TW200933694A - A mask used in a sequential lateral solidification process and a solidification method using the mask - Google Patents

A mask used in a sequential lateral solidification process and a solidification method using the mask Download PDF

Info

Publication number
TW200933694A
TW200933694A TW97102484A TW97102484A TW200933694A TW 200933694 A TW200933694 A TW 200933694A TW 97102484 A TW97102484 A TW 97102484A TW 97102484 A TW97102484 A TW 97102484A TW 200933694 A TW200933694 A TW 200933694A
Authority
TW
Taiwan
Prior art keywords
light
regions
transmitting
polygonal
circular
Prior art date
Application number
TW97102484A
Other languages
Chinese (zh)
Other versions
TWI380345B (en
Inventor
Ming-Wei Sun
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW97102484A priority Critical patent/TWI380345B/en
Publication of TW200933694A publication Critical patent/TW200933694A/en
Application granted granted Critical
Publication of TWI380345B publication Critical patent/TWI380345B/en

Links

Abstract

A mask used in a sequential lateral solidification process and a solidification method using the mask. The mask comprises a first transparent unit and a second transparent unit. The first transparent unit includes plural circular transparent area. The second transparent unit is disposed beside the first transparent unit. The second transparent unit includes plural polygonal transparent area. The polygonal transparent area and the circular transparent area are disposed one-on-one. The diameter of each polygonal transparent area is smaller than the diameter of each circular transparent area. The steps of the solidification method include applying the laser to the amorphous silicon layer through the mask to form the second crystalline unit and the first crystalline unit corresponding to the first transparent unit, moving the first transparent unit to face the adjoining secondary crystalline unit by moving the mask, and applying the laser to the amorphous silicon layer through the mask to form a second crystalline area on the base.

Description

200933694 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光罩以及雷射結晶方法;具體而 言,本發明係關於一種應用於連續性侧向長晶技術之光 罩以及雷射結晶方法。 藝 【先前技術】 液晶顯示器(Liquid Crystal Display,LCD)廣泛 應用在電腦、電視、以及行動電話等各種電子產品上。 液曰日顯不器係以積體電路驅動’因此,積體電路之電晶 體運行的速度成為影響液晶顯示器效能的重要因素之 一—〇 與非晶梦層内電荷載體相比,多晶矽層内電荷載體的 移動性(Mobility)較高。因此多晶發型薄膜電晶體廣 〇 泛應用於液晶顯示器之積體電路。欲增加多晶石夕層内電 荷載體的移動性(Mobility),可增加結晶晶粒大小,或 減少電晶體元件之通道(Channel)中之晶粒邊界①rain Boundary)數目 ° 如圖la及圖lb所示,習知的低溫多晶矽層的結晶技 術是利用雷射200透過光罩90之透光區域1〇照射在基 板獅上的非晶石夕層侧,使非晶型石夕熔解成液態後再= 化成多BB石夕,意即形成如如圖&及圖化中所示之第一 200933694 結晶區域61及第二結晶區域6 2。 如圖lb所示。在過程中,光罩9〇會朝方向2 的空間。 9〇移動後雷射200於基板80上可照射到之區域 邛刀重疊如重疊結晶區域63,藉以達成連續性;向 日日然而’重疊結晶區域63經過雷射200重複照射。 易產生翻。因此,上輕雜躺長晶雜仍有改進 【發明内容】 本H主要目的在於提供—種應用於連續性_ 長曰曰技狀光罩,供減少多晶销產生翻之機會。 之另-主要目的在於提供-種翻於連續性 側向長晶技術之光罩,供增加多晶销之均句度。 方;主要目的在於提供—種雷繼晶方法 方法’供減少多祕層產生破洞之機會。 本發明之另-主要目的在於提供—種雷射結晶方法 方法供增加多晶矽層之均勻度。 _本發明之光罩包含第—透光單元以及第二透光單 :。第-透解元具有複數個圓形透光區域。第二透光 單元係設·第-透光單補邊。第二透光單元具有複 數個多邊形遮光區域。多邊形遮光區域係與第一透光單 疋之圓形透光區域-對—對應設置,且每—多邊形遮光 區域之對鎌長度小於每—_透光區域之直徑。 200933694 、圓形透光區域之相鄰距離係大於15um。每一圓形透 光區域之直徑係為h 5_7um。多邊形遮光區域之形狀包含 正方形。多邊形遮光區域之形狀包含正六方形。 本發明之光罩包含複數㈣—透光單元以及複數個 ,二透光單元。其中,第-透光單元係為等距離設置, ,第一透光單元具有複數個圓形透光區域。第二透光 單元係與第一透光單元間隔設置。每一第二透光單元具 有複數個多邊形遮光_。多邊形遮光區_與相鄰之 第-透光單元之圓形透光區域對稱設置,且每—多邊形 遮光區域之對舰長度係小於每透光區域之直 徑。 本發明之雷射結晶方法步驟包含提供具有非晶梦層 之基板;提供上耻罩;制㈣透過光罩錄非晶梦 層,以於基板上產生複數個第一結晶區域,每一第一結 晶區域包含分別與第一透光單元及第二透光單元對應之 複數個第-結晶單元及複數個第二結晶單元;移動光 罩,使第-透光單元移動至與相鄰之第二結晶單元對 應;以及使用雷射透過光罩溶融非晶石夕層,以於基板上 產生複數個第二結晶區域。 【實施方式】 本發明係提供—種應用於連續性侧向長晶技術之光 罩,以及使用此光罩之雷射結晶方法。 200933694 如圖2a所示之較佳實施例,本發明之光罩1〇〇包含 第一透光單元300以及第二透光單元5〇〇。第二透光單元 係設置於第一透光單元侧邊。在此較佳實施例中,第一 透光單元300以及第二透光單元500係為複數個。換言 之,光罩100包含複數個第一透光單元3〇〇以及複數個 第二透光單元500。其中,第一透光單元3〇〇係為等距離 ax置,第二透光單元5〇〇係與第一透光單元間隔設置。 然而在如圖2b所示之不同實施例中,第一透光單元3〇〇 以及第二透光單元500可以為單一個,不限於以複數組 設置。 如圖3a圖3b所示之較佳實施例俯視圖,第一透光單 元300具有複數個圓形透光區域31〇。第二透光單元具有 複數個多邊形遮光區域510。且多邊形遮光區域5丨〇係與 相鄰之第-透光單元_之B]形透光區域⑽對稱設 置’且每-多邊形遮光區域51〇之對角線長度如。係小於 每一圓形透光區域310之直徑如。。換言之,每一多邊形 遮光區域510係可由對應之圓形透光區域31〇完全涵蓋。 在較佳實施例中,圓形透光區域31〇之相鄰距離係大 於1. 5ιμ。每一圓形透光區域31〇之直徑係為^ 5_7um。 多邊形遮光區域51G之形狀係為正方形。然而,在如圖4 所示之不同實施射,多邊形遮統域51()之形狀包含 正六方形等圓形以外之形狀。 以下進-步說明本發明之光罩1〇〇之使用方式。如圖 9 200933694 2a所示之較佳實施例,首先將具有非晶矽層4〇〇之基板 800置於光罩1〇〇下方。而後,如圖%所示之較佳實施 例’使用雷射200透過光罩1〇〇熔融非晶矽層棚,以於 基板800上產生複數個第一結晶區域61〇,其中,每一第 一結晶區域610包含分別與第一透光單元3〇〇及第二透 500光單元對應之複數個第一結晶單元613及複數個第 二結晶單元615。具體而言,在此較佳實施例中,第一結 ❹ s曰單元6丨3係為與第一透光單元300之圓形透光區域31〇 對應之圓形結晶。第二結晶單元615則在其中具有形狀 與第二透光單元500之多邊形遮光區域51〇對應之非晶 矽層400。 接下來,如圖5b所示之較佳實施例,移動光罩, 使第一透光單元300移動至與相鄰之第二結晶單元615 對應,而後再度使用雷射200透過光罩〗〇〇熔融非晶矽 〇 層400。由於多邊形遮光區域510係與相鄰之第一透光單 兀300之圓形透光區域31〇對稱設置,且每一多邊形遮 光區域510之對角線長度係小於每一圓形透光區域31〇 之直徑,因此每一多邊形遮光區域51〇係可由對應之圓 形透光區域310完全涵蓋。換言之,在圖5a之較佳實施 例中與第一透光單元500之多邊形遮光區域51〇對應之 非晶矽層400,在圖5b所示之較佳實施例中可完全被雷 射200照射。 整體而言,在如圖5a之較佳實施例中,第一次使用 200933694 雷射2GG透過光罩刚熔融非晶梦層棚,可產生複數個 第一結晶區域_。未受到雷射為100照射之區域,則在 如圖5b所不之較佳實施例中移動光罩⑽後再使用雷 射200照射而炫融形成第二結晶區域62〇。其中,由於光 罩100之第-透光單元300係為等距離設置,第二透光 單兀5GG係與第一透光單元間隔設置,而圓形透光區域 510不僅與多邊形遮光區域51()對應設置,每一多邊形遮 光區域510亦可由對應之圓形透光區域310完全涵蓋。 因此’透過本發明之光罩⑽移動職之二次照射,可 使基板800之非晶梦層棚全部受到雷射照射而溶 融結晶。 在較佳實施例中,使用如圖3a所示之光罩1〇〇所得 之結晶結果如圖6之掃瞄式電子顯微鏡(Scanning200933694 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a reticle and a laser crystallization method; in particular, the present invention relates to a reticle and a laser applied to a continuous lateral crystal growth technique Crystallization method. [Prior Art] Liquid crystal displays (LCDs) are widely used in various electronic products such as computers, televisions, and mobile phones. The liquid helium is not driven by the integrated circuit. Therefore, the speed of the transistor operation of the integrated circuit becomes one of the important factors affecting the performance of the liquid crystal display. 〇In the polycrystalline layer, compared with the charge carrier in the amorphous layer. The charge carrier has a high mobility (Mobility). Therefore, polycrystalline thin film transistors are widely used in integrated circuits of liquid crystal displays. To increase the mobility of the charge carriers in the polycrystalline layer, the crystal grain size can be increased, or the number of grain boundaries in the channel of the transistor component can be reduced. Figure la and Figure lb As shown, the conventional crystallization technique of the low-temperature polycrystalline germanium layer is performed by using the laser 200 through the light-transmitting region 1 of the reticle 90 to illuminate the amorphous layer on the substrate lion, thereby melting the amorphous stalk into a liquid state. Further, the formation of a plurality of BB stones means that the first 200933694 crystalline region 61 and the second crystalline region 62 are formed as shown in the figure & As shown in Figure lb. During the process, the reticle 9 〇 will face the direction 2 space. 9〇 After the movement, the laser 200 is irradiated onto the substrate 80. The trowel overlaps the overlapping crystallization region 63, thereby achieving continuity; and the repeated overlap crystallization region 63 is repeatedly irradiated by the laser 200. Easy to turn over. Therefore, there is still improvement in the upper light and long crystals. [Inventive content] The main purpose of this H is to provide a kind of continuous _ long-striped reticle for reducing the chance of turning over the polycrystalline pin. The other main purpose is to provide a reticle that turns over the continuous lateral crystal growth technique to increase the uniformity of the polycrystalline pin. The main purpose is to provide a method for reducing the occurrence of holes in multiple secret layers. Another object of the present invention is to provide a method of laser crystallization for increasing the uniformity of the polycrystalline layer. The photomask of the present invention comprises a first light transmitting unit and a second light transmitting unit: The first-transmissive element has a plurality of circular light-transmissive regions. The second light transmissive unit is provided with a first light transmission single complement. The second light transmitting unit has a plurality of polygonal light shielding regions. The polygonal light-shielding region is correspondingly disposed with the circular light-transmitting region of the first light-transmissive unit, and the length of each of the polygonal light-shielding regions is smaller than the diameter of each of the light-transmitting regions. 200933694, the adjacent distance of the circular light transmission area is greater than 15um. The diameter of each circular light-transmitting region is h 5_7 um. The shape of the polygonal shading area contains a square. The shape of the polygonal shading area includes a regular hexagon. The reticle of the present invention comprises a plurality of (four)-light transmitting units and a plurality of two light transmitting units. Wherein, the first light transmitting unit is equidistantly disposed, and the first light transmitting unit has a plurality of circular light transmitting regions. The second light transmitting unit is spaced apart from the first light transmitting unit. Each of the second light transmitting units has a plurality of polygonal shadings _. The polygonal shading area _ is symmetrically disposed with the circular transparent area of the adjacent first-light transmitting unit, and the length of each of the polygonal shading areas is smaller than the diameter of each transparent area. The laser crystallization method step of the present invention comprises: providing a substrate having an amorphous dream layer; providing an upper shading mask; and (4) recording an amorphous dream layer through the photomask to generate a plurality of first crystal regions on the substrate, each first The crystallization region includes a plurality of first crystallization units and a plurality of second crystallization units respectively corresponding to the first light transmitting unit and the second light transmitting unit; and moving the reticle to move the first light transmitting unit to the adjacent second Corresponding to the crystallization unit; and melting the amorphous layer by using a laser through the reticle to generate a plurality of second crystallization regions on the substrate. [Embodiment] The present invention provides a reticle for use in a continuous lateral crystal growth technique, and a laser crystallization method using the reticle. 200933694 As shown in the preferred embodiment of Fig. 2a, the photomask 1 of the present invention comprises a first light transmitting unit 300 and a second light transmitting unit 5A. The second light transmitting unit is disposed on a side of the first light transmitting unit. In the preferred embodiment, the first light transmitting unit 300 and the second light transmitting unit 500 are plural. In other words, the reticle 100 includes a plurality of first light transmitting units 3A and a plurality of second light transmitting units 500. The first light transmitting unit 3 is disposed at an equal distance ax, and the second light transmitting unit 5 is spaced apart from the first light transmitting unit. However, in the different embodiments shown in Fig. 2b, the first light transmitting unit 3A and the second light transmitting unit 500 may be single, and are not limited to being arranged in a complex array. As shown in the top view of the preferred embodiment shown in Fig. 3a and Fig. 3b, the first light transmitting unit 300 has a plurality of circular light transmitting regions 31A. The second light transmitting unit has a plurality of polygonal light blocking regions 510. And the polygonal light-shielding region 5 is symmetrically disposed with the adjacent light-transmitting region (10) of the first light-transmitting unit _ and the diagonal length of each of the polygonal light-shielding regions 51 is as follows. It is smaller than the diameter of each circular transparent region 310. . In other words, each of the polygonal light-shielding regions 510 can be completely covered by the corresponding circular light-transmissive regions 31A. 5 微米μ。 In the preferred embodiment, the adjacent distance of the circular light-transmissive region 〇 is greater than 1. 5ιμ. The diameter of each of the circular light-transmissive regions 31 is 55_7um. The shape of the polygonal light-shielding region 51G is a square. However, in the different implementations as shown in Fig. 4, the shape of the polygonal mask domain 51() includes a shape other than a circle such as a regular hexagon. The following is a description of the manner in which the reticle 1 of the present invention is used. As shown in the preferred embodiment of Fig. 9 200933694 2a, a substrate 800 having an amorphous germanium layer 4 is first placed under the mask 1 . Then, the preferred embodiment of the present invention, as shown in FIG. %, uses a laser 200 to smelt the amorphous germanium layer shed through the mask 1 to generate a plurality of first crystal regions 61 on the substrate 800, wherein each The one crystal region 610 includes a plurality of first crystal units 613 and a plurality of second crystal units 615 respectively corresponding to the first light transmitting unit 3 and the second light transmitting unit. Specifically, in the preferred embodiment, the first node 丨 曰 unit 6 丨 3 is a circular crystal corresponding to the circular light-transmissive region 31 第一 of the first light-transmitting unit 300. The second crystallization unit 615 has an amorphous germanium layer 400 having a shape corresponding to the polygonal light-shielding region 51A of the second light-transmitting unit 500. Next, as shown in the preferred embodiment of FIG. 5b, the reticle is moved to move the first light transmitting unit 300 to correspond to the adjacent second crystallization unit 615, and then the laser 200 is again used to pass through the reticle. The amorphous amorphous layer 400 is melted. The polygonal light-shielding region 510 is symmetrically disposed with the circular light-transmissive region 31 of the adjacent first light-transmissive unit 300, and the diagonal length of each of the polygonal light-shielding regions 510 is smaller than each of the circular light-transmitting regions 31. The diameter of the crucible, so each polygonal shading area 51 can be completely covered by the corresponding circular light transmissive area 310. In other words, the amorphous germanium layer 400 corresponding to the polygonal light-shielding region 51 of the first light-transmissive unit 500 in the preferred embodiment of FIG. 5a can be completely illuminated by the laser 200 in the preferred embodiment shown in FIG. 5b. . Overall, in the preferred embodiment of Fig. 5a, the first use of 200933694 laser 2GG through the reticle to just melt the amorphous dream shed, a plurality of first crystalline regions _ can be produced. If the area is not exposed to laser light, the second crystallization area 62 is formed by illuminating the reticle (10) after moving the reticle (10) in the preferred embodiment as shown in Fig. 5b. Wherein, since the first light-transmitting unit 300 of the reticle 100 is disposed at an equal distance, the second light-transmissive unit 5GG is spaced apart from the first light-transmitting unit, and the circular light-transmitting area 510 is not only combined with the polygonal light-shielding area 51 ( Correspondingly, each polygonal light-shielding region 510 can also be completely covered by the corresponding circular light-transmissive region 310. Therefore, by the secondary irradiation of the photomask (10) of the present invention, the amorphous dream shed of the substrate 800 can be completely irradiated with laser light to be melted and crystallized. In a preferred embodiment, the crystallization results obtained using the mask 1 as shown in Figure 3a are shown in Figure 6 as a scanning electron microscope (Scanning).

Electron Microscope, SEM)相片圖所示。由於圖3a中 之圓形透光區域310之形狀為圓形設計,因此圖6中對 應形成之結晶副晶界為全方向,主晶界6〇1則為規則圖 形。換言之,透過本發明光罩1〇〇所形成之多晶矽層具 有等方向性結晶,使電荷載體傳導不會受到結晶方向的 限制’增加半導體電路元件設計上的彈性。。此外,因 為雷射重複照射之區域小,可減少雷射過度照射而產生 破洞。 如圖7所示本發明之雷射結晶方法流程圖,本發明之 雷射結晶方法包含: 11 200933694 步驟1001為如圖2a所示提供具有非晶矽層400之基 板 800。 步驟1003為如圖5a所示提供前述本發明之光罩 1〇〇。具體而言’光罩酬下方係設置有基板卿,基板 800上具有非晶發層4〇〇。 步驟1005為如圖5a所示使用雷射2〇〇透過光罩1〇〇 溶融非晶韻侧,以於基板腦上產生複數個第-結晶 區域610,每-第一結晶區域61〇包含分別與第一透光單 元300及第二透光單元5〇〇對應之複數個第一結晶單元 513及複數個第二結晶單元615。; 时步驟1007為如圖5b所示移動光罩1〇〇,使第一透光 單疋30G移動至與相鄰之第二結晶單元615對應。 步驟1009為如圖5b所示使用雷射200透過光罩1〇〇 溶融非晶梦層400’以於基板_上產生複數個第二結晶 區域620。 本發明已由上述相W實施例加以描述 ’然而上述實施 例僅為實施本發明之範例。必需指出的是 ,已揭露之實 ,例並未限制本發明之範圍。相反地,包含於中請專利 le*圍之精神及範圍之修改及均料置均包含於本發明之 範圍内。 【圖式簡單說明】 圖1a及圖lb為習知技術示意圖; 12 200933694 圖2a為本發明較佳實施例示意圖; 圖2b為本發明不同實施例示意圖; 圖3a為本發明較佳實施例俯視圖; 圖3b為本發明不同實施例俯視圊; 圖4為本發明不同實施例俯視圖; 圖5a至圖5b為本發明實施例使用示意圖; 圖6為本發明實施例之結晶結果之掃瞄式電子顯微鏡相 ❹ 片圖; 圖7為本發明之雷射結晶方法之較佳實施例流程圖; 【主要元件符號說明】 100光罩 200雷射 300第一透光單元 310圓形透光區域 ® 400非晶石夕層 500第二透光單元 510多邊形遮光區域 601主晶界 610第一結晶區域 613第一結晶單元 615第二結晶單元 620第二結晶區域 13 200933694 800基板 1001步驟 1003步驟 1005步驟 1007步驟 1009步驟 dbio圓形透光區域直极 © d51。多邊形遮光區域直徑Electron Microscope, SEM) is shown in the photo. Since the shape of the circular light-transmissive region 310 in Fig. 3a is a circular design, the corresponding crystal grain boundaries in Fig. 6 are omnidirectional, and the main grain boundary 6〇1 is a regular pattern. In other words, the polycrystalline germanium layer formed by the mask 1 of the present invention has an isotropic crystal, so that the charge carrier conduction is not restricted by the crystal direction, and the flexibility of designing the semiconductor circuit element is increased. . In addition, because the area of repeated laser irradiation is small, it is possible to reduce the excessive exposure of the laser and cause holes. A laser crystallization method of the present invention, as shown in Figure 7, is a laser crystallization method comprising: 11 200933694 Step 1001 provides a substrate 800 having an amorphous germanium layer 400 as shown in Figure 2a. Step 1003 provides the aforementioned photomask 1 of the present invention as shown in Fig. 5a. Specifically, the substrate is provided with a substrate, and the substrate 800 has an amorphous layer 4〇〇. Step 1005 is to dissolve the amorphous side by using the laser 2 〇〇 through the reticle 1 as shown in FIG. 5a to generate a plurality of first-crystal regions 610 on the substrate brain, and each-first crystal region 61 〇 includes a plurality of first crystal units 513 and a plurality of second crystal units 615 corresponding to the first light transmitting unit 300 and the second light transmitting unit 5A. The step 1007 is to move the reticle 1 as shown in FIG. 5b to move the first light-transmissive unit 30G to correspond to the adjacent second crystallization unit 615. Step 1009 is to use a laser 200 to melt the amorphous dream layer 400' through the mask 1 as shown in FIG. 5b to generate a plurality of second crystal regions 620 on the substrate. The present invention has been described by the above-described embodiment of the invention. However, the above embodiments are merely examples for implementing the invention. It must be noted that the disclosed examples do not limit the scope of the invention. On the contrary, the modifications and equivalents of the spirit and scope of the invention are included in the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1a and FIG. 1b are schematic diagrams of a prior art; 12 200933694 FIG. 2a is a schematic view of a preferred embodiment of the present invention; FIG. 2b is a schematic view of a different embodiment of the present invention; Figure 3b is a plan view of a different embodiment of the present invention; Figure 4 is a plan view of a different embodiment of the present invention; Figure 5a to Figure 5b are schematic views of the use of the embodiment of the present invention; Figure 6 is a scanning electron of a crystallization result according to an embodiment of the present invention; Fig. 7 is a flow chart of a preferred embodiment of the laser crystallization method of the present invention; [Description of main components] 100 reticle 200 laser 300 first light transmitting unit 310 circular light transmitting area® 400 Amorphous layer 500 second light transmissive unit 510 polygonal light blocking region 601 main grain boundary 610 first crystal region 613 first crystal unit 615 second crystal unit 620 second crystal region 13 200933694 800 substrate 1001 step 1003 step 1005 step 1007 Step 1009 Step dbio circular light transmission area straight pole © d51. Polygonal shading area diameter

1414

Claims (1)

200933694 十、申請專利範園: 1. 一種應用於連續性側向長晶技術之光罩,包含: 一第一透光單元,具有複數個圓形透光區域;以及 -第二透光單元,献置機第—奴單元侧邊,該 第二透光單元具有複脑乡邊轉规域,該些多邊形 豸光區域係與該第-透光單元之該些圓形透光區域一 對-對應設置’且每-多邊形遮光區域之對角線長度係 φ 小於每一圓形透光區域之直徑。 2. 如請求項1所述之光罩,該些圓形透光區域之相鄰距離係 大於1. 5um。 3·如請求項1所述之光罩,每-圓形透光區域之直徑係為 1.5-7um° 〇 4·如請求項1所述之光罩,該些多邊形遮光區域之形狀包含 正方形。 5. 如請求項1所述之光罩,該些多邊形遮光區域之形狀包含 ❹ 正六方形。 6. —種應用於連續性側向長晶技術之光罩,包含: 複數個第-透光單元’該些第—透光單元係為等距離 设置’每-第-透光單元具有複數個圓形透光區域;以 及 複數個第二透光單元,該些第二透光單元係與該些第 -透光單元間隔設置’每―第二透光單元具有複數個多 邊形遮光區域,該些多邊形遮光區域係與相鄰之該第一 15 200933694 透光單元之該些圓形透光區域對稱設置,且每一多邊形 遮光區域之對角線長度係小於每一圓形透光區域之直 徑。 7.如請求項1所述之光罩,該些圓形透光區域之相鄰距離係 大於1. 5um。 8·如請求項丨所述之光罩,每一圓形透光區域之直徑係為 1.5~7um° ° 9. 如請求項1所述之光罩,該些多邊形遮光區域之形狀包含 正方形。 10. 如請求項1所述之光罩,該些多邊形遮光區域之形狀 包含正六方形。 11. 一種雷射結晶方法,其步驟包含: 提供一基板,其中該基板上具有一非晶矽層; 提供一光罩,包含: 複數個第-透光單元,該些第一透光單元係為等距離 設置,每一第一透光單元具有複數個圓形透光區域;以 及 複數個第二透光單元,該些第二透光單元係與該些第 -透光單元_設置’每—第二透光單元具有複數個多 邊形遮光區域,該些多邊形遮光區域係與相鄰之該第一 透光單元之該些圓形透光區域對稱設置,且每一多邊形 遮光區域之對角線長度係小於每料光區域之直 徑,· 16 200933694 使用雷射透過該光罩熔融該非晶销,以賊基板上產 生複數個第-結晶區域,每一第—結晶區域包含分別與該 些第一透光單元及該些第二透光單元對應之複數個第一 結晶單元及複數個第二結晶單元; 移動該光罩’使該些第—透光單元雜至與相鄰之該些 第二結晶單元對應;以及 使用雷射透過該光罩熔融該非晶矽層,以於該基板上產 ❹生複數個第二結晶區域。 12. 如請求項6所述之方法,該些圓形透光區域之相鄰距 離係大於1. 5um。 13. 如請求項6所述之方法,每一圓形透光區域之直徑係 為 1. 5-7um 〇 〇 14·如請求項6所述之方法,該些多邊形遮光區域之形狀 包含正方形。 〇 15·如請求項6所述之方法,該些多邊形遮光區域之形狀 包含正六方形。 17200933694 X. Patent application garden: 1. A photomask applied to continuous lateral crystal growth technology, comprising: a first light transmissive unit having a plurality of circular light transmissive regions; and a second light transmissive unit, The second light transmitting unit has a side of the re-brain side, and the polygonal light-emitting area is paired with the circular light-transmitting areas of the first-light transmitting unit- Corresponding to the setting 'and the diagonal length of each of the polygonal shading areas φ is smaller than the diameter of each circular transparent area. 5 um. The adjacent distance of the circular light-transmitting region is greater than 1. 5um. 3. The reticle of claim 1, wherein the diameter of each of the circular light-transmissive regions is 1.5-7 um. 〇 4. The reticle of claim 1, wherein the polygonal light-shielding regions have a square shape. 5. The reticle of claim 1, wherein the polygonal shading area has a shape comprising a square hexagon. 6. A photomask applied to a continuous lateral crystal growth technique, comprising: a plurality of first-light transmitting units 'the first light-transmitting units are equidistantly disposed 'each-first light transmitting unit has a plurality of And a plurality of second light-transmissive cells, the second light-transmitting cells are spaced apart from the first light-transmitting cells, and each of the second light-transmitting cells has a plurality of polygonal light-shielding regions. The polygonal light-shielding region is symmetrically disposed with the circular light-transmissive regions of the first 15 200933694 light-transmitting unit, and the diagonal length of each of the polygonal light-shielding regions is smaller than the diameter of each of the circular light-transmitting regions. 5 um. The adjacent distance of the circular light-transmitting region is greater than 1. 5um. 8. The reticle as claimed in claim 1, wherein each of the circular light-transmissive regions has a diameter of 1.5 to 7 um °. 9. The reticle of claim 1, wherein the polygonal light-shielding regions have a square shape. 10. The reticle of claim 1, wherein the polygonal shading regions comprise a regular hexagonal shape. A laser crystallization method, the method comprising: providing a substrate, wherein the substrate has an amorphous germanium layer; providing a photomask comprising: a plurality of first light transmitting units, the first light transmitting units For the equidistant distance setting, each of the first light transmitting units has a plurality of circular light transmitting regions; and a plurality of second light transmitting units, and the second light transmitting units are disposed with the first light transmitting units The second light-transmitting unit has a plurality of polygonal light-shielding regions, and the polygonal light-shielding regions are symmetrically disposed with the circular light-transmitting regions of the adjacent first light-transmitting units, and diagonal lines of each of the polygonal light-shielding regions The length is smaller than the diameter of each light region, · 16 200933694 The laser is used to melt the amorphous pin through the mask, and a plurality of first crystal regions are generated on the thief substrate, and each of the first crystal regions includes the first and the first a plurality of first crystal units and a plurality of second crystal units corresponding to the light transmissive unit and the second light transmissive units; moving the photomask to make the first light transmissive units miscellaneous and adjacent to the second Corresponding to the crystal unit; and using the laser melting the amorphous silicon layer through the mask, on the substrate to produce a plurality of second green ❹ crystallized region. 5um。 The adjacent distance of the circular light-transmitting region is greater than 1. 5um. 13. The method of claim 6, wherein the diameter of each of the circular light-transmissive regions is 1. 5-7 um. The method of claim 6, wherein the shape of the polygonal light-shielding regions comprises a square. The method of claim 6, wherein the polygonal light-shielding regions have a regular hexagonal shape. 17
TW97102484A 2008-01-23 2008-01-23 A mask used in a sequential lateral solidification process and a solidification method using the mask TWI380345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97102484A TWI380345B (en) 2008-01-23 2008-01-23 A mask used in a sequential lateral solidification process and a solidification method using the mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97102484A TWI380345B (en) 2008-01-23 2008-01-23 A mask used in a sequential lateral solidification process and a solidification method using the mask

Publications (2)

Publication Number Publication Date
TW200933694A true TW200933694A (en) 2009-08-01
TWI380345B TWI380345B (en) 2012-12-21

Family

ID=44866046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97102484A TWI380345B (en) 2008-01-23 2008-01-23 A mask used in a sequential lateral solidification process and a solidification method using the mask

Country Status (1)

Country Link
TW (1) TWI380345B (en)

Also Published As

Publication number Publication date
TWI380345B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
JP4211967B2 (en) Method for crystallizing silicon using mask
CN100372058C (en) Laser beam pattern mask and crystallization method using the same
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
RU2642140C2 (en) Thin film of low-temperature polycrystalline silicon, method of manufacture of such thin film and transistor made of such thin film
CN107887420B (en) Array substrate, manufacturing method thereof, display panel and display device
US7217642B2 (en) Mask for crystallizing polysilicon and a method for forming thin film transistor using the mask
US20080106686A1 (en) Laser mask and crystallization method using the same
US20080029769A1 (en) Laser mask and method of crystallization using the same
JP2004031809A (en) Photomask and method of crystallizing semiconductor thin film
US7347897B2 (en) Crystallization apparatus, crystallization method, and phase modulation device
US20130149819A1 (en) Thin film transistors, method of fabricating the same, and organic light-emitting diode device using the same
KR100742380B1 (en) Mask pattern, method of fabricating thin film transistor and method for fabricating organic light emitting display device
WO2017028499A1 (en) Low-temperature polycrystalline silicon thin film, thin film transistor and respective preparation method and display device
US9651839B2 (en) Array substrate and manufacturing method thereof, display panel and display device
JP2007027737A (en) Manufacturing method of polycrystalline silicon thin film and manufacturing method of mask pattern used in the same, and of flat plate display device using the same
JP4454333B2 (en) Manufacturing method of polycrystalline silicon thin film for display device and mask for laser crystallization
US20230352496A1 (en) Array substrate and display panel
US10998189B2 (en) Laser annealing process of drive backplane and mask
TW200933694A (en) A mask used in a sequential lateral solidification process and a solidification method using the mask
TWI374333B (en) A mask used in a sequential lateral solidification process and a solidification method using the mask
TWI361492B (en) Thin film transistor substrate, electric apparatus, and method for fabricating the same
US20070196743A1 (en) Method for crystallizing amorphous silicon into polysilicon and mask used therefor
JP2000243969A (en) Thin film transistor, manufacture thereof, liquid crystal display device using the same and manufacture thereof
KR100833956B1 (en) Optical mask for crystallization of amorphous silicon
KR101289066B1 (en) Method for crystallizing layer and method for fabricating crystallizing mask