TW200930523A - 7 degrees of freedom humanoid robot arm (including a gripper) - Google Patents

7 degrees of freedom humanoid robot arm (including a gripper) Download PDF

Info

Publication number
TW200930523A
TW200930523A TW97101132A TW97101132A TW200930523A TW 200930523 A TW200930523 A TW 200930523A TW 97101132 A TW97101132 A TW 97101132A TW 97101132 A TW97101132 A TW 97101132A TW 200930523 A TW200930523 A TW 200930523A
Authority
TW
Taiwan
Prior art keywords
freedom
robot arm
degrees
arm
base
Prior art date
Application number
TW97101132A
Other languages
Chinese (zh)
Inventor
Han-Pang Huang
Hung-Ta Lin
Jiun-Yih Kuan
Original Assignee
Han-Pang Huang
Hung-Ta Lin
Jiun-Yih Kuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Han-Pang Huang, Hung-Ta Lin, Jiun-Yih Kuan filed Critical Han-Pang Huang
Priority to TW97101132A priority Critical patent/TW200930523A/en
Publication of TW200930523A publication Critical patent/TW200930523A/en

Links

Landscapes

  • Manipulator (AREA)

Abstract

A new seven degrees of freedom humanoid robot arm (manipulator) includes a set of mechanisms linked with a series of revolute joints, and seven servo motors. It can locate an end-effector within certain workspace. The six revolute joints contribute degrees of freedom necessary for vertical, horizontal, and rotation motions in the tree dimension space. In addition, it can achieve singularity avoidance and obstacle avoidance, fulfill complicated tasks, and perform dexterous motions by one more redundant revolute joint, and the design of the first tree axes intersection and last three axes intersection. The end-effector link of the robot arm is able to integrate with not only the designed one degree of freedom gripper but also different end-effectors to achieve various functions. The humanoid robot arm is compact enough to allow easy integration into any platform. The dexterousness and manipulability of the 7 degrees of freedom humanoid robot arm are very high so that it can fulfill different complicated tasks easily.

Description

200930523 九、發明說明: 【發明所屬之技術領域】 本發明係錢於安裝於任意平台上,執行任意空間中運 動任務,且可絲各種末端效能器之具七個自由度的擬人形機器 手臂及其自身配備之—個自由度的夾持端。 【先前技術】 、相較於傳賴械手臂,健執行特定、有限的任務外,串聯 式的多自域顧手臂具有高度操作性、工作區域大及執行任務 更為彈性等伽。因此現今多轴機时臂已被叙翻於固定及 =動式的機器人平台、自動化系統或導覽系統等任務上,以移動 末端效能關料之位置進行如續、卸載、搬運或指示等特定 =工作。無論是用於教育或商業用途,礙於多自由度的擬人形機 •配三至四 。手臂之機構設計過於複雜,所以現有之產品大多僅抝 個自由度的機器手臂。 但-般工業用之機器手臂及舊有多自由度機器手臂由於益且 類似人類手臂之尺寸及_配置、擬人形的外觀、三湖心、多、 餘自由度料設計,峨於所佔空間較大、脑度不高、演算控 ^雜,且無法泛用’難⑽合既有為人類設狀工具與工作區 域’僅能執行有限的工作。 200930523 【發明内容】 本發明之目的在提供—種 上,執行抓握、拿取、搬運、表達=任意移動、非移動平台 間上之運動任鱗舰 &福之行城執行任意空 聯式機構與財配置,使彳統。料特翁人形式的串 ,Β. 林機时臂具有前三軸、後:袖同心 =Γ幽人卿觀,可執行嫩工作朗中的多 Ο200930523 IX. Description of the Invention: [Technical Field of the Invention] The present invention is a humanoid robotic arm that is installed on any platform and performs motion tasks in any space, and has seven degrees of freedom for various end effectors. It is equipped with a free-degree clamping end. [Prior Art] In addition to the specific and limited tasks performed by the arm, the tandem multi-self-arms have high operability, large working area and more flexible execution tasks. Therefore, today's multi-axis machine time arm has been turned over to tasks such as fixed and = dynamic robot platforms, automation systems or navigation systems, such as continuation, unloading, handling or indication of the position of the mobile end performance. = work. Whether for educational or commercial use, the anthropomorphic machine with multiple degrees of freedom • with three to four. The design of the arm mechanism is too complicated, so most of the existing products only have a robot with a degree of freedom. However, the robotic arm of the industrial use and the old multi-degree-of-freedom robotic arm are similar to the size and _ configuration of the human arm, the appearance of the humanoid shape, the design of the three lakes, and the design of the free-of-freeness material. Larger, less brain-high, calculus-controlled, and unable to use 'difficult (10) combined with existing tools for humans and work areas' can only perform limited work. 200930523 [Description of the Invention] The object of the present invention is to provide an arbitrary type of connection, such as grasping, taking, carrying, expressing = arbitrarily moving, moving between non-mobile platforms, and performing a free-air connection. Institutional and financial allocations make SiS. The string of the Tengren form, Β. The forest machine has the first three axes, the back: the sleeves are concentric = the Γ人人卿观, can perform the work of the lang

運動4于為與功能。 特殊行泛料魏,本發明之 输人蝴《她_、_與後三翔心相交之特 ^構^無人_♦賴器懷具㈣空間、高靈 I ::態響應等特性。而為了在工作空間中可達到模擬人 :=Γ在人類環境中執行任務’桿件之長度與關節之配置 係』由參考人體骨縣構尺寸與運動方式求得。 七個自由度_誠構分顺供機器”物可達 =間位置之必論自由度;彻餘的—個自由度將可# U手臂達辆礙物之避免、奇無之避解舰,進而可 執打靈活_作。而為了使本發明具有魏、搬運、指示等卿 配合設計――自由度的夾持端。機器手臂之末端連桿除可安:自 二設計之鱗料,也可安裝各種末端操作如達到不同之用' 途。其佔岐_小,操作性極高,可與料平台進行整合。此 外,此機器手臂之靈巧度及操縱性佳,翻於執行各種任ς。 7 200930523 【實施方式】 兹配合圖式將本㈣倾佳實蘭詳細說明如下。 參閱第-圖’本發明之機器手臂實施例之立體圖及圖二、 圖三’本發明之機器手臂實施例之前視圖與側視圖。其中包含. -可承接支撐底座之第一桿件基座1〇; 一連接内嵌於二 件基座10之旋轉馬達M1; 一連接於旋轉式馬達Μι輸出袖之第二^ 桿件基座20 ’操縱旋轉式馬達·可使第—桿件基趣與第二= 件基座2〇產生旋轉之相對運動,可操控整隻機器手臂做前方上下 旋轉之動作(piteh) ’為支#、移動整隻手f之主要關節。第二段产 件基座20上附有第-軸近接關定位孔⑽,可钱—近接開關, 作為第一軸歸零定位及機構碰撞避免的感測元件。一連接嵌入第 二段桿件基座20之伺服馬達M2 ,透過馬達輸出端之皮帶輪2⑴, 可帶動經過惰輪203施加適當張力後的皮帶傳動,可帶動第二軸驅 動之皮帶輪202,操控所連接的第三段桿件基座3〇,使第二段桿件 基座20與第三段桿件基座3〇產生旋轉之相對運動,可操控整隻機 器手臂做側方向上下旋轉之動作(yaw);第三段桿件基座3〇上附有 第二軸近接開關定位孔204,可安裝一近接開關,作為第二軸歸零 疋位及機構碰撞避免的感測元件。 一第三桿件基座30透過四圓柱狀之支撐桿3〇1Α、3〇ΐβ、 301C、301D,連接於第三段桿件末端座go],成為一完整剛體; 四圓柱狀之支撐桿301A、301B、301C、301D之設計可提供上肢機 200930523 為手#所需要的剛性,同時減輕手臂重量。一内嵌於第三桿件其 座30、四圓柱狀之支撐桿301人、3018、301(:、3010,及第三段桿 件末端座302之中心之旋轉馬達M3之輸出端連接於第四段桿件基 座40 ;操縱旋轉式馬達M3可使第三桿件末端座3〇2與第四段桿件 基座40產生旋轉之相對運動,可操控上肢機器手臂做水平方向左 右旋轉之動作(roll)。第四段桿件基座40上附有第三軸近接開關定 位孔303,可安裝一近接開關,作為第三軸歸零定位及機構碰撞避 Θ免的感測元件。 機器手臂之第一轴、第二軸及第三軸伺服馬達M1、M2、M3 透過皮帶輪組2(H、202、203之傳動設計,使得機械手臂的前三轴 同心相交於一點,可操控機器手臂末端作三度空間三個自由度之 移動,達到與人類肩部相似的運動模式。 一連接嵌入第四段桿件基座4〇之伺服馬達M4,透過伺服馬達 〇刚輸出端之皮帶輪401,可帶動經過情輪4〇3施加適當張力後的皮 帶傳動,可帶動第四軸驅動之皮帶輪4〇2,操控所連接的第五段桿 件基座50 ’使如段桿件基細與紅段桿縣座观生旋轉之 相對運動’可操控機器手臂下肢做前方向上下旋轉之動作㈣的; 第五段桿件基座5〇上附有第四軸近接開蚊位孔彻,可安裳一近 接開關,作為第四軸歸零定位的感測元件。而此傳動機構之設叶, 對比於人類財部歸之配置。而此多餘之自由度可使本發明之機 器手臂達成㈣情礙物之避免、奇異點之魏等功能,使 200930523 得機器手臂執行更靈活的動作。 第五杯件基座5〇透過三圓柱狀之支撑桿H 意,連接於第五段桿件末端座5〇2,成為一完整剛體;三圓柱狀 之支撐獅A、5⑽、㈣之設計可提供下肢機器手臂所需要的 剛性’同時減輕手臂重量。—内祕第五桿件基舰、三圓柱狀 之支撐桿5〇1A、5_、5〇lc,及第五段桿件末端座5〇2中心之旋 轉馬達M5之輸出端連接於第六段桿件基座6〇;操縱旋轉式馬_5 可使第五桿件末端座5G2與第六段桿件基躺產生旋轉之械運〇 動’可操控下肢機器手臂做水平方向左右旋轉之動作⑽D。第六 段桿件基細上财第五轴之近接關定位·3,可安裝一近接 開關’作為第五轉零定似麟碰撞避免_測元件。 連接肷入第六段桿件基座6〇之伺服馬達M6,第六段桿件基 座60與第六段桿件外侧板6〇5結合,透過伺服馬達刚輸出端之皮 ▼輪6〇卜可帶動經過情輪603施加適當張力後的皮帶傳動,可帶 動第六軸驅動之皮帶輪602,操控所連接的第七段桿件基座%,使0 第六段桿件基細與第七段桿件基座職线轉之姉運動可 _機器手臂之腕部做前方向上下旋轉之動作(pitch);第八段桿件 基細上附有第六軸近關關定位孔6〇1,可安裝一近接開關,作 為第六軸歸零定位及機構碰撞避免的感測元件。 連接嵌入第七段捍件基座7〇之伺服馬達厘7,連接於第八段 桿件基座8G ;操縱娜式馬達使第轉件基細與第七段桿 200930523 件基座爾生旋轉之姆運動,可操控機料臂腕部做測方向左 右旋轉之賴(yaw);第八段桿件基細均有第蝴近接開關定 位孔7〇1 ’可安裝—近接_ ’作為第蝴歸零定位及機構碰撞避 免的感測元件。 機器手臂之第五軸、第六軸及第七轴伺服馬達M5、M6、M7 透過皮帶輪組⑽、6G2、6G3之傳動設計,使得機械手臂的腕部三 ❹軸如相交於一點,可操控此機器手臂末端作三度空間三個自由 度之旋轉動作,翻與人細部她的運動模式。 -弟八段桿件末端基座謝上附有可安褒不同末端器之孔洞 夾持立而基座90與第八段桿件末端座8〇1以透過末端器之孔洞 聊以獅結合;—傭馬綱欽©定於祕端隸90,舰 ^達⑽之輸出軸連接於馬達輸出端之絲搬謂合連動齒輪 9〇2β .’分別接於夹持指1之驅動連桿901A、夾持指2之驅動連桿 〇 901Β,-夹持指!,9〇3Α連接固定於夾持指!之驅動連桿則a上, a “寺才曰2 9〇犯連接固定於夾持指2之驅動連桿9〇ib上,·操縱 A專式馬達M8輸出端帶動馬達輪出端之齒輪9〇2八,而馬達輸出端 lj輪902A啊以—比—的速率帶動連動齒輪,進而分別帶 動夾持指!之驅動連桿9〇1A、夾持指2之驅動連桿9_,使夾具基 座9〇與夾持指1之驅動連桿9〇1A、夾持指2之驅動連桿刪同時產 生旋轉之相對運動,可操控夾持指卜舰與夾持指2,娜進行 夹持的動作。 200930523 以3_!_3自域配細轉麵分職供機好#運動 所有二維郎位置之必須六個自由度,並可提供機器手臂_ 礙物之避免、運异奇異點之避免等魏,使得機 執行不_作。機好f之末端連桿除可安裝自行設計之夹二了 ==用指示、夾取等動作外’也可安裝各種末端操作器以達而 種^ 峨好f ^靈巧度及操縱性佳,_於執行各 【圖式簡單說明】Exercise 4 is a function of function. Special line of general Wei, the invention of the input of the butterfly "her _, _ and the three three Xiangxin intersection of the special ^ structure ^ no _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In order to achieve the simulation in the work space: = 执行 perform tasks in the human environment ‘the length of the rod and the configuration of the joints ′′ are determined by reference to the size and movement of the human bone county. Seven degrees of freedom _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In addition, in order to make the invention have the matching design of the Wei, the handling, the instruction, etc. - the degree of freedom of the clamping end. The end link of the robot arm can be safe: since the design of the scales, It can be installed with various end operations such as different uses. It has a small size and high operability, and can be integrated with the material platform. In addition, the robot's dexterity and maneuverability are good, and it can be used to perform various tasks. 7 200930523 [Embodiment] The present invention is described in detail below with reference to the drawings. Referring to the drawings - FIG. 3 is a perspective view of the embodiment of the robot arm of the present invention, and FIG. 2 and FIG. 3 are an embodiment of the robot arm of the present invention. Front view and side view, including: - a first rod base 1 可 which can support the support base; a rotary motor M1 connected to the two base base 10; a first connection to the rotary motor Μι output sleeve Two ^ rod base 20 'operating rotary motor · can The relative movement of the first member and the second member base 2〇 is rotated, and the whole robot arm can be manipulated to perform the forward and downward rotation motion (piteh) 'for the branch#, and the main joint of the whole hand f is moved. The second stage of the workpiece base 20 is provided with a first-axis close-contacting positioning hole (10), and a money-proximity switch is used as a sensing element for the first-axis zero-positioning and mechanism collision avoidance. The servo motor M2 of the base base 20 passes through the pulley 2 (1) at the output end of the motor, and can drive the belt drive after the appropriate tension is applied through the idler pulley 203, and can drive the second shaft driven pulley 202 to control the connected third segment rod The pedestal 3 〇 causes the second rod base 20 and the third rod base 3 〇 to rotate relative motion, and can control the whole robot arm to rotate sideways up and down (yaw); the third section A second shaft proximity switch positioning hole 204 is attached to the rod base 3, and a proximity switch can be installed as a sensing element for the second shaft returning to zero position and mechanism collision avoidance. Four cylindrical support rods 3〇1Α, 3〇ΐβ, 301C, 301D Connected to the third end of the rod end seat] to form a complete rigid body; the four cylindrical support rods 301A, 301B, 301C, 301D are designed to provide the rigidity required for the upper limb machine 200930523 for the hand #, while reducing the weight of the arm. An output end of the rotary motor M3 embedded in the third rod member 30, the four cylindrical support rods 301, 3018, 301 (:, 3010, and the third rod end end 302) is connected to the The four-stage rod base 40; the rotary motor M3 is operated to cause the third rod end seat 3〇2 and the fourth-stage rod base 40 to rotate relative motion, and the upper limb robot arm can be controlled to rotate horizontally left and right. The fourth shaft member base 40 is provided with a third shaft proximity switch positioning hole 303, and a proximity switch can be installed as a sensing element for the third axis zero return positioning and the mechanism collision avoidance. The first, second and third axis servo motors M1, M2, M3 of the robot arm are transmitted through the pulley set 2 (H, 202, 203 transmission design, so that the first three axes of the robot arm are concentrically intersected at one point, the machine can be controlled The end of the arm is moved by three degrees of freedom in three degrees of space to achieve a motion pattern similar to that of the human shoulder. A servo motor M4 is inserted into the base of the fourth rod base 4, and the pulley 401 is passed through the servo motor. It can drive the belt drive after the appropriate tension is applied through the mood wheel 4〇3, which can drive the fourth shaft driven pulley 4〇2, and control the connected fifth segment rod base 50′ to make the segment rod base fine The relative motion of the rotation of the red section of the county seat can be controlled to move the lower limbs of the robot arm in the forward direction (fourth); the fifth section of the base of the rod is attached with a fourth axis and a mosquito hole. Anshang a proximity switch is used as the sensing element for the fourth axis to zero position. The leaf of this transmission mechanism is compared with the configuration of the human finance department. This excess degree of freedom can make the robot arm of the present invention achieve (four) Obstacle avoidance, odd The function of the point and the other makes the robot arm perform more flexible movements in 200930523. The fifth cup base 5〇 is connected to the fifth column-shaped support rod H, and is connected to the fifth-stage rod end seat 5〇2, becoming a Complete rigid body; three cylindrical support lions A, 5 (10), (four) are designed to provide the rigidity required for the lower limbs of the robot' while reducing the weight of the arm. - The inner five-piece base ship, three cylindrical support rods 5〇1A , 5_, 5〇lc, and the fifth end of the rod end seat 5〇2, the output end of the rotary motor M5 is connected to the sixth stage rod base 6〇; the rotary type horse _5 can make the fifth rod The end seat 5G2 and the sixth section of the rod base are rotated to produce a rotating motion. The steerable lower limb robot arm can be rotated horizontally to the left and right (10) D. The sixth section of the rod base is finely connected to the fifth axis. 3, can install a proximity switch 'as the fifth turn zero to determine the collision avoidance _ measuring component. Connect the servo motor M6 into the sixth segment of the rod base 6〇, the sixth segment of the base 60 and the sixth The outer side plate 6〇5 of the segment rod is combined, and the skin of the servo motor just outputs the end of the wheel. Driving the belt drive after the proper tension is applied by the condition wheel 603, the sixth shaft driven pulley 602 can be driven to control the connected seventh base member base %, so that the sixth sixth rod member base and the seventh segment rod The movement of the pedestal line can be moved _ the arm of the robot arm is rotated in the forward direction (the pitch); the eighth section of the rod is attached with the sixth axis close to the closing locating hole 6〇1, A proximity switch is installed as a sensing element for the sixth axis zero return positioning and mechanism collision avoidance. The servo motor 7 embedded in the seventh stage base 7 is connected to the eighth segment base 8G; The Na-type motor makes the base of the first rotating piece and the seventh-stage rod 200930523 pedestal rotation of the turret. It can control the yaw of the arm of the machine arm to measure the direction of the left and right. The eighth section is the base of the rod. There are the first butterfly proximity switch positioning hole 7〇1 'can be installed - close _ 'as the sensing element of the butterfly return to zero positioning and mechanism collision avoidance. The fifth, sixth and seventh axis servo motors M5, M6 and M7 of the robot arm are designed to be transmitted through the pulley sets (10), 6G2 and 6G3, so that the three axes of the arm of the robot arm intersect at a point, and this can be controlled. At the end of the robot arm, the three-degree space of three degrees of freedom is rotated, and the movement pattern of the person is turned over. - The eight-segment rod end base is attached with a hole for the different end devices. The base 90 and the eighth end rod end seat 8〇1 are used to communicate with the lion through the hole of the end piece; —Major Ma Qinqin is set at the secret end of the 90, the output shaft of the ship ^da (10) is connected to the motor output end of the wire to move the combined gear 9〇2β. 'Connected to the drive finger 901A of the grip finger 1, respectively, clamp Refers to the 2 drive linkage 〇901Β,-clamping finger! , 9〇3Α connection fixed to the grip finger! The driving link is a, a "the temple is connected to the driving link 9〇ib of the clamping finger 2, and the output of the A-motor M8 is driven to drive the gear of the motor wheel 9 〇2,8, and the motor output end lj wheel 902A drives the interlocking gear at a rate of -, and drives the driving link 9〇1A of the clamping finger and the driving link 9_ of the clamping finger 2 respectively to make the clamp base The seat 9〇 and the driving link 9〇1A of the clamping finger 1 and the driving link of the clamping finger 2 simultaneously generate a relative movement of the rotation, and can control the clamping of the fingerboard and the clamping finger 2, and the clamping is performed by Na. 200930523 3_!_3 self-contained with a fine face-to-face job for the good machine # 运动 All two-dimensional lang position must have six degrees of freedom, and can provide robotic arm _ obstruction avoidance, avoidance of strange points, etc. Wei, so that the machine does not work. The end of the machine f can be installed in addition to the self-designed clips == use instructions, clips and other actions can also be installed a variety of end operators to achieve a good ^ f ^ dexterity and maneuverability, _ in the implementation of each [simplified description of the schema]

第-圖係本發明七織人形機好臂之立體圖。 第二圖係本發日壯軸擬人形機H手臂之前視圖。 第三圖係本發明七軸擬人形機ϋ手臂之側視圖。 【圖式中之參照號數】 10--第一段桿件基座 101--第一軸近接開關定位 20-第二段桿件基座 201--馬達輸出端之皮帶輪 203-惰輪 30-第三段桿件基座 301Α-圓柱狀支撐桿丄 301C--圓柱狀支撐桿3 302--第二段桿件末端座The first figure is a perspective view of the good arm of the seven-woven humanoid machine of the present invention. The second picture is the front view of the H-arm of the Japanese-style axis. The third figure is a side view of the seven-axis anthropomorphic machine arm of the present invention. [Reference number in the figure] 10--first stage rod base 101--first shaft proximity switch positioning 20-second stage rod base 201--motor output pulley 203-idler 30 - third stage rod base 301 Α - cylindrical support rod 丄 301C - cylindrical support rod 3 302 - second stage rod end seat

Ml--伺服馬達 M2--伺服馬達 202--第二軸驅動之皮帶輪 204--第二軸近接開關定位孔 M3--伺服馬達 301B -圓柱狀支撐桿2 3 01D--圓柱狀支撐桿4 303-第三軸近接開關定位孔Ml--servo motor M2--servo motor 202--second shaft driven pulley 204--second shaft proximity switch positioning hole M3--servo motor 301B-cylindrical support rod 2 3 01D--cylindrical support rod 4 303-third axis proximity switch positioning hole

12 200930523 M4--伺服馬達 402--第四軸驅動之皮帶輪 404--第四軸近接開關定位孔 M5--伺服馬達 501B--圓柱狀支撐桿2 502--第五段桿件末端座 M6--伺服馬達 602--第六軸驅動之皮帶輪 604--第六軸近接開關定位孔 M7-伺服馬達 7〇 1 -第七軸近接開關定位孔12 200930523 M4--Servo motor 402--fourth shaft driven pulley 404--fourth shaft proximity switch positioning hole M5--servo motor 501B--cylindrical support rod 2 502--the fifth stage rod end seat M6 --Servo motor 602--sixth shaft driven pulley 604--sixth shaft proximity switch positioning hole M7-servo motor 7〇1 - seventh shaft proximity switch positioning hole

40--第四段桿件基座 401--馬達輸出端之皮帶輪 403--惰輪 50--第五段桿件基座 501A-圓柱狀支撐桿1 501C--圓柱狀支撐桿3 303—第五軸近接開關定位孔 60-弟六段桿件基座 601--馬達輸出端之皮帶輪 603-惰輪 605--第六段桿件外側板 70--第七段桿件基座 8〇--第八段桿件基座 M8-伺服馬達 801-第八段桿件末端基座 90 一夾持端基座 901A—夾持指丨之驅動連桿 902A--馬達輸出端之齒輪 903A--失持指1 901A —夾持指2之驅動連桿 902B--連動齒輪 903B--夾持指2 1340--fourth rod base 401--motor output pulley 403-- idler 50-- fifth stage rod base 501A-cylindrical support rod 1 501C--cylindrical support rod 3 303- The fifth shaft proximity switch positioning hole 60-the six-segment rod base 601--the motor output end pulley 603-idler 605--the sixth-stage rod outer plate 70--the seventh-stage rod base 8〇 - The eighth stage rod base M8-servo motor 801 - the eighth stage rod end base 90 a clamping end base 901A - the gripping finger drive link 902A - the motor output end gear 903A- - Missing finger 1 901A - Drive link 902B of grip finger 2 - Linkage gear 903B - Clamp finger 2 13

Claims (1)

200930523 十、申請專利範圍: 1· 一種機器手臂,包含: 一旋轉關節傳動機構’包含—可固定於任—底座上之機 臂末端,七段可動式桿件與末端連桿组成—串聯式機構。第1 出軸與第六輸出軸之皮帶輪組的設計使得機器手臂具有前三細 後三㈣心相交與擬人形的外觀,達到與人類相同之自由度配置 3-1-3 ’可兼具大工作空間、高靈活度、良好動態響應等特性。連 桿間之活動部分係由粒安狀軸承提供。伽機射裝有七顆 馬達以提供立體空間崎需的移動與轉動之六個自由度,.*—p 〇 餘自由度可使機n手料成演算之奇異點麟礙物避免等魏^ 2時亦可增加手f之靈活度與操縱度。傳動機構每軸之輸出端均 设有近接開關⑽崎—勢除了具有歸原點之功能外 2預防機構於操作不當時發生碰撞。每段輸出軸之後部分連桿與 月ίι 4刀連;μ均料#軸承與内環軸承樞接,構成雙邊支標之效, 可有效平均分敝力,增加輸㈣之平行度。此外,機構於 連桿設有圓孔使機11手臂可安裝各種末端效能器而達到各式錢〇 的用途。 &amp; 一早自由度的夾持端,包含一固定於機器手臂之末端連桿之 連接底座’-射動式夾持指,—對齒輪域___服馬達。利 用-對齒輪組機構·服馬達,可使—對紐指同軸作,進行 抓握:搬運、指示等功能。而夾持指、伺服馬達或齒輪級上可= 裝力量感測器,達到控制抓握力量之功能。 女 14 200930523 2.如申请專利範圍第丨項所述之機器手臂,其中,該舰馬達 是其他類型馬達者,如步進馬達。 3·如申=專利範圍第1項所述之機器手臂,其巾,該第-桿件基座 可改變形狀,安裝於結構可為任意形狀之板塊底座者。 4·如申請專利範圍第丨項所述之機器手臂,其中,該三轴同心之設 計’可為非皮帶輪組之驅動設計,如鍊輪、齒輪組或煞車線等 間接或直接驅動之裝置者。 ' 5. 如申請專利翻第㈣所述之機器手臂,其中,七個自由度之設 計可簡化為七個自由度以下,可為3-1-3、2-1-3或3七2之=置。 ❹ 6. 如申請專利範圍第!項所述之機器 式可設為單邊錢3她承之配置方 7·==範圍第!項所述之機器手臂’其,,該近接開關可設 哭箄式、非光學形式之感測器者,如觸碰式令斷器、電位 口 σ 夸-〇 200930523 8.如申請專利範圍第1項所述之機器手臂,其中, 孔可為其他利於固定末端效能器之元件者, 該末端連桿之i 如螺紋孔。 9. 如申請專利範圍第1項所述之機器手臂, &quot;wr V, ^4- /、中,早自由度之失持 鲕了改為其他形狀或多自由度。 10 _上列舉内容外,舉凡依 等效-彳„ 君』作申凊專利之範圍所做之 ❹ 變化與修飾,皆竭本_專利範圍内。200930523 X. Patent application scope: 1. A robotic arm, comprising: a rotary joint transmission mechanism comprising: an end of an arm that can be fixed on any of the bases, a seven-section movable rod and an end link - a tandem mechanism . The design of the pulley set of the first output shaft and the sixth output shaft allows the robot arm to have the appearance of the first three thin three (four) heart intersections and the anthropomorphic appearance, and achieve the same degree of freedom as humans. Work space, high flexibility, good dynamic response and other features. The movable part between the links is provided by a grained bearing. The gamma machine is equipped with seven motors to provide six degrees of freedom for the movement and rotation of the three-dimensional space. The **p 〇 自由 自由 自由 可使 可使 可使 可使 可使 ^ ^ ^ ^ ^ ^ ^ At 2 o'clock, the flexibility and maneuverability of the hand f can also be increased. The output end of each transmission of the transmission mechanism is equipped with a proximity switch (10). In addition to the function of returning to the original point, the prevention mechanism collides with the operation. After each output shaft, part of the connecting rod is connected with the month ι4 knife; the μ uniform material # bearing is connected with the inner ring bearing to form the effect of the bilateral standard, which can effectively distribute the force and increase the parallelism of the input (4). In addition, the mechanism has a round hole in the connecting rod so that the arm of the machine 11 can be installed with various end effectors to achieve various uses. &amp; The clamping end of the early degree of freedom consists of a connecting base fixed to the end link of the robot arm'--the actuating gripping finger, the motor in the gear domain ___. Use - for the gear set mechanism · service motor, can be - to the button on the coaxial, for grip: handling, instructions and other functions. On the grip finger, servo motor or gear stage, the power sensor can be installed to control the grip strength. Female 14 200930523 2. The robot arm of claim </ RTI> wherein the ship motor is of another type, such as a stepper motor. 3. The machine arm of claim 1, wherein the base member of the first member can be changed in shape and mounted on a base of a block of any shape. 4. The machine arm of claim 3, wherein the three-axis concentric design 'can be designed for driving a non-pulley set, such as a sprocket, gear set or brake line, etc. . ' 5. As claimed in the patent application (4), the design of the seven degrees of freedom can be simplified to seven degrees of freedom, which can be 3-1-3, 2-1-3 or 3 7.2. = set. ❹ 6. If you apply for a patent scope! The machine type described in the item can be set as the unilateral money 3, and the machine arm described in the item [the = item] can be set in the crying and non-optical form. , such as a touch-type damper, a potential port σ 夸 - 〇 200930523 8. The robot arm of claim 1, wherein the hole may be other components that facilitate the fixing of the end effector, the end The i of the connecting rod is a threaded hole. 9. If you apply for the robot arm described in item 1 of the patent scope, &quot;wr V, ^4- /, medium, the early degrees of freedom are changed to other shapes or multiple degrees of freedom. 10 _ listed above, the scope of the 彳 ❹ 依 等效 君 君 君 君 君 君 君 ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ 1616
TW97101132A 2008-01-11 2008-01-11 7 degrees of freedom humanoid robot arm (including a gripper) TW200930523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97101132A TW200930523A (en) 2008-01-11 2008-01-11 7 degrees of freedom humanoid robot arm (including a gripper)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97101132A TW200930523A (en) 2008-01-11 2008-01-11 7 degrees of freedom humanoid robot arm (including a gripper)

Publications (1)

Publication Number Publication Date
TW200930523A true TW200930523A (en) 2009-07-16

Family

ID=44864984

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101132A TW200930523A (en) 2008-01-11 2008-01-11 7 degrees of freedom humanoid robot arm (including a gripper)

Country Status (1)

Country Link
TW (1) TW200930523A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346456A (en) * 2016-11-24 2017-01-25 成都炬石科技有限公司 Humanoid mechanical arm and robot
CN107685328A (en) * 2017-09-27 2018-02-13 芜湖智久机器人有限公司 Autokinesis avoids obstacle mechanical arm
CN107984494A (en) * 2017-12-29 2018-05-04 北京钢铁侠科技有限公司 A kind of apery service robot mechanical arm
CN108326844A (en) * 2017-01-20 2018-07-27 香港理工大学深圳研究院 The motion planning method and device of the operable degree optimization of redundancy mechanical arm
WO2018149499A1 (en) * 2017-02-16 2018-08-23 Halodi Robotics A/S Human-like direct drive robot
CN109397271A (en) * 2018-11-23 2019-03-01 华中科技大学 7 freedom degree anthropomorphous machine arms of one kind and its control method and system
US10540779B2 (en) 2017-11-03 2020-01-21 Industrial Technology Research Institute Posture positioning system for machine and the method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346456A (en) * 2016-11-24 2017-01-25 成都炬石科技有限公司 Humanoid mechanical arm and robot
CN108326844A (en) * 2017-01-20 2018-07-27 香港理工大学深圳研究院 The motion planning method and device of the operable degree optimization of redundancy mechanical arm
WO2018149499A1 (en) * 2017-02-16 2018-08-23 Halodi Robotics A/S Human-like direct drive robot
CN107685328A (en) * 2017-09-27 2018-02-13 芜湖智久机器人有限公司 Autokinesis avoids obstacle mechanical arm
US10540779B2 (en) 2017-11-03 2020-01-21 Industrial Technology Research Institute Posture positioning system for machine and the method thereof
CN107984494A (en) * 2017-12-29 2018-05-04 北京钢铁侠科技有限公司 A kind of apery service robot mechanical arm
CN109397271A (en) * 2018-11-23 2019-03-01 华中科技大学 7 freedom degree anthropomorphous machine arms of one kind and its control method and system

Similar Documents

Publication Publication Date Title
Kim et al. Integrated linkage-driven dexterous anthropomorphic robotic hand
EP3481599B1 (en) Parallel link device, industrial robot, and haptic presentation device
TW200930523A (en) 7 degrees of freedom humanoid robot arm (including a gripper)
EP3697581A1 (en) Compact spherical 3-dof mechanism constructed with scissor linkages
JP2014159078A (en) Humanoid robot
Robson et al. Geometric design of eight-bar wearable devices based on limb physiological contact task
KR20170024325A (en) Wearable Apparatus for measuring position and action of Arm
Hosseini et al. Exoten-glove: A force-feedback haptic glove based on twisted string actuation system
Che et al. GCUA humanoid robotic hand with tendon mechanisms and its upper limb
Wang et al. Design, analysis and experiment of a passively adaptive underactuated robotic hand with linkage-slider and rack-pinion mechanisms
WO2020216425A1 (en) Spherical mechanism constructed with scissors linkages with control means
Williams An introduction to robotics
Naidu et al. A 7 DOF exoskeleton arm: Shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals
Odesanmi et al. Skill learning framework for human–robot interaction and manipulation tasks
Tursynbek et al. Computation of unique kinematic solutions of a spherical parallel manipulator with coaxial input shafts
Falck et al. DE VITO: A dual-arm, high degree-of-freedom, lightweight, inexpensive, passive upper-limb exoskeleton for robot teleoperation
Mustafa et al. Forward kinematics of 3 degree of freedom delta robot
Heisnam et al. 20 DOF robotic hand for tele-operation:—Design, simulation, control and accuracy test with leap motion
Herbin et al. Interactive 7-DOF motion controller of the operator arm (ExoArm 7-DOF)
Hernandez-Barraza et al. A bioinspired modular soft robotic arm
Syaifuddin et al. Designing 8 degrees of freedom humanoid robotic arm
Almasri et al. Human-like motion based on a geometrical inverse kinematics and energetic optimization
Popov et al. Stiffness modeling of 3RRR parallel spherical manipulator.
Kim et al. A teleoperated minimally invasive surgical system with an additional degree of freedom manipulator
Iossifidis et al. Controlling a redundant robot arm by means of a haptic sensor