TW200931689A - Optoelectronic module with trigistor - Google Patents

Optoelectronic module with trigistor Download PDF

Info

Publication number
TW200931689A
TW200931689A TW97145589A TW97145589A TW200931689A TW 200931689 A TW200931689 A TW 200931689A TW 97145589 A TW97145589 A TW 97145589A TW 97145589 A TW97145589 A TW 97145589A TW 200931689 A TW200931689 A TW 200931689A
Authority
TW
Taiwan
Prior art keywords
semiconductor body
cooling element
layer
emitting surface
radiation
Prior art date
Application number
TW97145589A
Other languages
Chinese (zh)
Inventor
Ralph Wirth
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200931689A publication Critical patent/TW200931689A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

An optoelectronic component with a semiconductor body (1) is provided, which has an active layer (2), suitable to generate electromagnetic radiation, and a radiation-emitting surface (3). A cooling element (4) is arranged on the radiation-emitting surface (3) of the semiconductor body (1), and said cooling element (4) is transparent for the radiation emitted from the semiconductor body (1).

Description

200931689 *- 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種具有冷卻元件之光電組件。 【先前技術】 本專利申請案主張德國專利申請案DE 1〇 2007 06 1 140.6之優先權,其已揭示的整個內容在此一倂作爲參考。 【發明內容】 本發明的目的是提供一種具有較佳散熱作用的光電組 〇 件。 上述目的藉由一種具有申請專利範圍第1項特徵之光 . 電組件來達成。本發明有利之配置和其它形式描述在申請 專利範圍各附屬項中。 依據本發明,設有一種具有半導體本體之光電組件, 其中半導體本體具有一種適合用來產生電磁輻射之活性 層。此外’半導體本體具有一輻射發射面。在輻射發射面 Ο 上配置—冷卻元件,其可使該半導體本體所發出的輻射透 過。 藉由配置在輻射發射面上的冷卻元件,則半導體本體 之熱可有效地被排出。該冷卻元件可有利地具有一種儘可 能小的熱阻和一儘可能高的導熱性,使由半導體本體排出 至冷卻元件上的熱損耗可有效地分佈在該冷卻元件中。於 是’由半導體本體所排出的熱損耗可在該冷卻元件中有效 地進行熱擴散。這在以高功率來操作的半導體本體中特別 200931689 有利,此乃因在高功率時半導體本體之熱損耗的排出隨著 功率密度的增大而通常會更困難。因此,需要將半導體本 體所產生的熱以儘可能小的熱阻而排出至冷卻元件上。 該冷卻元件可有利地配置在半導體本體之輻射發射面 上,使半導體本體所產生的熱損耗可排出至冷卻元件上。 藉由冷卻元件直接配置在半導體本體之輻射發射面上,則 可有利地使半導體本體之熱排出至該冷卻元件上,其中可 使熱阻最小化。於是,可使半導體本體所排出的熱最佳地 ❹ 排出。 該冷卻元件可使該半導體本體所發出的輻射透過。於 是,半導體本體中所產生的輻射可有效地經由冷卻元件而 發出。 半導體本體之活性層具有一種pn-接面、一種雙異質結 構、一種單一量子井結構(SQW-結構)或一種多重-量子井結 構(MQW-結構)以產生輻射。此名稱量子井結構此處未指出量 Q 子化的維度。因此,量子井結構可另外包含量子槽,量子線 和量子點以及這些結構的每一種組合》例如,MQW-結構已 描述在文件 WO 01/39282,US 5,83 1,277, US 6,1 72,382 B1 和 US 5,684,309中,其已揭示的內容藉由參考而收納於此處。 半導體本體較佳是以氮化物-化合物半導體材料爲主。 “以氮化物-化合物半導體材料爲主”在此處之意義是指,活 性之磊晶層序列或其至少一層包含AUGamlnmN,其中〇 SnSl,OSmS 1且n + mSl。因此,此材料未必含有上述形 200931689 式之以數學所表示之準確的組成。反之,此材料可具有一 種或多種摻雜物質以及其它成份,這些成份基本上不會改 變此材料AhGamlnmN之物理特性。然而,爲了簡單之故, 上述形式只含有晶格(Al,Ga, In, N)之主要成份,這些主要 成份之一部份亦可由少量的其它物質來取代。 半導體本體較佳是配置在一載體上之與該冷卻元件相 面對的此側上’其中該載體在與半導體本體相面對的此側 上較佳是具有一散熱件。藉由配置在半導體本體之輻射發 ❹ 射面上的冷卻元件及配置在半導體本體之相面對的此側上 的散熱件,則半導體本體所發出的熱損耗可有效地排出。 於是,半導體本體中所產生的熱損耗能以儘可能小的熱晅 而排出至冷卻元件和該散熱件上。這樣可使半導體本體有 效地冷卻,這對以高功率來操作的半導體本體是有利的。 該冷卻元件較佳是具有一種鑽石小板。鑽石具有高的 導熱性,其例如較銅之導熱性高出數倍。於是,半導體本 Q 體中所產生的熱損耗可有效地以儘可能小的熱阻而排出至 該冷卻元件上。這樣可使半導體本體有效地冷卻。此外, 鑽石可使半導體本體所發出的輻射透過。於是,由半導體 本體所發出的輻射可有利地經由該冷卻元件而發出。 鑽石小板可有利地具有一種與氮化物-化合物半導體一 樣大的折射率。半導體本體中所產生的輻射因此可幾乎無 損耗地進入至該鑽石小板中。具有半導體本體和冷卻元件 之此種材料組合之光電組件因此可有效地使半導體本體中 200931689 所產生的熱損耗排出,且同時可藉由半導體本體和冷卻元 件之已互相適應的折射率而達成一種有利的發射效率。 該冷卻元件較佳是在側面上由半導體本體突出。該冷 卻元件之橫向尺寸特別有利的是較該半導體本體之橫向尺 寸的四倍至十倍還大。 由於冷卻元件之橫向尺寸大於半導體本體之橫向尺 寸,則由半導體本體所發出的排出至該冷卻元件的熱損耗 可有效地分佈在該冷卻元件中,使熱流可有效地在該冷卻 元件中擴散。由半導體本體中所發出的熱因此可有效地排 出。 該冷卻元件較佳是在面向該半導體本體之此側上在橫 向地突出於半導體本體之區域中具有一鏡面層。 此鏡面層例如可具有銀。此外,此鏡面層例如可由介 電質層構成。 此鏡面層在冷卻元件上可施加在多個於橫向中突出於 半導體本體的區域中,此鏡面層不必滿足一種須形成歐姆 接觸區之特性,使鏡面層可以下述方式而被最佳化,即: 對由活性層所發出的輻射產生一種儘可能高的反射率。由 半導體本體發出而進入至冷卻元件中的輻射會在該冷卻元 件之與半導體本體相面對的界面上發生全反射且入射至該 鏡面層上,然後在該鏡面層上反射’使該冷卻元件之與半 導體本體相面對的界面上的輻射由該光電組件中發出。由 活性層所發出的輻射經由光電組件而發出時的效率因此在 200931689 一些外部區域(其在橫向中由半導體本體偏離)中特別高。於 是,光電組件的整個效率可提高。 4 在由半導體本體突出的一些區域中該冷卻元件較佳是 在與半導體本體相面對的側面上具有支撐元件。 特別有利的是將半導體本體配置在載體上之與冷卻元 件相面對的側面上,其中此載體在與半導體本體相面對的 側面上具有散熱件。 支撐元件可有利地將該冷卻元件與散熱件相連接。於 ❹ 是’熱流可由該冷卻元件經由各支撐元件而傳送至散熱 件,這樣可使半導體本體中所產生的熱損耗有效地經由該 冷卻元件且經由各支撐元件而輸送至該散熱件。因此,可 使半導體本體有效率地冷卻。 各支撐元件較佳是含有金屬或金屬合金,以便以儘可 能小的熱阻來產生儘可能有效的排熱作用。 該冷卻元件較佳是在橫向中由半導體本體突出,其中 Q 在一些突出於半導體本體的區域中該冷卻元件在與半導體 本體相面對的側面上具有支撐元件,且各支撐元件與導線 架形成電性接觸。 於是,各支撐元件可用來將半導體本體中所產生的熱 排出且亦可對該半導體本體形成電性接觸。 較佳是該光電組件具有配置在半導體本體上的第一和 第二電性終端層,其中第一和第二電性終端層配置在半導 體本體之與輻射發射面相面對的側面上。第一和第二電性 200931689 終端層藉由一種隔離層而在電性上互相隔開。 所謂“配置在與輻射發射面相面對的側面上”此處是 指,第一或第二電性終端層之至少一部份在由輻射發射面 至相面對的此側面的方向中位於半導體層序列之後。然 而,整個第一或第二電性終端層未必配置在與該輻射發射 面相面對的此側面上。反之,第二電性終端層之一部份區 域可由半導體本體之與該輻射發射面相面對的此側面經由 A 活性層的一缺口而在向該輻射發射面之方向中延伸。然 ❹ 而,須形成該第一電性終端層、第二電性終端層和該隔離 層’使這些層特別是在半導體本體之與輻射發射面相面對 的此側面上在橫向中相重疊。 半導體本體之輻射發射面較佳是未具有像連接墊之類 的電性接觸位置。 以上述方式,則在操作時由活性層所發出的電磁輻射 之一部份被電性接觸位置所遮蔽及/或吸收之危險性可下 ❹ 降。 該光電組件較佳是配置在一安裝面上,其中此安裝面 可確保該半導體本體之排熱和電力供應。例如,第一和第 二電性終端層是與一導線架在電性上相連接。另一方式 是,第一及/或第二電性終端層可經由一電性接觸區而與該 導線架在電性上相連接。 在另一配置中’第一及/或第二電性終端層具有一種多 層結構。例如,第一及/或第二電性終端層具有一種黏合促 -10- 200931689 進層、一反射層及/或一電流分配層。 適合用來與半導體本體形成電性接觸的電性接觸區可 適當地配置在半導體層序列之側面。各電性接觸區可有利 地以大面積方式來形成,此乃因各電性接觸區不會影響半 導體本體所發出的電磁輻射的發射。半導體本體因此可特 別良好地使用高的操作電流。換言之,半導體本體可有利 地具有高的電流承載性。 各接觸區的配置可有利地自由選擇。各終端層之接觸 區可在側面上經由支撐元件而延伸至一導線架,以與半導 體本體形成P-側的接觸和η-側的接觸。此外,只有各終端 層之二個接觸區之一可經由各支撐元件而延伸至該導線 架。一終端層之另一電性接觸區因此可經由半導體本體之 載體而延伸,以便由載體之與半導體本體相面對的此側面 來達成Ρ-側的接觸和η-側的接觸。 另一種配置形式的設計方式在於,爲了形成上述之Ρ-側的接觸和η-側的接觸,各終端層之第一和第二電性接觸 區須經由該載體而延伸,以便由載體之與半導體本體相面 對的此側面來形成Ρ-側的接觸和側的接觸。至一導線架 之電性接觸因此可在該載體之與半導體本體相面對的此側 面上達成。該Ρ-側的接觸因此藉由第一電性終端層來形 成,且該η-側的接觸藉由第二電性終端層來形成,或反之 亦可。 在另一種配置中,第一或第二電性終端層之一部份區 -11- 200931689 域由輻射發射面經由活性層之一缺口而在向遠離該輻射發 射面之此側面的方向中延伸。第一或第二電性終端層之第 二電性接觸區經由該缺口而延伸且配置在與輻射發射面相 面對的此側面上。 在上述的配置中,一終端層之電性接觸區可經由一支 撐元件而延伸至一導線架’其中第二電性接觸區可經由該 載體而延伸至一導線架,或第一和第二終端層之二個電性 接觸區經由支撐元件而分別延伸至一導線架。 〇 在另一種配置中,半導體本體在遠離該冷卻元件之此 側面上具有一載體,其中該載體具有多個開口,且第一及/ 或第二電性終端層經由多個開口而延伸至半導體層序列。 在此種配置中,第一及/或第二電性終端層因此經由載 體而延伸且在與該載體之遠離半導體本體之此側面上與一 導線架形成電性上的連接。 半導體本體之輻射發射面較佳是已磨成光滑狀。此輻 Q 射發射面因此未以傳統的方發來粗糙化。該冷卻元件和半 導體本體於是直接相鄰而連接著。有利的方式是使半導體 本體之輻射發射面和該冷卻元件之間無距離存在。較佳是 使半導體本體材料-和冷卻元件材料之折射率之値基本上處 於相同的範圍中,這樣可使半導體本體中所產生的輻射幾 乎無損耗地進入至冷卻元件中。上述”基本上處於相同的範 圍”此處是指,半導體本體材料-和冷卻元件材料之折射率之 差不大於0_3(含)。 -12- 200931689 該冷卻元件較佳是在遠離該半導體本體之表面上具有 一種粗糙性。於是,由半導體本體所發出的輻射可在該表 面上散射,這樣可使該輻射的發射效率提高。 較佳是在該冷卻元件之遠離該半導體本體之此側面上 配置一種Ti〇2-層。由於該冷卻元件之一部份不易粗糙化, 則另一方式是可使施加在該冷卻元件上的Ti〇2-層粗糙化, 該TiCh-層之折射率同樣是在氮化物-化合物半導體之折射 率之一種範圍中。該Ti〇2-層較佳是具有一種粗糙度,這樣 ❹ 可使TiO2.層之發射側上達成一種粗糙度。於是,光電組件 之輻射發射效率可有利地提高。 光電組件之發射側上的散射可另外藉由幾何結構(例 如,棱錐體或微透鏡)、發射側之粗糙化或光子晶體結構來 達成。發射效率可有利地提高。另一方式是,亦可藉由各 發射結構之個別的實施形式之組合來使輻射發生散射。 在一較佳的配置中,該冷卻元件在遠離半導體本體之 Q 此側上具有一轉換層,此轉換層中含有發光材料。藉由此 一轉換層配置在冷卻元件上,則此轉換層可藉由該冷卻元 件而有效地冷卻。於是,可使轉換層-或轉換層之發光材料 之過熱現象減輕。光電組件之此種配置對發出白光的組件 而言是有利的。 半導體本體較佳是一種發光二極體。特別有利的是以 薄膜晶片來形成半導體本體。 在薄膜晶片中,以區域方式或完全將一製造用的基板 -13- 200931689 去除’基板上製成(特別是沈積)半導體本體用的層堆疊。此 一製造用的基板較佳是一種生長基板,其上以磊晶方式生 長該層堆疊。 薄膜-發光二極體晶片之基本原理例如已描述在文件I.200931689 *- IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a photovoltaic module having a cooling element. [Prior Art] The present patent application claims the priority of the German Patent Application No. DE 1 〇 2007 06 1 140.6, the entire disclosure of which is hereby incorporated by reference. SUMMARY OF THE INVENTION An object of the present invention is to provide a photovoltaic device having a preferred heat dissipation effect. The above object is achieved by an optical component having the features of claim 1 of the patent application. Advantageous configurations and other forms of the invention are described in the various dependent claims. According to the invention, an optoelectronic component having a semiconductor body is provided, wherein the semiconductor body has an active layer suitable for generating electromagnetic radiation. Furthermore, the semiconductor body has a radiation emitting surface. A radiation element is arranged on the radiation emitting surface , which allows the radiation emitted by the semiconductor body to pass through. By the cooling element disposed on the radiation emitting surface, the heat of the semiconductor body can be efficiently discharged. The cooling element advantageously has a thermal resistance as low as possible and a thermal conductivity which is as high as possible so that the heat loss which is discharged from the semiconductor body onto the cooling element can be effectively distributed in the cooling element. Then, the heat loss discharged from the semiconductor body can be efficiently thermally diffused in the cooling element. This is particularly advantageous in semiconductor bodies operating at high power, in particular because the discharge of heat loss of the semiconductor body at high power is generally more difficult as the power density increases. Therefore, it is necessary to discharge the heat generated by the semiconductor body to the cooling element with as little thermal resistance as possible. The cooling element can advantageously be arranged on the radiation emitting surface of the semiconductor body such that heat losses generated by the semiconductor body can be discharged to the cooling element. By directly arranging the cooling element on the radiation emitting surface of the semiconductor body, the heat of the semiconductor body can advantageously be discharged to the cooling element, wherein the thermal resistance can be minimized. Thus, the heat discharged from the semiconductor body can be optimally discharged. The cooling element transmits the radiation emitted by the semiconductor body. Thus, the radiation generated in the semiconductor body can be effectively emitted via the cooling element. The active layer of the semiconductor body has a pn-junction, a double heterostructure, a single quantum well structure (SQW-structure) or a multiple-quantum well structure (MQW-structure) to generate radiation. This name quantum well structure does not indicate the dimension of the Q sub-instance here. Thus, quantum well structures may additionally comprise quantum wells, quantum wires and quantum dots, and each combination of these structures. For example, the MQW-structure has been described in document WO 01/39282, US 5,83 1,277, US 6,1 72,382 B1 And the disclosure of which is incorporated herein by reference. The semiconductor body is preferably a nitride-compound semiconductor material. By "nitride-compound semiconductor material-based" it is meant herein that the active epitaxial layer sequence or at least one layer thereof comprises AUGamlnmN, wherein 〇 SnSl, OSmS 1 and n + mSl. Therefore, this material does not necessarily contain the exact composition represented by the above formula 200931689 in mathematics. Conversely, the material may have one or more dopant species and other components that do not substantially alter the physical properties of the material AhGamlnmN. However, for the sake of simplicity, the above form contains only the main components of the crystal lattice (Al, Ga, In, N), and part of these main components may be replaced by a small amount of other substances. Preferably, the semiconductor body is disposed on a side of the carrier that faces the cooling element. The carrier preferably has a heat sink on the side facing the semiconductor body. The heat loss emitted by the semiconductor body can be efficiently discharged by the cooling elements disposed on the radiation emitting surface of the semiconductor body and the heat dissipating members disposed on the opposite sides of the semiconductor body. Thus, the heat loss generated in the semiconductor body can be discharged to the cooling element and the heat sink with as little heat as possible. This allows the semiconductor body to be effectively cooled, which is advantageous for semiconductor bodies operating at high power. The cooling element preferably has a diamond plate. Diamonds have a high thermal conductivity, which is, for example, several times higher than the thermal conductivity of copper. Thus, the heat loss generated in the semiconductor body can be efficiently discharged to the cooling element with as little thermal resistance as possible. This allows the semiconductor body to be effectively cooled. In addition, the diamond can transmit radiation emitted by the semiconductor body. Thus, the radiation emitted by the semiconductor body can advantageously be emitted via the cooling element. The diamond platelet advantageously has a refractive index that is as large as the nitride-compound semiconductor. The radiation generated in the semiconductor body can thus enter the diamond plate almost without loss. An optoelectronic component having such a combination of a semiconductor body and a cooling element can thus effectively dissipate the heat loss generated by the semiconductor body in 200931689, and at the same time achieve a mutually adapted refractive index of the semiconductor body and the cooling element. Favorable emission efficiency. Preferably, the cooling element projects from the semiconductor body on the side. The lateral dimension of the cooling element is particularly advantageous from four to ten times greater than the lateral dimension of the semiconductor body. Since the lateral dimension of the cooling element is greater than the lateral dimension of the semiconductor body, the heat loss emanating from the semiconductor body to the cooling element can be effectively distributed in the cooling element so that heat flow can be effectively diffused in the cooling element. The heat emitted by the semiconductor body can thus be efficiently discharged. Preferably, the cooling element has a mirror layer on the side facing the semiconductor body in a region which projects laterally beyond the semiconductor body. This mirror layer can for example have silver. Further, the mirror layer may be composed of, for example, a dielectric layer. The mirror layer can be applied to the cooling element in a plurality of regions projecting in the lateral direction from the semiconductor body. The mirror layer does not have to satisfy the characteristic of forming an ohmic contact region, so that the mirror layer can be optimized in the following manner. That is: the highest possible reflectivity is produced for the radiation emitted by the active layer. Radiation emitted by the semiconductor body into the cooling element is totally reflected at the interface of the cooling element facing the semiconductor body and incident on the mirror layer, and then reflected on the mirror layer 'to make the cooling element Radiation at the interface facing the semiconductor body is emitted by the optoelectronic component. The efficiency with which the radiation emitted by the active layer is emitted via the optoelectronic component is therefore particularly high in some external regions (which are offset by the semiconductor body in the lateral direction) in 200931689. Therefore, the overall efficiency of the photovoltaic module can be improved. 4 In some areas protruding from the semiconductor body, the cooling element preferably has a support element on the side facing the semiconductor body. It is particularly advantageous if the semiconductor body is arranged on the side of the carrier which faces the cooling element, the carrier having a heat sink on the side facing the semiconductor body. The support element can advantageously connect the cooling element to the heat sink. The heat flow can be transmitted by the cooling element to the heat sink via the respective support elements, such that heat losses generated in the semiconductor body can be efficiently delivered to the heat sink via the cooling elements and via the support elements. Therefore, the semiconductor body can be efficiently cooled. Preferably, each of the support members contains a metal or metal alloy to produce as efficient an exhaust heat as possible with as little thermal resistance as possible. Preferably, the cooling element protrudes from the semiconductor body in the transverse direction, wherein Q has a supporting element on a side facing the semiconductor body in a region protruding from the semiconductor body, and each supporting element forms a lead frame Electrical contact. Thus, each of the support members can be used to vent heat generated in the semiconductor body and also to make electrical contact to the semiconductor body. Preferably, the optoelectronic component has first and second electrical termination layers disposed on the semiconductor body, wherein the first and second electrical termination layers are disposed on a side of the semiconductor body that faces the radiation emitting surface. First and second electrical 200931689 The termination layers are electrically separated from each other by an isolation layer. By "disposed on the side facing the radiation emitting surface", it is meant herein that at least a portion of the first or second electrical termination layer is located in the semiconductor in the direction from the radiation emitting surface to the facing side. After the layer sequence. However, the entire first or second electrical termination layer is not necessarily disposed on the side facing the radiation emitting surface. On the other hand, a partial region of the second electrical termination layer can extend in the direction of the radiation-emitting surface via a gap of the A active layer from the side of the semiconductor body facing the radiation-emitting surface. However, the first electrical termination layer, the second electrical termination layer and the isolation layer must be formed such that the layers overlap in the lateral direction, in particular on the side of the semiconductor body which faces the radiation-emitting surface. Preferably, the radiation emitting surface of the semiconductor body does not have an electrical contact location such as a connection pad. In the above manner, the risk of being partially shielded and/or absorbed by the electrical contact position by the active layer during operation can be reduced. Preferably, the optoelectronic component is disposed on a mounting surface, wherein the mounting surface ensures heat rejection and power supply to the semiconductor body. For example, the first and second electrical termination layers are electrically connected to a leadframe. Alternatively, the first and/or second electrical termination layer can be electrically connected to the leadframe via an electrical contact zone. In another configuration, the first and/or second electrical termination layer has a multi-layer structure. For example, the first and/or second electrical termination layer has an adhesion promoting layer - 200931689, a reflective layer, and/or a current distribution layer. Electrical contact regions suitable for making electrical contact with the semiconductor body can be suitably disposed on the side of the semiconductor layer sequence. The electrical contact regions can advantageously be formed in a large area because the electrical contact regions do not affect the emission of electromagnetic radiation emitted by the semiconductor body. The semiconductor body can therefore use particularly high operating currents. In other words, the semiconductor body can advantageously have a high current carrying capacity. The configuration of each contact zone can advantageously be chosen freely. The contact regions of the respective termination layers may extend laterally to the leadframe via the support members to form a P-side contact and an η-side contact with the semiconductor body. Furthermore, only one of the two contact areas of each terminal layer can be extended to the lead frame via the respective support elements. The further electrical contact region of a terminal layer can thus be extended via the carrier of the semiconductor body in order to achieve a Ρ-side contact and an η-side contact from the side of the carrier facing the semiconductor body. Another configuration is designed in such a way that in order to form the above-mentioned Ρ-side contact and η-side contact, the first and second electrical contact regions of each terminal layer must be extended via the carrier so as to be This side of the semiconductor body faces to form a Ρ-side contact and a side contact. Electrical contact to a leadframe can thus be achieved on the side of the carrier that faces the semiconductor body. The Ρ-side contact is thus formed by the first electrical termination layer, and the η-side contact is formed by the second electrical termination layer, or vice versa. In another configuration, a portion of the first or second electrical termination layer -11-200931689 is extended by the radiation emitting surface through a gap of the active layer in a direction away from the side of the radiation emitting surface . The second electrical contact region of the first or second electrical termination layer extends through the gap and is disposed on the side facing the radiation emitting surface. In the above configuration, the electrical contact region of a terminal layer may extend through a support member to a lead frame 'where the second electrical contact region may extend through the carrier to a lead frame, or first and second The two electrical contact regions of the terminal layer respectively extend to a lead frame via the support members. In another configuration, the semiconductor body has a carrier on the side remote from the cooling element, wherein the carrier has a plurality of openings, and the first and/or second electrical termination layer extends to the semiconductor via the plurality of openings Layer sequence. In this configuration, the first and/or second electrical termination layer thus extends via the carrier and forms an electrical connection with a leadframe on the side of the carrier remote from the semiconductor body. The radiation emitting surface of the semiconductor body is preferably ground to a smooth shape. This radiating Q-emitting surface is therefore not roughened by conventional methods. The cooling element and the body of the conductor are then connected directly adjacent. Advantageously, there is no distance between the radiation emitting surface of the semiconductor body and the cooling element. Preferably, the enthalpy of the refractive index of the semiconductor body material - and the cooling element material is substantially in the same range so that the radiation generated in the semiconductor body can enter the cooling element with little loss. The above "substantially in the same range" means that the difference in refractive index between the semiconductor body material and the cooling element material is not more than 0-3 (inclusive). -12- 200931689 Preferably, the cooling element has a roughness on a surface remote from the semiconductor body. Thus, the radiation emitted by the semiconductor body can be scattered on the surface, which can increase the emission efficiency of the radiation. Preferably, a Ti〇2-layer is disposed on the side of the cooling element remote from the semiconductor body. Since one portion of the cooling element is not easily roughened, another way is to roughen the Ti〇2-layer applied to the cooling element, and the refractive index of the TiCh-layer is also in the nitride-compound semiconductor. In a range of refractive indices. The Ti〇2- layer preferably has a roughness such that ❹ achieves a roughness on the emission side of the TiO2 layer. Thus, the radiation emission efficiency of the photovoltaic module can be advantageously improved. Scattering on the emitting side of the optoelectronic component can additionally be achieved by geometry (e.g., pyramid or microlens), roughening of the emitting side, or photonic crystal structure. The emission efficiency can be advantageously increased. Alternatively, the radiation can be scattered by a combination of individual embodiments of the respective radiating structures. In a preferred configuration, the cooling element has a conversion layer on the side of the Q remote from the semiconductor body, the conversion layer containing a luminescent material. By the arrangement of the conversion layer on the cooling element, the conversion layer can be effectively cooled by the cooling element. Thus, the overheating of the luminescent material of the conversion layer or the conversion layer can be alleviated. This configuration of optoelectronic components is advantageous for components that emit white light. The semiconductor body is preferably a light emitting diode. It is particularly advantageous to form a semiconductor body from a thin film wafer. In a thin film wafer, a layer stack of semiconductor bodies is formed (particularly deposited) on a substrate by removing or removing a substrate for fabrication -13 - 200931689. The substrate for fabrication is preferably a growth substrate on which the layer stack is grown in an epitaxial manner. The basic principle of a thin film-light emitting diode wafer has been described, for example, in document I.

Schnitzer et al., Appl. Phys. Let. 63(16),18. October 1 99 3, page 2 1 74-2 176中,其已揭示的內容藉由參考而倂入此處。 例如,薄膜-發光二極體晶片已描述在文件EP 0905797 A2 ^ 和WO 02/13281 A1中,其已揭示的內容同樣藉由參考而倂 ❹ 入此處* 光電組件之其它特徵、優點、較佳的配置和適合性描 述在以下第1至3圖所示的實施例中。 ’ 【實施方式】 各圖式和實施例中相同-或作用相同的各組件分別設有 相同的參考符號。所示的各元件和各元件之間的比例未必 依比例繪出。反之,爲了清楚之故各圖式的—些細節已予 〇 放大地顯示出。 第1圖中顯示本發明之光電組件的第一實施例之橫切 面圖。 此光電組件具有一種半導體本體1’其具有一用來產生 電磁輻射的活性層。此半導體本體1之活性層具有一種pn-接面、一種雙異質結構、一單一量子井結構(SQW)或一多重 式量子井結構(MQW)以產生輻射。此名稱量子井結構此處未 指出量子化的維度。因此,量子井結構可另外包含量子槽’ -14- 200931689 量子線和量子點以及這些結構的每一種組合。 半導體本體1較佳是以氮化物-化合物半導體材料爲 主。“以氮化物-化合物半導體材料爲主,,在此處之意義是 指’活性之磊晶層序列或其至少一層包含氮化物_ΠΙ/ν-化合 物半導體材料,較佳是AlnGamlninN,其中OSnSl,〇gm S 1且n + m S1。因此,此材料未必含有上述形式之以數學 所表示之準確的組成。反之,此材料可具有一種或多種摻 ^ 雜物質以及其它成份’這些成份基本上不會改變此材料 AUGamlnumN之物理特性。然而,爲了簡單之故,上述形 式只含有晶格(Al,Ga,In, N)之主要成份,這些主要成份之 一部份亦可由少量的其它物k來取代。 半導體本體1具有一輻射發射面3,其上配置一冷卻元 件4’該冷卻元件4可使半導體本體1所發出的輻射透過。 半導體本體1操作時所產生的熱損耗可藉由配置在輻 射發射面3上的冷卻元件4而有效地由半導體本體1中排 〇 出。該冷卻元件4可有利地具有一種儘可能小的熱阻和儘 可能大的導熱率。因此,由半導體本體1發送至該冷卻元 件4上的熱損耗可有效地分佈在該冷卻元件4中,這樣可使 熱流在該冷卻元件4中有效地擴散。這在半導體本體1以高 功率來操作時(高功率-半導體本體)特別有利,此乃因在高 功率時半導體本體1之熱損耗的排出通常是隨著功率密度 之增大而越困難。 藉由將該冷卻元件4直接配置在半導體本體1之輻射發 -15- 200931689 射面3上,則可有利地將半導體本體1之熱損 阻而排出至該冷卻元件4上,這樣可將該半導 出的熱損耗最佳地排出。 該冷卻元件4可使半導體本體1所發出穿 是,半導體本體1中所產生的輻射可有效地經 而發出。 該冷卻元件4例如是一種鑽石小板。鑽 熱率,其例如較銅之導熱率高出很多倍。因 ❹ 體1中所產生的熱損耗可有效地以儘可能低 至鑽石小板4上。此外,鑽石可使半導體本體 射透過,這-可使半導體本體1所發出的輻 鑽石小板4而發出。 該冷卻元件4較佳是以鑽石小板來構成 有一種大約在氮化物-化合物半導體之折射率 的折射率,即,此二者之折射率之値只相差 Q 導體本體1中所產生的輻射幾乎可無損耗地 板中。因此,半導體本體1中所產生的熱損 出且同時可達成一種有利的發射效率。 半導體本體1之輻射發射面3較佳是已月 輻射發射面3因此未以傳統方式而被粗糙化 小板4可直接連接至半導體本體1。半導體本 射面3和鑽石小板4之間因此無距離存在,這 損耗地將半導體本體1中所產生的輻射發送 耗以最小的熱 體本體1所發 ί]輻射透過。於 由冷卻元件4 石具有高的導 此,半導體本 的熱阻來發散 1所發出的輻 射有利地經由 。由於鑽石具 之値的範圍中 〇.3(含),則半 進入至鑽石小 耗可有效地排 善成光滑狀。此 。於是,鑽石 體1之輻射發 樣可幾乎無熱 至鑽石小板4 -16 - 200931689 中〇 鑽石小板4可在遠離半導體本體1之表面上具有粗糙 性。由於鑽石的一部份不易粗糙化,則另一方式是可在鑽 石小板4之遠離該半導體本體1之表面上配置一種TiCb-層 5。此TiCh-層5同樣具有一種折射率,其位於氮化物-化合 物半導體之折射率之範圍中。此TiCh·層5具有一種粗糙 性,這樣可使半導體本體1所發出的輻射在該TiCh-層5之 發射側上發生散射。於是,該光電組件之發射效率可有利 ❹ 地提高。 此外,光電組件之發射側上的散射可藉由幾何結構(例 如,棱錐體或微透鏡)、發射側之粗糙化或光子晶體結構來 達成。另一方式是,可藉由各發射結構之個別的實施形式 的組合來使輻射發生散射。 半導體本體1較佳是一種發光二極體。半導體本體1 特別有利的是以薄膜-發光二極體(LED)來形成。 0 在薄膜-發光二極體(LED)中,一製造用的基板上製成 (特別是沈積)半導體本體1用的層堆疊,然後以區域方式或 全部將該製造用的基板去除。 半導體本體1較佳是在載體9上配置在與鑽石小板4 相面對的此側面上,其中此載體9在與半導體本體1相面對 的此側面上較佳是具有一散熱件11。藉由配置在半導體本 體1之輻射發射面3上之鑽石小板4和配置在半導體本體1 之相面對的此側面上之散熱件1 1,則可將半導體本體1所 -17- 200931689 發出的熱損耗有效地排出。 鑽石小板4較佳是在橫向中由半導體本體1突出。特別 有利的是該鑽石小板4之橫向尺寸大於半導體本體1之橫向 尺寸的四倍至十倍。 在面向半導體本體1之此側面上在一些區域(其在橫向 中由半導體本體1突出)中該鑽石小板4較佳是具有一鏡面 層13,其例如具有銀或介電質層。 於此,該鏡面層13未滿足一種須形成歐姆接觸區的特 〇 性,使該鏡面層1 3能以下述方式而被最佳化,即:對該活 性層所發出的輻射產生一種儘可能高的反射率。因此,由 半導體本體1所發出而進入至鑽石小板i中的輻射可在鑽石 小板4之與半導體本體1相面對的界面上發生全反射且入射 至該鏡面層13上,然後在鏡面層13上發生反射,使該鑽石 小板4之與半導體本體1相面對的界面上的輻射由光電組件 發出。於是,該光電組件之總效率可提高。 〇 鑽石小板4在面向該半導體本體1之此側面上在一些區 域(其由半導體本體1突出)中較佳是具有支撐元件10。於 此,各支撐元件10將該鑽石小板4與散熱件11相連接。各 支撐元件1 0例如含有金屬或金屬合金,以便以儘可能小的 熱阻而儘可能有效地將熱排出。 由於鑽石小板4之橫向尺寸大於半導體本體1,則由半 導體本體1所發出的至鑽石小板4之熱損耗可有效地分佈在 鑽石小板4中,使熱流可有效地在該鑽石小板4中擴散。藉 -18 200931689 由各支撐元件1 0,則可使熱流由鑽石小板4傳送至散熱件 11,這樣可使半導體本體1所發出的熱損耗有效地經由鑽石 小板4及各支撐元件10而輸送至散熱件11。光電組件因此 可有效地冷卻。各支撐元件10較佳是可造成一種與一導線 架之電性接觸。於是,各支撐元件10可用來將半導體本體 1中所產生的熱排出且亦可與半導體本體1形成電性接觸。 光電組件較佳是具有配置在半導體本體1上的第一和 Ο 第二電性終端層6,7,其中第一和第二電性終端層6,7配 置在半導體本體1之與輻射發射面3相面對的此側面上。第 一和第二電性終端層6, 7藉由一隔離層15而在電性上互相 隔離。 > 半導體本體1之輻射發射面3因此未具有電性接觸位置 (例如,連接墊)。在操作時由活性層所發出的電磁輻射由於 電性接觸位置所造成的遮蔽及/或吸收的危險性能以此種方 式而下降。 〇 第一或第二電性終端層6,7之一部份區域較佳是由輻 射發射面3經由活性層之缺口 8而在遠離該輻射發射面3 之此側面的方向中延伸。在此種配置中,第一和第二電性 終端層6, 7之二個電性接觸區經由支撐元件10而分別延伸 至一導線架,或只有第一或第二電性終端層6,7之一個電 性接觸區可經由各支撐元件10之一而延伸至一導線架。於 此,第一或第二電性終端層6,7之第二電性接觸區經由載 體9而延伸至一導線架,其中該載體9具有多個開口,且第 -19- 200931689 一及/或第二電性終端層6, 7經由開口而延伸至半導體層序 列。 另一方式是,第一和第二電性終端層6,7經由開口而 延伸至載體9且在該載體9之遠離該半導體本體1之此側面 上分別與一導線架在電性上相連接(未顯示)。 載體9較佳是含有矽、鍺或Ga As。第一及第二電性終 端層6,7之二個電性接觸區若經由支撐元件10而分別延伸 至一導線架,則該載體9例如亦可具有A1N或藍寶石。 第2圖顯示一光電組件之第二實施例。 第2圖之實施例不同於第1圖之實施例之處在於,在 Ti〇2-層S上配置一種含有發光材料之轉換層14。由於該轉 換層14施加在Ti〇2-層5上,Ti〇2-層5配置在鑽石小板4 上,則該轉換層14可藉由鑽石小板4而有效地被冷卻。該 轉換層14或該轉換層14中的發光材料中的過熱現象因此可 有利地減輕。此種配置對發出白光之光電組件而言是有利 ❹ 的。 第3圖所顯示的一種光電組件中顯示了該半導體本體1 之一種可能的電性接觸形式。 半導體本體1具有一活性層2,其適合用來產生電磁輻 射。在活性層2中形成至少一個缺口 8。較佳是形成多個相 隔開的缺口 8,這樣可有利地達成一種特別均勻的橫向電流 分佈。該缺口 8由輻射發射面3開始而在半導體本體1之與 輻射發射面3相面對的面的方向中延伸。該缺口 8由半導體 -20- 200931689 本體1之第一半導體層序列la經由活性層2及半導體本體 1之第二半導體層序列lb而延伸。 在輻射發射面3上施加一種冷卻元件4(例如,鑽石小 板),其用來使該半導體本體1冷卻。鑽石小板4在面向半 導體本體1之此側面上在一些區域(其在橫向中由半導體本 體1突出)中具有一鏡面層13。 第一終端層6施加在半導體本體1之遠離骸鑽石小板4 之此側面上。第二終端層7經由該缺口 8而延伸至半導體本 體1之與鑽石小板4相面對的此側面上。第一電性終端層6 和第二電性終端層7在橫向中有一部份相重疊。第一電性 終端層6和第二電性終端層7藉由一隔離層15而在電性上 互相隔離。 藉由一焊接層或黏合材料層12,則一載體9可固定在 第一和第二電性終端層6,7上。 第一和第二電性終端層6,7可經由支撐元件而相接觸 Q (未顯示)。半導體本體1之電性接觸因此可在側面上由半導 體本體1來達成。 另—方式是,該缺口 8可經由焊接層12和載體9而延 伸’使電性終端層7可在載體之遠離該半導體本體1之此側 面上達成電性接觸。 此外,第一電性終端層6和第二電性終端層7可經由載 體9中的開Q而延伸至載體9之與半導體本體1相面對的此 側面上,使第一和第二電性終端層6,7可在該載體9之與 -21- 200931689 半導體本體1相面對的此側面上形成電性接觸。 本發明當然不限於依據各實施例中所作的描述。反 之,本發明包含每一新的特徵和各特徵的每一種組合,特 別是包含各申請專利範圍-或不同實施例之個別特徵之每一 種組合,當相關的特徵或相關的組合本身未明顯地顯示在 各申請專利範圍中或各實施例中時亦屬本發明。 【圖式簡單說明】Schnitzer et al., Appl. Phys. Let. 63 (16), 18. October 1 99 3, page 2 1 74-2 176, the disclosure of which is incorporated herein by reference. For example, a thin film-light-emitting diode wafer has been described in the document EP 0 905 797 A2 ^ and WO 02/13281 A1, the disclosure of which is hereby incorporated by reference in its entirety, other features, advantages and advantages of the optoelectronic component. The preferred configuration and suitability are described in the embodiments shown in Figures 1 through 3 below. [Embodiment] Each of the drawings having the same or the same functions as those in the embodiments is provided with the same reference numerals. The components shown and the ratios between the components are not necessarily drawn to scale. Conversely, for the sake of clarity, some of the details of the various figures have been shown in an enlarged scale. Fig. 1 is a cross-sectional view showing a first embodiment of the photovoltaic module of the present invention. The optoelectronic component has a semiconductor body 1' having an active layer for generating electromagnetic radiation. The active layer of the semiconductor body 1 has a pn junction, a double heterostructure, a single quantum well structure (SQW) or a multiple quantum well structure (MQW) to generate radiation. This name quantum well structure does not point out the dimensions of quantization here. Thus, the quantum well structure may additionally comprise quantum wells - 14 - 200931689 quantum wires and quantum dots and each combination of these structures. The semiconductor body 1 is preferably a nitride-compound semiconductor material. "Based on a nitride-compound semiconductor material, the meaning herein means that the 'active epitaxial layer sequence or at least one layer thereof comprises a nitride_ΠΙ/ν-compound semiconductor material, preferably AlnGamlninN, wherein OSnSl, 〇gm S 1 and n + m S1. Therefore, the material does not necessarily contain the exact composition of the above form expressed mathematically. Conversely, the material may have one or more dopants and other components' It will change the physical properties of this material AUGamlnumN. However, for the sake of simplicity, the above form only contains the main components of the crystal lattice (Al, Ga, In, N), and some of these main components can also be made up of a small amount of other substances k. The semiconductor body 1 has a radiation emitting surface 3 on which a cooling element 4 ′ is arranged to transmit the radiation emitted by the semiconductor body 1 . The heat loss generated during operation of the semiconductor body 1 can be configured by The cooling element 4 on the radiation emitting surface 3 is effectively evacuated from the semiconductor body 1. The cooling element 4 can advantageously have a thermal resistance as small as possible and as large as possible. Therefore, the heat loss transmitted from the semiconductor body 1 to the cooling element 4 can be effectively distributed in the cooling element 4, so that the heat flow can be effectively diffused in the cooling element 4. This is in the semiconductor body 1 It is particularly advantageous when operating at high power (high power semiconductor body), since the discharge of heat loss of the semiconductor body 1 at high power is generally more difficult as the power density increases. By means of the cooling element 4 directly disposed on the radiation surface -15-200931689 of the semiconductor body 1, the heat loss of the semiconductor body 1 can be advantageously discharged to the cooling element 4, so that the heat loss of the half can be maximized. The cooling element 4 allows the semiconductor body 1 to be emitted, and the radiation generated in the semiconductor body 1 can be effectively emitted. The cooling element 4 is, for example, a diamond plate. The heat rate, for example The thermal conductivity of copper is many times higher than that of copper. The heat loss generated in the body 1 can be effectively as low as possible on the diamond plate 4. In addition, the diamond can transmit the semiconductor body, which can The radiant diamond plate 4 is emitted from the semiconductor body 1. The cooling element 4 is preferably formed by a diamond plate having a refractive index of about a refractive index of the nitride-compound semiconductor, that is, the refraction of the two. The rate 値 is only in phase difference. The radiation generated in the Q conductor body 1 is almost lossless in the floor. Therefore, the heat generated in the semiconductor body 1 is lost and at the same time an advantageous emission efficiency can be achieved. The radiation emitting surface of the semiconductor body 1 3 is preferably a radiation emitting surface 3 which has not been roughened in a conventional manner so that the small plate 4 can be directly connected to the semiconductor body 1. There is therefore no distance between the semiconductor surface 3 and the diamond plate 4, which is depleted. The radiation generated in the semiconductor body 1 is transmitted through the radiation of the smallest body 1 . The radiation emitted by the cooling element 4 has a high conductivity, and the radiation generated by the semiconductor heat dissipation 1 is advantageously passed through. Since the diamond has a range of 〇.3 (inclusive), the semi-invasion into the diamond can be effectively smoothed. This. Thus, the radiation of the diamond body 1 can be almost free of heat until the diamond plate 4 -16 - 200931689 〇 The diamond plate 4 can be roughened on the surface away from the semiconductor body 1. Since a part of the diamond is not easily roughened, another way is to arrange a TiCb-layer 5 on the surface of the diamond plate 4 remote from the semiconductor body 1. This TiCh-layer 5 also has a refractive index which is in the range of the refractive index of the nitride-composite semiconductor. This TiCh·layer 5 has a roughness such that the radiation emitted from the semiconductor body 1 is scattered on the emission side of the TiCh-layer 5. Thus, the emission efficiency of the photovoltaic module can be advantageously increased. Furthermore, scattering on the emitting side of the optoelectronic component can be achieved by geometry (e.g., pyramid or microlens), roughening of the emitting side, or photonic crystal structure. Alternatively, the radiation can be scattered by a combination of individual embodiments of the respective radiating structures. The semiconductor body 1 is preferably a light emitting diode. The semiconductor body 1 is particularly advantageously formed by a thin film-light emitting diode (LED). In a film-light-emitting diode (LED), a layer stack for a semiconductor body 1 is formed (particularly deposited) on a substrate for fabrication, and then the substrate for fabrication is removed in a regional manner or entirely. The semiconductor body 1 is preferably disposed on the carrier 9 on the side facing the diamond plate 4, wherein the carrier 9 preferably has a heat sink 11 on the side facing the semiconductor body 1. The semiconductor body 1 can be issued by the semiconductor plate 1 by the diamond plate 4 disposed on the radiation emitting surface 3 of the semiconductor body 1 and the heat dissipating member 1 1 disposed on the opposite side of the semiconductor body 1 The heat loss is effectively discharged. The diamond plate 4 is preferably protruded from the semiconductor body 1 in the lateral direction. It is particularly advantageous if the diamond plate 4 has a lateral dimension that is greater than four to ten times the lateral dimension of the semiconductor body 1. The diamond plate 4 preferably has a mirror layer 13 which has, for example, a silver or dielectric layer in the region facing the semiconductor body 1 in some regions which protrude in the lateral direction from the semiconductor body 1. Here, the mirror layer 13 does not satisfy the characteristic of forming an ohmic contact region, so that the mirror layer 13 can be optimized in such a manner that the radiation emitted from the active layer produces as much as possible High reflectivity. Therefore, the radiation emitted by the semiconductor body 1 into the diamond plate i can be totally reflected at the interface of the diamond plate 4 facing the semiconductor body 1 and incident on the mirror layer 13, and then on the mirror surface. Reflection occurs on the layer 13 such that the radiation at the interface of the diamond plate 4 facing the semiconductor body 1 is emitted by the optoelectronic component. Thus, the overall efficiency of the photovoltaic module can be increased. The diamond plate 4 preferably has a support element 10 in a region facing it (which protrudes from the semiconductor body 1) on the side facing the semiconductor body 1. Thus, each support member 10 connects the diamond plate 4 to the heat sink 11. Each of the support members 10 contains, for example, a metal or a metal alloy to discharge heat as efficiently as possible with as little thermal resistance as possible. Since the lateral dimension of the diamond plate 4 is larger than that of the semiconductor body 1, the heat loss from the semiconductor body 1 to the diamond plate 4 can be effectively distributed in the diamond plate 4, so that the heat flow can be effectively applied to the diamond plate. 4 diffusion. By means of each support element 10, the heat flow can be transmitted from the diamond plate 4 to the heat sink 11 so that the heat loss from the semiconductor body 1 can be effectively transmitted via the diamond plate 4 and the support members 10 It is delivered to the heat sink 11. The optoelectronic component is thus effectively cooled. Each support member 10 preferably provides an electrical contact with a leadframe. Thus, each of the support members 10 can be used to discharge heat generated in the semiconductor body 1 and also to make electrical contact with the semiconductor body 1. Preferably, the optoelectronic component has first and second electrically conductive termination layers 6, 7 disposed on the semiconductor body 1, wherein the first and second electrical termination layers 6, 7 are disposed on the radiation emitting surface of the semiconductor body 1 3 sides face this side. The first and second electrical termination layers 6, 7 are electrically isolated from one another by an isolation layer 15. > The radiation emitting surface 3 of the semiconductor body 1 therefore does not have an electrical contact position (e.g., a connection pad). The risk of shielding and/or absorption of electromagnetic radiation emitted by the active layer during operation due to electrical contact locations is reduced in this manner. Preferably, a portion of the first or second electrical termination layer 6, 7 extends from the radiation emitting surface 3 via the indentation 8 of the active layer in a direction away from the side of the radiation emitting surface 3. In this configuration, the two electrical contact regions of the first and second electrical termination layers 6, 7 respectively extend to a lead frame via the support member 10, or only the first or second electrical termination layer 6, An electrical contact zone of 7 can extend to a leadframe via one of the support members 10. Here, the second electrical contact region of the first or second electrical termination layer 6, 7 extends via the carrier 9 to a lead frame, wherein the carrier 9 has a plurality of openings, and the -19-200931689 one and / Or the second electrical termination layer 6, 7 extends through the opening to the semiconductor layer sequence. In a further embodiment, the first and second electrical termination layers 6 , 7 extend via the opening to the carrier 9 and are electrically connected to a lead frame on the side of the carrier 9 remote from the semiconductor body 1 . (not shown). The carrier 9 preferably contains ruthenium, osmium or Ga As. If the two electrical contact regions of the first and second electrical terminal layers 6, 7 respectively extend to a lead frame via the support element 10, the carrier 9 can also have, for example, A1N or sapphire. Figure 2 shows a second embodiment of an optoelectronic component. The embodiment of Fig. 2 differs from the embodiment of Fig. 1 in that a conversion layer 14 containing a luminescent material is disposed on the Ti〇2-layer S. Since the conversion layer 14 is applied on the Ti 2 - layer 5 and the Ti 2 - layer 5 is disposed on the diamond plate 4, the conversion layer 14 can be effectively cooled by the diamond plate 4. The overheating phenomenon in the luminescent material in the conversion layer 14 or the conversion layer 14 can thus be advantageously reduced. This configuration is advantageous for optoelectronic components that emit white light. One possible electrical contact form of the semiconductor body 1 is shown in an optoelectronic component shown in FIG. The semiconductor body 1 has an active layer 2 which is suitable for generating electromagnetic radiation. At least one notch 8 is formed in the active layer 2. Preferably, a plurality of spaced apart notches 8 are formed, which advantageously achieves a particularly uniform lateral current distribution. This gap 8 extends from the radiation emitting surface 3 in the direction of the face of the semiconductor body 1 facing the radiation emitting surface 3. The gap 8 extends from the first semiconductor layer sequence 1a of the body 1 via the active layer 2 and the second semiconductor layer sequence lb of the semiconductor body 1. A cooling element 4 (e.g., a diamond plate) is applied to the radiation emitting surface 3 for cooling the semiconductor body 1. The diamond plate 4 has a mirror layer 13 in this region facing the semiconductor body 1 in some regions which protrude from the semiconductor body 1 in the lateral direction. The first terminal layer 6 is applied to this side of the semiconductor body 1 remote from the diamond platelet 4. The second terminal layer 7 extends via the gap 8 to this side of the semiconductor body 1 which faces the diamond plate 4. The first electrical termination layer 6 and the second electrical termination layer 7 overlap in a portion of the lateral direction. The first electrical termination layer 6 and the second electrical termination layer 7 are electrically isolated from one another by an isolation layer 15. A carrier 9 can be attached to the first and second electrical termination layers 6, 7 by a solder or adhesive layer 12. The first and second electrical termination layers 6, 7 are contactable Q (not shown) via the support member. The electrical contact of the semiconductor body 1 can thus be achieved on the side by the semiconductor body 1. Alternatively, the gap 8 can be extended via the solder layer 12 and the carrier 9 so that the electrical termination layer 7 can make electrical contact on the side of the carrier remote from the semiconductor body 1. Furthermore, the first electrical termination layer 6 and the second electrical termination layer 7 can extend via the opening Q in the carrier 9 to the side of the carrier 9 facing the semiconductor body 1 such that the first and second electrical The terminal layers 6, 7 can be electrically contacted on the side of the carrier 9 that faces the semiconductor body 1 of the period from 21 to 200931689. The invention is of course not limited to the description made in accordance with the various embodiments. Conversely, the invention encompasses each novel feature and every combination of features, and in particular, each of the various combinations of the various embodiments of the invention, or the individual features of the different embodiments, when the relevant features or related combinations are not The invention is also shown in the scope of each patent application or in the various embodiments. [Simple description of the map]

第1圖本發明之光電組件的第一實施例之橫切面圖。 第2圖本發明之光電組件的第二實施例之橫切面圖。 第3圖本發明之光電組件的第三實施例之橫切面圖。 【主要元件符號說明】 1 半 導 體 MS 本 體 1 a 第 — 半 導 體 H.77. 層 序 列 lb 第 二 半 導 體 層 序 列 2 活 性 層 3 輻 射 發 射 面 4 冷 卻 元 件 5 Ti〇2 -層 6 第 一 電 性 終 端 層 7 第 二 電 性 終 端 層 8 缺 P 9 載 體 10 支 撐 元 件 •22- 200931689 11 散 熱 件 12 焊 接 層或黏合材料層 13 鏡 面 層 14 轉 換 層 15 隔 離 層Figure 1 is a cross-sectional view showing a first embodiment of the photovoltaic module of the present invention. Figure 2 is a cross-sectional view showing a second embodiment of the photovoltaic module of the present invention. Figure 3 is a cross-sectional view showing a third embodiment of the photovoltaic module of the present invention. [Main component symbol description] 1 Semiconductor MS body 1 a - Semiconductor H.77. Layer sequence lb Second semiconductor layer sequence 2 Active layer 3 Radiation emission surface 4 Cooling element 5 Ti〇2 - Layer 6 First electrical termination layer 7 second electrical termination layer 8 missing P 9 carrier 10 support component • 22- 200931689 11 heat sink 12 solder layer or layer of adhesive material 13 mirror layer 14 conversion layer 15 isolation layer

-23--twenty three-

Claims (1)

200931689 十、申請專利範圍·· 1. 一種具有半導體本體(1)之光電組件,其具有一適合用來 產生電磁輻射之活性層(2)、和一輻射發射面(3),其特徵 在於’一冷卻元件(4)配置在該輻射發射面(3)上,該輻射 發射面(3)可使半導體本體(1)所發出的輻射透過。 2 .如申請專利範圍第丨項之光電組件,其中該半導體本體(1 ) 在一載體(9 )上配置在與該冷卻元件(4 )相面對的此側面 _ 上’且該載體(9)在遠離該半導體本體(1)之此側面上具有 〇 一散熱件(1 1 )。 3 .如申請專利範圍第1或2項之光電組件,其中該冷卻元件 (4 )是一種鑽石小板。 ' 4 .如申請專利範圍第1至3項中任一項之光電組件,其中該 冷卻元件(4)在側面由該半導體本體(1)突出。 5 .如申請專利範圍第4項之光電組件,其中該冷卻元件(4 ) 在面向半導體本體(1)之此側面上,在一些以橫向從半導 Q 體本體(1)突出的區域中具有一鏡面層(13)。 6 .如申請專利範圍第4或5項之光電組件,其中該冷卻元件 (4)在面向半導體本體(1)之此側面上,在一些從半導體本 體(1)突出的區域中具有多個支撐元件(10)。 7.如申請專利範圍第6項之光電組件,其中該半導體本體(1) 在與該冷卻元件(4 )相面對的此側面上配置在一載體(9 ) 上,該載體(9)在與半導體本體(1)相面對的此側上具有一 散熱件(Π),且各支撐元件(10)將該冷卻元件(4)與散熱 -24- 200931689 件(1 1 )相連接。 8 .如申請專利範圍第1至7項中任一項之光電組件,其中該 光電組件具有配置在半導體本體上之第一和第二電性終 端層(6,7),且第一和第二電性終端層(6,7)配置在半導 體本體(1)之與輻射發射面(3)相面對的此側面上。 9.如申請專利範圍第8項之光電組件,其中該第一或第二電 性終端層(6,7)之一部份區域由輻射發射面(3)經由活性 層(2)之缺口(8)而在向遠離該輻射發射面(3)之此側面的 〇 方向中延伸。 1 0 .如申請專利範圍第9項之光電組件,其中經由該缺口( 8 ) 而延伸之該第一或第二°電性終端層(6,7 )之第二電性接 觸區配置在與該輻射發射面(3)相面對的此側面上。 1 1 .如申請專利範圍第8至1 0項中任一項之光電組件,其中 該半導體本體(1)在遠離該冷卻元件(4)之側面上具有一 載體(9),此載體(9)具有多個開口(8)且第一及/或第二 Q 電性終端層(6,7)經由開口而延伸至半導體層序列。 1 2 .如申請專利範圍第1至11項中任一項之光電組件,其中 該冷卻元件(4)在遠離該半導體本體(1)之此側面上具有 一種粗糙性。 13. 如申請專利範圍第1至12項中任一項之光電組件,其中 在該冷卻元件(4)之遠離該半導體本體(1)之此側面上配 置一種Ti〇2 -層。 14. 如申請專利範圍第13項之光電組件,其中該Ti〇2 -層具 -25- 200931689 有一種粗糙性。 1 5 .如申請專利範圍第1至1 4項中任一項之光電組件,其中 該冷卻元件(4)在遠離該半導體本體(1)之此側面上具有 一種轉換層(1 4 )。200931689 X. Patent Application Range 1. An optoelectronic component having a semiconductor body (1) having an active layer (2) suitable for generating electromagnetic radiation and a radiation emitting surface (3) characterized by ' A cooling element (4) is disposed on the radiation emitting surface (3), and the radiation emitting surface (3) transmits the radiation emitted by the semiconductor body (1). 2. The optoelectronic component of claim 3, wherein the semiconductor body (1) is disposed on a carrier (9) on the side facing the cooling element (4) and the carrier (9) A heat sink (1 1 ) is provided on the side remote from the semiconductor body (1). 3. The photovoltaic module of claim 1 or 2, wherein the cooling element (4) is a diamond plate. The photovoltaic module according to any one of claims 1 to 3, wherein the cooling element (4) protrudes laterally from the semiconductor body (1). 5. The optoelectronic component of claim 4, wherein the cooling element (4) has on the side facing the semiconductor body (1), in some regions protruding laterally from the semiconducting Q body (1) A mirror layer (13). 6. The optoelectronic component of claim 4 or 5, wherein the cooling element (4) has a plurality of supports in a region projecting from the semiconductor body (1) on the side facing the semiconductor body (1) Element (10). 7. The optoelectronic component of claim 6 wherein the semiconductor body (1) is disposed on a side of the carrier (9) facing the cooling element (4), the carrier (9) being On the side facing the semiconductor body (1) there is a heat sink (Π), and each support element (10) connects the cooling element (4) to the heat sink-24-200931689 piece (1 1 ). The optoelectronic component of any one of claims 1 to 7, wherein the optoelectronic component has first and second electrical termination layers (6, 7) disposed on the semiconductor body, and the first and the The two electrical termination layers (6, 7) are arranged on this side of the semiconductor body (1) facing the radiation emitting surface (3). 9. The photovoltaic module of claim 8, wherein a portion of the first or second electrically terminal layer (6, 7) is covered by the radiation emitting surface (3) via the active layer (2) ( 8) and extending in a meandering direction away from the side of the radiation emitting surface (3). 10. The photovoltaic module of claim 9, wherein the second electrical contact region of the first or second electrical termination layer (6, 7) extending through the gap (8) is disposed in The radiation emitting surface (3) faces on the side facing each other. The photovoltaic module according to any one of claims 8 to 10, wherein the semiconductor body (1) has a carrier (9) on a side remote from the cooling element (4), the carrier (9) There are a plurality of openings (8) and the first and/or second Q electrical termination layers (6, 7) extend through the openings to the semiconductor layer sequence. The photovoltaic module according to any one of claims 1 to 11, wherein the cooling element (4) has a roughness on a side away from the semiconductor body (1). 13. The optoelectronic component of any of the claims 1 to 12, wherein a Ti〇2-layer is disposed on the side of the cooling element (4) remote from the semiconductor body (1). 14. The photovoltaic module of claim 13, wherein the Ti〇2-layer has a roughness of -25-200931689. The photovoltaic module according to any one of claims 1 to 4, wherein the cooling element (4) has a conversion layer (14) on a side away from the semiconductor body (1). -26--26-
TW97145589A 2007-12-19 2008-11-26 Optoelectronic module with trigistor TW200931689A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710061140 DE102007061140A1 (en) 2007-12-19 2007-12-19 Optoelectronic component with cooling element

Publications (1)

Publication Number Publication Date
TW200931689A true TW200931689A (en) 2009-07-16

Family

ID=40380099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145589A TW200931689A (en) 2007-12-19 2008-11-26 Optoelectronic module with trigistor

Country Status (3)

Country Link
DE (1) DE102007061140A1 (en)
TW (1) TW200931689A (en)
WO (1) WO2009076921A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062932A1 (en) * 2008-12-23 2010-06-24 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684309A (en) 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
KR100660152B1 (en) 1997-01-09 2006-12-21 니치아 카가쿠 고교 가부시키가이샤 Nitride Semiconductor Device
US5831277A (en) 1997-03-19 1998-11-03 Northwestern University III-nitride superlattice structures
EP2169733B1 (en) 1997-09-29 2017-07-19 OSRAM Opto Semiconductors GmbH Semiconductor light source
EP1119058A4 (en) * 1999-07-29 2006-08-23 Citizen Electronics Light-emitting diode
DE19955747A1 (en) 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optical semiconductor device with multiple quantum well structure, e.g. LED, has alternate well layers and barrier layers forming super-lattices
US20020017652A1 (en) 2000-08-08 2002-02-14 Stefan Illek Semiconductor chip for optoelectronics
DE10101554A1 (en) * 2001-01-15 2002-08-01 Osram Opto Semiconductors Gmbh emitting diode
JP2003298115A (en) * 2002-04-05 2003-10-17 Citizen Electronics Co Ltd Light emitting diode
GB0328007D0 (en) * 2003-12-04 2004-01-07 Univ Strathclyde Improved vertical external cavity surface emitting laser
US20070267646A1 (en) * 2004-06-03 2007-11-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including a Photonic Crystal and a Luminescent Ceramic
US7196354B1 (en) * 2005-09-29 2007-03-27 Luminus Devices, Inc. Wavelength-converting light-emitting devices
JP4950999B2 (en) * 2005-10-07 2012-06-13 オスラム シルヴェニア インコーポレイテッド LED with translucent heat sink
JP2007165811A (en) * 2005-12-16 2007-06-28 Nichia Chem Ind Ltd Light emitting device

Also Published As

Publication number Publication date
WO2009076921A1 (en) 2009-06-25
DE102007061140A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US10644202B2 (en) Electrode of light-emitting device
TWI351773B (en) Light emitting device
JP5523747B2 (en) Improved bond pad design to enhance light derivation from LED chips
JP6101001B2 (en) Light emitting device package and illumination system including the same
KR100986518B1 (en) Semiconductor light emitting device
TW201115790A (en) Wavelength-converted semiconductor light emitting device including a filter and a scattering structure
KR101475963B1 (en) Radiation emitting semi­conductor body having an electrically conductive contact layer permeable to the emitted radiation
US10270019B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component and method for producing an optoelectronic semiconductor chip
KR102548428B1 (en) Interconnects for light emitting diode chips
TWI625868B (en) Optoelectronic device and method for manufacturing the same
JP2009524918A (en) Photoelectric semiconductor chip
JP2014003326A (en) Optoelectronics semiconductor body
US9601667B2 (en) Light-emitting device
JP2008085337A (en) Semiconductor body and semiconductor chip
TW202339302A (en) Contact structures of led chips for current injection
JP2018530924A (en) Semiconductor device, semiconductor device package, and illumination system including the same
US20100019259A1 (en) LED Semiconductor Body and Use of an LED Semiconductor Body
KR102075713B1 (en) Light emitting device and light emitting device package
TW201017922A (en) Light emitting diode package
US8928026B2 (en) Optoelectronic device and method for manufacturing the same
KR20100137524A (en) A light emitting diode structure, a lamp device and a method of forming a light emitting diode structure
TWI699909B (en) Light-emitting element
JP4488514B2 (en) Semiconductor device emitting radiation
TW200931689A (en) Optoelectronic module with trigistor
CN103943748B (en) Light-emitting component