇或本發明之 任何其他基底滾動轴承單元的結構組態及磁軌2〇與動子Μ 之該等線圈之間的磁交互作用強加任何限制或任何約束。 此外,實務上,除相對於該Ζ懸浮轴操作之一載架滾動 軸承單元的自由及相對於該X驅動軸操作之基底滾動軸承 134666.doc -8 - 200934067 由外本發明未對載架滾動軸承單元5°與基底滾 ==元6。之整合或本發明之任何其他滾動軸承單元整 δ強加任何限制或任何約束。 採Γ::Γ至4Β,正如AngeIis/A'開案所教示的磁馬達η 於Μ 與—動子31。磁軌21包含相反磁陣列N、s用 =跨-線性氣隙產生一磁場,且動子31之線圈(由電流 = )係設置於磁軌21之該線性氣隙内(該等磁陣 ❹ 之一部分係顯示於圖4_4B中以支持動子30之該 2圈的-概觀)。正如Angeli“開案所教示 ,上之換向橫向電流Ιγ的一疊加之一相移當施加於動 子η之該等線圈時獲得一驅動力Fx(圖4八與叫與一正交橫 (圖3讀叫之-最大_合㈣—完全解耗合)。 $促進(即,為增加可能性、強度或有效性)如公開 成=不之馬達10的一雙自由度’本發明之一滾動軸承總 成7〇採用-載架滾動軸承單元8〇與一基底滾動轴承單元% 的一整合(即,用於整體組合單元8〇、9〇之任何方式)。 如圖3A與3B令最佳顯示,載架滾動軸承單元促進動 子3!在由該等磁陣列N、s之高度界定的一最小讀向轴位 置Y则(圖3A)與一最大γ橫向軸位置γΜΑχ (圖3b)之間於磁 軌21之該線性氣隙内之一線性橫向移動。實際上,在磁轨 21與動子31的該等線圈之間的磁交互作用下,除(若有)不 顯著的干擾外,本發明未對载架滾動轴承單元⑽或本發明 之任何其他載架滾動轴承單元的結構組態強加任何限 任何約束。 134666.doc 200934067 如圖4A與4B中最佳顯示’基底滾動軸承單元9〇促進動 在由磁軌21之長度界定的一最小χ驅動軸位置‘IN (圖4A)與-最大X驅動柄位置χ_ (圖4b)之間於磁仙之 該線性氣隙内之一線性驅動移動。實際上,除(若有)不顯 著的干擾外’本發明未對基底滾動軸承單元或本發明之 任何其他基底滾動轴承單元的結構組態及磁軌21與動子Η 之該等線圈之間的磁交互作用強加任何限制或任何約束。 ❹200934067 IX. Description of the invention: [Technical field to which the invention pertains] The present invention generally relates to a magnetic motor. The present invention is expressly directed to a positioning system that employs a single magnetic track and a plurality of three-phase and/or multiple 2-phase movers having two degrees of freedom. [Prior Art] International Publication No. WO 2007/026270 A1 to Angelis et al. (hereinafter referred to as "Angelis Publication ";) teaches a variety of orientations of a plurality of 3-phase and/or a plurality of 2-phase movers in a linear air gap of one of the tracks, the track being used to promote one of the (2) commutation rules Manga, thus obtaining independent urging force in two (2) orthogonal directions (hereinafter referred to as "orthogonal force magnetic motor"). The Angelis publication thus overcomes a plurality of 3-phases and/or within the linear air gap of the track in which only a single urging force (hereinafter referred to as "a single-force magnetic motor") can be obtained in the only direction A disadvantage of the previously known orientation of a plurality of 2-phase movers. One disadvantage is the requirement to classify two (2) single-force magnetic motors similar to the orthogonal force magnetic motor of the Angelis publication to obtain independent urging forces in two (2) orthogonal directions. This shortcoming of the degree of freedom motor - the present invention provides an improved positioning system incorporating a quadrature force magnetic motor as taught by the Angelis publication. SUMMARY OF THE INVENTION In one form of the invention, a positioning system includes a magnetic motor and a rolling bearing assembly coupled to the motor. The magnetic motor includes a magnetic track having a linear air gap and has a magnetic track disposed thereon a mover of a coil within a linear air gap. 134666.doc 200934067 The rolling bearing assembly comprises an integration of a base rolling unit and a carrier rolling unit for promoting two degrees of freedom of the magnetic motor - #中' the base rolling bearing unit is responsive to the application And a coil to generate a commutating drive current of the driving force of the X drive shaft that is parallel to the linear air gap, and promoting the mover in the linear air gap and parallel to the X drive shaft of the linear air gap a linear medium movement, and wherein the carrier rolling pumping unit is superimposed on the commutation drive currents applied to the coils to generate a force of the X drive shaft orthogonal to the linear air gap The linear commutating movement of the χ drive shaft from the commutative 〇 (4) current phase shift to the current ' to promote the mover in the linear air gap and orthogonal to the linear air gap 0 - the present invention The above-described and other aspects, as well as the various features and advantages of the present invention, will become apparent from the following description of the embodiments of the invention. The present invention and the drawings are merely illustrative of the invention and are not intended to limit the scope of the invention as defined by the scope of the appended claims. [Embodiment] Referring to Figures 1A to 2B, a magnetic motor 1'' as taught in the Angeiis publication employs a magnetic track 20 and a mover 30. The track 2〇 includes the opposite magnetic array N, S′ for generating a magnetic field across the linear air gap, and the coil of the mover 30 (represented by the current path Ιχ/Ιζ) is disposed on the track 2〇. Within the gap (one of the magnetic arrays Ν, S is shown in Figures 8 and 2 to support an overview of the coils of the mover 3〇). As taught by the Angelis publication, when one of the superpositions of the commutation drive current Iz on the commutation drive current Iz is applied, 134666.doc 200934067 is applied to the coils of the mover 30 to obtain a driving force ^ (Fig. μ and 2B) with one of the orthogonal levitation forces FZ (Figs. 1A and 1B), the maximum solution (if not - complete • decoupling). In order to promote (ie, to increase the likelihood, strength or effectiveness), such as the motor taught by the publication, the double-degree of freedom, one of the rolling bearing assemblies 40 of the present invention employs a carrier rolling bearing unit 5〇. Integration with a base rolling bearing unit 6 (ie, any means for combining the units 50, 60 into a body). As best seen in Figures 1A and 1B, the carrier rolling bearing unit 50 promotes the movement of the beta 30 at the height defined by the heights of the magnetic arrays N, s - the minimum (four) floating axis position ZMIN (Figure 1A) and - the maximum Z-suspension A linear suspension movement between the shaft position ΖΜΑχ (Fig. ib) within the linear air gap of the track 20 is achieved. In fact, the present invention does not have a structural configuration of the carrier rolling bearing unit 5 or any other carrier rolling bearing unit of the present invention and the magnetic track 2 and the mover 30, except for (if any) insignificant interference. The magnetic interaction between the coils imposes any restrictions or any constraints. As best shown in Figures 2A and 2B, the base rolling bearing unit 6 〇 promotes the position of the mover 30 at a minimum χ drive shaft defined by the length of the track 20 (Fig. 2A) and a maximum X drive shaft position Xmax ( Figure 2B) A linear drive movement between the magnetic "gap" of the track. In fact, the present invention does not have a base rolling bearing unit 6 or this in addition to (if any) unnoticeable interference. The structural configuration of any other base rolling bearing unit of the invention and the magnetic interaction between the tracks 2 and the coils of the mover 强 impose any restrictions or any constraints. In addition, in practice, in addition to the suspension axis relative to the raft Operation of one of the carrier rolling bearing units and the base rolling bearing operating relative to the X drive shaft 134666.doc -8 - 200934067 by the present invention without the integration of the carrier rolling bearing unit 5° with the base roll == element 6. Any other rolling bearing unit of the present invention imposes any limitation or any constraint on the entire δ. Pick: Γ to 4 Β, as taught by AngeIis/A', the magnetic motor η is in the Μ and the mover 31. The magnetic track 21 contains the opposite Magnetic array N, s = cross-linear air gap production A magnetic field is generated, and the coil of the mover 31 (by current = ) is disposed in the linear air gap of the magnetic track 21 (a part of the magnetic array is shown in Fig. 4-4B to support the two turns of the mover 30). - an overview). As Angeli "opened by the case, one of the superpositions of the commutating transverse current Ι γ is phase shifted. When applied to the coils of the mover η, a driving force Fx is obtained (Fig. 4 An orthogonal transverse (Fig. 3 read called - maximum _ com (4) - complete solution consuming). $ promote (ie, to increase the likelihood, strength or effectiveness) such as a pair of degrees of freedom of the motor 10 A rolling bearing assembly 7 of the present invention employs an integration of the carrier rolling bearing unit 8〇 with a base rolling bearing unit % (i.e., any means for integrally combining the units 8〇, 9〇). 3B is the best display, the carrier rolling bearing unit promotes the mover 3! at a minimum read axis position Y defined by the heights of the magnetic arrays N, s (Fig. 3A) and a maximum γ lateral axis position γ ΜΑχ (Fig. 3b) linearly laterally moving between one of the linear air gaps of the magnetic track 21. In fact, on the magnetic track 21 The structural configuration of the carrier rolling bearing unit (10) or any other carrier rolling bearing unit of the present invention is not exemplified by the magnetic interaction between the coils of the sub-31, except if there is no significant interference. Any restrictions are imposed. 134666.doc 200934067 As shown in Figures 4A and 4B, 'the base rolling bearing unit 9 〇 promotes a minimum χ drive shaft position defined by the length of the track 21 'IN (Fig. 4A) and - The maximum X drive handle position χ_ (Fig. 4b) is linearly driven to move within the linear air gap of the magnetic fairy. In fact, except for (if any) insignificant interference, the present invention does not apply to the base rolling bearing unit or the present The structural configuration of any of the other base rolling bearing units of the invention and the magnetic interaction between the tracks 21 and the coils of the mover 强 impose any restrictions or any constraints. ❹

此夕。卜,實際上,除相對於該γ橫向軸操作之一載架滾動 轴承單元的自由及相對於該x驅動抽操作之基底滾動轴承 單元的自自夕卜’本發明纟對載架滚動轴承單元80與基底滾 動抽承單元90之整合或本發明之任何其他滾動抽承單元整 合強加任何限制或任何約束。 為對本發明之滾動軸承總成發明原則提供較佳理解,現 本文中關於圖5A至6的說明來說明併入本發明之滾動軸承 總成之定位系統的二(2)個範例。 參考圖5A與5B,一定位系統1〇〇裝入一磁馬達,該磁馬 達如Angelis公開案所教示採用一磁軌1〇1與一動子ι〇2。磁 軌1〇1包含相反磁陣列(未顯示),用於橫跨一線性氣隙產生 一磁場,且動子102之線圈係設置於磁軌101之該線性氣隙 内。正如Angelis公開案所教示,換向驅動電流上之換向懸 浮電流的一疊加之一相移當施加於動子1〇2之該等線圈時 獲得一驅動力。與一正交懸浮力卜之一最大解耦合(若非 一完全解耦合)。為促進(即,為増加可能性、強度或有效 性)如Angelis公開案所教示之馬達的—雙自由度,本發明 134666.doc -10- 200934067 之一 /袞動轴承總成採用一載架滾動轴承單元與一基底滾動 轴承單元的一垂直安裝。明確而言,該載架滾動軸承單元 採用沿磁軌HH之外部延伸的一載架1〇3 (載架1〇3之頂端係 連接至動子102且載架103之底端係輕合至一對滾動轴承軌 道104與1 05)且該基底滚動軸承單元採用係耦合至一滾動 軸承軌道108上之一對滾動轴承車1〇6與1〇7。藉由滾動軸 - 承軌道104係垂直耦合至滾動軸承車106以及滾動轴承軌道 105係垂直耦合於滾動軸承車107而建立該載架滾動轴承單 〇 元於該滾動軸承單元上之垂直安裝。 在操作中,基於載架103沿滾動轴承軌道與1〇5之線 性滾動轴承移動,該載架滾動軸承單元促進動子1〇2在由 磁軌101的磁陣列之南度界定的一最小Z懸浮軸位置與一最 大Z懸浮軸位置之間於磁軌丨〇 i之該線性氣隙内之一線性懸 浮移動。定位系統100進一步採用一測量系統i 1〇以測量動 子102於磁執101之該線性氣隙内之該線性z懸浮移動。 0 基於滾動軸承車106與1 〇7沿滾動軸承軌道i 〇8之一線性 滾動軸承移動,該基底滾動軸承單元促進動子1〇2在由磁 軌101之長度界定的一最小X驅動軸位置與一最大χ驅動軸 位置之間的磁軌101之該線性氣隙内的一線性驅動移動。 • 疋位系統100進一步採用一測量系統109以測量動子102於 磁軌101之該線性氣隙内之該線性χ驅動移動。 參考圖6,一定位系統120併入一磁馬達,該磁馬達如 Angelis公開案所教示採用一磁軌121與一動子122。磁軌 121包含相反磁陣列(未顯示),用於橫跨一線性氣隙產生— 134666.doc • 11 · 200934067 磁場,且動子122之線圈係設置於磁軌1 21之該線性氣隙 内。正如Angelis公開案所教示,當換向驅動電流上之換向 懸浮電流的一疊加之一相移施加於動子122之該等線圈時 獲得一驅動力Fx與一正交懸浮力Fzi —最大解耦合(若非 一完全解耦合)。為促進(即’為增加可能性、強度或有效 性)如Angelis公開案所教示之馬達的一雙自由度,本發明 ' 之一滚動軸承總成採用一載架滾動軸承單元與一基底滾動 軸承單元的一垂直安裝。明確而言,該載架滚動轴承單元 © 採用於磁軌121之該線性氣隙内延伸的一載架123(載架123 之頂端係連接至動子122且載架123之底端係耦合至一對滾 動轴承軌道124與125)’且該基底滾動軸承單元採用係耦 - 合至一滾動軸承軌道127上之一滾動軸承車126。藉由係垂 直耦合至滾動軸承車126之滾動軸承軌道124與125來建立 該載架滚動轴承單元於該滾動轴承單元上之垂直安裝。 在操作中,基於載架123沿滾動軸承軌道124與125之線 性滾動轴承移動’該載架滾動軸承單元促進動子122在由 磁軌121的磁陣列之高度界定的一最小z懸浮轴位置與一最 大Z懸浮轴位置之間於磁軌丨21之該線性氣隙内之一線性懸 浮移動。定位系統120進一步採用一測量系統丨29用以測量 動子122於磁軌121之該線性氣隙内之該線性z懸浮移動β 基於滾動轴承車126沿滾動軸承軌道]27之一線性滾動軸 承移動’該基底滾動軸承單元促進動子122在由磁軌121之 長度界定的一最小X驅動軸位置與一最大X驅動轴位置之 間於磁軌121之該線性氣隙内的一線性驅動移動。定位系 134666.doc •12- 200934067 統120進一步採用一測量系統129用以測量動子122於磁軌 121之該線性氣隙内之該線性X驅動移動。 參考圖5與6 ’熟習技術人士應瞭解,馬達常數κζ [N/A] 與該操作位置無關,而馬達常數Kx [N/A]係與藉由永久磁 鐵引起的磁場中之線圈容積成正比並因此為z位移之一線 性函數。此外,若控制該z懸浮軸,則系統非丨)抑制達到 頻寬(BW)之Z懸浮軸中之滾動轴承雜訊引起的χ衝程,則2) 滾動軸承雜訊達到該Bw。預期,在情況丨)中,採用該ζ懸 浮軸中之適當滾動轴承(有限黏滑及微剛度),在該ζ懸浮 軸中引起滾動軸承雜訊,顯著過濾該χ驅動衝程。 參考圖1至6,熟習技術人士應瞭解,本發明之衆多優點 包含但不限於處理本文先前說明的背景技術之缺點。此 外,熟習技術人士應瞭解如何將本發明之滚動轴承總成發 月原則應用於除圖!至6中顯示的磁馬達外的磁馬達。特定 吞之’無鐵磁馬達基於一單磁軌具有二個或三個動子及/ 或二(3)度自由。 雖》、、目别遇為於本文所揭示的本發明之具體實施例為較 〃體實施例,但在不背離本發明之精神與範疇的情況下 a可進料種改變及修改。在隨时請專利侧中指示本發 二之範疇’而相同意義和範圍之内的所有變更皆意欲包含 於本發明中。 【圖式簡單說明】 = 解說平行於—磁軌之—線性氣隙的―.浮轴 動子的依據本發明之—滾動轴承總成的_第一具體 134666.doc 13 200934067 實施例。 圖2Α與2Β解說平行於該磁軌之該線性氣隙的一χ驅動軸 移動該動子之圖1Α與1Β中顯示的該滾動軸承總成。 圖3 Α與3Β解說平行於該磁軌之該線性氣隙的一 γ橫向軸 移動該動子的圖2A與2B中顯示之一滾動軸承總成的一第 -具體實施例。 圖4A與4B解說平行於該磁軌之該線性氣隙的一 χ驅動軸 移動該動子之圖3A與3B中顯示之該滚動軸承總成。This evening. In fact, in addition to the freedom of one of the carrier rolling bearing units relative to the gamma transverse axis and the base rolling bearing unit relative to the x drive pumping operation, the present invention is a carrier rolling bearing The integration of unit 80 with substrate rolling draw unit 90 or any other rolling draw unit of the present invention imposes any limitations or any constraints. In order to provide a better understanding of the inventive principles of the rolling bearing assembly of the present invention, two (2) examples of the positioning system incorporating the rolling bearing assembly of the present invention will now be described with respect to the description of Figures 5A through 6. Referring to Figures 5A and 5B, a positioning system 1 is loaded with a magnetic motor which, as taught by the Angelis publication, employs a magnetic track 1〇1 and a mover ι〇2. The track 101 includes an opposite magnetic array (not shown) for generating a magnetic field across a linear air gap, and the coils of the mover 102 are disposed within the linear air gap of the track 101. As taught by the Angelis publication, a phase shift of one superposition of the commutating suspension currents on the commutating drive current obtains a driving force when applied to the coils of the mover 1〇2. Maximum decoupling with one of the orthogonal levitation forces (if not a complete decoupling). In order to promote (ie, to increase the likelihood, strength or effectiveness), as taught by the Angelis publication, the double degree of freedom of the motor, the invention 134666.doc -10- 200934067 one / the movable bearing assembly uses a carrier A vertical mounting of the rolling bearing unit and a base rolling bearing unit. Specifically, the carrier rolling bearing unit employs a carrier 1〇3 extending along the outside of the track HH (the top end of the carrier 1〇3 is connected to the mover 102 and the bottom end of the carrier 103 is lightly coupled to one For the rolling bearing tracks 104 and 105) and the base rolling bearing unit is coupled to one of the rolling bearing vehicles 1〇6 and 1〇7 on a rolling bearing track 108. The vertical mounting of the carrier rolling bearing unit on the rolling bearing unit is established by the rolling shaft-bearing track 104 being vertically coupled to the rolling bearing vehicle 106 and the rolling bearing track 105 being vertically coupled to the rolling bearing vehicle 107. In operation, based on the movement of the carrier 103 along the rolling bearing track and the linear roller bearing of 1〇5, the carrier rolling bearing unit promotes a minimum Z-suspension of the mover 1〇2 defined by the south of the magnetic array of the track 101. A linear suspension movement between the shaft position and a maximum Z-suspension axis position within the linear air gap of the track 丨〇i. The positioning system 100 further employs a measurement system i 1 〇 to measure the linear z-suspension movement of the mover 102 within the linear air gap of the magnet 101. 0 Based on the rolling bearing vehicles 106 and 1 〇 7 moving along a linear rolling bearing of the rolling bearing track i 〇 8 , the base rolling bearing unit promotes the position of a minimum X drive shaft defined by the length of the track 101 and a maximum 动 2 A linear drive movement within the linear air gap of the track 101 between the drive shaft positions. • The clamp system 100 further employs a measurement system 109 to measure the linear χ drive movement of the mover 102 within the linear air gap of the track 101. Referring to Figure 6, a positioning system 120 incorporates a magnetic motor that employs a magnetic track 121 and a mover 122 as taught by the Angelis publication. The magnetic track 121 includes an opposite magnetic array (not shown) for generating a magnetic field across a linear air gap, and the coil of the mover 122 is disposed within the linear air gap of the magnetic track 1 21 . As taught by the Angelis publication, a phase shift of one of the superimposed quiescent currents on the commutating drive current is applied to the coils of the mover 122 to obtain a driving force Fx and an orthogonal levitation force Fzi - the maximum solution. Coupling (if not a complete decoupling). In order to promote (ie, to increase the likelihood, strength or effectiveness) a pair of degrees of freedom of the motor taught by the Angelis publication, one of the rolling bearing assemblies of the present invention employs a carrier rolling bearing unit and a base rolling bearing unit. A vertical installation. Specifically, the carrier rolling bearing unit © is used for a carrier 123 extending in the linear air gap of the magnetic track 121 (the top end of the carrier 123 is connected to the mover 122 and the bottom end of the carrier 123 is coupled. To a pair of rolling bearing rails 124 and 125)' and the base rolling bearing unit is coupled to one of the rolling bearing carriages 126 on a rolling bearing track 127. The vertical mounting of the carrier rolling bearing unit on the rolling bearing unit is established by a rolling bearing track 124 and 125 that is vertically coupled to the rolling bearing car 126. In operation, the carrier rolling bearing unit is moved based on the linear rolling bearing of the carrier 123 along the rolling bearing tracks 124 and 125. The carrier 122 facilitates a minimum z-suspension axis position defined by the height of the magnetic array of the track 121 with a maximum The Z-suspension axis position moves linearly between one of the linear air gaps of the track 丨 21 . The positioning system 120 further employs a measuring system 丨 29 for measuring the linear z-suspension movement of the mover 122 within the linear air gap of the track 121. Based on the linear bearing movement of the rolling bearing 126 along one of the rolling bearing tracks 27 The base rolling bearing unit facilitates a linear drive movement of the mover 122 between the minimum X drive shaft position defined by the length of the track 121 and a maximum X drive shaft position within the linear air gap of the track 121. Positioning System 134666.doc • 12- 200934067 The system 120 further employs a measurement system 129 for measuring the linear X drive movement of the mover 122 within the linear air gap of the track 121. Referring to Figures 5 and 6, it should be understood by those skilled in the art that the motor constant κ ζ [N/A] is independent of the operating position, and the motor constant Kx [N/A] is proportional to the coil volume in the magnetic field caused by the permanent magnet. And therefore a linear function of one of the z displacements. In addition, if the z-suspension axis is controlled, the system does not suppress the χ stroke caused by the rolling bearing noise in the Z-winding axis of the bandwidth (BW), and 2) the rolling bearing noise reaches the Bw. It is expected that in the case of the case, the appropriate rolling bearing (limited stick slip and micro-stiffness) in the raft suspension shaft is used to cause rolling bearing noise in the ζ suspension shaft, which significantly filters the χ drive stroke. With reference to Figures 1 through 6, those skilled in the art will appreciate that many of the advantages of the present invention include, but are not limited to, the disadvantages of the prior art described herein. Further, those skilled in the art will understand how to apply the rolling bearing assembly of the present invention to the magnetic motor other than the magnetic motor shown in Figs. The specific swallowed 'ferromagnetic motor has two or three movers and/or two (3) degrees of freedom based on a single track. Although the specific embodiments of the invention disclosed herein are the embodiments of the invention, it is possible to change and modify the invention without departing from the spirit and scope of the invention. All changes which come within the meaning and range of the present invention are intended to be included in the present invention. [Simple description of the drawing] = Illustrating the "parallel axis" parallel to the - linear air gap of the magnetic track. According to the invention - the rolling bearing assembly - the first specific 134666.doc 13 200934067 embodiment. 2A and 2B illustrate a rolling bearing assembly shown in Figs. 1A and 1B of the linear air gap parallel to the linear air gap of the magnetic track. Figure 3 shows a first embodiment of a rolling bearing assembly shown in Figures 2A and 2B of the linear air gap parallel to the linear air gap of the track. 4A and 4B illustrate the rolling bearing assembly shown in Figs. 3A and 3B for moving the mover parallel to a linear air gap of the track.

圖5 A與5B解說依據本發明之一定位系統的一第一具體 實施例之相反側視圖。 圖6解說依據本發明之一定位系統的一第二具體實施例 之側視圖。 ❷ 【主要元件符號說明】 10、11 20、21、101、121 30、31、102、122 40、70 50、80 60 ' 90 100 、 120 103 、 123 104 、 105 、 108 、 124 、 125 、 127 106 、 107 、 126 109 、 110 、 129 磁馬達 磁軌 動子 滾動軸承總成 載架滾動軸承單元 基底滾動軸承單元 定位系統 載架/載架滾動軸承單元 滚動軸承軌道 滾動軸承車 測量系統 134666.doc -14·Figures 5A and 5B illustrate opposite side views of a first embodiment of a positioning system in accordance with the present invention. Figure 6 illustrates a side view of a second embodiment of a positioning system in accordance with the present invention. ❷ [Description of main component symbols] 10, 11 20, 21, 101, 121 30, 31, 102, 122 40, 70 50, 80 60 ' 90 100 , 120 103 , 123 104 , 105 , 108 , 124 , 125 , 127 106, 107, 126 109, 110, 129 Magnetic motor track mover rolling bearing assembly carrier Rolling bearing unit Base rolling bearing unit Positioning system Carrier / carrier Rolling bearing unit Rolling bearing track Rolling bearing car measuring system 134666.doc -14·

Claims (1)

200934067 十、申請專利範圍: 1. 一種定位系統(1〇〇、120),其包括: 一磁馬達,其包含: . 一磁軌(101、121),其具有一線性氣隙,以及 一動子(102、122) ’其具有設置於該線性氣隙内之複 數個線圈;以及 一滾動軸承總成,其包含用於促進該磁馬達之一雙自 由度的一基底滾動轴承單元(1〇6至1〇8、126、127)與一 Φ 載架滾動軸承單元(1〇3至105、123至125)的一整合, 其中該基底滾動轴承單元(1〇6至108、126、127)係可 操作以回應施加於該等線圈以產生平行於該線性氣隙的 該X驅動軸之一驅動力(1^)的換向驅動電流,而促進該動 子(102、122)於該線性氣隙内且平行於該線性氣隙的一 χ 驅動轴進行一線性驅動移動,以及 其中該載架滾動軸承單元(103至105、123至125)係可 操作以回應在施加於該等線圈以產生正交於該線性氣隙 ❹ 的該X驅動軸之一力的該等換向驅動電流上疊加及從該 等換向驅動電流相移之正交換向電流,而促進該動子 (102、122)於該線性氣隙内且正交於該線性氣隙之該X驅 動轴進行一線性正交移動。 2. 如請求項1之定位系統(1〇〇、12〇),其中該力(Fz、Fy) 係一懸浮力(Fz)。 3·如請求項!之定位系統(1〇〇、12〇),其中該力(Fz、Fy) 係一橫向力(FY)。 134666.doc 200934067 4. 如請求項1之定位系統(100、120),其中該載架滾動軸承 單元(103至105、123至125)係垂直安裝於該基底滾動軸 承單元(106 至 1〇8、126、127) » 5. 如請求項i之定位系統(1〇〇、12〇) ’其中該載架滾動軸承 單元(103至1〇5、123至125)之至少一部分在該線性氣隙 内延伸。 6·如請求項1之定位系統(1〇〇、120),其中該載架滾動軸承 單元(103至1〇5、123至125)之一整體係在該線性氣隙之 © 外部。 7. 如請求項1之定位系統(100、120),其中該載架滚動軸承 單元(103至105、123至125)包含正交於該X驅動軸之一 滚動軸承軌道(104、124)。 8. 如請求項1之定位系統(100、120),其中該基底滾動轴承 單元(106至108、126、127)包含平行於該X驅動轴之—滾 動轴承軌道(108、127)。 0 9.如清求項1之定位系統(100、120),其進一步包括: 一線性移動測量系統(109、128),其可操作以測量該 動子(102、122)於該線性氣隙内且平行於該線性氣隙之 該X驅動軸之該線性驅動移動。 、 10.如請求項1之定位系統(100、120),其進一步包括: 一線性移動測量系統(110、129),其可操作以測量該 動子(102、122)於該線性氣隙内且正交於該線性氣隙之 該X驅動軸之該線性正交移動。 11. 一種用於促進一磁馬達之移動的一雙自由度之滾動軸承 134666.doc -2- 200934067 總成’該磁馬達包含具有一線性氣隙之一磁軌(1 〇 1、 121)’及具有設置於該線性氣隙内之複數個線圈的一動 子(102、122),該滾動軸承總成包括: 一基底滚動軸承單元(106至108、126、127)與一載架 滾動轴承單元(103至105、123至125)之一整合, 其中該基底滚動軸承單元(106至1〇8、126、127)係可 操作以回應施加於該等線圈以產生平行於該線性氣隙的 該X驅動軸之一驅動力(Fx)的換向驅動電流,而促進該動 子(102、122)於該線性氣隙内且平行於該線性氣隙之一X 驅動軸進行一線性驅動移動,以及 其中該載架滾動轴承單元(103至105、123至125)係可 操作以回應在施加於該等線圈以產生正交於該線性氣隙 的該X驅動轴之一力的該等換向驅動電流上疊加及從該 等換向驅動電流相移之正交換向電流,而促進該動子 (1〇2、122)於該線性氣隙内且正交於該線性氣隙之該X驅 動軸進行一線性正交移動。 12. 如請求項u之滾動軸承總成,其中該力(Fz、Fy)係一懸 浮力(Fz)。 13. 如請求項u之滾動軸承總成,其中該力(Fz、;ργ)係一橫 向力(FY)。 14. 如請求項丨丨之滚動軸承總成,其中該載架滾動軸承單元 (103至1〇5、丄23至125)係垂直安裝於該基底滚動轴承單 元(106至1〇8、126、127)。 15·如请求項11之滾動軸承總成,其中該載架滾動軸承單元 134666.doc 200934067 (103至105、123至125)之至少一部分在該線性氣隙内延 伸。 16.如請求項11之滚動轴承總成’其中該載架滾動軸承單元 - (1〇3至105、123至125)之一整體係在該線性氣隙之外 部。 17·如請求項11之滾動轴承總成’其中該載架滾動轴承單元 , (1〇3至105、123至125)包含正交於該X驅動軸之一滾動轴 承軌道(104、124)。 © 1 8.如請求項Π之滚動軸承總成’其中該基底滾動軸承單元 (106至108、126、127)包含平行於該X驅動軸之一滚動轴 承軌道(108、127) » 19.如請求項11之滾動轴承總成,其進一步包括: 一線性移動測量系統(1 09、128),其可操作以測量該 動子(102、122)於該線性氣隙内且平行於該線性氣隙之 該X驅動軸之該線性驅動移動。 @ 20.如請求項11之滚動轴承總成,其進一步包括: —線性移動測量系統(11 〇、1 29),其可操作用以測量 該動子(102、122)於該線性氣隙内且正交於該線性氣隙 ' 之該X驅動袖之該線性正交移動。 21. —種操作包含一基底滚動軸承單元(1〇6至1〇8、126、 127)與一載架滾動軸承單元(1〇3至1〇5、123至125)之一 整合的一滚動軸承總成之方法,該滚動軸承總成用於促 進一磁馬達之移動的一雙自由度,該磁馬達包含具有一 線性氣隙之磁軌(101、121),及具有設置於該線性氣隙 134666.doc 200934067 内之複數個線圈的一動子(102、122),該方法包括: 操作該基底滾動軸承單元(1〇6至1〇8、126、127)以回 應施加於該等線圈以產生平行於該線性氣隙的該X驅動 轴之一驅動力(Fx)的換向驅動電流,而促進該動子 (102、122)於該線性氣隙内且平行於該X驅動轴之一線性 驅動移動,以及 操作該載架滾動軸承單元(1〇3至1〇5、123至125)以回 應在施加於該等線圈以產生正交於該線性氣隙的該X驅 動轴之一力的該等換向驅動電流上疊加及從該等換向驅 動電流相移之正交換向電流,而促進該動子(1〇2、122) 於該無性氣隙内且正交於該線性氣隙之該X驅動軸之一 線性正交移動。 22.如请求項21之方法’其中該正交力(Fz、FY)係一懸浮力 (FZ)。 23·如請求項21之方法,其中該正交力(Fz、FY)係一橫向力 (FY)。 24. 如請求項21之方法,其中該滾動軸承總成進一步包括: 測量該動子(102、122)於該線性氣隙内且平行於該線 性氣隙的該X驅動軸之該線性驅動移動。 25. 如請求項21之方法,其中該滾動軸承總成進一步包括: 測量該動子(102、122)於該線性氣隙内且正交於該線 性氣隙的該X驅動軸之該線性正交移動。 134666.doc200934067 X. Patent application scope: 1. A positioning system (1〇〇, 120), comprising: a magnetic motor comprising: a magnetic track (101, 121) having a linear air gap and a mover (102, 122) 'having a plurality of coils disposed within the linear air gap; and a rolling bearing assembly including a base rolling bearing unit for facilitating double degrees of freedom of the magnetic motor (1〇6 to 1〇8, 126, 127) integrated with a Φ carrier rolling bearing unit (1〇3 to 105, 123 to 125), wherein the base rolling bearing unit (1〇6 to 108, 126, 127) is operable Assisting the mover (102, 122) in the linear air gap in response to a commutation drive current applied to the coils to generate a driving force (1^) of the X drive shaft parallel to the linear air gap And performing a linear drive movement parallel to a drive shaft of the linear air gap, and wherein the carrier rolling bearing units (103 to 105, 123 to 125) are operable to respond to application to the coils to produce an orthogonality to One of the X drive shafts of the linear air gap 力And a positive commutating current on the commutating drive current superimposed and phase shifted from the commutating drive currents, and promoting the mover (102, 122) in the linear air gap and orthogonal to the X of the linear air gap The drive shaft performs a linear orthogonal movement. 2. The positioning system (1〇〇, 12〇) of claim 1, wherein the force (Fz, Fy) is a levitation force (Fz). 3. If requested! The positioning system (1〇〇, 12〇), wherein the force (Fz, Fy) is a lateral force (FY). 134666.doc 200934067 4. The positioning system (100, 120) of claim 1, wherein the carrier rolling bearing unit (103 to 105, 123 to 125) is vertically mounted to the base rolling bearing unit (106 to 1〇8, 126) , 127) » 5. Positioning system (1〇〇, 12〇) of claim i 'where at least a portion of the carrier rolling bearing unit (103 to 1〇5, 123 to 125) extends within the linear air gap. 6. The positioning system (1, 120) of claim 1, wherein one of the carrier rolling bearing units (103 to 1〇5, 123 to 125) is integrally attached to the outside of the linear air gap. 7. The positioning system (100, 120) of claim 1, wherein the carrier rolling bearing unit (103 to 105, 123 to 125) comprises a rolling bearing track orthogonal to the X drive shaft (104, 124) ). 8. The positioning system (100, 120) of claim 1, wherein the base rolling bearing unit (106 to 108, 126, 127) comprises a rolling bearing track (108, 127) parallel to the X drive shaft. 0. The positioning system (100, 120) of claim 1, further comprising: a linear motion measuring system (109, 128) operative to measure the mover (102, 122) in the linear air gap The linear drive movement of the X drive shaft, inside and parallel to the linear air gap. 10. The positioning system (100, 120) of claim 1, further comprising: a linear motion measuring system (110, 129) operative to measure the mover (102, 122) within the linear air gap And the linear orthogonal movement of the X drive axis orthogonal to the linear air gap. 11. A double degree of freedom rolling bearing for promoting the movement of a magnetic motor 134666.doc -2- 200934067 Assembly 'The magnetic motor comprises a magnetic track (1 〇 1, 121) with a linear air gap' and a mover (102, 122) having a plurality of coils disposed within the linear air gap, the rolling bearing assembly comprising: a base rolling bearing unit (106 to 108, 126, 127) and a carrier rolling bearing unit ( One of 103 to 105, 123 to 125), wherein the base rolling bearing unit (106 to 1 〇 8, 126, 127) is operable to respond to the coils applied to produce a parallel to the linear air gap One of the X drive shafts drives a commutating drive current of the force (Fx), and facilitates a linear drive movement of the mover (102, 122) within the linear air gap and parallel to one of the linear air gaps X drive shaft, And wherein the carrier rolling bearing units (103 to 105, 123 to 125) are operable to respond to such commutations applied to the coils to produce a force of the X drive shaft orthogonal to the linear air gap Superimposed on the drive current and phase shifted from the commutating drive current Switching the current, to promote the mover (1〇2,122) within the linear air gap and orthogonal to the air gap of the linear drive axis X orthogonal to a linear movement. 12. The rolling bearing assembly of claim u, wherein the force (Fz, Fy) is a buoyancy (Fz). 13. The rolling bearing assembly of claim u, wherein the force (Fz,; ργ) is a transverse force (FY). 14. The rolling bearing assembly of claim 1, wherein the carrier rolling bearing unit (103 to 1〇5, 丄23 to 125) is vertically mounted to the base rolling bearing unit (106 to 1〇8, 126) 127). 15. The rolling bearing assembly of claim 11, wherein at least a portion of the carrier rolling bearing unit 134666.doc 200934067 (103 to 105, 123 to 125) extends within the linear air gap. 16. The rolling bearing assembly of claim 11 wherein one of the carrier rolling bearing units - (1〇3 to 105, 123 to 125) is integrally attached to the outside of the linear air gap. 17. The rolling bearing assembly of claim 11 wherein the carrier rolling bearing unit (1〇3 to 105, 123 to 125) comprises a rolling bearing track (104, 124) orthogonal to one of the X drive shafts. © 1 8. The rolling bearing assembly of claim 1 wherein the base rolling bearing unit (106 to 108, 126, 127) comprises a rolling bearing track (108, 127) parallel to one of the X drive shafts. The rolling bearing assembly of claim 11, further comprising: a linear motion measuring system (1, 09, 128) operative to measure the mover (102, 122) within the linear air gap and parallel to the linear This linear drive of the X drive shaft of the air gap moves. @20. The rolling bearing assembly of claim 11, further comprising: - a linear motion measuring system (11 〇, 1 29) operable to measure the mover (102, 122) in the linear air gap This linear orthogonal movement of the X-drive sleeve is internal and orthogonal to the linear air gap '. 21. An operation comprising a base rolling bearing unit (1〇6 to 1〇8, 126, 127) integrated with one of the carrier rolling bearing units (1〇3 to 1〇5, 123 to 125) A method of moving a bearing assembly for promoting a pair of degrees of freedom of movement of a magnetic motor, the magnetic motor comprising a magnetic track (101, 121) having a linear air gap, and having a mover (102, 122) of a plurality of coils within a linear air gap 134666.doc 200934067, the method comprising: operating the base rolling bearing unit (1〇6 to 1〇8, 126, 127) in response to application to the coil Generating a commutation drive current that drives a force (Fx) of one of the X drive shafts parallel to the linear air gap to promote the mover (102, 122) within the linear air gap and parallel to the X drive shaft a linear drive movement, and operating the carrier rolling bearing unit (1〇3 to 1〇5, 123 to 125) in response to a force applied to the coils to produce the X drive shaft orthogonal to the linear air gap The positive commutation of the commutating drive currents and the phase shifts from the commutating drive currents Flow, to promote the mover (1〇2,122) within the air gap and orthogonal to the asexual one of the linear air gap perpendicular to the X linear movement of the drive shaft. 22. The method of claim 21 wherein the orthogonal force (Fz, FY) is a levitation force (FZ). 23. The method of claim 21, wherein the orthogonal force (Fz, FY) is a lateral force (FY). 24. The method of claim 21, wherein the rolling bearing assembly further comprises: measuring the linear drive movement of the mover (102, 122) within the linear air gap and parallel to the X drive axis of the linear air gap. 25. The method of claim 21, wherein the rolling bearing assembly further comprises: measuring the linear orthogonality of the mover (102, 122) in the linear air gap and orthogonal to the X drive axis of the linear air gap mobile. 134666.doc
TW097139030A 2007-10-12 2008-10-09 Single magnetic track two axis positioning system TW200934067A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97941707P 2007-10-12 2007-10-12

Publications (1)

Publication Number Publication Date
TW200934067A true TW200934067A (en) 2009-08-01

Family

ID=40549675

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139030A TW200934067A (en) 2007-10-12 2008-10-09 Single magnetic track two axis positioning system

Country Status (2)

Country Link
TW (1) TW200934067A (en)
WO (1) WO2009047689A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492488B (en) * 2010-01-15 2015-07-11 Maxon Motor Ag Linear drive
CN112671204A (en) * 2021-01-18 2021-04-16 哈尔滨工业大学 Multilayer winding magnetic suspension linear permanent magnet synchronous motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228146A (en) * 1985-07-26 1987-02-06 Hiroshi Teramachi X-y table with linear motor
JP5329222B2 (en) * 2005-08-29 2013-10-30 コーニンクレッカ フィリップス エヌ ヴェ Ironless magnetic linear motor with levitation and lateral force capability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492488B (en) * 2010-01-15 2015-07-11 Maxon Motor Ag Linear drive
CN112671204A (en) * 2021-01-18 2021-04-16 哈尔滨工业大学 Multilayer winding magnetic suspension linear permanent magnet synchronous motor
CN112671204B (en) * 2021-01-18 2022-07-01 哈尔滨工业大学 Multilayer winding magnetic suspension linear permanent magnet synchronous motor

Also Published As

Publication number Publication date
WO2009047689A3 (en) 2009-06-25
WO2009047689A2 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5329222B2 (en) Ironless magnetic linear motor with levitation and lateral force capability
JP3395155B2 (en) Linear motor and manufacturing method thereof
CN105960371B (en) Linear feeding system
WO2017006744A1 (en) Motor system and device equipped with same
JP2002142438A (en) Xyz table
CN104603924B (en) Rotational positioning equipment
JP5404077B2 (en) Machine with direct drive
CN106464118B (en) Linear motor and equipment equipped with linear motor
CN107092068A (en) Lens driver and its manufacture method, photographic means, electronic equipment
JP3972575B2 (en) Door system
TW200934067A (en) Single magnetic track two axis positioning system
JP2009184829A6 (en) Machine with direct drive
JP6419535B2 (en) Linear motor and compressor and equipment equipped with linear motor
JP2008289283A (en) Motor with magnetic bearing portion
US8217538B2 (en) Linear motor having a slidable element
JP4148199B2 (en) Electric razor
US20230121406A1 (en) Electric motor with passive and active magnetic bearings
JP4081386B2 (en) Actuator and electric toothbrush using the same
JP5550782B2 (en) Linear motor drive device
TWI291800B (en) Vibration type linear actuator
JP2023535879A (en) rotary micro motor
JP3591771B2 (en) Race game machine
WO2007116508A1 (en) Linear motor
JP2008283773A (en) Xy table actuator
JP2008029823A (en) Loading/unloading unit and transferring device