TW200933071A - Multi color light source - Google Patents

Multi color light source

Info

Publication number
TW200933071A
TW200933071A TW097133989A TW97133989A TW200933071A TW 200933071 A TW200933071 A TW 200933071A TW 097133989 A TW097133989 A TW 097133989A TW 97133989 A TW97133989 A TW 97133989A TW 200933071 A TW200933071 A TW 200933071A
Authority
TW
Taiwan
Prior art keywords
light
sensors
wavelength
emitting elements
source
Prior art date
Application number
TW097133989A
Other languages
Chinese (zh)
Inventor
Carsten Deppe
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200933071A publication Critical patent/TW200933071A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • G01J1/30Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
    • G01J1/32Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/108Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Abstract

The present invention relates to a multi color LED based light source, at least comprising several light emitting elements (1, 2, 3) emitting light beams (5, 6, 7) of different colors, a beam combining optics arranged for combining said light beams (5, 6, 7) to a combined light beam (8), and at least two light sensors (11, 12, 13) arranged at separate locations to measure fractions of light emitted by said light emitting elements (1, 2, 3). The beam combining optics comprises a first wavelength selective element (9) transmitting light of a first (1) of said light emitting elements (1, 2, 3) in a first wavelength region and reflecting light of a second (2) of said light emitting elements (1, 2, 3) in a second wavelength region. A first (11) of said sensors (11, 12, 13) is arranged to measure light of said first light emitting element (1) reflected at said first wavelength selective element (9) and/or to measure light of said second light emitting element (2) transmitted through said first wavelength selective element (9). With the proposed multi color light source cheap light sensors can be used to reliably control the spectral output of the light source.

Description

200933071 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種多色彩光源,其至少包括複數個發射 具有不同色彩的光束的發光元件,且特定言之係 LED(LED :發光二極體);-光束組合光學器件,其經配 置用於將該等光束組合成為—組合光束,該光束組合光學 , 11件包括至少一第-波長選擇元件,其在-第-波長區域 中透射該等發光元件之第-者的光並在一第二波長區域中 ❹ &射θ等發光元件之第二者的光;及-光感測g&置,其量 測由該等發光元件發射的光之—部分以便允許控制該組合 光束之強度及色彩輸出。 基於多色彩LED的光源可用於需要高度集中、全光譜光 的應用中。此等應用之實例係聚光照明及數位投影。為了 生產一用於此等應用的光源,具有複數個不同色彩的LED 之發射係藉由光束組合光學器件予以結合,舉例而言,二 向色鏡或立方體之配置❶由此一光源發射的光譜係藉由該 等分離LED之功率比予以控制。 【先前技術】 - 在照明或投影應用之光源中使用LED不僅具有優點。 * led之一個主要缺點係其等的發射光譜取決於溫度。因 此,不僅一 LED之發射之效率而且其波長亦隨著溫度、驅 動電流及組件壽命而變化。這需要藉由不同的LED發射的 光的複雜感測,以便實現該組合光束的恆定色彩輸出。 US 2006/0215122 A1描述一種用於考慮自LED發射的光 133904.doc -6 - 200933071 之位準調整白平衡的影像投影裝置。此影像投影裝置包括 一用於依序發射藉由一紅、一綠及一藍發光元件產生之光 的光源單元。一光束組合光學器件將該等不同發光元件之 該等光束組合成為一組合光束。一被配置在該組合光束之 光徑上的光感測器測量藉由該等不同的發光元件產生的光 之位準。一控制器基於藉由該光感測器量測的光之位準之 測量而控制該等發光元件之發射,以調整由該影像投影裝 置投影的影像之白平衡。 藉由一影像投影裝置中的該等發光元件發射的光之光譜 移動的測量需要用於紅色、綠色及藍色波長範圍之適當的 據光器。為了避免在操作期間改變濾光器,已知的係使用 二通道式光感測器用於此測量任務。此三通道式光感測器 係一十分昂貴的組件。而且,用於此等感測器之該等濾光 器通常係具有受限的品質。此等感測器及濾光器之老化及 溫度行為很大程度上為未知或比需要的更差。濾光器特性 亦取決於光之入射角度,當在該光徑中使用該感測器時其 需要微調。 【發明内容】 本發明之一目的係提供一基於具有不同色彩的發光元件 的多色衫光源,其中一用於控制該光源之光譜輸出的感測 配置提供一測量之高可靠性且可以低成本實現。 此目的係藉由根據技術方案1之多色彩光源予以實現。 此光源之有利實施例係該等獨立請求項之主旨且係在本說 明書的隨後部分中描述。 133904.doc 200933071 所提出的多色彩光源至少包括複數個發射具有不同色彩 的光束的發光元件,特定言之係led ; —光束組合光學器 件,其經配置用於將該等光束組合成為一組合光束;及至 少兩個被配置在分離位置的光感測器以量測藉由該等發光 元件發射的光之一部分❶該光束組合光學器件包括至少一 第一波長選擇元件,其在一第一波長區域中透射該等發光 元件之第一者的光並在一第二波長區域中反射該等發光元 件之第二者的光。該等感測器之第一者係經配置以量測該 第一發光元件在該第一波長選擇元件處反射的光及/或量 測該第二發光元件透射穿過該第一波長選擇元件之光。 由於該等感測器之至少一者的此一配置,該波長選擇元 件之該等波長選擇屬性亦係用於該感測器。這避免在該感 測器前方需要任何額外的波長選擇濾光器。藉由在此多色 彩光源中適當地配置該等不同的感測器,用於控制該等發 光元件以實現該光源之輸出的所需光譜特性所需的所有資 讯可藉由簡單且便宜的感測器實現而無需任何濾光器。所 需的感測器之數目係取決於此光源中該等發光元件之數目 及屬性《舉例而言,若一或複數個此等發光元件不顯示隨 溫度的任何波長偏移,則必須提供更少的感測器,因為僅 此等—或複數個發光元件之強度係被量測。此外,當依序 地操作該等不同的發光元件時(其為通用投影應用之情 況),與該等發光元件之非依序操作,亦即其中所有元件 係同時操作的此等元件之一連續操作比較,亦需要更少的 感測器。然而,在此一連續操作中,亦較佳地係包含其中 133904.doc 200933071 該等發光元件係依序地開關的測量時期。因此,此一操作 亦需要更少的感測器。 所提出的該多色彩光源較佳亦提供一控制器其係基於 該等光感測器之測量而控制該等發光元件之 組合光束的所需強度及色彩輸出〇 /徇®热而,亦可能的係提供 所提出的多色彩光源而無此一控制器。在此情況下,該多 色彩光源必須係在操作期間連接至—適當的控㈣^ 而言,-數位成像裝置之控制器’其中安裝有該光源。 在所提出的該多色彩光源中,該等感測器係經配置使得 其等受益於此-光源之該等已包含的波長選擇元件之該等 波長選擇屬性。藉由感測器位置之適當組合,.該等發光元 件之該等發射屬性,亦㈣度及錢輸心由該等不同的 測量予以計算。這在操作之前需要該量測系統的―校準。 在此-校準中,該等感測器之該等量測值係與在該等發光 元件之不同的操作溫度下分離量測所得的強度及波長特性 相關。結果係—其中記錄有該等測量相互關係的表格或矩 陣。此一校準較佳地係在該光源之製造之後且在其第一次 使用之前予以實施,但亦可為該設計之部分且在一樣板上 進行量測。然而’若須要’亦可在任何稍後時間再校準該 多色彩光源。用於控制該光源之光輸出的該控制器接著基 於該等光感測器之量測值及以上的矩陣資料而控制該等發 光元件。由於該等感測器利用該光束組合光學器件之該等 高品質波長選擇元件之光譜特性,因此確保有關波長的測 量之高品質。因此所有光感測器可具有最簡單的樣式。老 I33904.doc 200933071 化及溫度偏移不會導致明顯問題,因為所有感測器可具有 同一樣式。由於該等感測器已為所提出的該多色彩光源之 部分’因此本發明提供一完整可用的照明模組。 對於以上的測量可使用該光束組合光學器件之該波長選 擇元件或該等波長選擇元件,因為當經設計用於在一特定 波長區域中反射時,此一波長選擇元件仍允許此波長區域 中光的少量透射且允許附近波長區域中甚至更大量的透 射。由於LED具有相當寬的發射,因此在此發射曲線之側 翼上的一些光總是透射穿過該反射性元件。在波長選擇透 射元件處由一 LED發射的光之部分的反射上亦係如此。此 剩餘光係藉由根據本發明之該等光感測器予以偵測及量 測。藉由組合該等不同的光感測器之測量,可得出關於該 等LED之波長偏移或強度偏移的所需資訊β在一較佳實施 例中,關於一波長偏移之所需資訊係藉由形成至少兩個經 適當定位的感測器之測量值的比率予以實現。 在一包括三個具有不同色彩的發光元件之光源之實施例 中,該光束組合光學器件包括兩個用於形成該組合光束的 波長選擇元件^該第一波長選擇元件在一第一波長區域中 透射該第一發光元件之光並在一第二波長區域中反射該第 二發光元件之光。該第二波長選擇元件在第一波長區域及 第二波長區域中(通常係在一包含第一波長區域及第二波 長區域的較大波長區域中)透射光,並在一第三波長區域 中反射該第三發光元件之光。該技術中已知此一光束組合 光學器件,舉例而言,在rgb(rgb :紅綠藍)光源中。 133904.doc 200933071 在所提出的該多色彩光源之此實施例及其他實施例中,該 光束組合光學器件之該等波長選擇元件較佳為二向色鏡。 在此實施例中,三個光感測器係被配置在該光源之外殼内 部。該第一光感測器係經配置以量測該第一發光元件在該 第一波長選擇元件處反射之光’並量測該第二發光元件透 射穿過該第一波長選擇元件之光。該第二光感測器係經配 置以量測第一及第二發光元件在該第二波長選擇元件處反 射之光且同時量測該第三發光元件透射穿過該第二波長選 擇元件之光。該第三感測器係經配置以量測該組合光束, 其係(舉例而言)藉由聚集在一配置於該組合光束之光徑中 的光束形成光學器件處反射之光。舉例而言,此一反射表 面可為一準直透鏡之表面。雖然此等表面意為非反射性, 但剩餘反射提供用於光測量的足夠信號。此外,若該組合 光束的一足夠量的光係自此表面被反射或散射,則可使用 該光源内部的任何其他表面。當依序操作該三個不同的發 光元件時’利用該三個感測器之測量值可實現用於確定該 三個發光元件之任何強度或波長偏移之完整資訊。 舉例而言’所提出的該多色彩光源中使用的該等光感測 器可為簡單的光電二極體,其在其等光敏感區域上或其前 方不需要任何額外的波長選擇濾光器。 所提出的該多色彩光源之一主要應用係數位投影,舉例 而言,以隨身投影儀、背投τν及類似應用之形式。此 外’所提出的該多色彩光源亦可用於(舉例而言)在劇院中 或用於活動照明的聚光照明應用,其中需要高光束品質色 133904.doc 200933071 彩控制光。對於此等應用,該多色彩光源較佳為包含一完 全集成控制器使得顧客能使用該光源之簡單應用。 本發明之此等及其他態樣可見於下文描述之該等實施例 且係藉由參考其等予以闡明。 【實施方式】 所提出的該多色彩光源係在下文中藉由實例予以描述而 不限制由請求項界定的保護之範圍。 圖1顯示所提出的該多色彩光源之一第一實例的示意 圖。此光源包括二個LED : —紅LED 1、一綠LED 2及一藍 LED 3。藉由該等不同的LED發射的光係藉由一配置在每 個LED刖方的光束準直光學器件4予以準直,以便形成一 紅光束5、一綠光束6及一藍光束7。此等光束係藉由一光 束組合光學器件予以組合成為一組合光束8,在此實例中 該光束組合光學器件包括兩個二向色鏡9、1〇„該等二向 色鏡混合該三個LED之光,該等LED亦可由具有複數個並 排的具有相同色彩的LED的已知的LED模組形成。然而該 第一介電鏡9係經塗佈使得其僅反射(舉例而言)在從500至 590奈米之波長區域中之綠光’該第二鏡1〇具有一用於反 射(舉例而言)在從400奈米至500奈米之波長區域中之藍光 之塗層。該第一介電鏡9係經設計以在藉由該紅LED 1發射 的光之波長區域中主要為通透的。該第二介電鏡10係經設 計以允許藉由該紅LED 1及該綠LED 2發射之紅光及綠光 之透射。 由於LED具有一相當寬的透射,因此該綠LED 2之少量 133904.doc -12- 200933071 光係不被該第一二向色鏡9反射,且同時由該紅LED i發射 的一些光係在此二向色鏡9處反射。此透射及反射量的光 係強烈取決於該等LED 1、2之實際發射輪廓。若該紅LED 1之主波長由於溫度或改變的功率而偏移至較短波長,則 反射光更為強烈。這係藉由將一第一光感測器丨丨適當地放 置在一聚集此反射光的位置予以量測。 將該三個光感測器丨丨、12及13放置在圖丨中指示的三個 分離位置上’可量測關於所有三個Led之資訊。因為此一 多色彩光源之外殼内部總是有許多額外的反射及繞射,所 以該等感測器之放置並不重要。由於即使在該等主光束之 外部的光之極高位準,因此光係足夠用於測量。甚至對該 等感測器壽命時間有益的係僅具有減小的光位準。 該第一感測器12係經配置以積聚該紅led 1及該綠LED 2在低於480奈米的波長範圍中的光,其係在該第二二向色 鏡10處反射。此第二感測器12亦積聚藉由該藍LED 3發射 且在高於480奈米之波長範圍中不在該第二二向色鏡10處 反射的光。因此’該第二感測器12之感測器信號與該紅 LED 1之該"藍"發射且與該綠lEd 2之該"藍”發射,但額外 地與該藍LED 3之綠及紅(或黃)分量具有一相互關係。該 第一光感測器11之感測器信號與具有來自該綠LED 2之"紅" (且可能為"藍")分量之額外信號的該紅LED 1之該"綠"(且 可能為"藍")發射具有一相互關係。 該第二光感測器13係經定位以積聚在該光源之光束聚光 光學器件14之透鏡表面處反射的該組合光束8之光。因此 133904.doc •13· 200933071 該第三光感測器13之感測器信號係密切有關該光源之輸出 光位準,亦即關於該藍LED 3之藍色分量、該綠LED 2之 綠色分量及該紅LED 1之紅色分量。 在設計或製造之後測量此等回應,係數可被置於一系統 矩陣中。由於此系統矩陣,可量測每個LED之電流特性。 每個LED之波長的偏移接著係被偵測為不同的光感測器信 號間的關係中的改變,其對應於一關係:附近色帶中的光/ 目標色帶中的光。200933071 IX. Description of the Invention: [Technical Field] The present invention relates to a multi-color light source comprising at least a plurality of light-emitting elements that emit light beams having different colors, and in particular, LEDs (LEDs: light-emitting diodes) a beam combining optics configured to combine the beams into a combined beam that combines optical, 11 pieces comprising at least one first-wavelength selective element that transmits in the -first wavelength region And the light of the first one of the light-emitting elements and the second light of the light-emitting element such as θ in a second wavelength region; and the light sensing g& Part of the light to allow control of the intensity and color output of the combined beam. Light sources based on multi-color LEDs can be used in applications that require highly concentrated, full-spectrum light. Examples of such applications are concentrated illumination and digital projection. In order to produce a light source for such applications, the emission of LEDs having a plurality of different colors is combined by beam combining optics, for example, the configuration of a dichroic mirror or cube, and the spectrum emitted by such a source. It is controlled by the power ratio of the separated LEDs. [Prior Art] - The use of LEDs in light sources for illumination or projection applications not only has advantages. * One of the main drawbacks of led is that its emission spectrum depends on temperature. Therefore, not only the efficiency of an LED emission but also its wavelength varies with temperature, drive current, and component lifetime. This requires complex sensing of the light emitted by the different LEDs in order to achieve a constant color output of the combined beam. US 2006/0215122 A1 describes an image projection apparatus for adjusting the white balance in consideration of the level of light 133904.doc -6 - 200933071 emitted from the LED. The image projection device includes a light source unit for sequentially emitting light generated by a red, a green, and a blue light emitting element. A beam combining optics combines the beams of the different illuminating elements into a combined beam. A photosensor disposed on the optical path of the combined beam measures the level of light generated by the different illuminating elements. A controller controls the emission of the light-emitting elements based on the measurement of the level of light measured by the light sensor to adjust the white balance of the image projected by the image projection device. The measurement of the spectral shift of light emitted by the illumination elements in an image projection device requires an appropriate illuminator for the red, green and blue wavelength ranges. In order to avoid changing the filter during operation, a two-channel photosensor is known for this measurement task. This three-channel photosensor is a very expensive component. Moreover, such filters for such sensors are typically of limited quality. The aging and temperature behavior of these sensors and filters is largely unknown or worse than needed. The filter characteristics also depend on the angle of incidence of the light, which is fine tuned when the sensor is used in the path. SUMMARY OF THE INVENTION One object of the present invention is to provide a multi-color shirt light source based on light-emitting elements having different colors, wherein a sensing configuration for controlling the spectral output of the light source provides a high reliability of measurement and can be low in cost. achieve. This object is achieved by a multi-color light source according to claim 1. Advantageous embodiments of this light source are the subject matter of these independent claims and are described in subsequent sections of this specification. 133904.doc 200933071 The proposed multi-color light source comprises at least a plurality of light-emitting elements emitting light beams having different colors, in particular a led; beam combining optics configured to combine the beams into a combined beam And at least two photosensors disposed at the separated position to measure a portion of the light emitted by the light emitting elements, the beam combining optics comprising at least one first wavelength selective element at a first wavelength Light in the region that transmits the first of the light-emitting elements and reflects light from the second of the light-emitting elements in a second wavelength region. The first of the sensors is configured to measure light reflected by the first light emitting element at the first wavelength selective element and/or to measure transmission of the second light emitting element through the first wavelength selective element Light. Due to this configuration of at least one of the sensors, the wavelength selection properties of the wavelength selective element are also used for the sensor. This avoids the need for any additional wavelength selective filters in front of the sensor. By appropriately arranging the different sensors in the multi-color source, all of the information needed to control the illumination elements to achieve the desired spectral characteristics of the output of the source can be made simple and inexpensive. The sensor is implemented without any filters. The number of sensors required depends on the number and nature of the light-emitting elements in the light source. For example, if one or more of these light-emitting elements do not exhibit any wavelength shift with temperature, then more must be provided. There are fewer sensors because only the strength of these or a plurality of illuminating elements is measured. In addition, when the different light-emitting elements are sequentially operated, which is the case for a general projection application, the non-sequential operation of the light-emitting elements, that is, one of the elements in which all of the elements are simultaneously operated, is continuous Operational comparisons also require fewer sensors. However, in this continuous operation, it is also preferable to include a measurement period in which the light-emitting elements are sequentially switched in 133904.doc 200933071. Therefore, this operation also requires fewer sensors. The proposed multi-color light source preferably also provides a controller for controlling the required intensity and color output 〇/徇® heat of the combined light beams of the light-emitting elements based on the measurements of the light sensors, and possibly The system provides the proposed multi-color source without this controller. In this case, the multi-color light source must be connected during operation to - the appropriate control (four) ^, the controller of the digital imaging device' in which the light source is mounted. In the proposed multi-color light source, the sensors are configured such that they benefit from the wavelength selection properties of the already included wavelength selective elements of the light source. By the appropriate combination of sensor positions, the emission properties of the illuminating elements, as well as the (four) degrees and the money loss, are calculated from the different measurements. This requires the "calibration" of the measurement system before operation. In this-calibration, the measurements of the sensors are related to the intensity and wavelength characteristics of the separation measurements at different operating temperatures of the illuminating elements. The result is a table or matrix in which the correlations of the measurements are recorded. This calibration is preferably performed after the manufacture of the light source and prior to its first use, but may also be part of the design and measured on the same board. However, if desired, the multi-color source can be recalibrated at any later time. The controller for controlling the light output of the light source then controls the light emitting elements based on the measured values of the light sensors and the matrix data above. Since the sensors utilize the spectral characteristics of the high quality wavelength selective elements of the beam combining optics, high quality measurements of the wavelengths are ensured. Therefore all light sensors can have the simplest style. Older I33904.doc 200933071 Chemical and temperature offsets do not cause significant problems because all sensors can have the same pattern. Since the sensors are already part of the proposed multi-color source, the present invention provides a fully usable illumination module. The wavelength selective element or the wavelength selective elements of the beam combining optics may be used for the above measurements because the wavelength selective element still allows light in this wavelength region when designed for reflection in a particular wavelength region The small amount of transmission allows for an even greater amount of transmission in the nearby wavelength region. Since the LED has a relatively wide emission, some of the light on the side of the emission curve is always transmitted through the reflective element. This is also the case for the reflection of the portion of the light emitted by an LED at the wavelength selective transmission element. This residual light is detected and measured by the light sensors in accordance with the present invention. By combining the measurements of the different photosensors, the desired information about the wavelength shift or intensity shift of the LEDs can be derived. In a preferred embodiment, the need for a wavelength shift is required. Information is achieved by forming a ratio of measured values of at least two appropriately positioned sensors. In an embodiment comprising a light source comprising three light-emitting elements of different colors, the beam combining optics comprises two wavelength selective elements for forming the combined light beam. The first wavelength selective element is in a first wavelength region Light transmitted through the first illuminating element and reflecting light of the second illuminating element in a second wavelength region. The second wavelength selective element transmits light in a first wavelength region and a second wavelength region (typically in a larger wavelength region including the first wavelength region and the second wavelength region) and is in a third wavelength region Light reflecting the third light emitting element. This beam combining optics is known in the art, for example, in an rgb (rgb: red green blue) source. 133904.doc 200933071 In this embodiment and other embodiments of the proposed multi-color source, the wavelength selective elements of the beam combining optics are preferably dichroic mirrors. In this embodiment, three photo sensors are disposed inside the housing of the light source. The first photosensor is configured to measure light reflected by the first illuminating element at the first wavelength selective element and to measure light transmitted by the second illuminating element through the first wavelength selective element. The second photosensor is configured to measure light reflected by the first and second illuminating elements at the second wavelength selective element and simultaneously measure transmission of the third illuminating element through the second wavelength selective element Light. The third sensor is configured to measure the combined beam, for example by focusing light reflected at a beam disposed in an optical path of the combined beam. For example, the reflective surface can be the surface of a collimating lens. While these surfaces are meant to be non-reflective, the residual reflection provides sufficient signal for light measurement. Furthermore, if a sufficient amount of light of the combined beam is reflected or scattered from the surface, any other surface inside the source can be used. When the three different light-emitting elements are operated in sequence, the complete measurement of any intensity or wavelength shift of the three light-emitting elements can be achieved using the measurements of the three sensors. For example, the proposed photosensors used in the multi-color source can be simple photodiodes that do not require any additional wavelength selective filters on or in their light sensitive areas. . One of the proposed multi-color light sources primarily applies coefficient bit projection, for example, in the form of a portable projector, rear projection τν, and the like. The proposed multi-color light source can also be used, for example, in a theater or in concentrated lighting applications for active lighting where a high beam quality color is required 133904.doc 200933071 color control light. For such applications, the multi-color source preferably includes a simple application that fully integrates the controller so that the customer can use the source. These and other aspects of the invention can be seen in the examples described hereinafter and are set forth by reference. [Embodiment] The proposed multi-color light source is hereinafter described by way of example without limiting the scope of protection defined by the claims. Figure 1 shows a schematic representation of a first example of one of the proposed multi-color sources. The light source comprises two LEDs: a red LED 1, a green LED 2 and a blue LED 3. The light emitted by the different LEDs is collimated by a beam collimating optics 4 disposed at the periphery of each of the LEDs to form a red beam 5, a green beam 6, and a blue beam 7. The beams are combined into a combined beam 8 by a beam combining optics, which in this example comprises two dichroic mirrors 9, 1 〇 „ these dichroic mirrors mix the three LED light, which may also be formed by a known LED module having a plurality of side-by-side LEDs of the same color. However, the first dielectric mirror 9 is coated such that it only reflects, for example, from Green light in the wavelength region of 500 to 590 nm. The second mirror has a coating for reflecting, for example, blue light in a wavelength region from 400 nm to 500 nm. A dielectric mirror 9 is designed to be primarily transparent in the wavelength region of light emitted by the red LED 1. The second dielectric mirror 10 is designed to allow the red LED 1 and the green LED 2 Transmission of red and green light emitted. Since the LED has a relatively wide transmission, a small amount of the 133904.doc -12-200933071 light system of the green LED 2 is not reflected by the first dichroic mirror 9, and at the same time Some of the light beams emitted by the red LED i are reflected at the dichroic mirror 9. This transmission and reflection The amount of light is strongly dependent on the actual emission profile of the LEDs 1, 2. If the dominant wavelength of the red LED 1 is shifted to a shorter wavelength due to temperature or varying power, the reflected light is more intense. The first photosensor 丨丨 is suitably placed at a position where the reflected light is collected. The three photo sensors 12, 12 and 13 are placed in the three separate directions indicated in the figure. Positional 'measures information about all three LEDs. Because there is always a lot of extra reflection and diffraction inside the outer casing of this multi-color light source, the placement of these sensors is not important, even if it is The light outside the main beam is extremely high, so the light system is sufficient for measurement. Even the useful life of the sensors has only a reduced light level. The first sensor 12 is Light that is configured to accumulate the red led 1 and the green LED 2 in a wavelength range below 480 nm, which is reflected at the second dichroic mirror 10. This second sensor 12 also accumulates The blue LED 3 emits and is not in the second dich in the wavelength range above 480 nm The light reflected at the mirror 10. Thus the sensor signal of the second sensor 12 and the red "blue" of the red LED 1 are emitted and the "blue" of the green lEd 2 is emitted, but the amount The field has a correlation with the green and red (or yellow) components of the blue LED 3. The sensor signal of the first photo sensor 11 and the red LED 1 having an additional signal from the "red" (and possibly "blue") component of the green LED 2 " (and possibly "blue") emissions have a relationship. The second photo sensor 13 is positioned to accumulate light of the combined beam 8 reflected at the lens surface of the beam concentrating optics 14 of the source. Therefore, 133904.doc •13· 200933071 The sensor signal of the third photo sensor 13 is closely related to the output light level of the light source, that is, the blue component of the blue LED 3, the green color of the green LED 2 Component and the red component of the red LED 1. These responses are measured after design or manufacture and the coefficients can be placed in a systematic matrix. Due to this system matrix, the current characteristics of each LED can be measured. The offset of the wavelength of each LED is then detected as a change in the relationship between the different photosensor signals, which corresponds to a relationship: light in the nearby ribbon/light in the target ribbon.

Ο 雖然該等感測器之光譜分離為有限,但該等測量允許該 等LED之發射特性的完整分析且將不改變系統壽命。 作為一實例,當假設以下理想條件之簡單化情況時,可 完成以下計算。使用的該等LED可具有圖3中顯示的該等 光譜屬性。該等二向色鏡9及1〇可具有如圖4中顯示的透射/ 反射屬性(反射率=1-透射率該等感測器之光譜敏感度 Srei==f(^)係在圖5中予以描繪。 每個感測器上的信號可藉由感測器敏感度之積分與所有 透射率及反射率相乘’並乘以完整光譜上的該Led之輸出 而計算。 其中:1=強度/光通量 Pr’ Pb,Pg=發射之功率光譜Ο Although the spectral separation of these sensors is limited, these measurements allow for a complete analysis of the emission characteristics of these LEDs and will not change the system lifetime. As an example, the following calculations can be completed when simplification of the following ideal conditions is assumed. The LEDs used may have the spectral properties shown in Figure 3. The dichroic mirrors 9 and 1 can have the transmission/reflection properties as shown in FIG. 4 (reflectance=1-transmittance, the spectral sensitivity of the sensors, Srei==f(^) is shown in FIG. 5. The signal on each sensor can be calculated by multiplying the integral of the sensor sensitivity by all the transmittance and reflectivity' and multiplying by the output of the Led on the complete spectrum. Intensity / luminous flux Pr' Pb, Pg = emission power spectrum

Re=反射率(其中二向色濾光器通常等於〗_Τγ) Τγ=透射率 S =相對敏感度 Ϊ 一 v 700nm wn(啊=ks-一 ”咖* ) I, 400nm I33904.doc 200933071 700nmRe = reflectivity (where the dichroic filter is usually equal to _ _ Τ γ) Τ γ = transmittance S = relative sensitivity Ϊ a v 700nm wn (ah = ks - one "coffee *) I, 400nm I33904.doc 200933071 700nm

Isensorl2(LEDl) = kScaIe加·12 * IL£D1 * |^Γ(λ) TlMim>r9(X) ®-eMinorlO(X) Ssensorl2(X)^ 700nmIsensorl2(LEDl) = kScaIe plus ·12 * IL£D1 * |^Γ(λ) TlMim>r9(X) ®-eMinorlO(X) Ssensorl2(X)^ 700nm

ASensor!3(L£D2) _ ^Scale^ensorU kscale^Scnsor丨3 * IlED丨 * /^Γ(λ) ReL«isSuifecel4(X) ^Sensorl3(X)^ 700 ranASensor!3(L£D2) _ ^Scale^ensorU kscale^Scnsor丨3 * IlED丨 * /^Γ(λ) ReL«isSuifecel4(X) ^Sensorl3(X)^ 700 ran

Isensorl1(LED2) = ^Scale^Sensorll *^LED2 * JP^(X)TrMiiT〇r9(X)Sscnsorl\(λ)^ 400nm 700nmIsensorl1(LED2) = ^Scale^Sensorll *^LED2 * JP^(X)TrMiiT〇r9(X)Sscnsorl\(λ)^ 400nm 700nm

Isensorl2(LK)2) " ^Scale^ensor12 * ^LED2 * |^(λ) ^βΜιιΐϊ>Γ9{λ) ^eMim>r10(X) Ssensorl2(X)^ 400nm 700iun ^SensorI3(LED2) = ^Scale^ensorl3 * IlED2 * |^(λ) ^eMim>r9(X) ΤΓΜίπ〇Γΐ0(λ) ^UnsS^eUiX) Ssensorl3(X)^ 400nm ❹ LSensorll(LED3) 700nm lScnsorl2(LED3) ^ ^Scale^ensor12 LLED3 JPg(X)TrMiiT〇rlO(X)Ssensorl2(X)^ 700nmIsensorl2(LK)2) " ^Scale^ensor12 * ^LED2 * |^(λ) ^βΜιιΐϊ>Γ9{λ) ^eMim>r10(X) Ssensorl2(X)^ 400nm 700iun ^SensorI3(LED2) = ^Scale ^ensorl3 * IlED2 * |^(λ) ^eMim>r9(X) ΤΓΜίπ〇Γΐ0(λ) ^UnsS^eUiX) Ssensorl3(X)^ 400nm ❹ LSensorll(LED3) 700nm lScnsorl2(LED3) ^ ^Scale^ensor12 LLED3 JPg(X)TrMiiT〇rlO(X)Ssensorl2(X)^ 700nm

Is«nsorl3(LED3) = kscaie>SensOTl3 * 1咖3 * fPg⑻ ReMinor丨。(λ) ReLensSurfaee14(l) SsensorU(X)dX 只要該等LED之光譜中無改變,該等方程式之積分部分 可被處理為常數。在此情況中,該系統可被表達為線性方 程組。由於該三個感測器電流’因此該三個LED之光通量 可被計算為此等方程式的解。此任務不需要該等LED之依Is«nsorl3(LED3) = kscaie>SensOTl3 * 1 coffee 3 * fPg(8) ReMinor丨. (λ) ReLensSurfaee14(l) SsensorU(X)dX The integral part of the equations can be treated as a constant as long as there is no change in the spectrum of the LEDs. In this case, the system can be expressed as a linear equation group. Due to the three sensor currents, the luminous flux of the three LEDs can be calculated as a solution to this equation. This task does not require the support of these LEDs.

序操作。 —k" k,2 0 " Iledi Ϊ = Sensor k2i ^22 ^23 IlED2 _k3i ^32 ^33 _ _IlED3_ 處理流程係如下: 設計/製造 -計算或量測常數knm -校準感測器信號 -計算並保存反向系統矩陣 -15- 133904.doc 200933071 操作Order operation. —k" k,2 0 " Iledi Ϊ = Sensor k2i ^22 ^23 IlED2 _k3i ^32 ^33 _ _IlED3_ The process flow is as follows: Design / Manufacturing - Calculation or measurement constant knm - Calibration sensor signal - Calculation and Save Reverse System Matrix -15- 133904.doc 200933071 Operation

-操作LED -量測所有感測器信號 -利用儲存的矩陣計算所有LEd之光通量 此外,若該LED光之光譜組份亦需要被量測,則需要在 一僅一個LED被供電的相位期間作出測量(其中線性重疊及 略微更複雜的计算或者兩個LED(一個LED總是為關閉)之 測量為可能)。作為實例此處使用該LED 2。圖6例證性地 顯不在兩個不同的操作電流下此LED之功率光譜。 舉例而言計算,一矽光電二極體係用作感測器且該敏感 度係藉由一線性函數大致估算為4〇〇奈米至7〇〇奈米之波長 範圍。其中λ在奈米級為:Ssens〇r(^=〇 〇〇2333λ _ 〇 8333 對於鏡9及10,使用的係每個具有一邊緣的理想濾光函 數: -鏡9 100°/。反射<6〇〇奈米之波長且1〇〇%透射以上之波長 •鏡10 100%反射<480奈米之波長且1〇〇。/。透射以上夂波長 該光學器件14具有一 2.5%的剩餘反射。 在該實例中’在應用中量測或利用前述方程式計算的該 等感測器信號為: S11.1400mA = 2.896χ 10 4 Sllil00mA = 4.382χ 10~5 S12_1400mA= 1·357χ 10 3 S12.i〇0mA = 2.211x 10~5 S13.1400mA=l-543x 10 3 S13.100mA = 2.34x 10~4 藉由正規化該測量可評估結果: 133904.doc -16* 200933071- Operate the LED - Measure all sensor signals - Calculate the luminous flux of all LEds using the stored matrix. In addition, if the spectral component of the LED light also needs to be measured, it needs to be made during the phase in which only one LED is powered. Measurements (where linear overlaps and slightly more complex calculations or measurements of two LEDs (one LED is always off) are possible). The LED 2 is used here as an example. Figure 6 illustratively shows the power spectrum of this LED at two different operating currents. For example, a chirped photodiode system is used as the sensor and the sensitivity is estimated to be a wavelength range of 4 nanometers to 7 nanometers by a linear function. Where λ is at the nanometer level: Ssens〇r (^=〇〇〇2333λ _ 〇8333 For mirrors 9 and 10, the system used has an ideal filter function for each edge: - mirror 9 100 ° /. reflection < 6 〇〇 nanometer wavelength and 1〇〇% transmission wavelength above • Mirror 10 100% reflection < 480 nm wavelength and 1 〇〇. /. Above the transmission wavelength of the optical device 14 has a 2.5% Residual reflections. In this example, the sensor signals measured in the application or calculated using the above equation are: S11.1400mA = 2.896χ 10 4 Sllil00mA = 4.382χ 10~5 S12_1400mA= 1·357χ 10 3 S12 .i〇0mA = 2.211x 10~5 S13.1400mA=l-543x 10 3 S13.100mA = 2.34x 10~4 The results can be evaluated by normalizing the measurement: 133904.doc -16* 200933071

1400 mA正規化至13 100 mA正規化至13@14〇〇 〇iA 100 mA正規化至131400 mA normalized to 13 100 mA normalized to 13@14〇〇 〇iA 100 mA normalized to 13

S11.1400mA Λ -=0.188 Sn.ioomA S13.1400mA Si3.1400mA s 12.1400mA … -=0.879 Sl2.100mA s13.1400mA S13.1400mA ^13.1400mA Sl3.100mA ^13.1400mA Sl3.1400mAS11.1400mA Λ -=0.188 Sn.ioomA S13.1400mA Si3.1400mA s 12.1400mA ... -=0.879 Sl2.100mA s13.1400mA S13.1400mA ^13.1400mA Sl3.100mA ^13.1400mA Sl3.1400mA

0.028 S11.100mA -=0.187 s13.100mA 0.014 S12.100mA Λ 一 -=0.095 s13.100mA 0.152 s13.100mA , S13.100mA 現在若將評估光強度及色彩偏移,則必須選擇兩個信0.028 S11.100mA -=0.187 s13.100mA 0.014 S12.100mA Λ one -=0.095 s13.100mA 0.152 s13.100mA , S13.100mA Now if you want to evaluate the light intensity and color shift, you must select two letters

號。在此實例中最佳信號係來自感測器12及13。感測器13 之k號係已接近該光通量。12/13之比率係受色彩偏移的 劇烈影響;其自滿電流下的0.879改變至低電流不的 0.095 。 所提出的該系統首先分析12/13之比率並藉由一查找表 格(其包含色彩點與12/13間的相互關係,其係在該系統之 設計或製造期間予以計算或量測。或者這係利用一適合於 此行為的模型函數予以描述。)的幫助而確定電流色彩 點。 在一第二步驟中’該光㈣係基於❹】器13之感測器信 號(可選地與儲存在相同的查找表格中的校正因數)予以計 算。 。 隹此貫例甲 對 ......% 册队燹。逞係一種 由於較低電流的發射之較小光譜寬度的指示。若光譜寬 度中的此改變亦在變化,例如由m疮 曰 J如由,皿度及電流引起的不同的 偏移所造成,則一個二次元杳姓主功 几查找表格及該等信號12/13及 I33904.doc 200933071 11/13仍可用以量測精確的色彩點(一般規則:每個獨立變 數分析一個獨立量測信號)。 該處理流程係如下: 設計/製造 •計算或量測色彩變化與比率12/13(若需要與li/i3)間 的相互關係 -取決於色彩而計算或量測用於通量測量丨3之校正因數number. The best signal in this example is from sensors 12 and 13. The k-number of the sensor 13 is already close to the luminous flux. The ratio of 12/13 is greatly affected by the color shift; its 0.879 at full-charge current changes to 0.095 at low current. The proposed system first analyzes the ratio of 12/13 and uses a lookup table (which contains the relationship between color points and 12/13, which is calculated or measured during the design or manufacture of the system. Or this The current color point is determined by the help of a model function suitable for this behavior. In a second step, the light (4) is calculated based on the sensor signal of the device 13 (optionally with the correction factor stored in the same lookup table). . For this example, a...% of the team. Tethering is an indication of the smaller spectral width due to lower current emissions. If this change in the spectral width is also changing, for example, caused by different offsets caused by m, J, and the current, then a second-element main-spot lookup table and the signals 12/ 13 and I33904.doc 200933071 11/13 can still be used to measure accurate color points (general rule: each independent variable analyzes an independent measurement signal). The process flow is as follows: Design / Manufacturing • Calculate or measure the color change and the correlation between the ratio 12/13 (if needed and li/i3) - Calculate or measure depending on the color for flux measurement 丨3 Correction factor

-對色彩點及通量校正彙編查找表格或設計近似函數 操作 -僅對LED 2提供脈衝 -量測所有(或僅12及13)感測器信號 -計算商數11/13及12/13(或僅12/13) -自查找表格或模型函數確定色彩點及亮度校正因數 -利用信號13及校正計算光通量 _(利用光通量及色彩點結果將光輸出校正為目標光及 色彩) 圖1顯示一實例,其中該三個LED顯示取決於溫度的波 長偏移以及操作期間的強度偏移。當使用一或兩個led而 無任何取決於溫度的偏移時,則測量需要(舉例而言)一用 於紅光及綠光的特殊類型之磷轉變LED,甚至更少的感測 器。這係在圖2之示意圖中顯示,其中該紅Led i及該綠 LED 2不顯示任何必須被補償的取決於溫度之日月㈣波長 偏移。對於此等LED,僅發射強度為有益。將此等與 一習知的藍LED組合,僅需要感測器12及13以聚集用於該 133904.doc 200933071 等光之適當控制所需的測量資料。 囷1及2亦示意性地顯示該控制器15,其係連接至該等光 感測器11至13且係連接至該等LED丨至3之驅動單元。此等 圖中未分離缯·示該等驅動單元。 該等不同的LED之控制亦可藉由組合在該光源中至少兩 個在色彩上略微偏離的LED之至少一色彩而實現。舉例而 言’混合來自藍LED之不同波長批量之該藍LED模組3並提 供用於此兩個LED之分離驅動器,此舉允許一色彩完全穩 定的照明模組。所需的色彩可總是藉由適當地平衡該兩個 LED之輸出予以實現。由於該兩個不同的藍led之每者上 的分離短脈衝及該等感測器信號12及丨3之分析(如先前解 釋)’因此可確定兩個藍LED兩者的色彩座標。取決於此等 色彩座標’此兩者間的平衡係經設定以實現所需的混合色 彩點。最終’利用用於兩個led之光譜偏移的該感測器信 號13及一可選的校正因數(來自利用信號12/13之查找表格) 可將兩個LED之位準調適至所需亮度。這可極大地減少所 有投影儀製造商的設計努力。或者,該測量可用以顯示用 於由下游圖片或光處理組件完成的補償之該等光源屬性。 數位元投影及聚光照明需要具有精確控制的色彩平衡的 高功率低擴展量(etendue)的光源。通常使用的光學解決方 案係藉由二向色反射的多個光束之色彩選擇組合。藉由在 此一配置中在根據本發明之所選位置添加該等光感測器, 此等感測器可獲取色彩及亮度資訊而無需具有其等自身的 濾光器。基於這點’可能的係一具有校正的光輸出的完全 133904.doc -19- 200933071 匕含的照明模組之設計。昂貴及不可靠的色彩感測器係 被省略^- Compile the lookup table or design approximation function for color point and flux correction - Pulse only for LED 2 - Measure all (or only 12 and 13) sensor signals - Calculate quotients 11/13 and 12/13 ( Or only 12/13) - self-finding table or model function to determine color point and brightness correction factor - use signal 13 and correction to calculate luminous flux _ (use light flux and color point results to correct light output to target light and color) Figure 1 shows a An example wherein the three LEDs display a wavelength shift depending on temperature and an intensity shift during operation. When one or two LEDs are used without any temperature dependent offset, then the measurement requires, for example, a special type of phosphor converted LED for red and green light, or even fewer sensors. This is shown in the schematic of Figure 2, where the red Led i and the green LED 2 do not show any temperature-dependent diurnal (four) wavelength shifts that must be compensated. For these LEDs, only the emission intensity is beneficial. Combining this with a conventional blue LED requires only sensors 12 and 13 to gather the measurement data needed for proper control of the light such as 133904.doc 200933071. The controllers 1 and 2 also schematically show the controller 15 which is connected to the optical sensors 11 to 13 and is connected to the driving units of the LEDs to 3. The drive units are not separated from these figures. Control of the different LEDs can also be accomplished by combining at least one of the at least two LEDs that are slightly offset in color in the source. For example, the blue LED module 3 from a different wavelength batch of blue LEDs is mixed and a separate driver for the two LEDs is provided, which allows for a completely stable color lighting module. The desired color can always be achieved by properly balancing the outputs of the two LEDs. Due to the separate short pulses on each of the two different blue LEDs and the analysis of the sensor signals 12 and (3 (as previously explained)', the color coordinates of both blue LEDs can be determined. Depending on these color coordinates, the balance between the two is set to achieve the desired mixed color point. Finally, the sensor signal 13 for the spectral offset of the two LEDs and an optional correction factor (from the lookup table using the signal 12/13) can be used to adjust the level of the two LEDs to the desired brightness. . This greatly reduces the design effort of all projector manufacturers. Alternatively, the measurement can be used to display such source properties for compensation by downstream pictures or light processing components. Digital projection and spotlight illumination require a high power, low etendue source with precisely controlled color balance. A commonly used optical solution is a combination of color choices of multiple beams that are reflected by dichroic colors. By adding such light sensors at selected locations in accordance with the present invention in such a configuration, the sensors can acquire color and brightness information without having their own filters. Based on this, it is possible to design a complete lighting module with a corrected light output of 133904.doc -19-200933071. Expensive and unreliable color sensor system is omitted ^

然在該等圖式及前述描述中已詳細繪示並描述本發 此繪示與描述應被視為說明性或例證性而非限制 陡本發明並不限於所揭示的該等實施例。以上描述及請 求項中描述的該等不同的實施例亦可被組合。熟習此項技 ,者在實作所請求的本發明之請求項、研究圖式、揭示内 谷與附屬請求項時’可瞭解與實現所揭示之具體實施例的 其他變更。舉例而t ’所提出的該多色彩光源中亦可提供 多於—個LED。此外,用於光測量之該等感測器之位置不 限於該等圖中顯示的該等位置。此等感測器必須經配置以 使用該光束組合光學器件之至少一波長選擇組件之波長選 擇屬I*生並允許自該等不同的感測器值得出所需資訊。 在請求項中,包括”一詞並不排除其他元件或步驟,且 不定冠珣&quot;一&quot;並不排除係複數。在互不相同之獨立請求項 中描述方法之事實並不表明不可使用該等方法之結合得到 好處。4求項中的任何參考#記不應解釋成限制此等請求 項之範圍。 【圖式簡單說明】 圖1係一所提出的具有三個光感測器的該多色彩光源之 一實例的示意圖,· ' 圖2係一所提出的具有二個光感測器的該多色彩光源之 另一實例的示意圖; 圖3係三個具有不同色彩的LED之光譜輸出之一實例; I33904.doc -20- 200933071 圖4係二個不同的二向色鏡的透射率之一實例; 圖5係一標準石夕光電二極體之光譜敏感度之一實例;及 圖6係在兩個不同操作電流下之一綠光LED之功率光譜 之一實例。 【主要元件符號說明】 ❹The present invention has been described and described in detail in the drawings and the claims. The various embodiments described in the above description and claims may also be combined. It will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; More than one LED may be provided in the multi-color light source as exemplified by t'. Moreover, the position of the sensors for light measurement is not limited to the positions shown in the figures. The sensors must be configured to use the wavelength selection of at least one of the wavelength selective components of the beam combining optics to allow for the desired information to be derived from the different sensors. In the claims, the word "comprises" does not exclude other elements or steps, and the indefinite article &quot;a&quot; does not exclude plurals. The fact that the method is described in separate claim items does not indicate that it is not available. The combination of these methods yields benefits. 4 Any reference in the solution should not be construed as limiting the scope of such claims. [Simplified Schematic] Figure 1 is a proposed three-sensor with three photosensors. Schematic diagram of one example of the multi-color light source, ' FIG. 2 is a schematic diagram of another example of the proposed multi-color light source having two photo sensors; FIG. 3 is a spectrum of three LEDs having different colors An example of output; I33904.doc -20- 200933071 Figure 4 is an example of the transmittance of two different dichroic mirrors; Figure 5 is an example of the spectral sensitivity of a standard Shixia photodiode; Figure 6 is an example of the power spectrum of a green LED at two different operating currents. [Key Symbol Description] ❹

1 紅LED 2 綠LED 3 藍LED 4 光束聚集光學器件 5 紅光束 6 綠光束 7 藍光束 8 組合光束 9 第一二向色鏡 10 第二二向色鏡 11 第一光感測器 12 第二光感測器 13 第三光感測器 14 光束聚光光學器件 15 控制器 133904.doc1 red LED 2 green LED 3 blue LED 4 beam focusing optics 5 red beam 6 green beam 7 blue beam 8 combined beam 9 first dichroic mirror 10 second dichroic mirror 11 first photo sensor 12 second Light sensor 13 third light sensor 14 beam collecting optics 15 controller 133904.doc

Claims (1)

200933071 十、申請專利範圍: 1 ·種多色彩光源,其至少包括: 複數個發光元件(1、2、3),其等發射具有不同色彩的 光束(5、6、7); _ 一光束組合光學器件,其經配置用於將該等光束(5、 6、7)組合成為一組合光束(8),該光束組合光學器件包 • 括至少一第一波長選擇元件(9),其在一第一波長區域中 透射該等發光元件(1、2、3)之一第一發光元件(1)的光 ® 並在一第二波長區域中反射該等發光元件(1、2、3)之一 第二發光元件(2)的光; •至少二個光感測器(u、12、π)’其等被配置在分離 位置以量測由該等發光元件(1、2、3)發射的光之一部 分’其中該等感測器(11、12、13)之一第一感測器(11)係 經配置以量測該第一發光元件(1)之在該第一波長選擇元 件(9)處反射的光及/或量測該第二發光元件(2)透射穿過 該第一波長選擇元件(9)之光。 2.如請求項1之光源,其中該光束組合光學器件包括—第 二波長選擇元件(10),其至少在該第一波長區域及該第 二波長區域中透射光並在一第三波長區域中反射該等發 光元件(1、2、3)之一第三發光元件(3)之光,其中該等 感測器(11、12、13)之一第二感測器(12)係經配置以量測 該第一及第二發光元件(1、2)在該第二波長選擇元件 (10)處反射之光及/或量測該第三發光元件(3)透射穿過該 第二波長選擇元件(1〇)的光。 133904.doc 200933071 3. 如請求項1或2之光源,其中該等感測器(11、12、13)之 一另—感測器(13)係經配置以量測自該光源内部的一表 面反射及/或散射的該組合光束(8)之光。 4. 如請求項3之光源,其中一透射光束形成光學器件(14)係 被配置在該組合光束(8)之一光徑中,且該等感測器 (11、12、13)之該另一感測器(13)係經配置以量測反射自 該光束形成光學器件(14)之一表面的光。 5·如請求項3之光源’其中一反射光束形成或光束偏斜光 學器件係被配置在該組合光束(8)之一光徑中,且該等感 測器(11、12、13 )之該另一感測器(13 )係經配置以量測透 射穿過該光束形成光學器件(14)之光。 6. 如請求項1或2之光源’其中該波長選擇組件(9、1〇)係一 個二向色鏡。 7. 如請求項1或2之光源’其中該等感測器(11、12、13)係 被配置而在該波長選擇元件(9、1 〇)與該等感測器(丨1、 12、13)之感測區域之間無任何彩色濾光器。 8·如請求項2之光源’其中該等發光元件(1、2、3)包括至 少一紅LED、一綠LED及一藍LED。 9.如请求項1或2之光源,其進一步包括一控制器(is),其 基於該等光感測器(11、12、13)之測量而控制該等發光 元件(1、2、3)之發射以實現該組合光束(8)之一所需強 度及色彩。 1〇·如請求項9之光源,其中該控制器(15)控制該等發光元件 (1、2、3)之功率。 133904.doc -2 - 200933071 U·如清求項9之光源,其中該控制器(15)可存取校準資料, 該校準資料使得該等光感測器⑴、12、13)之量測值與 該等發光元件(1、2、3)之強度及波長資料有關。 τ战徑市ij荔(15)控制 】2·如請求項9或11之光源, 一 _ 元件(1、2、3)而以一依序方式發射光— 種照明器件,其包括至少一個如請求項i之光源 •-種投影器# ’其包括至少一個如請求項i之光源 ❿ 133904.doc200933071 X. Patent application scope: 1 · A multi-color light source, which at least comprises: a plurality of light-emitting elements (1, 2, 3), which emit light beams (5, 6, 7) having different colors; _ a combination of light beams An optical device configured to combine the beams (5, 6, 7) into a combined beam (8), the beam combining optics comprising at least one first wavelength selective element (9), Light in the first wavelength region that transmits the first light-emitting element (1) of one of the light-emitting elements (1, 2, 3) and reflects the light-emitting elements (1, 2, 3) in a second wavelength region Light of a second illuminating element (2); at least two photo sensors (u, 12, π)' are arranged at separate positions for measuring emission by the illuminating elements (1, 2, 3) One of the light's one of the first sensors (11, 12, 13) is configured to measure the first light-emitting element (1) at the first wavelength-selective element (9) Reflecting light and/or measuring light transmitted by the second light-emitting element (2) through the first wavelength selective element (9). 2. The light source of claim 1, wherein the beam combining optics comprises a second wavelength selective element (10) that transmits light at least in the first wavelength region and the second wavelength region and in a third wavelength region Reflecting light of one of the third light-emitting elements (3) of the light-emitting elements (1, 2, 3), wherein one of the sensors (11, 12, 13) is a second sensor (12) Configuring to measure light reflected by the first and second light emitting elements (1, 2) at the second wavelength selective element (10) and/or to measure transmission of the third light emitting element (3) through the second Light of the wavelength selection element (1〇). 133904.doc 200933071 3. The light source of claim 1 or 2, wherein one of the sensors (11, 12, 13) and the sensor (13) are configured to measure one of the interior of the light source The light of the combined beam (8) reflected and/or scattered by the surface. 4. The light source of claim 3, wherein a transmitted beam forming optic (14) is disposed in an optical path of one of the combined beams (8) and the sensors (11, 12, 13) are Another sensor (13) is configured to measure light reflected from one of the surfaces of the beam forming optics (14). 5. The source of claim 3 wherein one of the reflected beam forming or beam deflecting optics is disposed in one of the combined beams (8) and the sensors (11, 12, 13) The other sensor (13) is configured to measure light transmitted through the beam forming optics (14). 6. The source of claim 1 or 2 wherein the wavelength selection component (9, 1) is a dichroic mirror. 7. The light source of claim 1 or 2 wherein the sensors (11, 12, 13) are configured to select elements (9, 1 〇) and the sensors (丨 1, 12) There is no color filter between the sensing areas of 13). 8. The light source of claim 2 wherein the light-emitting elements (1, 2, 3) comprise at least one red LED, one green LED and one blue LED. 9. The light source of claim 1 or 2, further comprising a controller (is) for controlling the light-emitting elements based on measurements of the light sensors (11, 12, 13) (1, 2, 3) The emission is to achieve the desired intensity and color of one of the combined beams (8). A light source as claimed in claim 9, wherein the controller (15) controls the power of the light-emitting elements (1, 2, 3). 133904.doc -2 - 200933071 U. The light source of claim 9, wherein the controller (15) has access to calibration data that causes measurements of the photosensors (1), 12, 13) It relates to the intensity and wavelength information of the light-emitting elements (1, 2, 3). τ 径 荔 荔 15 15 15 】 】 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 请求 请求 请求 请求 请求The source of the request item i - the type of projector # 'which includes at least one source such as the request item i 133 133904.doc
TW097133989A 2007-09-07 2008-09-04 Multi color light source TW200933071A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07115922 2007-09-07

Publications (1)

Publication Number Publication Date
TW200933071A true TW200933071A (en) 2009-08-01

Family

ID=40173489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133989A TW200933071A (en) 2007-09-07 2008-09-04 Multi color light source

Country Status (2)

Country Link
TW (1) TW200933071A (en)
WO (1) WO2009031103A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884975A (en) * 2015-10-09 2018-11-23 沃尔玛阿波罗有限责任公司 Method and apparatus for being protected using optics lock & key commodity
US11543742B2 (en) 2021-02-09 2023-01-03 Delta Electronics, Inc. Light source module and projection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484914B (en) 2009-07-24 2015-04-22 皇家飞利浦电子股份有限公司 Controllable Lighting System
EP3606288B1 (en) * 2018-07-31 2021-01-20 Tridonic GmbH & Co. KG Illumination system
JPWO2023042274A1 (en) * 2021-09-14 2023-03-23

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184852A (en) * 2002-12-05 2004-07-02 Olympus Corp Display device, light source device and illuminator
JP3902128B2 (en) * 2002-12-19 2007-04-04 株式会社アドバンスト・ディスプレイ Display color control method for transmissive display device
EP1662804A1 (en) * 2004-11-30 2006-05-31 Barco NV Display systems with and methods for multiple source colour illumination
JP4651673B2 (en) * 2005-08-25 2011-03-16 シャープ株式会社 Image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884975A (en) * 2015-10-09 2018-11-23 沃尔玛阿波罗有限责任公司 Method and apparatus for being protected using optics lock & key commodity
US11543742B2 (en) 2021-02-09 2023-01-03 Delta Electronics, Inc. Light source module and projection device

Also Published As

Publication number Publication date
WO2009031103A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
TWI445448B (en) Color-controlled illumination device
US7294816B2 (en) LED illumination system having an intensity monitoring system
KR101801681B1 (en) A circuit for and a method of sensing a property of light
EP2506573A2 (en) Projection display apparatus, projection display method and computer-readable storage medium
JP6519970B2 (en) Image display apparatus, projector and control method thereof
CN100561394C (en) Be used to regulate system, the method and apparatus of the light that light source sends
US20060132800A1 (en) Image processing type of measuring device, lighting system for the same, lighting system control method, lighting system control program, and a recording medium with the lighting system control program recorded therein
CN102879987B (en) Illuminator and display
TW200828198A (en) Generating light by color mixing
WO2006033031A2 (en) Illumination system
CN103619234A (en) Light source device
JPWO2011092841A1 (en) Illumination optical system and projector using the same
TW200933071A (en) Multi color light source
US20090057687A1 (en) Light emitting diode module
TWI407822B (en) Colour point control system
WO2016081632A1 (en) High-stability light source system and method
JP2009139162A (en) Light source for inspection, and inspection method of illuminance sensor using it
JP2010169410A (en) Optical characteristic measuring device and optical characteristic measurement system
CN109870872A (en) The Automatic adjustment method and projection device of light-source system and light-source system
JP2008160441A (en) Projector
US7473879B2 (en) LED illumination system having an intensity monitoring system
CN115200703A (en) Light source detection device
JP2010141336A (en) Light-emitting device, and driving method thereof
CN104514988A (en) Lighting device comprising measuring device and method for operating the lighting device
JP4988505B2 (en) Light-emitting diode luminaire