TW200931801A - Active ripple suppression strategy and its control method - Google Patents

Active ripple suppression strategy and its control method Download PDF

Info

Publication number
TW200931801A
TW200931801A TW97101175A TW97101175A TW200931801A TW 200931801 A TW200931801 A TW 200931801A TW 97101175 A TW97101175 A TW 97101175A TW 97101175 A TW97101175 A TW 97101175A TW 200931801 A TW200931801 A TW 200931801A
Authority
TW
Taiwan
Prior art keywords
compensation current
current
active
current control
output
Prior art date
Application number
TW97101175A
Other languages
Chinese (zh)
Other versions
TWI341646B (en
Inventor
Rong-Jong Wai
Chun-Yu Lin
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW097101175A priority Critical patent/TWI341646B/en
Publication of TW200931801A publication Critical patent/TW200931801A/en
Application granted granted Critical
Publication of TWI341646B publication Critical patent/TWI341646B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

In general, the power conditioner composed of a dc-dc converter and a dc-ac inverter can adopt varied low output dc voltages from clean energies (e. g. , solar photovoltaic, fuel cell, small-scale wind turbine, etc) to transform into suitable ac voltages for the utilization of stand-alone or grid-connected power supplies. However, there are severe voltage/current ripples with twice of output ac frequency in the high-voltage bus. In this situation, the current ripple will react to the output terminal of clean energy through the dc-dc converter so that the power source will sustain extra loads. Although the circuit capability of the power conditioner could be raised to cope with extra loads, this current ripple may shorten the life span of clean energy. The aims of this invention are recited as follows: (1) it alleviates severe low-frequency current ripples in the high-voltage bus and the output terminal of clean energy to further raise the energy utility rate and save the system cost; (2) it improves the shaking current during loading and unloading instant to decrease the current settling time for practical applications with rapid load variations; (3) it promotes the power quality by effectively removing low-frequency ripples, and applies well to arbitrary power conditioner composed of a dc-dc converter and a dc-ac inverter.

Description

200931801 八、 =案若有化學式時,請揭示最能顯示發明特徵的化學 九、 發明說明: 【發明所屬之技術領域】 本發明「主動式漣波抑制策略及其控制方法」所涉及之技術 領域包含電力電子、直流/直流與直流/交流電力調節器及潔淨能 源科技之範疇,雖然本發明所牽涉之技術領域廣泛,但主要係 Ο 使用適應性估測與控制策略,並以數位訊號處理器為其中央控 制系統之核心,並藉由已訂定完善之迴授與驅動控制介面作為 互相聯繫的溝通橋樑,使其成為全數位化之主動式漣波抑制機 構。 【先前技術】 近百年來,人類的科技一日千里,生產技術不斷進步,對日 常生活有了顯著的改善’但全球人口的曰益增長,伴隨而來的 則是能源使用的問題。十九世紀期間石油是促進工業社會出現 ◎的-種重要燃料’而於二十世紀初期,石油取代了煤成為近代 最重要的麟’ _世界上;5油的產钱乎機齡要產油的 國家所掌控’而於西元簡年及西元1979年爆發的二次石油危 機,對全球造成莫大的影響。近年來石油價格持續攀升且現今 石油的存量正在迅速減少中’專家預估半世紀後會出現供應上 的危機,未來幾年内,石油價格居高不下是可預見的,因此價 格低廉且組藏量豐富的煤又逐漸恢復其重要性。 目前’用煤量最多的是將罐及_在發電廠,其次是將原 200931801 料煤煉焦成焦炭後用在鋼鐵業,此外,煤還可以用來生產汽油、 苯、瀝青及合成橡膠等重要產品或副產品。但煤與水混合後將 產生酸性物質,若滲入土壤將汙染附近的河川或湖泊,而煤燃 燒後產生的二氧化碳、二氧化硫及灰粒等,嚴重汙染空氣,因 此’環境汗染為使用煤礦所產生的主要缺點。針對二氧化碳對 全球造成的溫室效應影響,世界各國於西元1997年在日本京都 舉行的「第三次締約國大會」中簽署「京都議定書」,規範控制 人為排放之溫室氣體數量,且於西元2005年初正式生效《為達 成溫室氣體減量,國内初期研擬以核能發電來抑制二氧化碳排 放的主張’然而核能發電的安全顧慮及公害問題,使得其應用 存在著許多爭議。為改善非再生能源容量的逐漸減少及溫室效 應所反映出來的問題’除了減少現有能源使用的浪費外,新能 源的開發是刻不容緩。 一般新能源對環境的衝擊不大,其所造成之空氣、水或廢棄 物等污染行為較不顯著,更重要的是此種能源開發更可重複使 〇用’具有永續發展的特性,潔淨能源(CleanEnergy)為新能源中 f受到重視永續利用的能源[1H2],然而部分潔淨能源發電能 置密度較低且易受季節變化或地理環境影響。電力電子與監控 脑關係到各式電氣產品性能絲本賴爭力與麟節約和環 保的兼顧’因此在國際上,被視為二十—世紀產業中僅次於資 sfl技術之另-重制雛技術…般電力調節料直流/直流轉 換器與交流變流器串接構成[3]—[6],可接收潔淨能源裝置 (如太陽此板模組、燃料電池、小型風力發電系統等)之變動低 200931801 壓輸出直流電壓並依實際需求轉換為交流電壓作獨立供電或併 聯網絡。由於直流/錢變流n動作時,使得高壓匯流排產 生二倍於輸出交流頻率之電壓漣波,且電流亦存在低頻漣波現 象。此電流漣波會經由直流/直流轉換器傳遞至潔淨能源裝置之 輸出側,導致該裝置須承受額外之負載’如此一來,不僅提高 電力調節H各項元件規格’對於潔淨能源(例如:燃料電池)裝 置而言’亦降低裝置之使用壽命,更無法提高潔淨能源使用率, 因此在發展高效率電源轉換器的同時,此低頻電流連波亦是不 可^略之Ρα!題[η-p]。參考文獻[7]提¢-質子錢麟:料電池 堆(Proton Exchange Membrane Fuel Cell Stack,PEMFCS)H统 阻抗模型(Impedance Model),並研究發現低頻漣波將會減少燃 料電池能源供應效率,其有效輸出功率甚至減少達之多; 此外,參考文獻[8]中亦提及質子交換膜燃料電池對於1〇〇Hz諧 波電流存在著磁滯現象,因此其性能易受到此頻率附近之漣波 電流成份影響,導致電池堆溫度上升及使用壽命縮短。 ❹ 近年來’許多研究學者嘗試利用被動式或主動式機制來消除 電流漣波,前者利用加大直流/直流轉換器低壓側與高壓侧之能 量儲存元件或設計一適當電感一電容串聯諧振迴路抑制直流匯 流排上漣波現象[10]-[11],上述作法雖可達到較理想之低電流 漣波,但其主要缺點在於需要相當大之電容值來濾除低頻訊 號;此外,一般併聯於直流匯流排上之電容操作於漣波電壓情 況下,電容元件溫度易上升,同時電容上等效串聯阻抗 (Equivalent Series Resistor,ESR)亦隨之大幅攀升,不只導致額外 200931801 功率消耗,同時也降低電容使用壽命[12],故考量其被動元件 之裝置空間、成本與操作特性後,目前被動式機制已逐漸被主 動式機制取而代之。習知主動式機制可區分為電力調節器内部 控制法[13]-[14]與外部補償器注入法[15]一[16]兩大類。電力調 節器内部控制法部分,參考文獻[13]利用最佳化切換模式對電 力調節器内部功率電晶體進行控制,研究成果顯示可減少直流 匯流排上漣波成份並降低電容所需容量;參考文獻[14]於電力 ❹調節器原本電壓控制迴圈内加入電流控制迴圈,並進行雙迴圈 控制,藉由適當調整迴路之極零點位置亦可有效降低低頻漣波 成份。然而,電力調節器内部控制法有其不可避免之缺陷,當 其運作於不同電力調節器架構下,必須重新推導並分析其對應 等效迴路,方可順利進行漣波抑制,針對類比式控制之電力調 節器架構而言,存在離線控制參數修正及被動元件替換之缺 失為此外。卩補償器注入法常被提出以適用於類比或數位控 〇制之電力靖_構’外部補似注人紐f於欲施行漣波控 制之接點上併上主動式機制電路即可給予電流補償。參考文 獻[15]提出之主動式電流漣波抑制電路採併接一雙向直流/直流 轉換器於直流匯流排上,搭配比例積分控制器使其具有連波補 償功能。此外,參考文獻⑽針對燃料電池之較為緩慢動態響 應特f生’於其輸出端併接動態響應較快之磁滞控制主動式電流 漣波抑制電路’以提升系統輸出動態,同時可避免連波電流反 應至燃料電池端之情況,進而保護燃料電池之使用壽命。 本發明「主動錢波抑織略及其控财法」主要之優點分 9 200931801 述如下: 1.本發明「主動式漣波抑制策略及其控制方法」對習用由直流 /直流轉換器與直流/交流變流器所構成之電力調節器進行等 效模型建立,並成功加入主動式漣波抑制電路達到漣波抑制 效能’故本發明之主動式漣波抑制電路可廣泛跨接於任意形 式之直》11·/直流轉換器與直流/交流變流器所構成之電力調節 器’因此本發明相當具有產業利用性。 2.本發明主動式漣波抑制策略及其控制方法」應用場合不受 限於習知市電網絡,亦可運用於潔淨能源等受到漣波污染之 電源裝置均可降低漣波成分,得以保護電源裝置及降低單位 能源成本,因此本發明相當具有新穎性。 3.本發8月「主動式連波抑制策略及其控制方法」採用之補償電 流命令估測機制為類神經網路架構,勿需使用任何系統精择 資訊,即可精準估測補償電流控制命令,相較習用滤波器估 ❹ 測方式,於面臨負載變動等系統參數變動下依然可以穩定迅 速地運算出精準補償電流控制命令,因此本發明較習用技術 明顯具有進步性。 4.本發明「絲式漣義職略及紐财法」_之全橋式 變流器控制方法為全域滑動模式控制,相較習用比例積分控 制方法,於碰貞賴鱗线錄魏下,私域滑賴 式控制方法仍可抵抗纽參數變動有效控制主動式連波抑 制電路輸出補償電流,翻驗電流抑制功效 較習用技術明顯具有進步性。 U此本毛月 200931801 備註:參考文獻 [1] S. R. Bull, “Renewable energy today and tomorrow,” Prac. IEEE, vol. 89, no. 8, pp. 1216-1226,2001.200931801 VIII. If there is a chemical formula, please disclose the chemical that best shows the characteristics of the invention. 9. Description of the invention: Technical field of the invention The technical field of the "active chopper suppression strategy and its control method" of the present invention Including the scope of power electronics, DC/DC and DC/AC power conditioners and clean energy technologies, although the invention covers a wide range of technical fields, it mainly uses adaptive estimation and control strategies and uses digital signal processors. It is the core of its central control system, and it has become a fully digital active chopper suppression mechanism by establishing a well-established feedback and drive control interface as an interconnected communication bridge. [Prior Art] In the past 100 years, human science and technology have been growing rapidly, production technology has been continuously improved, and there has been a marked improvement in daily life. However, the growth of the global population is accompanied by the problem of energy use. During the nineteenth century, oil was an important fuel for the emergence of industrial society. In the early 20th century, oil replaced coal as the most important lining in modern times. _The world’s oil production costs oil. The second oil crisis that erupted in the country and in the 1979 and the year 1979 has had a huge impact on the world. In recent years, oil prices have continued to rise and the stock of oil is rapidly decreasing. 'Experts estimate that there will be a supply crisis in the next half century. In the next few years, high oil prices are foreseeable, so the price is low and the amount of reserves is low. Rich coal has gradually recovered its importance. At present, the most used coal is the tank and _ in the power plant, followed by the coking of the original 200931801 coking coal into coke and used in the steel industry. In addition, coal can also be used to produce gasoline, benzene, asphalt and synthetic rubber. Product or by-product. However, when coal and water are mixed, it will produce acidic substances. If it penetrates into the soil, it will pollute nearby rivers or lakes, and the carbon dioxide, sulfur dioxide and ash particles generated after coal combustion will seriously pollute the air. Therefore, the environmental pollution is caused by the use of coal mines. The main drawbacks. In response to the global greenhouse effect of carbon dioxide, countries around the world signed the "Kyoto Protocol" in the Third Conference of States Parties held in Kyoto, Japan in 1997 to regulate the amount of greenhouse gases emitted by humans, and officially in early 2005. Effectively, in order to achieve greenhouse gas reduction, the domestic initial research on nuclear power generation to curb carbon dioxide emissions. However, nuclear power generation safety concerns and pollution problems, there are many controversies in its application. In order to improve the gradual reduction of non-renewable energy capacity and the problems reflected by greenhouse effects, in addition to reducing the waste of existing energy use, the development of new energy sources is an urgent task. Generally, new energy has little impact on the environment, and the pollution caused by air, water or waste is less significant. More importantly, this kind of energy development can be repeated to make it use the characteristics of sustainable development. Energy (Energy) is a new energy source that is valued for sustainable use [1H2]. However, some clean energy sources are low in density and susceptible to seasonal changes or geographical influences. Power electronics and monitoring brain are related to the performance of various electrical products. The competition between the power and the economy and the protection of the environment. Therefore, in the international arena, it is regarded as the second-generation technology in the 20th century industry. The power conditioner DC/DC converter and the AC converter are connected in series [3]–[6] to receive changes in clean energy devices (such as solar panels, fuel cells, small wind power systems, etc.). Low 200931801 The output DC voltage is converted to AC voltage for independent power supply or parallel network according to actual demand. Due to the DC/money converter n action, the high voltage busbar produces twice the voltage chopping of the output AC frequency, and the current also has low frequency chopping. This current chopping will be transmitted to the output side of the clean energy device via the DC/DC converter, causing the device to withstand additional loads. [This way, not only improve the power conditioning H component specifications' for clean energy (eg fuel) In terms of battery), the device also reduces the service life of the device, and it is impossible to improve the clean energy utilization rate. Therefore, while developing a high-efficiency power converter, the low-frequency current wave is not ambiguous. [α-p ]. Reference [7] Proton Exchange Membrane Fuel Cell Stack (PEMFCS) H Impedance Model, and found that low frequency chopping will reduce fuel cell energy supply efficiency, The effective output power is even reduced by a large amount; in addition, reference [8] also mentions that the proton exchange membrane fuel cell has hysteresis for 1 Hz harmonic current, so its performance is susceptible to chopping near this frequency. The influence of the current component causes the stack temperature to rise and the service life to be shortened. ❹ In recent years, many researchers have tried to eliminate current chopping by using passive or active mechanisms. The former utilizes the energy storage components of the low-voltage side and the high-voltage side of the DC/DC converter or designs a suitable inductor-capacitor series resonant circuit to suppress DC. The chopping phenomenon on the busbar [10]-[11], although the above method can achieve better low current chopping, but its main disadvantage is that it requires a relatively large capacitance value to filter out the low frequency signal; in addition, it is generally parallel to DC. When the capacitor on the busbar is operated under chopping voltage, the temperature of the capacitor component is easy to rise, and the Equivalent Series Resistor (ESR) of the capacitor also rises sharply, which not only causes additional power consumption of 200931801, but also reduces the capacitance. The service life [12], so after considering the device space, cost and operational characteristics of the passive components, the passive mechanism has been gradually replaced by the active mechanism. The conventional active mechanism can be divided into two categories: power conditioner internal control method [13]-[14] and external compensator injection method [15]-[16]. In the internal control method of the power conditioner, reference [13] uses the optimized switching mode to control the internal power transistor of the power conditioner. The research results show that the chopper component on the DC busbar can be reduced and the required capacity of the capacitor can be reduced. In [14], the current control loop is added to the original voltage control loop of the power enthalpy regulator, and double loop control is performed. The frequency of the low frequency chopping can be effectively reduced by appropriately adjusting the pole zero position of the loop. However, the internal control method of the power conditioner has its inevitable shortcomings. When it operates under different power regulator architectures, it must re-derive and analyze its corresponding equivalent circuit in order to smoothly perform chopper suppression, for analog control. In the case of the power conditioner architecture, there are missing offline control parameter corrections and passive component replacements. The 卩 compensator injection method is often proposed to be applied to the analogy or digital control system. The external compensation is applied to the contact of the chopper control and the active mechanism circuit can be used to give current. make up. The active current chopper suppression circuit proposed in [15] adopts a bidirectional DC/DC converter on the DC bus, and is equipped with a proportional integral controller to make it have a compensating function. In addition, reference (10) is directed to the slower dynamic response of the fuel cell, and the hysteresis control active current chopper suppression circuit is connected to its output terminal to increase the dynamic output of the system to avoid the continuous wave. The current reacts to the fuel cell end, thereby protecting the life of the fuel cell. The main advantages of the "active money wave suppression and weaving control method" of the present invention are as follows: 1. The "active chopper suppression strategy and its control method" of the present invention is conventionally used by a DC/DC converter and a direct current. The power regulator composed of the AC converter is used to establish an equivalent model, and the active chopper suppression circuit is successfully added to achieve the chopper suppression performance. Therefore, the active chopper suppression circuit of the present invention can be widely connected in any form. The "11"/DC converter and the DC/AC converter constitute a power conditioner. Therefore, the present invention is quite industrially usable. 2. The active chopper suppression strategy and its control method of the present invention are not limited to the conventional commercial power network, and can also be applied to clean energy sources, such as chopper-contaminated power supply devices, which can reduce the chopping component and protect the power supply. The device and the reduction in unit energy costs, the invention is therefore quite novel. 3. The compensation current command estimation mechanism adopted by the "Active Wavelet Suppression Strategy and Its Control Method" in August is a neural network architecture. It can accurately estimate the compensation current control without using any system selection information. The command, compared with the conventional filter estimation method, can still accurately and quickly calculate the precision compensation current control command in the face of changes in system parameters such as load variation, so the present invention is significantly more advanced than the conventional technology. 4. The control method of the full-bridge converter of the present invention is a global sliding mode control method, which is compared with the conventional proportional-integral control method. The private domain sliding control method can still effectively control the output compensation current of the active parallel wave suppression circuit against the fluctuation of the new parameter, and the current suppression performance is obviously improved compared with the conventional technology. U this month month 200931801 Remarks: References [1] S. R. Bull, “Renewable energy today and tomorrow,” Prac. IEEE, vol. 89, no. 8, pp. 1216-1226, 2001.

[2] S. Rahman, “Green power: what is it and where can we find it?/5 IEEE Power Energy Mag., vol. 1, no. 1, pp. 30-37, 2003.[2] S. Rahman, “Green power: what is it and where can we find it?/5 IEEE Power Energy Mag., vol. 1, no. 1, pp. 30-37, 2003.

[3] R. J. Wai, R. Y. Duan, J. D. Lee and L. W. Liu, t4High-efficiency fuel cell power inverter with soft-switching resonant technique,5, IEEE Trans. Energy Conversion^ vol. 20, ❹ no. 2, pp. 485-492, 2005.[3] RJ Wai, RY Duan, JD Lee and LW Liu, t4 High-efficiency fuel cell power inverter with soft-switching resonant technique, 5, IEEE Trans. Energy Conversion^ vol. 20, ❹ no. 2, pp. 485- 492, 2005.

[4] R. J. Wai and R. Y. Duan, uHigh-efficiency power conversion for low power fuel cell generation system,IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, 2005.[4] R. J. Wai and R. Y. Duan, uHigh-efficiency power conversion for low power fuel cell generation system, IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, 2005.

[5] R. J. Wai, C. Y. Lin, and W. H. Wang, aNovel power control scheme for stand-alone photovoltaic generation system,IEEE International Conference on Industrial Electronics, Control and Instrumentation, 2006, pp. 97-102.[5] R. J. Wai, C. Y. Lin, and W. H. Wang, a Novel power control scheme for stand-alone photovoltaic generation system, IEEE International Conference on Industrial Electronics, Control and Instrumentation, 2006, pp. 97-102.

[6] R. J. Wai, C. Y. Lin, and Y. R. Chang,“Novel 〇 ^ maximum-power-extraction algorithm for PMSG wind generation system,IETProc. Electric Power Appl, vol. 1, no. 2, pp. 275-283,2007.[6] RJ Wai, CY Lin, and YR Chang, “Novel maximum^ maximum-power-extraction algorithm for PMSG wind generation system, IETProc. Electric Power Appl, vol. 1, no. 2, pp. 275-283, 2007 .

[7] W. Choi, P. N. Enjeti, and J. W. Howze, ^Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current,Proc. of IEEE Applied Power Electronics Conference and Exposition, 2004, pp. 355-361.[7] W. Choi, PN Enjeti, and JW Howze, ^Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current, Proc. of IEEE Applied Power Electronics Conference and Exposition, 2004, pp. 355 -361.

[8] G. Fontes, C. Turpin, R. Saisset, T. Meynard, and S. Astier, “Interactions between fuel cells and power converters 11 200931801 influence of current harmonics on a fuel cell stack/5 Proc. of IEEE Power Electronics Specialists Conference, 2004, pp. 4729-4735.[8] G. Fontes, C. Turpin, R. Saisset, T. Meynard, and S. Astier, “Interactions between fuel cells and power converters 11 200931801 influence of current harmonics on a fuel cell stack/5 Proc. of IEEE Power Electronics Specialists Conference, 2004, pp. 4729-4735.

[9] R. S. Gemmen, “Analysis for the effect of inverter ripple current on fuel cell operating condition,M J. Fluids Eng., vol. 125, no. 3, pp. 576-585, 2003.[9] R. S. Gemmen, “Analysis for the effect of inverter ripple current on fuel cell operating condition, M J. Fluids Eng., vol. 125, no. 3, pp. 576-585, 2003.

[10] M. Schenck, J. S. Lai, and K. Stanton, t4Fuel cell and power conditioning system interactions,Proc. of IEEE Applied Power Electronics Conference^ 2005, pp. 114-120.[10] M. Schenck, J. S. Lai, and K. Stanton, t4Fuel cell and power conditioning system interactions, Proc. of IEEE Applied Power Electronics Conference^ 2005, pp. 114-120.

[11] K. Harada and S. Nonaka,“FFT analysis of the composite PWM voltage source inverter,w Proc. of Power Conversion Conference, 2002, vol. 3, pp. 1257-1261.[11] K. Harada and S. Nonaka, "FFT analysis of the composite PWM voltage source inverter, w Proc. of Power Conversion Conference, 2002, vol. 3, pp. 1257-1261.

[12] J. L. Stevens, J. S. Shaffer, and J. T. Vandenham,“The service life of large aluminum electrolytic capacitors: effects of construction and application,” Conf. Rec. IEEE-IAS Annu. Meeting, vol. 3, pp. 2493-2499, 2001.[12] JL Stevens, JS Shaffer, and JT Vandenham, “The service life of large aluminum electrolytic capacitors: effects of construction and application,” Conf. Rec. IEEE-IAS Annu. Meeting, vol. 3, pp. 2493-2499 , 2001.

[13] M. Huber, W. Amrhein, S. Silber, M. Reisinger, G. Knecht, and G. Kastinger,“Ripple current reduction of DC link electrolytic capacitors by switching pattern optimisation,5, Proc. of Power Electronics Specialists Conference, 2005, pp. 1875-1880.[13] M. Huber, W. Amrhein, S. Silber, M. Reisinger, G. Knecht, and G. Kastinger, “Ripple current reduction of DC link electrolytic capacitors by switching pattern optimisation,5, Proc. of Power Electronics Specialists Conference, 2005, pp. 1875-1880.

[14] C. R. Liu and J. S. Lai,“Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load/5 IEEE Trans. Power Electron. ^ vol. 22, no. 4, pp. 1429-1436, 2007.[14] CR Liu and JS Lai, "Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load/5 IEEE Trans. Power Electron. ^ vol. 22, no. 4, pp. 1429-1436 , 2007.

[15] Y. R. Novaes and I. Barbi,“Low frequency ripple current 12 200931801 elimination in fuel cell systems/* Proc. of Fuel Seminar Special Session on Fuel Cell Power Conditioning, 2003, pp. 21-27.[15] Y. R. Novaes and I. Barbi, "Low frequency ripple current 12 200931801 elimination in fuel cell systems/* Proc. of Fuel Seminar Special Session on Fuel Cell Power Conditioning, 2003, pp. 21-27.

[16] A. Monti, E. Santi, F. Ponci, D. Franzoni, D. Patterson, and N. Barry,“Fuel cell based domestic power supply-a student project,IEEE Power Electronics Specialists Conference^ 2002, pp. 315-320. 【發明内容】 本發明「主動式漣波抑制策略及其控制方法」之實施電路架 構如「第一圖」所示,圖中100為一直流/直流轉換器之戴維寧 等效電路,主要將習用電力調節器匯流排前段之直流/直流轉換 器進行戴維寧等效電路(Th6venin’s Equivalent Circuit)分析,其 中包含一戴維寧等效電壓源101(^)與一戴維寧等效電阻 102(尽),因此該戴維寧等效電路可適甩於任何形式之直流/直 流轉換器。圖中U0為-匯流排等效電路,由一轉換器端等效 ©電阻串接一變流器端等效電阻112W所構成,可等效 為匯流排之阻抗特性。财120為一直流/交流變流器之諾頓等 效電路(Norton’s Equivalent circuit),主要將別電力調節器匯 流排後段之錢/錢賴料行諾頓等效電路分析其中包含 -諾頓等效電流源121⑹與—諾頓等效電阻122(〇,因此二 諾頓等效電路可適用於任何形式之直流/交流變流器。圖中⑽ 為-主動式漣波抑制電路架構,其中包含—直流賴源 與-直流電容132〇可穩定供應補舰量;全橋式變流器⑶ 13 200931801 可有效進行開關切換產生適當補償電流,並透過一輸出遽波電 感134(Ζβ)與濾波電感等效電阻134(怂)適時對電力調節器匯流 排供應適量補償電流,進而有效抑制電力調節器匯流排上漣波 成分,降低該電力調節器中各類元件額定規格,提升電力轉換 效率,對於潔淨能源發電系統而言,可抑制潔淨能源輸出端電 壓電流漣波成分,而提升潔淨能源能量使用率及其使用壽命。 本發明「主動式漣波抑制策略及其控制方法」之系統控制方 ❹塊圖如「第二圖」所示,圖中可分成具任意直流/直流轉換器與 直流/交流變流器之電力調節器等效方塊圖2〇〇、補償電流控制 命令估測機制2(Μ、補償電流控纖制2〇2與主動式漣波抑制電 路等效方麵加四大部份’其巾電力娜科财塊圖2〇〇可 廣泛運祕任意形式之直流/錢轉換^與錢/交流變流器 上。為方便電流控制機制分析及簡化狀態空間方程式的推導, 於此假設⑴假設全橋式變流器功率開關為理想元件開關之導 通損失及喊損失為零;(2)树全赋賴關關導通與截止 之反應延遲時間;(3)全橋式變流器開關切換頻率遠大於系統的 自然頻率及調變解,故於—關切換週_可將控制訊號及 輸入/輸出電壓視為定值。依據上述假設條件,對雙極性正弦脈 波寬度調變的功率開關切換進行狀態空間平均綠線性化技巧 为析後’整個週期之動態方程式可表示如方程式⑴所示: 4 = (1) 其中以注入之補償電流,q為每切換週期内開關仏及&導通 200931801 的責任週期(Duty Cycle)。定義責任週期與全橋式功 率級增益心=乙/<,·,其中為補償電流控制信號,t為三 角波信號之峰值,則系統動態模型可改寫如方程式(2)所示。利 用方程式(2)及電流關係/;=/6+(,其中/為匯流排變流器端電 流且&為匯流排轉換器端電流,透過拉氏轉換(Laplace Transform)可進一步將等效模型表示如圖二之主動式漣波抑制 電路等效方塊圖203所示。[16] A. Monti, E. Santi, F. Ponci, D. Franzoni, D. Patterson, and N. Barry, “Fuel cell based domestic power supply-a student project, IEEE Power Electronics Specialists Conference^ 2002, pp. 315-320. SUMMARY OF THE INVENTION The circuit structure of the implementation of the "active chopper suppression strategy and its control method" is as shown in the "first figure". In the figure, 100 is the wearer-equivalent circuit of the DC/DC converter. The main method is to use the DC/DC converter in the front section of the power conditioner busbar for the analysis of the Th6venin's Equivalent Circuit, which includes a Thevenin equivalent voltage source 101(^) and a Devining equivalent resistor 102. Therefore, the Thevenin equivalent circuit can be adapted to any form of DC/DC converter. In the figure, U0 is a bus-bar equivalent circuit, which is composed of a converter terminal equivalent © resistor series connected to a converter terminal equivalent resistor 112W, which can be equivalent to the impedance characteristic of the bus bar. Cai 120 is the Norton's Equivalent Circuit of the DC/AC converter, which mainly analyzes the Norton Equivalent Circuit of the power regulator in the back of the bus. It contains the Norton equivalent current source. 121 (6) and - Norton equivalent resistance 122 (〇, so the two Norton equivalent circuit can be applied to any form of DC / AC converter. In the figure (10) is - active chopper suppression circuit architecture, including - DC source and - DC capacitor 132〇 can be stably supplied to the ship; full-bridge converter (3) 13 200931801 can effectively switch and generate appropriate compensation current, and through an output chopper inductor 134 (Ζβ) and filter inductor equivalent resistance 134 (怂) Appropriate amount of compensation current is supplied to the power regulator busbars in a timely manner, thereby effectively suppressing chopping components on the power regulator busbars, reducing the rated specifications of various components in the power conditioner, and improving power conversion efficiency for clean energy power generation systems. In other words, it can suppress the voltage and current chopping components at the clean energy output end, and improve the clean energy energy utilization rate and its service life. The system control block diagram of the chopper suppression strategy and its control method is shown in the "second diagram". The figure can be divided into power conditioner equivalent blocks with arbitrary DC/DC converters and DC/AC converters. Figure 2〇〇, compensation current control command estimation mechanism 2 (Μ, compensation current control fiber system 2〇2 and active chopper suppression circuit equivalents plus four parts of the 'Nippon Power Naco block diagram 2〇 〇 can be widely used in any form of DC / money conversion ^ and money / AC converter. To facilitate the analysis of current control mechanism and simplify the derivation of the state space equation, this assumption (1) assumes that the full-bridge converter power switch is The conduction loss and shouting loss of the ideal component switch are zero; (2) the tree delays the turn-on and turn-off reaction delay time; (3) the full-bridge converter switching frequency is much larger than the natural frequency and modulation of the system. Solution, so the control signal and input/output voltage can be regarded as fixed values. According to the above assumptions, the state space average green linearization technique for switching the power switch of bipolar sinusoidal pulse width modulation is Analysis After the 'dynamic equation of the whole cycle can be expressed as shown in equation (1): 4 = (1) where the compensation current is injected, q is the duty cycle of each switch cycle and the turn-on duty cycle of 200931801 (Duty Cycle). The period and full-bridge power stage gain heart = B / <, ·, where the compensation current control signal, t is the peak value of the triangular wave signal, the system dynamic model can be rewritten as shown in equation (2). Using equation (2) And the current relationship /; = / 6 + (, where / is the bus current end current and & is the bus converter end current, through Laplace Transform (Laplace Transform) can further represent the equivalent model as shown in Figure 2 The active chopper suppression circuit is shown in the equivalent block diagram 203.

上式中G代表匯流排電壓,補償電流控制命令ζ係經由匯流排 變流器端電流/,透過補償電流控制命令估測機制201而得,補 償電流控制命令與主動式漣波抑制電路回授補償電流ζ·α相減後 可得一補償電流控制誤差,再藉由補償電流控制機制 202運算而獲得補償電流控制信u乍為主動式漣波抑制電路 依循之標的,並經驅動電路控制全橋式變流器,該驅動電路包 含一比較器’該比較器可將補償電流控制信號與一高頻三角波 訊號作比較’輸出一脈波寬度調變訊號,得以驅動全橋式變流 器之功率電晶體開關’以輸出補償電流匕注入串接於直流/直流 轉換器與直流/交流變流關之誠排,_達成電流漣波抑制 15 200931801 效果》 選擇主減漣波抑綱路輸出補償電流(作為系統狀態且 L作為補償電流控制信號,則方程式(2)可重新整理如下. x(t) = apx(t) + bpu(t) + cp =αΡΛΟ+bpnu(t)+[Ααρηχ(ή + jSbpnU{t) + ^ ] Ο) = apnX{t) + bpnU(t) + dp{t) 实今 m二ia、a,_RJLa、bp=K_fLa、順、及 及心分別表示常態情況下s叫的系統參數^及△〜代: 系統參數擾動量;代表祕不確定量並定義為 dp^ = ^PnX(t) + Abpnu(t) + Cp (4) 且其邊界值給定如方程式(5)所示,其中p為正值常數。 M<p (5) 王域滑動模式控制系統之補償電流控制誤差定義為 O AL ζβ ’其中〜=z:代表補償電流控制命令,假設無 系統參數變化和外部干擾的因素下,重新改寫方程式⑶代表常 態情形下之系統常態模型如下: x^>V(t) + bpnu(t) ⑹ 根據方程式(6),基礎模型控制設計為In the above formula, G represents the busbar voltage, and the compensation current control command is obtained by the current of the busbar converter/through the compensation current control command estimation mechanism 201, and the compensation current control command and the active chopper suppression circuit are fed back. After the compensation current ζ·α is subtracted, a compensation current control error can be obtained, and then the compensation current control signal 202 is obtained by the compensation current control mechanism 202, and the active chopper suppression circuit follows the target, and is controlled by the driving circuit. The bridge converter, the driving circuit comprises a comparator 'the comparator can compare the compensation current control signal with a high frequency triangular wave signal' to output a pulse width modulation signal to drive the full bridge converter The power transistor switch 'outputs the compensation current 匕 injected in series with the DC/DC converter and the DC/AC converter is turned off, _ reaches the current chopper suppression 15 200931801 Effect 》 Select the main reduction 涟 抑 路 路 输出 output compensation current ( As the system state and L as the compensation current control signal, equation (2) can be rearranged as follows. x(t) = apx(t) + bpu(t) + cp =αΡΛΟ+bpnu(t)+ [Ααρηχ(ή + jSbpnU{t) + ^ ] Ο) = apnX{t) + bpnU(t) + dp{t) The actual m two ia, a, _RJLa, bp=K_fLa, cis, sum and heart respectively In the normal case, the system parameter of s is called ^ and △~ generation: the parameter deviation of the system parameter; the representative uncertainty is defined as dp^ = ^PnX(t) + Abpnu(t) + Cp (4) and its boundary value is given It is as shown in equation (5), where p is a positive constant. M<p (5) The compensation current control error of the king domain sliding mode control system is defined as O AL ζβ ' where ~=z: represents the compensation current control command, assuming no system parameter changes and external disturbance factors, rewrite the equation (3) The normal state model representing the normal situation is as follows: x^>V(t) + bpnu(t) (6) According to equation (6), the basic model control is designed as

Hh+ν,υ) ⑺ ”中&為正值常數。將方程式⑹代人絲式⑺巾,則系統誤差 16 200931801 動態可描述為 透過適當的選取4值,則可藉由此一階系統方程式設計得到所 要求之系統性能,但是當系統參數發生變化或是外來干擾加入 系統中’則基礎模型控制設計情況下無法保證方程式⑻所持有 的性能規格’除此之外,亦會破壞控制系統的穩定特性,因此 不管是否存在系統不確定動態,本發明需額外設計約束控制器 0 以確保方程式(8)所持有的性能規格。首先,定義滑動平面如下: 5/ (0 = ^ (〇 - e. (0) + kx Je,. (τ) dτ (9) 其中^⑼為e/⑺的初始值。當時間為零時,函數\⑺為零;根 據方程式(8),可得知滑動平面變化率可表示成 意指當時間大於零,函數柳皆為零。值得注意的是當時間 為零時’函數巧⑺為零’即系統狀態一開始就已在滑動平面上, 〇 並無傳統滑動模式控制之迫近相位模式。 考慮未知的系統參㈣化和外來干擾,則祕賴方程式⑶ 可重新改寫成 ~ Kapn^) = u(t) + b^ndp (〇 (11) 很明顯的,承如絲式⑺職計之控概人,並純確保方程 式(11)能滿足基礎模型控制設計,因此有必要設計額外的控制 器’以使㈣系統賴迴路動態性能像基礎模型控制設計一 樣°本發明將全域滑動模式控制法則設計如下: 17 200931801 M=Mfc+Mc (12) 其中%如方程式⑺所示,而約束控制器^定義為 uc = n sgn(s!(t)) -k2b» (13) ❹ ❹ 式中sgn(·)為符號函數且心為正值常數。如此設計第二個控制 器乂有兩個目的’其-是任意時間下保持系統動態在滑動平面 上’亦即函數柳為零,所以稱〜是約束控制器;其二是保證 閉迴路動態系統能像基礎翻控制設計之效能。將方程式⑺及 方程式(I3)代入方程式(11) ’則誤差動態方程式可整理成 ^(0 = -V,(0 + ^K +b;lndp(t)] (14) S時間為零時’函數柳為零,為了保持任意_下系統狀態 都在滑動平面上,故f要滑動條件(slidingamditiQn)如下: 如果巧〇〇,5/(你⑺<〇 (15) 方程式⑼對時間微分並與柳相乘之後’將方程式⑽代入方 程式(14)中,則整理可得 柳,(0=柳>。+柳,c +μ,(·ρ(,)| =-^/2(〇-|^(〇|[^-|^(〇|] < -k2sf(t) < ο (ΐ6) 根據方程式(16)及I⑽I<ρ,故整個控制期間能確保符合滑動 模式控制條件’進-步保證控㈣定性;值的—提的是,可藉 由約束控制器Μ值選取有效減少補償電流㈣信號顏抖現 象0 網路 本發明「主動式漣波抑制策略及其控制方法」之類神經 18 200931801 補償電流控制命令估測機制如「第三圖」所示,類神經網路輸 入層301(弋)包含漣波分析之傅利葉展開式中直流項與各倍頻 諧波項’其中《代表諧波階數及俗代表基本波角頻率,將其與 各項對應之類神經網路權重值3〇2(w = [wG wu w12…wnl %2])相 乘後即可獲得估測電流值,。將回授之匯流排變流器端電流' 與該值比較後所得估測電流誤差e = -尤藉由權重調整學習法 ❹則303(M^ =料2/;ex;·)有效調整各項權重值,其中^為權重學 習速率,反覆學習調整權重值後可得一精確之直流成分權重值 馮,將回授之匯流排變流器端電流•除去直流成份^方可獲得 有效補償電流控制命令=- $。 【實施方式】 為使進-步瞭解本發明之内容,以下實關之模擬波形,元 ❹件之電壓及電流之代號,敬請參閱第一圖;^、^及^則代 表於固定輸出功率下的匯流排轉換器端電流^、匯流排電壓^ 及補償電流控制命令<之最佳值。為驗證本發明所揭示「主動 气漣波抑制策略及其控制方法」具有優異漣波抑制之實際功 效’第四®至第六圖分別表示電力調㈣触6猶時不同補 償電流控制命令估職爾紐__之搭配實施例, 最、、’ς本發簡不之最佳實施例係制鋪經祕補償電流控制 命令估測與全輯龍式補償·湖_可達最佳連波抑制 200931801 效果。此外,第七圖為最佳實施例操作於負載變動下依舊可達 成優異之漣波抑制效果。 第四圖為本發明所揭示「主動式漣波抑制策略及其控制方 法」一實施例,採用一階高通濾波器作為補償電流命令估測機 制,並配合習用比例積分控制器作為補償電流控制機制,其中 該比例積分控制器包含一可調整比例項係數、一可調整積分項 係數及一積分器,該可調整比例項係數與補償電流控制誤差值 ❹相乘值,加上該可調整積分項係數與該積分器對補償電流控制 誤差值積分結果之乘積’即可得所需要之補償電流控制信號。 首先第cg®(a)為g流排魏n端電流,其存在著直流成分與輸 出父流頻率之各倍頻ϋ波污染成份,而觀察第四圖⑼及⑹分別 輕流排無H端概與隨排縣’微證其秘麵波成 刀於0.04秒;i人補償電流後已得到相當程度抑制。再者,分析 其一階高通遽波器補償電流控制命令之估測能力如第四_ 所不,約需經過四個週期才可達到理想程度之估測效果,乃歸 因於其系_位延遲之缺點。此外_積分控制器之注入補償 電流與其補償電流控制誤差如第四_及(〇所示,存在相當大 之誤差值。 有鑑於前-實施例之一階高通濾波器存在著估測相位延遲 ^缺點^ SJ叫致紐且鮮度差之麵㈣蝴命令,本發 月所揭不「主動式漣波抑制策略及其控制方法」進一步提出實 20 200931801 阳凋機制,並配 。第五圖(a)為匯 施例,主要係賴神_路作為簡電齡令估測機制 合習用比例積分作為補償電流控制機制 流排變流器端電流,其存在著直流成分與輸出交流頻率之各倍 頻譜波污染成份,第五__分別為匯流排轉換器端電^ 匯流排電壓,可祕其各倍辆波齡於_攸人補償ς流Hh+ν,υ) (7) ”中& is a positive constant. If equation (6) is substituted for human silk (7), the systematic error 16 200931801 can be described as a dynamic selection of 4 values. The equation design obtains the required system performance, but when the system parameters change or external interference is added to the system, the performance specifications held by equation (8) cannot be guaranteed in the case of the basic model control design. In addition, the control will be destroyed. The stability characteristics of the system, so regardless of the presence or absence of system uncertain dynamics, the present invention requires additional design constraints controller 0 to ensure the performance specifications held by equation (8). First, define the sliding plane as follows: 5/ (0 = ^ ( 〇- e. (0) + kx Je,. (τ) dτ (9) where ^(9) is the initial value of e/(7). When the time is zero, the function \(7) is zero; according to equation (8), Knowing the rate of change of the sliding plane can be expressed as meaning that when the time is greater than zero, the function will be zero. It is worth noting that when the time is zero, the function is (7) is zero, that is, the system state is already on the sliding plane at the beginning, 〇 No traditional sliding mode control The imminent phase mode. Considering the unknown system (4) and external interference, the secret equation (3) can be rewritten to ~ Kapn^) = u(t) + b^ndp (〇(11) Obviously, Cheng Rusi The controller of the formula (7) is purely ensuring that the equation (11) can satisfy the basic model control design, so it is necessary to design an additional controller' so that the dynamic performance of the (four) system depends on the basic model control design. The global sliding mode control law is designed as follows: 17 200931801 M=Mfc+Mc (12) where % is as shown in equation (7) and the constraint controller ^ is defined as uc = n sgn(s!(t)) -k2b» (13) ❹ ❹ where sgn(·) is a sign function and the heart is a positive constant. So designing the second controller has two purposes. 'It is to keep the system dynamic on the sliding plane at any time'. Zero, so weigh ~ is the constraint controller; the second is to ensure that the closed-loop dynamic system can be like the performance of the basic control design. Substituting equation (7) and equation (I3) into equation (11) 'the error dynamic equation can be organized into ^ ( 0 = -V,(0 + ^K +b;lndp(t)] (14) S time is The zero-time 'function will be zero. In order to keep the arbitrary system state on the sliding plane, the sliding condition (slidingamditiQn) is as follows: If you are smart, 5/(you (7)<〇(15) equation (9) versus time After subdivision and multiplication with Liu, 'substituting equation (10) into equation (14), we can get the willow, (0=柳>.+柳, c +μ, (·ρ(,)| =-^/2 (〇-|^(〇|[^-|^(〇|] < -k2sf(t) < ο (ΐ6) According to equations (16) and I(10)I<ρ, it is ensured that sliding mode control is ensured during the entire control period. Condition 'step-step guarantee control (four) qualitative; value - mention that the constraint controller can be selected to effectively reduce the compensation current (four) signal jitter phenomenon 0 network "active chopper suppression strategy and its control" Neural network 18 200931801 Compensation current control command estimation mechanism As shown in the "third diagram", the neural network input layer 301 (弋) contains the DC term and the octave harmonics in the Fourier expansion of the chopping analysis. The term 'where' represents the harmonic order and the vulgar represents the basic wave angle frequency, and the neural network weight value corresponding to each of them is 3〇2 (w = [wG wu w12...wnl %2]) After multiplication, the estimated current value can be obtained. The estimated current error e = of the feedback bus current of the feedback bus is compared with this value, especially by the weight adjustment learning method 303 (M^ = material 2 /; ex; ·) Item weight value, where ^ is the weight learning rate, and after learning to adjust the weight value, an accurate DC component weight value von can be obtained, and the feedback current of the bus bar converter will be returned. • The DC component can be removed to obtain an effective compensation current. Control command =- $. [Embodiment] In order to further understand the contents of the present invention, the following analog waveforms, the voltage and current codes of the components, please refer to the first figure; ^, ^ and ^ represent the fixed output power The optimum value of the current bus terminal current ^, bus bar voltage ^ and compensation current control command < In order to verify that the "active chopper suppression strategy and its control method" disclosed in the present invention has the actual effect of excellent chopper suppression, the fourth to sixth figures respectively represent the power adjustment (four) touch 6 different timing compensation current control command evaluation Erni __ with the embodiment, the most, the best embodiment of the ς 发 发 简 系 铺 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿 补偿200931801 Effect. In addition, the seventh figure shows that the preferred embodiment operates at a load variation and still achieves an excellent chopper suppression effect. The fourth figure is an embodiment of the "active chopper suppression strategy and its control method" disclosed in the present invention, which adopts a first-order high-pass filter as a compensation current command estimation mechanism, and cooperates with a conventional proportional integral controller as a compensation current control mechanism. The proportional integral controller includes an adjustable proportional term coefficient, an adjustable integral term coefficient, and an integrator, the adjustable proportional term coefficient and the compensated current control error value ❹ multiplied by the value, plus the adjustable integral term The required product is obtained by multiplying the coefficient by the product of the integral value of the compensating current control error value. First, cg®(a) is the current of the n-terminal current of the g-flow, which has the doubling chopping component of the DC component and the output parent-frequency frequency, and observes the fourth figure (9) and (6) respectively. In general, with the Pai County, the micro-certification of its secret surface wave into a knife in 0.04 seconds; i people have been considerably suppressed after compensating the current. Furthermore, the estimation of the first-order high-pass chopper compensation current control command is as high as the fourth, and it takes about four cycles to achieve the desired degree of estimation, which is attributed to its _ position. The shortcomings of delay. In addition, the injection compensation current of the integral controller and its compensation current control error are as shown in the fourth _ and (〇, there is a considerable error value. In view of the pre-existing first-order high-pass filter, there is an estimated phase delay ^ Disadvantages ^ SJ is called the New Zealand and the difference between the freshness and the freshness (4). The order is not disclosed in this month. The "active chopping suppression strategy and its control method" further proposes the real 20 200931801 yang withering mechanism and matching. The fifth picture (a For the case of sinking, the main reason is that Lai Shen _ Lu is used as a simple electric age estimation mechanism to learn the proportion of the integral as the compensation current control mechanism, and the current of the DC output and the output AC frequency. The wave pollution component, the fifth __ is the bus bar converter terminal power ^ bus bar voltage, it can be secreted each time the wave age is _ 攸 person compensation turbulence

❹準。然而第五圖(e)及(f)所示, 比例積分控制器之注入補償電流 與其補償電流控制誤差,誤差範圍仍相當大。 為有效降低注入補償電流控制誤差,本發明所揭示「主動 式漣波抑制策略及其控制方法」進一步提出改善實施例,乃將 全域滑動模式控制器取代習用比例積分控制器進行補償電流控 制機制。第六圖(e)及(f)所示,全域滑動模式控制器可有效降低 補償電流控制誤差。此全域滑動模式控制器搭配類神經網路之 ❹優異補償電流命令估測能力如第六圖(d) ’可將源自匯流排變流 器端嚴重倍頻諧波電流有效地抑制,如第六圖(;a)所示。匯流排 轉換端電流與匯流排電壓之低頻漣波現象已大幅度降低,如第 六圖(b)及(c)所示。 此外’本發明所揭示「主動式漣波抑制策略及其控制方法」 亦針對系統強健性提出實施例作驗證’如第七圖(a)匯流排變流 器端電流於0·04秒將電力調節器輸出負載由600W加載至 21 200931801 lkW,可從第七圖(d)、(e)及(f)驗證負載變動下,類神經網路補 償電流命令估測與全域滑動模式控均穩定運作且不受系統 參數變動賴。整體效果而言,由第七剛及⑻可得知匯流排 轉換端電流與匯流排電麗之倍頻諧波成分即便在系統參數變動 影響下’都簡由本發明「絲式漣波抑制策略及其控制方法」 獲得有效抑制。對於潔淨能源發電系躺言,可有效降低電力 調郎器之各類元件額定規格,且提高潔淨能源額定輸出功率而 ©降低單健#縣,並提升料_使用壽命。 雖然本發明已則述較佳實施例揭示,然其並非用以限定本發 明,任何熟習此技藝者,再不脫離本發明之精神和範圍内,當 可作各種之變動與修改,因此本發明之保護範圍當視後附之申 請專利範圍所界定者為準。 【圖式簡單說明】 〇 第一圖表示具有主動式漣波抑制電路之電力調節系統等效模 型 第二圖表示主動式漣波抑制電路之系統控制方塊圖 第三圖表示類神經網路補償電流控制命令估測機制 第四圖表示採一階高通濾波器與比例積分控制器之補償電流 控制命令估測與補償電流控制機制之主動式漣波抑制 策略模擬響應圖 22 200931801 表:採類神經網路與比例積分控制器之補償電流控制 命7估測翻償紐鋪機制之絲式漣波抑制策略 模擬響應圓 表丁採類神紐網路與全域滑動模式控制器之補償電流 控制命令估測與補償電流控制機制之主動式漣波抑制 策略模擬響應圖 第七圖表示採類神經網路與全域滑動模式控制器之補償電流 _命令估測與補償電流控制機制於電力調節器輸出 負載變動之主動式漣波抑制策略模擬響應圖 【主要元件符號說明】 100:直流/直流轉換器之戴維寧等效電路 101:戴維寧等效電壓源 102:戴維寧等效電阻 O no:匯流排等效電路 111:匯流排轉換器端等效電阻 112:匯流排變流器端等效電阻 120:直流/交流變流器之諾頓等效電路 12l·諾頓等效電流源 122:諾頓等效電阻 130:主動式漣波抑制電路架構 23 200931801 131:直流電壓源 132:直流電容器 133:全橋式變流器 134:輸出濾波電感 135:濾波電感等效電阻 200:具任意直流/直流轉換器與直流/交流變流器之電力調 節器等效方塊圖 〇 201:補償電流控制命令估測機制 202:補償電流控制機制 203:主動式漣波抑制電路等效方塊圖 301:類神經網路輸入層 302:類神經網路權重值 303:權重調整學習法則Standard. However, as shown in the fifth (e) and (f), the injection compensation current of the proportional-integral controller and its compensation current control error are still quite large. In order to effectively reduce the injection compensation current control error, the "active chopper suppression strategy and its control method" disclosed in the present invention further proposes an improved embodiment, which replaces the conventional sliding mode controller with the conventional proportional integral controller for the compensation current control mechanism. As shown in the sixth (e) and (f), the global sliding mode controller can effectively reduce the compensation current control error. This global sliding mode controller is matched with a class-like neural network. The excellent compensation current command estimation capability, as shown in the sixth figure (d), can effectively suppress the severe multiplier harmonic current from the busbar converter. Six figures (; a) are shown. The low-frequency chopping phenomenon of the bus and the bus voltage of the busbar has been greatly reduced, as shown in Figures 6(b) and (c). In addition, the "active chopper suppression strategy and its control method" disclosed in the present invention also provides an embodiment for verifying the system robustness as shown in the seventh figure (a), the bus current converter current is at 0. 04 seconds. The regulator output load is loaded from 600W to 21 200931801 lkW. From the seventh diagrams (d), (e) and (f) to verify the load variation, the neural network compensation current command estimation and the global sliding mode control are stable. And not subject to system parameter changes. In terms of the overall effect, it can be known from the seventh and (8) that the frequency-multiplied harmonic components of the busbar switching terminal current and the busbar battery are even under the influence of system parameter fluctuations. Its control method" is effectively suppressed. For the clean energy power generation system, it can effectively reduce the rated specifications of various components of the power conditioner, and improve the rated output power of clean energy. © Reduce the single county, and improve the material _ service life. While the present invention has been described in connection with the preferred embodiments of the present invention, it is not intended to limit the scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. [Simple diagram of the diagram] 〇The first diagram shows the equivalent model of the power regulation system with active chopper suppression circuit. The second diagram shows the system control block diagram of the active chopper suppression circuit. The third diagram shows the neural network compensation current. The fourth diagram of the control command estimation mechanism shows the active chopper suppression strategy simulation response of the compensation current control command estimation and compensation current control mechanism using the first-order high-pass filter and the proportional integral controller. Figure 22: Mining neural network Compensating current control command for road and proportional integral controllers The active chopper suppression strategy with compensation current control mechanism simulates the response diagram. The seventh diagram shows the compensation current of the mining neural network and the global sliding mode controller. The command estimation and compensation current control mechanism is applied to the power regulator output load. Active chopper suppression strategy simulation response diagram [main component symbol description] 100: DC/DC converter David Ning equivalent circuit 101: Dai Weining equivalent voltage source 102: Dai Weining equivalent resistance O no: bus bar equivalent circuit 111: bus bar converter terminal equivalent resistance 112: bus bar converter terminal equivalent resistance 120: DC / Norton equivalent circuit of AC converter 12l · Norton equivalent current source 122: Norton equivalent resistance 130: Active chopper suppression circuit architecture 23 200931801 131: DC voltage source 132: DC capacitor 133: full bridge converter 134: Output filter inductor 135: Filter inductor equivalent resistance 200: Power regulator equivalent block diagram with arbitrary DC/DC converter and DC/AC converter Figure 201: Compensation current control command estimation mechanism 202: Compensation current Control mechanism 203: active chopper suppression circuit equivalent block diagram 301: neural network input layer 302: neural network weight value 303: weight adjustment learning rule

24twenty four

Claims (1)

200931801 十、申請專利範圍: 1. -種主動式漣波抑制策略及其控制方法,其包含: -主動式漣波抑制電路架構,用以產生補償電流; 補償電流控制命令估測機制,係以類神經網路產生適當補 償電流控制命令;及 -補償電流鋪鋪,細比靖分控㈣核控制主動式 連波抑制電路輸出補償電流,達成主動式漣波抑制效果; 〇 鋪神、_路麵錢_命令侧麵可依據欲實施漣 波抑制點之回授電敵,運算㈣當補偶流鋪命令並 透過具有比例積分控制器之補償電流控制機制可有效控制 該主動式漣波抑制電路輸出補償電流至欲實施點達成漣波 抑制功效。 2. 依申請專利範圍第1項之主動式漣波抑制策略及其控制方 法,其中主動式漣波抑制電路架構包含一直流電壓源、一直 〇 机電谷器、一全橋式變流器、一輸出濾波電感及一濾波電感 等效電阻,該直流電壓源與直流電容器並接可形成一穩定補 償能量供應後端該全橋式變流器所需補償電流,再經由該輸 出據波電感與該濾波電感等效電阻即可輸出欲注入之漣波 補償電流。 3. 依申請專利範圍第1項之主動式漣波抑制策略及其控制方 法’其中補償電流控制命令估測機制包含一類神經網路輸入 層、一類神經網路權重值及一權重調整學習法則,該類神經 25 200931801 、網路輸入層包含漣波分析之傅利葉展開式中直流項與各倍 頻譜波項’將其與各項對應之該類神酬路權重值相乘後即 H寻估測電流值;將回授之酿排變流器端電流與該值比 較後所得估測電流誤差藉由該權重調整學習法則可有效調 整各項權重值,並反覆學習調整權重值後可得一精確之直流 成分權重值,將回授之匯流排變流器端電流除去直流成份方 可獲得有效補償電流控制命令。 ❹4·依申請專讎圍第1項之絲式漣波抑織略及其控制方 法,其中補償電流控制機制包含一比例積分控制器及一驅動 電路,其中該比例積分控制器可將注入之補償電流與補償電 流控制命令比較後之補償電流控制誤差,運算出所需要之補 償電流控制信號,並藉由驅動電路有效控制主動式漣波抑制 電路輸出補償電流’達到漣波電流抑制功效。 5. 依申請專利範圍第4項之主動式漣波抑制策略及其控制方 ❾ 法’其中該比例積分控制器包含一可調整比例項係數、一可 調整積分項係數及一積分器,該可調整比例項係數與補償電 流控制誤差值相乘值’加上該可調整積分項係數與該積分器 對補償電流控制誤差值積分結果之乘積,即可得所需要之補 償電流控制信號。 6. 依申請專利範圍第4項之主動式漣波抑制策略及其控制方 法’其中該驅動電路包含一比較器,該比較器可將補償電流 26 200931801 · 控制信號與-高頻三角波訊號作比較,輸出一脈波寬度調變 訊號,得以驅動全橋式變流器之功率電晶體開關。 7· 一種主動式漣波抑㈣略及其㈣i方法,其包含: 一主動式漣波抑制電路架構,用以產生補償電流; 一補償電流㈣命令_機制,細__路產生適當補 償電流控制命令;及 —補償電流控制機制,係以全域滑動模式控有效控制主 ° 賦漣波抑制電路輸出補償電流,達成主動式漣波抑制效 果; 該類神經網路補償電流控制命令估測機制可依據欲實施連 波抑制點之電流值’運算出適當補償電流控制命令,並透過 具有全域滑動模式控制器之補償電流控制機制可有效控制 該主動式漣波抑制電路輸出補償電流至欲實施點達成漣波 抑制功效。 〇 依f解麵㈣7取规獅職概涵制方 法,其中主動式漣波抑制電路架構包含一直流電壓源、一直 流電容II、-全橋式變流n、—輸出濾波電献—攄波電感 等效電阻,該直流電壓源與直流電容器並接可形成一穩定補 償能量供應後端該全橋式變流器所需補償電流,再經由該輸 出濾波電感與該濾波電感等效電阻即可輸出欲注入之漣波 補償電流。 27 200931801 9. 依申請專利範圍第7項之主動式漣波抑制策略及其控制方 法’其中補償電流控制命令估測機制包含一類神經網路輸入 層、一類神經網路權重值及一權重調整學習法則,該類神經 網路輸入層包含漣波分析之傅利葉展開式中直流項與各倍 頻諧波項’將其與各項對應之該類神經網路權重值相乘後即 可獲得估測電流值;將回授之匯流排變流器端電流與該值比 較後所得補償電流估測誤差藉由該權重調整學習法則可有 〇 效調整各項權重值’並反覆學習調整權重值後可得一精確之 直流成分權重值,將回授之匯流排變流器端電流除去直流成 份方可獲得有效補償電流控制命令。 10. 依申請專利範圍第7項之主動式漣波抑制策略及其控制方 法,其中補^員電流控制機制包含一全域滑動模式控制器及一 驅動電路’即便匯流排變流器端漣波因電力調節器負載變動 而變化時,該全域滑動模式控制器仍可抵抗系統參數變動產 ❹ 生一補償電流控制信號,並藉由驅動電路有效控制主動式漣 波抑制電路輸出補償電流,達到漣波電流抑制功效。 11. 依申請專利範圍第10項之主動式漣波抑制策略及其控制方 法,其中該全域滑動模式控制器包含一基礎模型控制器及一 約束控制器’該基礎模型控制器可明確規劃常態情況下期望 獲得的系統效能;配合可消除產生來自於系統參數變化、負 載干擾電壓電流以及未模式化系統動態之不可預測擾亂效 應之約束控制器’控制過程不存在迫近相位模式且所有狀態 28 200931801 全域均在滑動平面上,整雛觸程中不衫統不確定量影 響’並可有效減少補償電流控制信號顫抖現象。 12.依申請專利範圍第10項之主動式漣波抑制策略及其控制方 法,其中該驅動電路包含一比較器,該比較器可將補償電流 控制信號與一高頻三角波訊號作比較,輸出一脈波寬度調變 訊號,得以驅動全橋式變流器之功率電晶體開關。 ❹ Ο 29200931801 X. Patent application scope: 1. An active chopper suppression strategy and its control method, including: - an active chopper suppression circuit architecture for generating a compensation current; a compensation current control command estimation mechanism, The neural network generates appropriate compensation current control commands; and - compensation current spreading, fine ratio control (4) nuclear control active continuous wave suppression circuit output compensation current, achieving active chopper suppression effect; 〇 神 神, _ pavement The side of the money_command can be based on the feedback of the chopper suppression point, and the operation (4) can be effectively controlled by the compensating current control mechanism with the proportional integral controller to control the output of the active chopper suppression circuit. Compensating the current to the point of implementation to achieve chopping suppression. 2. The active chopper suppression strategy and its control method according to the first application of the patent scope, wherein the active chopper suppression circuit architecture comprises a DC voltage source, a constant electromechanical valley device, a full bridge converter, An output filter inductor and a filter inductor equivalent resistor, the DC voltage source and the DC capacitor are connected in parallel to form a stable compensation energy supply back end of the full bridge converter required compensation current, and then through the output wave inductance The filter inductor equivalent resistance can output the chopper compensation current to be injected. 3. Active chopper suppression strategy and its control method according to item 1 of the patent application scope. The compensation current control command estimation mechanism includes a type of neural network input layer, a type of neural network weight value and a weight adjustment learning rule. The neural network 25 200931801, the network input layer contains the DC term and the spectroscopy wave term in the Fourier expansion of the chopping analysis, and multiplies it by the corresponding weights of the gods, which is the H-estimation measure. The current value; the estimated current error obtained by comparing the current of the brewing converter current with the value can be effectively adjusted by using the weight adjustment learning rule, and the adjustment weight value can be repeatedly obtained to obtain an accurate The DC component weight value is obtained by removing the DC component from the feedback bus current of the feedback bus to obtain an effective compensation current control command. ❹4· According to the application for the first-line silk-type chopping and weaving and its control method, the compensation current control mechanism includes a proportional integral controller and a driving circuit, wherein the proportional integral controller can compensate the injection The compensation current control error after comparing the current with the compensation current control command calculates the required compensation current control signal, and effectively controls the active chopper suppression circuit output compensation current 'to achieve the chopping current suppression effect by the driving circuit. 5. The active chopper suppression strategy according to item 4 of the patent application scope and the control method thereof, wherein the proportional integral controller comprises an adjustable proportional term coefficient, an adjustable integral term coefficient and an integrator, Adjusting the proportional term coefficient and the compensation current control error value multiplication value 'plus the product of the adjustable integral term coefficient and the integral value of the integrator to the compensation current control error value can obtain the required compensation current control signal. 6. The active chopper suppression strategy and its control method according to item 4 of the patent application scope, wherein the driving circuit comprises a comparator, the comparator can compare the compensation current 26 200931801 · the control signal with the high frequency triangular wave signal A pulse width modulation signal is output to drive the power transistor switch of the full bridge converter. 7. An active chopper suppression (four) and its (iv) i method, comprising: an active chopper suppression circuit architecture for generating a compensation current; a compensation current (four) command_mechanism, a fine __ path to generate appropriate compensation current control Command; and - compensation current control mechanism, the global sliding mode control effectively controls the output compensation current of the main-stage chopper suppression circuit to achieve the active chopper suppression effect; the neural network compensation current control command estimation mechanism can be based on To implement the current value of the continuous wave suppression point, the appropriate compensation current control command is calculated, and the compensation current control mechanism with the global sliding mode controller can effectively control the output of the active chopper suppression circuit to the implementation point. Wave suppression effect. 〇 f 解 ( 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动 主动Inductive equivalent resistance, the DC voltage source and the DC capacitor are connected in parallel to form a stable compensation energy supply back end of the full bridge converter required compensation current, and then through the output filter inductor and the filter inductor equivalent resistance Output the chopping compensation current to be injected. 27 200931801 9. Active chopper suppression strategy and its control method according to item 7 of the patent application scope] The compensation current control command estimation mechanism includes a kind of neural network input layer, a kind of neural network weight value and a weight adjustment learning. The law, the neural network input layer includes the DC term and the octave harmonic term in the Fourier expansion of the chopping analysis, and multiplies it by the weight value of the corresponding neural network to obtain the estimation. The current value; the compensation current estimation error obtained by comparing the feedback current of the bus current converter terminal with the value can be adjusted by using the weight adjustment learning rule to adjust the weight value repeatedly and then learning the adjustment weight value repeatedly A precise DC component weight value is obtained, and the DC component is removed from the feedback bus current of the feedback bus to obtain an effective compensation current control command. 10. The active chopper suppression strategy and its control method according to item 7 of the patent application scope, wherein the compensation current control mechanism comprises a global sliding mode controller and a driving circuit 'even if the bus bar converter ends the chopping factor When the power regulator load changes, the global sliding mode controller can still generate a compensation current control signal against the system parameter variation, and effectively control the active chopper suppression circuit to output the compensation current through the driving circuit to achieve chopping. Current suppression efficiency. 11. The active chopper suppression strategy and control method thereof according to claim 10, wherein the global sliding mode controller comprises a basic model controller and a constraint controller, wherein the basic model controller can clearly plan the normal situation The desired system performance; the constraint controller that eliminates the unpredictable disturbance effects from system parameter changes, load disturbance voltage currents, and unpatterned system dynamics. The control process does not have an impending phase mode and all states 28 200931801 Both of them are on the sliding plane, and the influence of the uncertainty is not affected by the whole process of the whole chick's stroke, and the compensation current control signal chattering phenomenon can be effectively reduced. 12. The active chopper suppression strategy and control method thereof according to claim 10, wherein the driving circuit comprises a comparator, the comparator can compare the compensation current control signal with a high frequency triangular wave signal, and output one The pulse width modulation signal is used to drive the power transistor switch of the full bridge converter. ❹ Ο 29
TW097101175A 2008-01-11 2008-01-11 Active ripple suppression system TWI341646B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097101175A TWI341646B (en) 2008-01-11 2008-01-11 Active ripple suppression system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097101175A TWI341646B (en) 2008-01-11 2008-01-11 Active ripple suppression system

Publications (2)

Publication Number Publication Date
TW200931801A true TW200931801A (en) 2009-07-16
TWI341646B TWI341646B (en) 2011-05-01

Family

ID=44865408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097101175A TWI341646B (en) 2008-01-11 2008-01-11 Active ripple suppression system

Country Status (1)

Country Link
TW (1) TWI341646B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696342B (en) * 2019-04-09 2020-06-11 東元電機股份有限公司 Device for suppressing harmonic signal
TWI783340B (en) * 2020-12-31 2022-11-11 致茂電子股份有限公司 Voltage control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696342B (en) * 2019-04-09 2020-06-11 東元電機股份有限公司 Device for suppressing harmonic signal
TWI783340B (en) * 2020-12-31 2022-11-11 致茂電子股份有限公司 Voltage control method

Also Published As

Publication number Publication date
TWI341646B (en) 2011-05-01

Similar Documents

Publication Publication Date Title
Guilbert et al. A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: Design and experimental validation
CN101577434B (en) Control method of restraining output DC component of grid-connected photovoltaic inverter
Rakhtala et al. Fuzzy PID control of a stand-alone system based on PEM fuel cell
CN108512452B (en) Control system and control method for current of direct-current micro-grid-connected converter
Lee et al. Control strategy of flyback microinverter with hybrid mode for PV AC modules
CN107070286B (en) Control method for super capacitor energy storage system current transformer
CN103490653B (en) Grid-connected electric current and DC voltage secondary Ripple Suppression control system and control method
CN113517821B (en) Electrolytic hydrogen production rectification power supply based on high-transformation-ratio transformer and control method
CN104410099A (en) Converter control strategy for multifunctional energy storage system of light storage power station
Zhifu et al. Design of closed-loop control system for a bidirectional full bridge DC/DC converter
CN113746357A (en) Electrolytic hydrogen production rectification power supply based on two-stage auxiliary converter and power supply control method
Mishra et al. Sigma-modified power control and parametric adaptation in a grid-integrated PV for EV charging architecture
Mehta et al. Buck-Boost converter as power factor correction controller for plug-in electric vehicles and battery charging application
Aharon et al. Multimode power processing interface for fuel cell range extender in battery powered vehicle
Shipra et al. Brayton-Moser passivity based controller for electric vehicle battery charger
TW200931801A (en) Active ripple suppression strategy and its control method
Yodwong et al. Modified Sliding Mode-Based Control of a Three-Level Interleaved DC-DC Buck Converter for Proton Exchange Membrane Water Electrolysis
TWI528682B (en) Hybrid power supply system for a fuel cell with cascoded configuration
Su et al. Nonsingular fast terminal sliding mode control of LLC resonant converter for EV charger
CN102427298A (en) Series connection type alternating current (AC) voltage stabilizer based on BUCK converter
Toniolo et al. Implementation and experimental evaluation of an efficiency-improved modulation technique for IBCI DC-DC converters
Sheeba et al. Mppt based Model Predictive Controlled Interleaved Boost Converter
Fu et al. Dynamic voltage restorer based on active hybrid energy storage system
Artal-Sevil et al. Control strategy for modular multilevel converter applied to active power injection and reactive power compensation: Integration in PV microgrids
Tsang et al. Direct AC–AC grid interface converter for ocean wave energy system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees