TW200930144A - Organic semiconductor element, organic solar cell and display panel - Google Patents

Organic semiconductor element, organic solar cell and display panel Download PDF

Info

Publication number
TW200930144A
TW200930144A TW097136288A TW97136288A TW200930144A TW 200930144 A TW200930144 A TW 200930144A TW 097136288 A TW097136288 A TW 097136288A TW 97136288 A TW97136288 A TW 97136288A TW 200930144 A TW200930144 A TW 200930144A
Authority
TW
Taiwan
Prior art keywords
layer
organic semiconductor
light
electrode
semiconductor device
Prior art date
Application number
TW097136288A
Other languages
Chinese (zh)
Inventor
Takahito Oyamada
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Publication of TW200930144A publication Critical patent/TW200930144A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention is adapted to decrease the driving voltage that will be applied between the first metallic electrode and the second electrode. The organic semiconductor element 3 of the present invention at least having, provided between a pair of electrodes of a first metallic electrode 46 and a second electrode 52, a luminescent layer 49, a hole injection layer 47 for taking holes out from the first metallic electrode 46, a hole transportation layer 48, laminated on the luminescent layer 49 at the side near to the first metallic electrode 46, for transporting the holes taken out by using the hole injection layer 47 to the luminescent layer 49, and an electron transportation layer 50, laminated on the luminescent layer 49 at the side near to the second electrode 52, for taking electrons out from the second electrode 52 and transporting the electrons to the luminescent layer 49 is characterized by containing a crystallization control member 8, which is a discontinuous mass provided along the surface of the hole injection layer 47 adjacent to the first metallic electrode 46 and controls the orientation of crystalline molecules 9.

Description

200930144 六、發明說明: 【發明所屬之技術領域】 • 树明係關於配合在一對電極間所職予的施加電壓,而使 發光層發光的有機半導體元件等。 【先前技術】 近年,平板顯示器的開發正如火如荼的進行。就此種平板 顯示器中’使用有機電激發光元件等有機半導體元件的顯示 ❹裝置已達實用化階段。近年的有機半導體元件中,除習知以 來所使用錮錫氧化物(IndiumTin〇xide, _等透明電極 之外,亦就使用其他各種材質者進行探討。 例如就周知的有機半導體元件,存在之技術有:在基板上 所形成且以金為材質的電極上,積層著富勒烯, C60)與銅酞菁(Copper phthalocyanine,CuPc)之層,藉由 從電極中輕易地取出電洞,並將更多的電洞注入於發光層 © 中’而將對陽極與陰極間所應施加的驅動電壓進行低電屢化 之技術。 [專利文獻 1 ]The Journal of Vacuum Science andIn the case of the invention, the invention relates to an organic semiconductor device in which a light-emitting layer is caused to emit light by applying an applied voltage between a pair of electrodes. [Prior Art] In recent years, the development of flat panel displays has been in full swing. In such a flat panel display, a display device using an organic semiconductor element such as an organic electroluminescence element has reached a practical stage. In recent years, organic semiconductor devices have been used in addition to transparent electrodes such as Indium Tin Oxide ( _ ), and other various materials have been used. For example, well-known organic semiconductor devices exist. There is: a layer of fullerene, C60) and copper phthalocyanine (CuPc) laminated on an electrode formed on a substrate and made of gold, by easily taking out a hole from the electrode, and More holes are injected into the light-emitting layer ©, and a technique of lowering the driving voltage to be applied between the anode and the cathode is performed. [Patent Document 1] The Journal of Vacuum Science and

Technology A(Jul/Aug 2000) ' 【發明内容】 ’ (發明所欲解決之問題) 上述習知技術的構造,雖就某程度之驅動電壓降低有所貢 獻,但仍期待電洞輸送層從陽極中更有效率地取出較多的電 97136288 4 200930144 洞,且即使依較低於習知的驅動電壓仍可使有機半導體元件 產生動作。 就本發明所欲解決的問題,上述問題便為其中一例。 (解決問題之手段) 為月b解決上述問題,申請專利範圍第1項的發明,係在第 1金屬電極與第2電極的一對電極間,至少具備有:發光層、 電洞注入層(其係從上述第丨金屬電極中取出電洞)、電洞輸 送層(其係積層於上述發光層靠上述第丨金屬電極侧,並將 利用上述電洞注入層所取出的電洞,供應給上述發光層)、 以及電子>主入層(其係積層於上述發光層靠上述第2電極 侧’從上述第2電極中取出電子並供應給上述發光層)的有 機半導體it件;其中,並包含有:屬於沿鄰接上述第i金屬 電極的上料職人層表層之不連續舰,且㈣著結晶性 分子方向的結晶控制構件。Technology A (Jul/Aug 2000) 'Contents of the Invention' (The problem to be solved by the invention) The structure of the above-mentioned conventional technology contributes to a certain degree of driving voltage reduction, but it is still expected that the hole transport layer is from the anode. More holes are taken out more efficiently in the 97136288 4 200930144 hole, and the organic semiconductor component can be operated even if it is lower than the conventional driving voltage. The above problem is one of the problems to be solved by the present invention. (Means for Solving the Problem) The invention of the first aspect of the invention is to provide at least a light-emitting layer and a hole injection layer between the pair of electrodes of the first metal electrode and the second electrode. The hole transporting layer is taken out from the second metal electrode, and the hole transport layer is disposed on the side of the second metal electrode of the light-emitting layer, and the hole taken out by the hole injection layer is supplied to An organic semiconductor device in which the light-emitting layer) and the electron-incorporating layer (the layer is formed on the second electrode side of the light-emitting layer to extract electrons from the second electrode and supply the light to the light-emitting layer); And comprising: a discontinuous ship belonging to the surface layer of the loading member adjacent to the ith metal electrode, and (4) a crystallization control member having a crystalline molecular direction.

錢解決上述問題,中請專利範圍第17項的發明,係在 電極與第2電極的1電極間,至少具備有:光電 其係將在錄光的料與N崎料之邊界面所 產生的激子(excit〇n),分離為電 、 :(其係積層於上述光電轉換層靠上述第;電=電 太=層:Γ上述電荷並輪送給上述第2電極)的有機 陽電池,其中,並包含有:屬於沿鄰 的上述光電轉換層表層之不連續塊體,且控制 97136288 200930144 方向的結晶控制構件。 為此解決上制題,巾請專利範圍第18項發明,係具備 •有下述有機半㈣元件的顯示面板,該有機半導體元件係在 • 第1金屬電極與第2電極的一對電極間,至少具備有:發光 層、電洞注入層(其係從上述第!金屬電極中取出電洞)、電 /同輸送層(其係積層於上述發光層靠上述第丨金屬電極侧, 並將利用上述電洞注入層所取出的電洞,供應給上述發光 ❹層)、以及電子注入層(其係積層於上述發光層靠上述第2 電極側’從上述第2電極中取出電子並供應給上述發光 層);其中,並具有有機半導體元件’其包含有:屬於=鄰 接上述第1金屬電極的上述電洞注入層表層之不連續塊 體,且控制著結晶性分子方向之結晶控制構件。 【實施方式】 以下,針對本發明一實施形態參照圖式進行說明。 ❹〈第1實施形態〉 圖1所示為部分剖視圖,其係將第丨實施形態的有機半導 體元件使用於顯示面板之有機電場發光元件3時的一例。 有機電場發光元件3係有機半導體元件一例,例如對應於 紅色、綠色及藍色而分別形成。圖示之有機電場發光元件3 係1像素份。 該有機電場發光元件3係形成在玻璃基板45上,依序積 層著:陽極46、電洞注入層47、電洞輸送層48、發光層49、 97136288 ^ 200930144 電子注入層51及陰極52的構造。另外,該有機電場發光元 件3亦可採用積層有電荷及激子擴散層之構造,用以將電荷 .及激子分別封鎖於發光層49内。In order to solve the above problem, the invention of claim 17 of the patent scope is provided between the electrode and the first electrode of the second electrode, at least: the photoelectric system is formed on the boundary surface between the recorded material and the N-sand material. An exciton (excit〇n), which is separated into electricity, (the organic layer of which is laminated on the photoelectric conversion layer by the above; the electric=electricity=layer: the above-mentioned electric charge and is supplied to the second electrode), And including: a discontinuous block belonging to the surface layer of the above photoelectric conversion layer adjacent to the adjacent, and controlling the crystal control member in the direction of 97136288 200930144. To solve this problem, the invention of claim 18 includes a display panel having an organic half (four) element, which is provided between a pair of electrodes of the first metal electrode and the second electrode. At least a light-emitting layer, a hole injection layer (which takes out a hole from the first metal electrode), and an electric/conveying layer (which is layered on the light-emitting layer on the side of the second metal electrode) The hole extracted by the hole injection layer is supplied to the luminescent layer and the electron injection layer (the layer is formed on the second electrode side of the luminescent layer), and electrons are taken out from the second electrode and supplied to The light-emitting layer) includes an organic semiconductor element that includes a crystal control member that belongs to a discontinuous block of the surface of the hole injection layer adjacent to the first metal electrode and controls a crystal molecular direction. [Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. [First Embodiment] Fig. 1 is a partial cross-sectional view showing an example in which an organic semiconductor device according to a third embodiment is used for an organic electroluminescence element 3 of a display panel. The organic electroluminescence element 3 is an example of an organic semiconductor element, and is formed, for example, corresponding to red, green, and blue. The organic electric field light-emitting element 3 shown in the figure is one pixel. The organic electroluminescent element 3 is formed on the glass substrate 45, and sequentially laminated: an anode 46, a hole injection layer 47, a hole transport layer 48, a light-emitting layer 49, 97136288 ^ 200930144, an electron injection layer 51, and a cathode 52. . Further, the organic electroluminescent element 3 may have a structure in which a charge and an exciton diffusion layer are laminated to block charges and excitons in the light-emitting layer 49, respectively.

該玻璃基板45係利用透明、半透明或不透明的材質而構 成。上述陽極46係依沿玻璃基板45呈覆蓋狀態而形成。該 陽極46係具有對後述發光層49供應電洞的機能。陽極46 係除上述Au之外,尚可使用例如Ag、Cu、或銦錫氧化物 (Indium Tin 0xide,IT〇)、或銦鋅氧化物(Indium 21此 Oxide ’ IZO)等材質。此外,其他就陽極46尚可採用例如The glass substrate 45 is made of a transparent, translucent or opaque material. The anode 46 is formed to be covered along the glass substrate 45. The anode 46 has a function of supplying a hole to a light-emitting layer 49 to be described later. The anode 46 may be made of, for example, Ag, Cu, or indium tin oxide (IT) or indium zinc oxide (Indium 21 Oxide ' IZO) in addition to the above Au. In addition, other anodes 46 may be employed, for example

Al、Mo或Τι等。在本實施形態中,主要設定為陽極46係 以Au為材質的金屬電極。 該電m層47係具有容易從該陽極46中取出電洞的機 能。該電洞注入層47係具有以例如Cup。或稠五苯 (pentacene)為材質的結晶性分子。相關該結晶性分子,容 隻、’[it電/同輸送層48係具有將利用電洞注入層π從陽 極46中取出的電洞’輸送給發光層⑽的機能。該電洞輸送 層48係以例如NPB(非晶質) 該電^輪送層㈣存在於^層47與發光層· 狀態,而抑制由發光層二層47與發光層49呈未相鄰接 . 49所進行的發光亮度降低之機能。 内所生成的处係以在可見光區域中具有吸收在發光層49 内所生成‘物伪卩,咖_、)以up。 97136288 7 200930144 質的電洞注入層47中,成為使能量不會向其移動’俾使輝 度不易降低。此現象就電洞注入層4 7係以稠五苯為材質的 情況亦同。另外,即便是電洞注入層47的結晶性分子9, * ^ ^ 若能量間隙較大的情況,仍不易引發此種輝度降低情況。電 洞輸送層48的材質係例如NPB ’因為該NPB的能量間隙大 於Alq3,因而不會發生輝度降低的情況。即,上述電洞輪送 層48—般係屬於將當成其材質之NPB作為具有電洞移動度 ❿ 之電洞輸送性材料,而在本實施形態中則將發揮發光效率提 升或抑止層的機能。 上述發光層49係以例如有機物為材質,屬於使用電場發 光現象、即所謂「電激發光」(EL : Electroluminescence) 現象的發光元件。該發光層49係積層於複數電極46、52 間的任一者’具有藉由利用施加電壓而在複數電極46、52 間所產生的電場進行發光之機能。該發光層49係利用根據 ❹從其外部使用電場所收取之能量而釋放出光的現象,並自行 將光輸出。 本實施形態中,對該發光層49亦具有所謂電子輸送層之 • 機旎者進行說明。此處所謂電子輸送層的機能,係指利用電 子,主入層51將從陰極52中所取出的電子,有效率地輸送給 發光層49的機能。另外,如此亦可取代發光層49所具備之 電子輸送層機能’改為在發光層49之外另行將電子輸送層 獨立形成於發光層49與電子注入層51間。 97136288 8 200930144 在該發光層49上積層著電子注人層5ι。該電子注入層μ 係具有容易從該陰極52中取出電子的機能。在該電子注入 層51上形成陰極52。另外,該電子注人層51亦可包含有 田作緩衝層或陰極52的機能。該有機電場發光元件3係利 用配。陽極46與陰極52間之施加電壓所產生的電場,而使 發光層49輸出可見光。 該有機電場發光元件3中,沿鄰接陽極46的電河注入層 β 47表層存在有結晶控制構件8。本實施形態t,藉由該結晶 控制構件8的存在便而提升注入率,例如可達成驅動電廢的 低電壓化及長壽命化中至少其中一種。 該結晶控㈣件8係具有例如對具平面性有機半導體材 料的定向進打控制之機能。該結晶控制構件8係屬於沿鄰接 陽極46(第1金屬電極)的電洞注入層47表層之不連續塊 體,並對後述結晶性分子之方向進行控制的構件。 ® Λ處所謂「不連續塊體」亦可為例如具有凹凸形狀的構造 物。該結晶控制構件8係就此種塊體,可為不僅一塊物體的 膜。即,此處所謂「不連續塊體」係可為例如覆蓋陽極46 表面比例的被覆率為1%以上、未滿1〇〇%之薄膜。 結晶控制構件8係具有在電洞注入層47表層中,藉由對 其結晶性分子一例的平面性分子及棒狀分子中至少其中一 者的方向進行控制,而對該結晶性分子的定向(〇r ientat i〇η) 進行控制之機能。結晶控制構件8係如此地對結晶性分子的 97136288 9 200930144 電洞,藉以便可控 驅動電壓成為降低 定向進行控制,而容易從陽極46中取出 制而使對陽極46與陰極52間所應施加的 狀態。 圖2〜圖7所示為剖視圖,其分別係將圖1所示特定範圍w 放大時的構造例。另外’圖2〜圖7所示之層構造中,為說 明上的方便’各層將依不_實際的厚度進行圖示。… ❹Al, Mo or Τι, etc. In the present embodiment, a metal electrode made of Au as the anode 46 is mainly set. The electric m layer 47 has a function of easily taking out holes from the anode 46. The hole injection layer 47 has, for example, a Cup. Or pentacene is a crystalline molecule of the material. Related to the crystalline molecule, the capacity of the [it/transport layer 48 has a function of transporting the hole taken out of the anode 46 by the hole injection layer π to the light-emitting layer (10). The hole transport layer 48 is, for example, NPB (amorphous), and the electric transfer layer (4) is present in the layer 47 and the light-emitting layer, and is prevented from being adjacent to the light-emitting layer two layers 47 and the light-emitting layer 49. . 49 The function of reducing the brightness of the light. The inside is formed by having an absorption in the visible light region to generate an "initial" in the light-emitting layer 49. 97136288 7 200930144 In the hole injection layer 47, the energy does not move toward it, so that the luminance is not easily lowered. This phenomenon is the same in the case where the hole injection layer 47 is made of pentacene. Further, even in the case of the crystalline molecules 9 of the hole injection layer 47, * ^ ^, if the energy gap is large, such a decrease in luminance is unlikely to occur. The material of the hole transport layer 48 is, for example, NPB' because the energy gap of the NPB is larger than that of Alq3, so that the luminance does not decrease. That is, the above-described hole transporting layer 48 generally belongs to a NPB having a material as a hole transporting material having a hole mobility ,, and in the present embodiment, the function of improving the luminous efficiency or suppressing the layer is exhibited. . The light-emitting layer 49 is made of, for example, an organic material, and is a light-emitting element that uses an electric field luminescence phenomenon, that is, an "electroluminescence" phenomenon. The light-emitting layer 49 is formed by any one of the plurality of electrodes 46 and 52 having a function of emitting light by an electric field generated between the plurality of electrodes 46 and 52 by application of a voltage. The light-emitting layer 49 emits light by utilizing the energy received from the electric field from the outside, and outputs the light by itself. In the present embodiment, a case where the light-emitting layer 49 also has a so-called electron transport layer will be described. Here, the function of the electron transport layer means the function of efficiently transporting electrons taken out from the cathode 52 to the light-emitting layer 49 by the main entrance layer 51. Further, in this way, instead of the electron-transporting layer function of the light-emitting layer 49, the electron-transporting layer may be separately formed between the light-emitting layer 49 and the electron-injecting layer 51. 97136288 8 200930144 An electron injection layer 5ι is laminated on the light-emitting layer 49. The electron injecting layer μ has a function of easily taking out electrons from the cathode 52. A cathode 52 is formed on the electron injecting layer 51. In addition, the electronic injection layer 51 may also include a function as a buffer layer or a cathode 52. The organic electroluminescent element 3 is used in combination. The electric field generated by the applied voltage between the anode 46 and the cathode 52 causes the light-emitting layer 49 to output visible light. In the organic electroluminescence element 3, a crystal control member 8 is present along the surface of the electric river injection layer β 47 adjacent to the anode 46. In the present embodiment t, the injection rate is increased by the presence of the crystallization control member 8, and for example, at least one of lowering the voltage and extending the life of the drive electric waste can be achieved. The crystallization control member (4) has a function of, for example, directional control of a planar organic semiconductor material. The crystal control member 8 is a member which is a discontinuous block along the surface layer of the hole injection layer 47 adjacent to the anode 46 (first metal electrode) and controls the direction of the crystal molecules to be described later. The so-called "discontinuous block" at the Λ can also be, for example, a structure having a concavo-convex shape. The crystal control member 8 is such a block and may be a film of not only one object. In other words, the "discontinuous block" herein may be, for example, a film covering a surface ratio of the anode 46 and having a coverage of 1% or more and less than 1% by weight. The crystallization control member 8 has an orientation of the crystalline molecule in the surface layer of the hole injection layer 47 by controlling the direction of at least one of the planar molecules and the rod-shaped molecules of one of the crystalline molecules ( 〇r ientat i〇η) The function of control. The crystallization control member 8 is such that the 97136288 9 200930144 hole of the crystalline molecule is controlled so that the controllable driving voltage becomes a lowered orientation, and is easily taken out from the anode 46 to be applied between the anode 46 and the cathode 52. status. 2 to 7 are cross-sectional views each showing a structural example when the specific range w shown in Fig. 1 is enlarged. Further, in the layer structure shown in Fig. 2 to Fig. 7, the layers for convenience will be illustrated in terms of thickness. ... ❹

圖2〜圖4所示係屬於結晶控制構件的不連續塊體,經混 入截面呈山形狀凝聚物5的樣子,圃ς園” 町像千® 5〜圖7所示係經混入 截面呈圓形凝聚物7的樣子。 首先’上述結晶控制構件8係用來在例如電洞注入層47 表層上形成凹凸形狀而混人的凝聚物5。本實施形態中此 種凝聚物5係採用不同於構成例如電洞注入層〇之材料八 子的凝聚分子。構成此種電敝人層47的材料係可例示二 如稠五料電洞注人材料ϋ面,該凝聚分子係可從例 如翻氧化物⑽3)、U(富勒稀)、_3中選擇其中之任一者。 即,在電洞注人層47中混人凝聚分子的Mo〇3(鉬氧化 物),亦可取代其而改為混人“(富勒稀),亦可又取代其而 改為混入凝聚分子的Alq3。 圖2中平面狀或棒狀結晶性分子9係在面朝陽極仏的 電洞庄入層47表層上’沿陽極46進行排列。各結晶性分子 9係利用凝聚物5將定向控制成相對基板45紋向角 狀態。即,各結晶性分子9的結滕將受控制。經如此施行 97136288 200930144 ^向控制的結晶性分子9係具有相對基板45為i度以上、 90度以下的定向。 凝㈣5係就整體觀之而呈不連續膜狀,且其厚度τ具有 .相當程度的厚度。該厚度Τ係例如G.lnm至iQnm左右。該 凝聚物5係混入凝聚分子之際,將配合例如奸尺寸、凝聚 力、在與第1金屬電極46表面間之親和力、被覆率等至少 一條件,而改變其形狀。此處所謂「分子尺寸」係指例如 ❹ 〇·lnm(:1A)以上。此外,如此施行定向控制的有機半導體材 料,係可採用分子彼此間的間隔為例如〇. 1[nm](lA)左右, 並具有整合之結晶性的材料。 再者’凝聚分子係即使屬於例如分子尺寸較小的材料,仍 可利用自凝聚而形成被覆率1%以上、未滿1〇〇%的構造。如 此’若由凝聚分子所形成的第1金屬電極46之被覆率未滿 100%,凝聚分子便將覆蓋第1金屬電極46的整面,而在第 ❹ 1金屬電極46與電子輸送層50間殘留電氣接點,俾可確保 電流之流通。 再者,在與第1金屬電極46表面間之親和力,當該第1 金屬電極46表面係屬於親和性的情況,由於凝聚分子與第 ' 1金屬電極46均屬於互為親和性,便可使潤濕性呈良好, ' 因而凝聚分子容易與第1金屬電極46相融合而呈平滑化。 另一方面,若凝聚分子與第1金屬電極46係屬於親和性與 疏水性’則潤濕性較差,便容易形成被覆率達1%以上、未 97136288 11 200930144 滿100%的膜構造。 圖3所示係同樣的結晶性分子9沿陽極46而排列,但因 - 為所混入的凝聚物5為較小者,因而定向角01將不同於圖 • 2而成為較小角度。此外,圖4所示係同樣的結晶性分子9 沿陽極46而排列,但因為所混入的凝聚物5為更小者,因 而定向角0 1亦將不同於圖3而成為更小角度。 圖5所示係平面狀或棒狀結晶性分子9,在面朝陽極46 ®的電洞注入層47表層上沿陽極46而排列。各結晶性分子9 係利用截面呈近乎圓形的凝聚物5,定向控制成相對基板45 為疋向角0 1狀態。即’各結晶性分子9的結晶性將受控制。 圖6所不係同樣的結晶性分子9沿陽極46而排列,但因 為所'入的凝聚物5為較小者,因而定向角W將不同於圖 5^以_、角度°此外’ ϋ 7所示係同樣的結晶性分子9 ^陽極46而排列,但因為所混入的凝聚物5為更小者,因 而定向角Θ1亦將不同於圖6而成為更小角度。 在顯7^面板中所内建的有機電場發光元件3係有如上述 的一構造例,甘Α . 具;人’參照圖1〜圖7,並針對有機電場發光元 .们的驅動電壓驗證結果之-例進行說明。 Χ射線繞射進行定向控制之驗證> 圖10所示分別係利用X射線繞射而進行的定向控制 驗證結果之一 1 例。另外’橫軸係指X射線入射角2θ/ω 縱輪係指強度(Intensity )[ counts]。該等圖_,產 97136288 12 200930144 ,尖峰部分的χ射線人射角20/Wdeg]處,表示配向已被 最佳控制。另外,本實卿態巾,雖麻基㈣上述玻璃基 • 板45,但亦可以以例如Si為材質。 <結晶性分子9含有cupc的情況> ,圖8所示定向控制特性F1〇 +,係指在玻璃基板45上所 形成的陽極46係以Au(金)、CuPc、電洞輸送層48係以卿 作為材質的。另外,相關除該等電洞輸送層48等以外 ❹的層構讀質’由於均如同上述内容因而在該定向控制的 U便省略說明。該定向控制特性F10係指為能說明本實 形〜的優越性,而採用周知的層構造時之配向特性,其任 一處均無出現尖峰。 八 另方面’ S向控制特性F11係指在玻璃基板45上所形 j ^陽極46係以Au(金)、結晶控制構件8的凝聚分子7及Fig. 2 to Fig. 4 show a discontinuous block belonging to the crystal control member, and the mixture is mixed into a mountain-shaped aggregate 5 as shown in Fig. 2, and the garden is mixed into the cross section. First, the crystal control member 8 is used to form a concavity and agglomerate 5 on the surface layer of the hole injection layer 47, for example. In the present embodiment, the coagulum 5 is different from the embodiment. The condensed molecules constituting, for example, the material of the hole injection layer 。. The material constituting the electric enamel layer 47 can be exemplified by a surface of a thick five-hole electric hole injection material, such as a turn oxide (10) 3 Any one of U, Fuller, and _3. That is, Mo〇3 (molybdenum oxide) mixed with agglomerated molecules in the hole injection layer 47 may be replaced by The person "(Fuller) can also replace it with Alq3 mixed into the condensed molecule. In Fig. 2, the planar or rod-like crystalline molecules 9 are arranged along the anode 46 on the surface of the hole-forming layer 47 facing the anode. Each of the crystallizable molecules 9 is controlled to have an orientation angle of the opposing substrate 45 by the agglomerates 5. That is, the knot of each crystalline molecule 9 will be controlled. The thus-executed crystalline molecule 9 has an orientation of i-degree or more and 90-degree or less with respect to the substrate 45. 97130288 200930144. The condensed (4) 5 series has a discontinuous film shape as a whole, and its thickness τ has a considerable thickness. The thickness Τ is, for example, about G.lnm to iQnm. When the aggregate 5 is mixed with the agglomerated molecule, the shape is changed by at least one condition such as the size of the trait, the cohesive force, the affinity with the surface of the first metal electrode 46, and the coverage. Here, the "molecular size" means, for example, ❹ 〇 · lnm (: 1A) or more. Further, the organic semiconductor material subjected to the orientation control in this manner may be a material having an interval of molecules of, for example, about 1 [nm] (lA) and having integrated crystallinity. Further, even if the condensed molecular system belongs to, for example, a material having a small molecular size, it is possible to form a structure having a coverage of 1% or more and less than 1% by self-aggregation. Thus, if the coverage of the first metal electrode 46 formed by the agglomerated molecules is less than 100%, the aggregated molecules will cover the entire surface of the first metal electrode 46, and between the first metal electrode 46 and the electron transport layer 50. Residual electrical contacts ensure the flow of current. Further, when the affinity with the surface of the first metal electrode 46 is such that the surface of the first metal electrode 46 is in affinity, since both the agglomerated molecule and the first metal electrode 46 are in mutual affinity, the affinity can be made. The wettability is good, and thus the aggregated molecules are easily fused with the first metal electrode 46 to be smoothed. On the other hand, when the agglomerated molecule and the first metal electrode 46 are inferior in affinity and hydrophobicity, the wettability is inferior, and it is easy to form a film structure having a coverage of 1% or more and no 97136288 11 200930144. As shown in Fig. 3, the same crystalline molecules 9 are arranged along the anode 46, but since the agglomerates 5 which are mixed are smaller, the orientation angle 01 will be different from that of Fig. 2 and become a smaller angle. Further, the same crystalline molecules 9 are arranged along the anode 46 as shown in Fig. 4, but since the aggregate 5 to be mixed is smaller, the orientation angle 0 1 will be different from that of Fig. 3 and become a smaller angle. The planar or rod-like crystalline molecules 9 shown in Fig. 5 are arranged along the anode 46 on the surface of the hole injection layer 47 facing the anode 46®. Each of the crystalline molecules 9 is controlled to have a state in which the opposing substrate 45 is at an angle of 0 1 by using an aggregate 5 having a nearly circular cross section. That is, the crystallinity of each crystalline molecule 9 is controlled. 6 is not the same crystalline molecules 9 arranged along the anode 46, but because the incoming aggregate 5 is smaller, the orientation angle W will be different from that of FIG. 5, _, angle °, and further ' ϋ 7 The same crystalline molecules 9 ^ anode 46 are shown, but since the incorporated agglomerates 5 are smaller, the orientation angle Θ 1 will be different from that of Fig. 6 and become a smaller angle. The organic electric field light-emitting element 3 built in the display panel has a structural example as described above, and the human 'refer to FIG. 1 to FIG. 7 and the driving voltage verification result for the organic electric field light-emitting element. - The example is explained. Verification of directional control by X-ray diffraction > Fig. 10 shows one example of directional control verification results by X-ray diffraction. In addition, the horizontal axis refers to the X-ray incident angle 2θ/ω, and the longitudinal index refers to the intensity (intensity) [counts]. The figures _, produced 97136288 12 200930144, at the peak of the ray ray angle 20/Wdeg], indicate that the alignment has been optimally controlled. Further, although the present invention is made of the above-mentioned glass base plate 45, it may be made of, for example, Si. <The case where the crystalline molecule 9 contains cupc> The orientation control characteristic F1〇+ shown in Fig. 8 means that the anode 46 formed on the glass substrate 45 is made of Au (gold), CuPc, and hole transport layer 48. It is made of Qing as a material. In addition, the layer read quality of the ridges other than the hole transport layer 48 or the like is omitted as described above. The directional control characteristic F10 is an alignment characteristic in the case of using a well-known layer structure in order to explain the superiority of the present embodiment, and no peak appears at any of them. VIII. The other aspect, the S-direction control characteristic F11 is formed on the glass substrate 45. The anode 46 is made of Au (gold), the agglomerated molecules 7 of the crystal control member 8 and

日日^刀子9分別係以Ce°及CuPc、電洞輸送層48係以NPB W 作為材質之彳杳、V σ 月也。另外,相關該電洞輸送層48以後的層構 、材質勻如同上述内容’因而在該驗證中便省略說明。該 定7控制特性F11係指採用本實施形態結晶控制構件8的層 .構&之隋况。於該定向控制特性F11中,係在X射線入射角 2θ/ω為約6.84[deg]時出現尖峰。此時,該結晶控制構件 8的&、°晶&分子9係相對麵基板45成為朝垂直方向立起 之樣I不結晶性分子9的定向已被良好地控制。Every day, the knife 9 is made of Ce° and CuPc, and the hole transport layer 48 is made of NPB W as the material, and V σ month. Further, the layer structure and material after the hole transport layer 48 are similar to the above contents, and thus the description will be omitted in the verification. The predetermined control characteristic F11 is a condition in which the layer control structure of the crystal control member 8 of the present embodiment is employed. In the orientation control characteristic F11, a sharp peak occurs when the X-ray incident angle 2?/? is about 6.84 [deg]. At this time, the orientation of the non-crystalline molecules 9 in which the &, crystal & molecule 9 of the crystal control member 8 is raised in the vertical direction is well controlled.

9 圖 Q 所示定向控制特性F12,係指陽極46係以 97136288 13 2009301449 Figure Q shows the directional control characteristic F12, which refers to the anode 46 is 97136288 13 200930144

Au⑷、結晶控制構件8的凝聚分子7及結晶性分子9分別 係以_3及CuPc、電洞輪送層48係以腦作為材質之情 況。該定向控簡性F12係指採用本實施形態結晶控制構件 8的層構造之情況。於該定向控制特性m中,係在χ射線 ❹ ❹ 入射角為約6.8[d_出現尖峰。此時,該結晶控 制構件8的結晶性分子9係相對玻璃基板45成為朝垂直方 向立起之態樣,表示結紐分子9的定向已被良好地控制。 再者® 9所不定向控制特性⑽,係指陽極铛係以 AU(、金)、結晶控制構件8的凝聚分子7及結晶性分子9分別 係以A1喊CuPc、電洞輪送層48係以NPB作為材質之产 況該疋向控制特性F i 3係指採用本實施形態結晶控制構件 8的層構&之情況。於該定向控制特性f财’係在X射線 入射角為約6 8[deg]時出現尖峰。此時,該結晶控 制構件8的結晶性分子9係相對玻璃基板⑼成為朝垂直: 向立起之態樣,表示結晶性分子9的定向已被良好地控制。 日曰f生刀子9含有稠五苯的情況〉 圖10所示定向控制特性中,係指陽極46係以The Au(4), the agglomerated molecule 7 of the crystal control member 8, and the crystalline molecule 9 are made of _3 and CuPc, and the hole transporting layer 48 is made of a brain. The orientation control F12 is a case where the layer structure of the crystal control member 8 of the present embodiment is employed. In the directional control characteristic m, the incident angle of the X-ray ❹ 为 is about 6.8 [d_ appears sharp. At this time, the crystalline molecules 9 of the crystallization controlling member 8 are erected in the vertical direction with respect to the glass substrate 45, and the orientation of the nucleus molecules 9 is well controlled. Furthermore, the 9 non-directional control characteristics (10) refer to the anodic lanthanide system AU (, gold), the condensed molecules 7 of the crystal control member 8 and the crystalline molecules 9 respectively, A1 shouts CuPc, and the hole transport layer 48 The production control property F i 3 refers to the layer structure & of the crystal control member 8 of the present embodiment. The directional control characteristic f is a sharp peak when the X-ray incident angle is about 68 [deg]. At this time, the crystalline molecules 9 of the crystallization controlling member 8 are perpendicular to the glass substrate (9): the erected state indicates that the orientation of the crystalline molecules 9 is well controlled. In the case of the eccentric control characteristic shown in Fig. 10, the anode 46 is

Au (金)、辆五贫兩上 ' 术、電洞輸送層48係以NPB作為材質為之_ 況。該定向控制特性F2Q係為能說明本實施形態的優越性月, =採用周知的層構造時之配向特性,其任一處均無出現尖 另一方面, 疋向控制特性F21係指陽極46係以Au(金)、 97136288 200930144 =ΓΓ的凝聚分子7及結晶性分子9分別係以〜 、電洞輸送層48仙ΝΡΒ作為材質之情況。該 特性阳係指採用本實施形態結晶控制構件8的層構 :二:該定向控制特性F21係在χ射線入射角 晶性八2 _時出現尖峰。此時,該結晶控制構件8的結 =:_ 9係相對玻璃基板45成為朝垂直方向立起之態 ’不結晶性分子9的定向已被良好地控制。 ΟAu (gold), the five poor two on the 'surgery, hole transport layer 48 series with NPB as the material. The orientation control characteristic F2Q is a superiority month in which the present embodiment can be explained, and the alignment characteristics in the case of using a well-known layer structure are not present at any of the points. The lateral control characteristic F21 is an anode 46 system. The aggregated molecules 7 and the crystalline molecules 9 of Au (gold), 97136288 200930144 = ΓΓ are respectively made of ~ and the hole transport layer 48 ΝΡΒ as a material. The characteristic yang refers to the layer structure of the crystallization control member 8 of the present embodiment. Second, the directional control characteristic F21 exhibits a sharp peak at the incident angle of the χ ray. At this time, the junction of the crystal control member 8 is in a state of rising toward the vertical direction with respect to the glass substrate 45. The orientation of the non-crystalline molecules 9 is well controlled. Ο

再者,圖10所示定向控制特性F22,係指陽極狀係以 An(金)、結晶_構件8的凝聚分子?及結晶性分子9分別 係以M〇〇3及稍五笨、電洞輸送層48係以NPB作為材質之情 =該定向控制特性F22係指採用本實施形態結晶控制構^ 的層構造之情況。該定向控制特性m係在χ射線入射角 W/ω為約6.8[deg]時出現尖峰。此時,該結晶控制構件8 的結晶性分子9仙對朗基板奶成為㈣直方向立起之 態樣,表示結晶性分子9的定向已被良好地控制。 再者’圖10所示定向控制特性F23,係指陽極处係以 Au(金)、結晶控制構件8的凝聚分子7及結晶性分子9八別 係以Α1φ及稠五苯、電洞輸送層48係以Νρβ作為材質= 況。該定向控制特性F23係指採財實施形態結晶控制構: 8的層構造之情況。該定向控制特性m絲χ射線入射 2θ/ω為約6.8[deg]時出現尖峰。此時,該結晶控制構 的結晶性分子9係相對玻璃基板45成為朝垂直方向立起之 97136288 15 200930144 態樣’表示結晶性分子9的定向已被良好地控制。 <驅動電壓之驗證> • 圖丨1及圖12分別係指有機電場發光元件3的驅動電壓驗 證結果一例圖。圖11及圖12所例示係結晶性分子9的材質 分別為銅酞菁(Cupc)及稠五笨(Pen1:acene)。 該驗證係在後述的驗證條件下,針對配合結晶性分子9 之材質與凝聚分子之材質的組合,驅動電壓到底如何變化而 〇 進行驗證。 上述的結晶性分子9材質係例示有銅酞菁(CuPc)及稠五 苯,另一方面,就凝聚物5、γ之一例,亦例示凝聚分子分 別:(1)為無存在的情況,(2)為鉬氧化物(Μ〇〇3)的情況,(3) 為虽勒烯(C6。)的情況,(4)為Alq3的情況。 <驗證條件> 該項驗證中’各層的膜厚係如下所例示。 ® 首先’陽極似第1金屬電極)的膜厚係在lnm〜40nm範圍 内,在此係例示20ηπ^定向控制構件的凝聚分子7及結晶 性分子9之厚度係3nm,結晶性分子9的膜厚係15咖電洞 輸送層48的膜厚係35nm,發光層49的膜厚係6〇n心此外, 電子注入層51的膜厚係lnm,陰極52(第2電極)的膜厚係 8〇而。另外’電流密度係例如7· 5—2],發光層49的輝 度係在各項驗證中均為相同程度。 圖U及圖12所示驗證結果,就各層的材質:陽極 97136288 16 200930144 46(Anode)係採用金(Au)、結晶性分子9係採用銅献菁(CuPc) 等、發光層49係採用Αίφ、電子注入層51係採用Li〇2、陰 極 52(Cathode)係採用 Ιδ(Α1)。 根據圖11所示的驗證結果,有機電場發光元件3的驅動 電壓係如下。 (1)當凝聚分子無存在的情況,有機電場發光元件3的驅 動電壓為13. 8[V]。以下,將該驅動電壓稱為「參考驅動電 ❹ 壓」。相對於此,(2)於凝聚分子的材質為鉬氧化物(m〇〇3)之 情況,有機電場發光元件3的驅動電壓為5. 7[V]。(3)於 凝聚分子的材質為富勒稀(Ce。)之情況,有機電場發光元件3 的驅動電壓為5.8[V]。(4)於凝聚分子的材質為Aiqa之情 況,有機電場發光元件3的驅動電壓為1〇. 。 所以,當凝聚分子材質係使用Alq3時的驅動電壓,較低 於上述參考驅動電壓,有機電場發光元件3整體的發光效率 ❹提高。此外,凝聚分子材質係使用富勒烯(αβ)時的驅動電 壓,大幅低於凝聚分子材質使用Alqs時的驅動電麼。 當凝聚分子材質使用鉬氧化物(Mo〇3)時的驅動電壓,亦低於 凝聚分子材質使用富勒烯(Ce。)時的驅動電壓β 所以,有機電場發光元件3的驅動電壓,將依照凝聚八子 材質為Alq3、虽勒婦(Ceo)、钥氧化物(μ〇〇3)的順序降低 另外,除陽極46係為銀(Ag)之外,其餘均為與同圖“ 所示條件的相同條件下,當凝聚分子係例示“時, T 驅動電 97136288 17 200930144 壓為 5. 6[V]。 在此針對輝度進 果’有機電場發光 行簡單的說明。根據圖11所示的驗證結 元件3的輝度係如下。 凝歜刀子無存在的情況,有機電場發光元件3的輝 為270[cd/m ]。(2)於凝聚分子材質為翻氧化物(_〇的 隋况’有機電場發光元件3的輝度為339[cd/m2]。⑶於凝 聚分子材質為富—心)的情況,有機電場發光元件3的輝 度為334[cd/m2]。⑷於凝聚分子材f為Alq3的情況,有 機電场發光兀件3的輝度為385[cd/m2]。 另一方面’根據圖12㈣的驗證結果,錢電場發光元 件3的驅動電壓係如下。Further, the orientation control characteristic F22 shown in Fig. 10 refers to agglomerated molecules of An (gold) and crystal_member 8 in an anode form. And the crystalline molecules 9 are made of M〇〇3 and slightly sloppy, and the hole transporting layer 48 is made of NPB as the material. The orientation control property F22 refers to the layer structure of the crystal control structure of the present embodiment. . The directional control characteristic m is a peak when the X-ray incident angle W/ω is about 6.8 [deg]. At this time, the crystalline molecules 9 sen of the crystal control member 8 are in a straight state in the straight direction of the substrate milk, and the orientation of the crystalline molecules 9 is well controlled. Furthermore, the orientation control characteristic F23 shown in FIG. 10 means that the anode is alum (gold), the agglomerated molecule 7 of the crystal control member 8, and the crystalline molecule 9 are Α1φ and fused pentabenzene, and the hole transport layer. The 48 series uses Νρβ as the material = condition. The directional control characteristic F23 refers to the case of the layer structure of the crystallization control structure: 8. The directional control characteristic m peak ray incidence when the incident 2θ/ω is about 6.8 [deg]. At this time, the crystalline molecular structure 9 of the crystal structure is raised in the vertical direction with respect to the glass substrate 45. 97136288 15 200930144 The appearance ' indicates that the orientation of the crystalline molecules 9 is well controlled. <Verification of Driving Voltage> Fig. 1 and Fig. 12 are diagrams each showing an example of the driving voltage verification result of the organic electric field light-emitting element 3. The materials of the crystalline molecules 9 illustrated in Fig. 11 and Fig. 12 are respectively copper phthalocyanine (Cupc) and thick quinone (Pen1: acene). This verification is performed by verifying how the driving voltage changes in accordance with the combination of the material of the crystalline molecule 9 and the material of the agglomerated molecule under the verification conditions described later. The material of the above-mentioned crystalline molecule 9 is exemplified by copper phthalocyanine (CuPc) and pentacene. On the other hand, in the case of one of the aggregates 5 and γ, the condensed molecules are also exemplified: (1) 2) In the case of molybdenum oxide (Μ〇〇3), (3) is the case of olefin (C6.), and (4) is the case of Alq3. <Verification condition> The film thickness of each layer in the verification is as follows. The film thickness of the first 'anode-like first metal electrode' is in the range of 1 nm to 40 nm. Here, the thickness of the aggregated molecule 7 and the crystalline molecule 9 of the 20ηπ^ orientation control member is 3 nm, and the film of the crystalline molecule 9 is used. The film thickness of the thick 15 coffee hole transport layer 48 is 35 nm, the film thickness of the light emitting layer 49 is 6 〇 n core, and the film thickness of the electron injection layer 51 is 1 nm, and the film thickness of the cathode 52 (second electrode) is 8 Oh. Further, the current density is, for example, 7·5-2, and the luminance of the light-emitting layer 49 is the same in each verification. The results of the verification shown in Fig. U and Fig. 12 are as follows: the material of each layer: anode 97136288 16 200930144 46 (Anode) is made of gold (Au), the crystalline molecule 9 is made of copper phthalocyanine (CuPc), and the luminescent layer 49 is Αίφ. In the electron injection layer 51, Li 〇 2 and cathode 52 (Cathode) are used as Ι δ (Α 1). According to the verification result shown in Fig. 11, the driving voltage of the organic electroluminescence element 3 is as follows. (8) When the condensed molecule is absent, the driving voltage of the organic electroluminescent element 3 is 13.8 [V]. Hereinafter, this driving voltage is referred to as "reference driving voltage". 2[V]. The driving voltage of the organic electroluminescent element 3 is 5.7 [V]. (3) In the case where the material of the agglomerated molecule is Fullerene (Ce.), the driving voltage of the organic electroluminescent element 3 is 5.8 [V]. (4) In the case where the material of the agglomerated molecule is Aiqa, the driving voltage of the organic electroluminescent element 3 is 1 〇. Therefore, when the driving voltage of the agglomerated molecular material using Alq3 is lower than the above reference driving voltage, the luminous efficiency of the organic electroluminescent element 3 as a whole is improved. In addition, the driving voltage of the polymerized molecular material when fullerene (αβ) is used is significantly lower than the driving power when Alqs is used as the agglomerated molecular material. The driving voltage when the molybdenum oxide (Mo〇3) is used as the agglomerated molecular material is also lower than the driving voltage β when the fullerene (Ce) is used as the agglomerated molecular material. Therefore, the driving voltage of the organic electroluminescent element 3 will be in accordance with The order of condensed eight sub-materials is Alq3, although the order of Ceo (Ceo) and key oxide (μ〇〇3) is reduced, except that the anode 46 is made of silver (Ag), and the others are the same as those shown in the figure below. Under the same conditions, when the condensed molecular system is exemplified, "T drive power 97136288 17 200930144 pressure is 5.6 [V]. Here, a brief description will be made on the luminance of the organic light field. The luminance of the junction element 3 according to the verification shown in Fig. 11 is as follows. In the case where the coagulation knife is absent, the glow of the organic electroluminescence element 3 is 270 [cd/m]. (2) In the case where the agglomerated molecular material is a turned oxide (the state of the organic electroluminescent element 3 is 339 [cd/m2]. (3) in the case where the agglomerated molecular material is rich-hearted), the organic electroluminescent element The luminance of 3 is 334 [cd/m2]. (4) In the case where the agglomerated molecular material f is Alq3, the luminance of the organic electroluminescence element 3 is 385 [cd/m2]. On the other hand, according to the verification result of Fig. 12 (4), the driving voltage of the money electric field light-emitting element 3 is as follows.

⑴當凝聚分子無存在的情況,有機電場發光元件3的驅 動電壓為9. 1[V]。以下,將該驅動電壓稱「參考驅動電壓」。 相對於該參考驅動轉,⑵於凝聚分子材質為钥氧化物 _3)的情況,有機電場發光元件3的驅動電壓為3. 9[v]。 ⑶於凝聚分子㈣為富勒祕。)的情況,有機電場發光 元件3的‘義錢為4.制。⑷於凝聚分子材質為Alq3 的情況,有機電場發光元件3 _動電壓為9 4[v]。 所以,當凝聚分子材質為使用富勒烯㈣時的驅動㈣, 大幅低於凝聚分子材質為使用Α1φ時的驅動電壓。又,凝 聚分子材質為使肋氧化物_树的_錢,亦低於凝 聚分子材質為使用富勒烯((:一時的驅動電壓。 97136288 18 200930144 所以’有機電場發光元件3的驅動電壓,將依照凝聚分子 材質為A1q3、舍缸 田勒婦(C6。)、鋼氧化物(M0O3)的順序降低。 • &在此亦針對輝度進行簡單的說明。根據圖12所示的驗證 • 、、Ό果’有機電場發光it件3的輝度係如下。 ()田凝1分子無存在的情況,有機電場發光元件3的輝 又為5〇[Cd/m]°(2)於凝聚分子材質為錮氧化物(Mo〇3)的 情况’有機電場發光元件3的輝度為241 [cd/m2]。⑶於凝 ©聚分子材質為富勒稀(㈤的情況,有機電場發光元件3的輝 度為265[Cd/m2]。(4)於凝聚分子材質為Αίφ的情況,有 機電場發光元件3的輝度為371[cd/m2]。 <表面粗糙度的驗證> 圖13所示係在玻璃基板45上的陽極铛或該陽極46上存 在各凝聚分子時,表面粗糙度(roughness)Ra的驗證例圖。 另外,圖13中,將省略玻璃基板45。該驗證例中,陽極 ❹係以金作為材質,且設定為2Q[nm]賴厚,將各凝聚分子 的厚度設為3[nm]。 首先,(1)當陽極46上無存在凝聚分子時,該陽極46的 表面粗糙度Ra將為2· 6[nm]。以下,將該表面粗糙度稱「參 考表面粗糙度」。相對於該參考表面粗糙度,於陽極 上的凝聚分子材質為鉬氧化物(M〇〇3)時,其表面粗糖度 將為9·3[ηιηΚ3)於陽極46上的凝聚分子材質為富勒烯((:6〇) 時,其表面粗糙度Ra將為6.5[nm]。(4)陽極46上的凝聚 97136288 ιη 200930144 分子材質為Alq3時,其表面粗糙度跬將為35[nm]。 配合陽極46上的凝聚分子材料種類,表面形狀將有所不 .同,但不管何種材料種類,均較小於Au表面的晶粒尺寸。 . 藉由插入厚度3咖左右的凝聚分子,表面粗糙度Ra便增加 1. 3〜3. 6倍程度。若參照配合所混入凝聚分子而產生的該等 表面粗糖度Ra,有機電場發光元件3的駆動電壓將與該表 面粗糙度Ra成反比。即,得知於有機電場發光元件3中, ❹藉㈣聚分子之混人所產生的表面祕度Ra越大,對驅動 電壓的降低越具貢獻度。 上述實施形態的有機半導體元件3,係在第i金屬電極 46(陽極)與第2電極52(陰極)的-對電極間,至少具備有: 發光層49、電洞注入層47(其係從第i金屬電極46中取出 電洞)、電洞輸送層48(其係積層於發光層⑽靠第1金屬電 極46側’並將利用電洞注入層4?所取出的電洞,輸送給發 〇光層49)、以及電子注入層51(其係積層於發光層49靠第2 電極52侧,從上述第2電極中取出電子並供應給上述發光 層)的有機半導體元件3,其中,並包含有:屬於沿鄰接第i 金屬電極46的電洞注入層47表層之不連續塊體,並對結晶 f生刀子9方向進行控制的結晶控制構件8(凝聚物、凝聚分 -子)。 若依如此方式進行,結晶控制構件8(5、7)係沿與第i金 屬電極46間相接觸面的電洞注人層4?表層將成為凹凸形 97136288 20 200930144 狀’依照該表層的表面粗糙度(roughness)對定向進行控 制。因而’從第1金屬電極46中取出電洞並移往電,;同淡入 層47中變為容易,有機半導體元件3整體的驅動電麋將< 較習知技術呈低電壓化。此外,由於此種有機半導體元件3 係依低驅動電壓產生動作,因而可減輕對元件自體的負荷, 結果便可較習知技術更加延長元件的壽命。 上述實施形態的有機半導體元件3中,除上述構造之外, 0 結晶控制構件8對結晶性分子9的平面狀分子及棒狀分孑中 至少其中一者的結晶方向進行控制。 若依如此方式進行,結晶控制構件8中,對平面狀分孑戒 棒狀分子中至少其中一者的定向進行控制,俾可抑制驅動電 壓。 上述實施形態的有機半導體元件3中,除上述構造之外, 結晶控制構件8係為能在電洞注人層47表層上形成凹凸形 © 狀而混入的凝聚物5、7。 右依如此方式進行,結晶控制構件5、7將配合所混入的 凝聚物5、7而調整第!金屬電極46與電洞注入層的表 面粗縫度,控制著結晶性分子9的定向,便可降低驅動電壓。 i述實施形態的有機半導體元件3中,除上述構造外,結 晶控制構件8係不同於構成電洞注入層心材料分子的凝聚 分子。 若依如此方式進行’結晶控制構件5、7將配合所混入的 97136288 21 200930144 凝聚分子而調整第1金屬電極46與電洞注入層47的表面粗 糖度’藉此便控制著結晶性分子9的定向,俾可降低驅動電 壓。 . 上述實施形態的有機半導體元件3中,係除上述構造之 外’亦將混入上述凝聚分子的Mo〇3(銦氧化物)。 如此,若結晶控制構件中含有Mo〇3,第1金屬電極46(陽 極)表層的表面粗糙度便增加,便可較習知技術抑制對第i ❺金屬電極46與第2電極52間所應施加的驅動電壓。此外, 若結晶控制構件8係以Mo〇3作為材質時,由於該M〇〇3分子 的HOMO能階或LUM0能階,接近於稠五苯分子的H〇M〇能階 或LUM0能階、與第丨金屬電極46分子的H〇M〇能階或LM〇 能階,因而將可抑制驅動電壓。 上述實施形態的半導體元件3中,除上述構造之外,尚混 入上述凝聚分子的C6〇(富勒浠)。 ❹ 如此,若結晶控制構件中含有α。,第1金屬電極46表層 的表面粗糙度便增加’便可較習知技術抑制對第丨金屬電極 46與第2電極52間所應施加的驅動電壓。此外,若結晶控 .制構件8係以C6。作為材質時,由於該“分子的Η〇Μ〇能階 或LUM0能階,接近於稠五苯分子的Η〇Μ〇能階或LUM〇能階、 與第1金屬電極46分子的H〇M〇能階或LUM〇能階,因而將 可抑制驅動電壓。 上述實施形態的半導體元件3中,混入有上述凝聚分子的 97136288 22 200930144(1) When the agglomerated molecule is absent, the driving voltage of the organic electroluminescent element 3 is 9. 1 [V]. Hereinafter, this driving voltage is referred to as "reference driving voltage". 。 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ (3) The condensed molecule (4) is rich in secret. In the case of the organic electric field light-emitting element 3, the "reward money" is 4. (4) In the case where the agglomerated molecular material is Alq3, the organic electroluminescent element 3 _ dynamic voltage is 9 4 [v]. Therefore, when the agglomerated molecular material is driven by the use of fullerenes (4), the driving voltage is much lower than that of the condensed molecular material when Α1φ is used. Moreover, the condensed molecular material is such that the rib oxide_tree _ money is also lower than the condensed molecular material for the use of fullerene ((: one-time driving voltage. 97136288 18 200930144 therefore 'the driving voltage of the organic electroluminescent element 3, According to the order of the agglomerated molecular material, A1q3, Shekang Tianlu (C6.), and steel oxide (M0O3) are reduced. • & Here, the brightness is also briefly explained. According to the verification shown in Figure 12, Ό果' The luminance of the organic electric field illuminating element 3 is as follows. () The case where there is no molecule in the field, the luminescence of the organic electroluminescent element 3 is 5 〇 [Cd/m] ° (2) In the case of cerium oxide (Mo 〇 3 ), the luminance of the organic electroluminescent element 3 is 241 [cd/m 2 ]. (3) When the condensed poly molecular material is fuller ((5), the luminance of the organic electroluminescent element 3 is 265 [Cd/m2] (4) In the case where the agglomerated molecular material is Αίφ, the luminance of the organic electroluminescent element 3 is 371 [cd/m 2 ]. <Verification of Surface Roughness> When the anode on the substrate 45 or the aggregated molecules are present on the anode 46, the surface is thick In addition, in Fig. 13, the glass substrate 45 is omitted. In this verification example, the anode lanthanum is made of gold and is set to have a thickness of 2Q [nm], and the respective molecules are aggregated. The thickness is set to 3 [nm]. First, (1) When there is no agglomerated molecule on the anode 46, the surface roughness Ra of the anode 46 will be 2.6 [nm]. Hereinafter, the surface roughness is referred to as "reference". Surface roughness". With respect to the reference surface roughness, when the agglomerated molecular material on the anode is molybdenum oxide (M〇〇3), the surface roughness is 9·3 [ηιηΚ3) on the anode 46. When the molecular material is fullerene ((:6〇), the surface roughness Ra will be 6.5 [nm]. (4) Condensation on the anode 46 97136288 ιη 200930144 When the molecular material is Alq3, the surface roughness 跬 will be 35 [nm]. In combination with the type of agglomerated molecular material on the anode 46, the surface shape will be different, but no matter what kind of material, it is smaller than the grain size of the Au surface. By inserting a thickness of about 3 coffee The condensed molecule, the surface roughness Ra is increased by 1. 3~3. 6 times. If the reference is mixed The surface roughness R generated by the condensed molecules, the turbulent voltage of the organic electric field light-emitting element 3 will be inversely proportional to the surface roughness Ra. That is, it is known that in the organic electric field light-emitting element 3, the (four) poly-molecule is mixed. The larger the surface fineness Ra generated, the more the contribution to the reduction of the driving voltage is. The organic semiconductor element 3 of the above embodiment is a pair of the i-th metal electrode 46 (anode) and the second electrode 52 (cathode). The electrode includes at least a light-emitting layer 49, a hole injection layer 47 (which takes out a hole from the i-th metal electrode 46), and a hole transport layer 48 (which is layered on the light-emitting layer (10) by the first metal electrode 46. The side 'and the hole taken out by the hole injection layer 4 is transported to the light-emitting layer 49) and the electron injection layer 51 (the layer is laminated on the side of the second electrode 52 of the light-emitting layer 49, from the second The organic semiconductor element 3 in which electrons are taken out from the electrode and supplied to the above-mentioned light-emitting layer, and includes a discontinuous block belonging to the surface layer of the hole injection layer 47 adjacent to the i-th metal electrode 46, and a knives for the crystal f Crystallization control member 8 controlled in 9 directions Matter, agglomerate - sub). If performed in this manner, the crystallization control member 8 (5, 7) is a hole in the contact layer with the i-th metal electrode 46. The surface layer will become a concavo-convex shape 97136288 20 200930144 in accordance with the surface of the surface layer Roughness controls the orientation. Therefore, the hole is taken out from the first metal electrode 46 and transferred to electricity, and it becomes easy to pass into the fade-in layer 47, and the driving power of the entire organic semiconductor element 3 is lower than that of the prior art. Further, since the organic semiconductor element 3 operates in accordance with a low driving voltage, the load on the element itself can be reduced, and as a result, the life of the element can be further extended by the conventional technique. In the organic semiconductor device 3 of the above-described embodiment, in addition to the above-described structure, the 0-crystal control member 8 controls the crystal direction of at least one of the planar molecules and the rod-shaped branches of the crystalline molecules 9. In this manner, in the crystallization control member 8, the orientation of at least one of the planar bifurcation or the rod-shaped molecules is controlled, and the driving voltage can be suppressed. In the organic semiconductor device 3 of the above-described embodiment, in addition to the above-described structure, the crystal control member 8 is an aggregate 5 and 7 which can be formed in a concavo-convex shape on the surface layer of the hole injecting layer 47. The right side is carried out in such a manner that the crystal control members 5, 7 are adjusted in accordance with the aggregates 5, 7 to be mixed therein! The surface roughness of the metal electrode 46 and the hole injection layer controls the orientation of the crystalline molecules 9, and the driving voltage can be lowered. In the organic semiconductor device 3 of the embodiment described above, the crystal control member 8 is different from the above-described structure, and is different from the agglomerated molecules constituting the molecules of the hole injection layer core material. In this manner, the crystal control members 5 and 7 adjust the surface roughness of the first metal electrode 46 and the hole injection layer 47 by blending the 97136288 21 200930144 agglomerated molecules, thereby controlling the crystalline molecules 9 Orientation, 俾 can reduce the drive voltage. In the organic semiconductor device 3 of the above-described embodiment, Mo〇3 (indium oxide) of the above-mentioned aggregated molecules is also mixed in addition to the above structure. As described above, when Mo 〇 3 is contained in the crystallization controlling member, the surface roughness of the surface layer of the first metal electrode 46 (anode) is increased, and the relationship between the ith metal electrode 46 and the second electrode 52 can be suppressed by a conventional technique. The applied driving voltage. Further, when the crystal control member 8 is made of Mo〇3, the HO〇 energy level or the LUM0 energy level of the M〇〇3 molecule is close to the H〇M〇 energy level or the LUM0 energy level of the condensed pentabenzene molecule, With the H 〇 M 〇 energy level or LM 〇 energy level of the molecule of the second metal electrode 46, the driving voltage can be suppressed. In the semiconductor device 3 of the above-described embodiment, in addition to the above structure, C6 〇 (Fuller) of the above-mentioned aggregated molecules is mixed.如此 Thus, if the crystallization control member contains α. The surface roughness of the surface layer of the first metal electrode 46 is increased, so that the driving voltage to be applied between the second metal electrode 46 and the second electrode 52 can be suppressed by a conventional technique. Further, if the crystallization control member 8 is C6. As a material, due to the "Η〇Μ〇 energy level or LUM0 energy level of the molecule, close to the Η〇Μ〇 energy level or LUM 〇 energy level of the fused pentacene molecule, and the H 〇 M of the first metal electrode 46 molecule The driving energy can be suppressed by the 〇 energy level or the LUM 〇 energy level. In the semiconductor device 3 of the above embodiment, the above-mentioned aggregation molecules are mixed with 97136288 22 200930144

Alq3。 如此,若結晶控制構件8中含有Α1φ,第丨金屬電極46 . 表層的表面粗糙度便增加,便可較習知技術抑制對第丨金屬 .電極46與第2電極52間所應施加的驅動電壓。此外,若結 晶控制構件係以Αΐφ作為材質時,由於該Alq3分子的H〇M〇 月b階或LUM0能階’接近於稠五苯分子的H〇M〇能階或LM〇 能階、與第1金屬電極46分子的HOMO能階或LUM0能階, ❹ 因而將可抑制驅動電壓。 上述實施形態的有機半導體元件3中,除上述構造外,上 述第1金屬電極46係為金、銀或銅中任一者。 若依如此方式進行,若第1金屬電極46係使用諸如金等, 結晶性分子9的定向便將被良好地控制,便可降低驅動電 壓。 上述實施形態的有機半導體元件3中,除上述構造之外, ❹其特徵在於上述電洞注入層47係含有CuPc。 若依如此方式進行,可將對第1金屬電極46與第2電極 52間所應施加的驅動電壓低電壓化,同時亦可延長有機半 導體元件3的壽命。 上述實施形態的有機半導體元件3中,除上述構造之外, 其特徵在於上述電洞注入層47係含有稠五苯。 若依如此方式進行,可將對第1金屬電極46與第2電極 52間所應施加的驅動電壓低電壓化,同時亦可延長有機半 97136288 23 200930144 導體元件3的壽命。 上述實施形態的有機半導體元件3中,除上述構造之外, •更具備有從下層起依序積層著第1金屬電極46、電洞注入 ,層47、電洞輸送層48、發光層49、電子注入層51及第2 電極52的基板45’且上述凝聚分子係具有相對基板奶為ι 度以上、90度以下的定向。 若依如此方式進行,若混入具有此種定向的凝聚分子,由 〇於第1金屬電極46與電洞注入層47的注入率成為良好,因 而將可使對第i金屬電極46與第2電極52間所應·的驅 動電壓低電壓化。 上述實施形態的有機半導體元件3中,除上述構造之外, 上述凝聚分子亦可採用有機系材料(CM富勒烯)、奈米碳管 (carbon nanotube)、Αίφ等)、氟化物系材料(氟化鋰等)、 金屬氧化物(例如111〇0*1031、1403^110*等)、氣體性分子(氧 ❿等) 、自組膜(self-assembled film)(SAM 膜等)、金屬、氧 化物之奈米膠體(nano-colloid)中之任一者。 若依如此方式進行,可使對第1金屬電極46與第2電極 52間所應施加的驅動電壓低電壓化,且能延長有機半導體 元件3的壽命。 ' 上述實施形態的有機半導體元件3中,除上述構造之外, 上述不連續塊體係覆蓋第1金屬電極46表面比例的被覆率 為1%以上、未滿100%的薄膜。 97136288 24 200930144 若依如此方式進行,便可確保第丨金屬電極46與電洞注 入層47間的電氣導通,並且可使對第i金屬電極46與第2 . 電極52間所應施加的驅動電壓低電壓化。 . 上述實施形態的有機半導體元件3中,除上述構造之外, 發光層49係利用配合第i金屬電極46與第2電極52間的 施加電壓所產生之電場,而輸出可見光。 若依如此方式進行,結晶控制構件5、7係沿與第1金屬 ©電極46間相接觸面的電洞注入層47表層成為凹凸形狀,並 依照該表層的表面粗糙度(roughness)而控制著定向。因 而,將從第1金屬陽極46中取出電洞並輕易地移至電祠注 入層47中,即使有機半導體元件3輸出與習知技術為相同 程度可見光的情況’整體的驅動電壓仍可較習知技術呈低電 壓化。此外,因為此種有機半導體元件3係依低驅動電壓進 行動作,因而將可減輕對元件自體的負荷,結果便可較習知 ❹ 技術更加延長元件的壽命。 上述實施形態的顯示面板’係具備有下述有機半導體元件 3的顯示面板’該有機半導體元件3係在第丨金屬電極46(陽 極)與第2電極52(陰極)的一對電極間,至少具備有:發光 層49、電洞注入層47(其係從第1金屬電極46中取出電 洞)、電洞輸送層48(其係積層於發光層49靠第1金屬電極 46(陽極)側,並將利用電洞注入層47所取出的電洞,輸送 給發光層49)、以及電子注入層51(其係積層於發光層49 97136288 25 200930144 靠第2電極52側’從第2電極52中取出電子並供應給發光 層49);其中,所具有的有機半導體元件3係含有結晶控制 .構件(凝聚物、凝聚分子),該結晶控制構件(凝聚物、凝聚 . 分子),係在鄰接第1金屬電極46的電洞輸送層48表面上, 屬於沿電洞注入層47表層的不連續塊體,且對結晶性分子 9的方向進行控制。 若依如此方式進行,結晶控制構件5、7係沿與第1金屬 ❹ 電極46間相接觸面的電洞注入層47表層成為凹凸形狀,並 依照該表層的表面粗糙度(roughness)對定向進行控制。因 而,將電洞從第1金屬電極46中取出並輕易地移往電洞注 入層47中,可將顯示面板的有機半導體元件3整體驅動電 壓,較習知技術呈低電壓化。此外,因為此種有機半導體元 件3係依低驅動電壓產生動作’因而將可減輕對元件自體的 負荷,結果便可較習知技術更加延長元件的壽命。 © 内建此種有機半導體元件3的顯示面板,因為可將各有機 半導體元件3的驅動電壓低電壓化,因而整體將可降低消耗 電力。另外,該顯示面板係除上述構造之外,尚具備有第i 實施形態的有機半導體元件3之各項構造’而可發揮出與此 • 種構造有機半導體元件3所發揮效果為相同的效果。 • <第2實施形態> 第2實施形態中,例示具有與第1實施形態所示有機半導 體元件大致相同構造的太陽電池。因而,第2實施形態中, 97136288 26 200930144 相關相同構造與動作均採用與第1實施形態之圖1至圖12 中相同的元件符號’並省略該部份的說明,以下的說明僅就 , 差異處為中心進行說明。 、 帛2實施形態的有機太陽電池係取代第1實施形態的有機 半導體几件3中所存在發光層49,而在該發光層49的相同 位置處,存在以有機物作為材質的光電轉換層。該光電轉換 層係具有將在吸收光的P型材料與_材料之邊界面所產生 ❹之激子,分離為電洞與電荷的機能。 再者,該有機太陽電池係就其基本構造,並未存在有在上 述有機半導體元件3上所積層的上述電洞注入層47、電洞 輸送層48及電子注入層51,取而代之改為將電子輸送層積 層於光電轉換層靠陰極52(第2電極)側。該電子輸送層係 具有從該光電轉換層中取出電荷並傳輸給陰極犯的機能。 該有機太陽電池係包括有:屬於沿鄰接陽極奸(第i金屬 ©電極)的該光電轉換層表層之不連續塊體’並對結晶性分子 方向進行控制的結晶控制構件。此處所謂「結晶控制構件」 係如同第1實施形態中所謂的結晶控制構件8而為相同材質 及構造’大致同樣地具有提升注人率的機能。即,該結晶控 制構件係包含有例如C6。的凝聚分子。 其中’該有機太陽電池的各層係依照陽極46、結晶控制 構件、光電轉換層的P型材料、光電轉換層的N型材料、電 子輸送層、陰極52之順序,可採用如下述之材質。另外, 97136288 27 200930144 符號「/」係指各層的邊界。Alq3. Thus, if the crystal control member 8 contains Α1φ, the second metal electrode 46. The surface roughness of the surface layer is increased, and the driving force applied to the second metal electrode 46 and the second electrode 52 can be suppressed by a conventional technique. Voltage. In addition, if the crystallization control member is made of Αΐφ, the H〇M〇month b or LUM0 energy level of the Alq3 molecule is close to the H〇M〇 energy level or LM〇 energy level of the fused pentabenzene molecule, and The HOMO level or the LUM0 level of the first metal electrode 46 molecule, thus suppressing the driving voltage. In the organic semiconductor device 3 of the above-described embodiment, in addition to the above configuration, the first metal electrode 46 is either gold, silver or copper. In this manner, if the first metal electrode 46 is made of, for example, gold, the orientation of the crystalline molecules 9 is well controlled, and the driving voltage can be lowered. In addition to the above-described structure, the organic semiconductor device 3 of the above-described embodiment is characterized in that the hole injection layer 47 contains CuPc. By performing in this manner, the driving voltage to be applied between the first metal electrode 46 and the second electrode 52 can be lowered, and the life of the organic semiconductor element 3 can be extended. In addition to the above-described structure, the organic semiconductor device 3 of the above-described embodiment is characterized in that the hole injection layer 47 contains condensed pentene. By carrying out in this manner, the driving voltage to be applied between the first metal electrode 46 and the second electrode 52 can be lowered, and the life of the organic element 97136288 23 200930144 can be extended. In addition to the above-described structure, the organic semiconductor device 3 of the above-described embodiment further includes a first metal electrode 46, a hole injection layer, a layer 47, a hole transport layer 48, and a light-emitting layer 49, which are sequentially stacked from the lower layer. The electron injection layer 51 and the substrate 45' of the second electrode 52 and the agglomerated molecules have an orientation of not more than 10 degrees and not more than 90 degrees with respect to the substrate milk. According to this aspect, when the agglomerated molecules having such an orientation are mixed, since the injection rate of the first metal electrode 46 and the hole injection layer 47 is good, the i-th metal electrode 46 and the second electrode can be made. The driving voltage of 52 is reduced to a low voltage. In addition to the above-described structure, the organic semiconductor device 3 of the above-described embodiment may be an organic material (CM fullerene, a carbon nanotube, a ruthenium or the like) or a fluoride-based material. Lithium fluoride, etc., metal oxides (for example, 111〇0*1031, 1403^110*, etc.), gaseous molecules (oxygen oxime, etc.), self-assembled films (SAM films, etc.), metals, Any of nano-colloids of oxides. By carrying out in this manner, the driving voltage to be applied between the first metal electrode 46 and the second electrode 52 can be lowered, and the life of the organic semiconductor element 3 can be extended. In the organic semiconductor device 3 of the above-described embodiment, in addition to the above-described structure, the discontinuous block system covers a film having a surface ratio of the first metal electrode 46 of 1% or more and less than 100%. 97136288 24 200930144 If performed in this manner, electrical conduction between the second metal electrode 46 and the hole injection layer 47 can be ensured, and a driving voltage to be applied between the i-th metal electrode 46 and the second electrode 52 can be applied. Low voltage. In the organic semiconductor device 3 of the above-described embodiment, in addition to the above-described structure, the light-emitting layer 49 outputs visible light by an electric field generated by applying an applied voltage between the i-th metal electrode 46 and the second electrode 52. According to this aspect, the crystal control members 5 and 7 are formed in a concave-convex shape along the surface of the hole injection layer 47 which is in contact with the first metal electrode 46, and are controlled in accordance with the surface roughness of the surface layer. Orientation. Therefore, the hole is taken out from the first metal anode 46 and easily moved into the electrode injection layer 47. Even if the organic semiconductor element 3 outputs visible light of the same level as the conventional technique, the driving voltage of the whole can be compared. The technology is known to be low voltage. Further, since such an organic semiconductor element 3 operates in accordance with a low driving voltage, the load on the element itself can be alleviated, and as a result, the life of the element can be further extended by the conventional technique. The display panel of the above-described embodiment includes a display panel having an organic semiconductor element 3 between the pair of electrodes of the second metal electrode 46 (anode) and the second electrode 52 (cathode), at least The light-emitting layer 49, the hole injection layer 47 (which takes out the hole from the first metal electrode 46), and the hole transport layer 48 (the layer of the light-emitting layer 49 on the side of the first metal electrode 46 (anode)) And the hole taken out by the hole injection layer 47 is supplied to the light-emitting layer 49) and the electron injection layer 51 (which is layered on the side of the second electrode 52 from the light-emitting layer 49 97136288 25 200930144) from the second electrode 52 The electrons are taken out and supplied to the light-emitting layer 49); wherein the organic semiconductor element 3 contains crystal control components (aggregates, agglomerates), and the crystal control members (aggregates, agglomerates, molecules) are adjacent The surface of the hole transport layer 48 of the first metal electrode 46 belongs to a discontinuous block along the surface layer of the hole injection layer 47, and controls the direction of the crystalline molecules 9. In this manner, the crystal control members 5 and 7 are formed into a concavo-convex shape along the surface of the hole injection layer 47 which is in contact with the first metal crucible electrode 46, and the orientation is performed in accordance with the surface roughness of the surface layer. control. Therefore, the hole is taken out from the first metal electrode 46 and easily moved to the hole injection layer 47, whereby the entire organic semiconductor element 3 of the display panel can be driven with a voltage lower than that of the prior art. Further, since such an organic semiconductor element 3 is operated in accordance with a low driving voltage, the load on the element itself can be alleviated, and as a result, the life of the element can be further extended than the conventional technique. © The display panel in which the organic semiconductor element 3 is built in, since the driving voltage of each of the organic semiconductor elements 3 can be lowered, the power consumption can be reduced as a whole. In addition to the above-described structure, the display panel has the same structure as that of the organic semiconductor device 3 of the first embodiment, and exhibits the same effects as those of the organic semiconductor device 3. <Second Embodiment> In the second embodiment, a solar cell having substantially the same structure as that of the organic semiconductor device according to the first embodiment is exemplified. Therefore, in the second embodiment, the same components and operations as those in Figs. 1 to 12 of the first embodiment are used in the same configuration and operation, and the description of the portions is omitted. The following description is only for the difference. The center is explained. In the organic solar cell of the embodiment, the light-emitting layer 49 is present in the organic semiconductor device 3 of the first embodiment, and a photoelectric conversion layer made of an organic material is present at the same position of the light-emitting layer 49. The photoelectric conversion layer has a function of separating excitons generated at the boundary surface between the P-type material and the _ material which absorb light into holes and electric charges. Further, in the basic structure of the organic solar cell, the hole injection layer 47, the hole transport layer 48, and the electron injection layer 51 which are laminated on the organic semiconductor element 3 are not present, and instead the electrons are replaced. The transport layer is laminated on the cathode 52 (second electrode) side of the photoelectric conversion layer. The electron transporting layer has a function of taking out electric charges from the photoelectric conversion layer and transmitting them to the cathode. The organic solar battery system includes a crystal control member belonging to a discontinuous block of the surface layer of the photoelectric conversion layer adjacent to the anode (the i-th metal-electrode) and controlling the direction of the crystalline molecules. Here, the "crystal control member" has the function of improving the injection rate in the same manner as the structure and structure of the crystal control member 8 in the first embodiment. That is, the crystallization controlling member contains, for example, C6. Condensed molecules. The layers of the organic solar cell may be in the following order in accordance with the order of the anode 46, the crystal control member, the P-type material of the photoelectric conversion layer, the N-type material of the photoelectric conversion layer, the electron transport layer, and the cathode 52. In addition, 97136288 27 200930144 The symbol "/" refers to the boundary of each layer.

Au/Ceo/CuPc/Ceo/Alqa/Ag . 另外,當作N型材料(塊體材)使用的Ce。,係不同於上述 .結晶控制構件的連續臈。上述光電轉換層的N型材料係具有 太陽電池的機能,但亦具有將所生成的電洞注人陽極& 的機能。 其中,上述光電轉換層的P型材料亦稱「有機電子供與性 ❹材料(或有機電子供體層)」。構成該有機電子供體層(亦有稱 「P型層」的情況)的有機電子供體,係在屬於電荷載子為 電洞、以及呈現p型半導體特性的材料之前提下,其餘並無 特別的限制。 具體而言,該有機電子授體係可利用以下該等而獲得,例 如.骨架上具有噻吩(thiophene)及其衍生物的寡聚物或聚 合物、骨架上具有苯伸乙稀(phenyienevinyiene)及其衍生 ❿ 物的寡聚物或聚合物、骨架上具有嘆吩乙浠(thienyl ene vinylene)及其衍生物的募聚物或聚合物、骨架上具有乙烯 味°坐〇丨1^1〇31^^2〇16)及其衍生物的募聚物或聚合物、骨架 上具有°比咯(pyrrole)及其衍生物的寡聚物或聚合物、骨架 上具有乙炔(acetylene)及其衍生物的寡聚物或聚合物、骨 架上具有isothianaphene及其衍生物的募聚物或聚合物、 骨架上具有庚二浠(heptadiene)及其衍生物的募聚物或聚 合物等高分子;無金屬酞菁、金屬酞菁類及該等衍生物、二 97136288 28 200930144 胺類(diamine)、苯基二胺類(triphenyl diamine)及該等衍 生物;稠五苯等併苯類(acene)及其衍生物;卟琳 (porphyrin)、四曱基卟淋(tetramethyl porphyrin)、四苯基卟淋 (tetraphenyl porphyrin)、重氮四苯并卟^(diazo-tetrabenz porphyrin)、偶氣四笨并卟5#(monoaz〇-tetrabenz porphyrin)、 疊氮基四苯并卟琳(triazo-tetrabenz porphyrin)、八乙基卟淋 (octaethyl porphyrin)、八烧基硫代四氮雜卟啉(紫菜 ❹ ^Xocta-alkyltihio porphyrazine)、八烧基胺基四氮雜卟淋 (octa-alkylamino porphyrazine) 、 半雜 外 琳 (hemiporphyrazine)、葉綠素(chlorophyll)等無金屬卟啉或金屬 卟琳及其衍生物;菁(cyanin)色素、份菁(merocyanine)、苯酿 (benzoquinone)、萘(naphthoquinone)等酿系(quinone)色 素等等低分子。金屬酞菁或金屬卟啉的中心金屬係可使用諸 如:鎂、鋅、銅、銀、鋁、矽、鈦、釩、鉻、錳、鐵、鈷、 ® 鎳、錫、翻、鉛等金屬、金屬氧化物、金屬鹵化物。另外, 特別係最好在可見光區域(3〇〇nm~9〇〇nm)中存在有吸收帶的 有機材料。 另一方面,上述光電轉換層的N型材料亦稱「有機電子接 受性材料(有機電子受體層)」。構成該電子受體層(以下亦有 稱η型層」的情況)的電子受體,在本實施形態中係在屬 於電何載子為電子、以及呈現η型半導體特性的材料之前提 下,其餘並無特別的限制。 97136288 29 200930144 具體而言,該有機電子受體層的電子受體係可利用以下該 等而獲得,例如.骨架上具有吡啶(pyridine)及其衍生物的 寡聚物或聚合物、骨架上具有喹啉(quin〇line)及其衍生物 的寡聚物或聚合物、利用苯并二氮雜菲類 (benzo-Phenanthrol ine)及其衍生物所生成的梯狀聚合物 (ladder polymer)、氰化聚苯伸乙烯Au/Ceo/CuPc/Ceo/Alqa/Ag. In addition, Ce is used as an N-type material (block material). , is different from the above. The continuous control of the crystallization control member. The N-type material of the above photoelectric conversion layer has the function of a solar cell, but also has the function of injecting a generated hole into an anode & The P-type material of the above photoelectric conversion layer is also referred to as "organic electron-donating material (or organic electron donor layer)". The organic electron donor constituting the organic electron donor layer (also referred to as a "P-type layer") is provided before the charge carriers are holes and materials exhibiting p-type semiconductor characteristics, and the rest are not particularly limits. Specifically, the organic electron-donating system can be obtained by using, for example, an oligomer or a polymer having a thiophene and a derivative thereof on the skeleton, and a phenyiene vinyiene on the skeleton and An oligomer or polymer derived from a ruthenium, a polymer or a polymer having thienyl ene vinylene and a derivative thereof on the skeleton, and an ethylene taste on the skeleton. 1^1〇31^ ^2〇16) a polymer or polymer of a derivative thereof, an oligomer or polymer having a pyrrole and a derivative thereof, and an acetylene and a derivative thereof on the skeleton An oligomer or a polymer, a polymer or polymer having isothianaphene and a derivative thereof, a polymer having a polymer such as heptadiene and a derivative thereof, or a polymer; Cyanine, metal phthalocyanines and such derivatives, two 97136288 28 200930144 diamines, triphenyl diamines and derivatives thereof; acenes and their derivatives Physician; porphyrin (tetramethyl porphyrin), tetraphenyl porphyrin, diazo-tetrabenz porphyrin, monoaz〇-tetrabenz porphyrin, azidotetraphenyl Triazo-tetrabenz porphyrin, octaethyl porphyrin, octadecyl-alkyltihio porphyrazine, octadecylamine arsenazo (octa-alkylamino porphyrazine), hemiporphyrazine, chlorophyll, etc., metal-free porphyrin or metal phthalocyanine and its derivatives; cyanin pigment, melocyanine, benzoquinone Low-molecules such as naphthoquinone and other quinone pigments. The central metal system of metal phthalocyanine or metal porphyrin can use metals such as magnesium, zinc, copper, silver, aluminum, lanthanum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, tin, turn, lead, etc. Metal oxides, metal halides. Further, in particular, it is preferable that an organic material having an absorption band exists in the visible light region (3 〇〇 nm to 9 〇〇 nm). On the other hand, the N-type material of the above photoelectric conversion layer is also called "organic electron accepting material (organic electron acceptor layer)". In the present embodiment, the electron acceptor which constitutes the electron acceptor layer (hereinafter referred to as an n-type layer) is removed before the material belonging to the electron carrier and the material exhibiting the n-type semiconductor property. There are no special restrictions on the rest. 97136288 29 200930144 Specifically, the electron accepting system of the organic electron acceptor layer can be obtained by using, for example, an oligomer or a polymer having a pyridine and a derivative thereof, and a quinine on the skeleton. Oligomer or polymer of quin〇line and its derivatives, ladder polymer produced by benzo-Phenanthrol ine and its derivatives, cyanidation Polystyrene

Ο (cyan〇-P〇iyPhenyiene-vinylene)等高分子、氟化無金屬酞 菁、氟化金屬欧菁類及其衍生物、⑽邮㈣)及其衍生 物、萘(naphthalene)衍生物、bath〇cupr〇ine,BCp 及其衍 生物等低分子。此外,尚可例如修部或未修飾的富勒稀類、 奈米碳管類等。另外’如同上述情況,特別係最好在可見光 區域(300nm〜900nm)中存在有吸收帶的有機材料。 此種有機太陽電池係從其外部入射的光(以下稱「外部光」) 將穿透過透明基板45及陽極46 ’而到達光電轉換層。於該 光電轉換層储由使關如在太陽光光譜中具有吸收光譜 的電子供與性材料或電子接受性材料,便可吸收太陽^ 光。 例如若以電子供與性材料吸收光,便生成激子㈣發電荷 分離情形’而產生電子與制。其中,電子將移往電子 性材料’再從陰極52通過外部的電氣 經移往該陽極46中的電子,將與電子供與性材料= 的電洞相結合,而喊為財的狀態。藉由重複此種許的 97136288 30 200930144 移動,有機太陽電池便從該等陽極46及陰極52中取出電氣 能量。 圖14及圖15所示係有機太陽電池的電壓電流密度特性一 、例圖。圖14所示係第2實施形態的有機太陽電池之電壓電 流密度特性一例,圖15所示係比較對象的一般有機太陽電 池之電壓電流密度特性一例。 圖14及圖15中,實線係指有機太陽電池周圍呈昏暗狀 ❿ 態,單點鏈線係指有機太陽電池周圍呈明亮狀態(照射量 100[nW/cm2])。另外,橫軸係指電壓v[v],縱軸係指電流密 度Id[mA/cm2]。各參數係設定為:π isc=〇 4〇[%]、高分子 (cyan〇-P〇iyPhenyiene-vinylene) and other polymers, fluorinated metal-free phthalocyanine, metal fluoride phthalocyanine and its derivatives, (10) post (four)) and its derivatives, naphthalene derivatives, bath 〇cupr〇ine, low molecules such as BCp and its derivatives. Further, for example, it is possible to repair or unmodified fullerene, carbon nanotubes and the like. Further, as in the above case, it is particularly preferable that an organic material having an absorption band exists in the visible light region (300 nm to 900 nm). Such an organic solar cell, which is incident from the outside (hereinafter referred to as "external light"), passes through the transparent substrate 45 and the anode 46' to reach the photoelectric conversion layer. The photoelectric conversion layer stores an electron-donating material or an electron-accepting material which has an absorption spectrum in the spectrum of sunlight, and absorbs sunlight. For example, if light is absorbed by an electron-donating material, an exciton (4) charge-dissociation condition is generated to generate electrons and a system. Here, the electrons are transferred to the electronic material and then transferred from the cathode 52 to the electrons in the anode 46 through the external electric power, and combined with the hole of the electron-donating material =, and the state is called a state of wealth. By repeating this movement of 97136288 30 200930144, the organic solar cell removes electrical energy from the anode 46 and cathode 52. Fig. 14 and Fig. 15 show an example of voltage and current density characteristics of an organic solar cell. Fig. 14 is a view showing an example of voltage current density characteristics of the organic solar battery of the second embodiment, and Fig. 15 shows an example of voltage current density characteristics of a general organic solar battery to be compared. In Fig. 14 and Fig. 15, the solid line refers to a dimly lit state around the organic solar cell, and the single-dot chain line refers to a bright state around the organic solar cell (irradiation amount 100 [nW/cm2]). Further, the horizontal axis refers to the voltage v[v], and the vertical axis refers to the current density Id [mA/cm2]. Each parameter is set to: π isc=〇 4〇[%],

Voc=0. 45[V]、Jsc : 1. 65[mA/cm2]、FF : 0. 53 〇 <第2實施形態的有機太陽電池之各層材質及厚度> 第2實施形態的有機太陽電池中,係在基板45上,從陽 極 46 起依序積層著例如:Ag(15nm)/C6D(3nm)/CuPc(;4()nm:) © /C6〇(40nm)/Alq3(l〇nm)/Ag(50nm)。另外 ’「/」係指各層的 區隔。 第2實施形態的有機太陽電池係如圖14所示,配合上述 周圍為昏暗情況(相當圖示的「暗」)與明亮情況(相當圖示 的「亮」)的光量差,產生如囷示的電動勢Vg[V]。如此而 產生電動勢vg[v]的原因係如同第丨實施形態,在陽極46 與電洞輸送層48間控制著定向的緣故所致。 < 一般的有機太陽電池各層材質及厚度〉 97136288 31 200930144 一般的有機太陽電池,係在基板45上,從陽極46起依序 積層著例如 Ag(15nm)/CuPc(40nm)/C6G(3nm)/Alq3(l〇nm)/Voc = 0.54 [V], Jsc: 1. 65 [mA/cm2], FF: 0. 53 〇 <Materials and thickness of each layer of the organic solar cell of the second embodiment> Organic sun of the second embodiment In the battery, on the substrate 45, sequentially stacked from the anode 46, for example: Ag (15 nm) / C6D (3 nm) / CuPc (; 4 () nm:) © / C6 〇 (40 nm) / Alq3 (l〇 Nm) / Ag (50 nm). In addition, '/' refers to the division of each layer. As shown in Fig. 14, the organic solar battery of the second embodiment is provided with a difference in light amount between the darkness ("dark" (not shown)) and the bright (representative "bright"). The electromotive force Vg[V]. The reason why the electromotive force vg[v] is generated in this way is the same as the second embodiment, and the orientation is controlled between the anode 46 and the hole transport layer 48. <Material and thickness of each layer of general organic solar cell> 97136288 31 200930144 A general organic solar cell is laminated on a substrate 45, for example, Ag (15 nm) / CuPc (40 nm) / C6G (3 nm) is laminated from the anode 46. /Alq3(l〇nm)/

Ag(50nm)。另外,「/」係指各層的區隔。 另一方面,一般的有機太陽電池係如圖15所示,上述周 圍為昏暗情況(相當圖示的「暗」)與明亮情況(相當圖示的 「亮」)之光量差較小,並未產生如上述的電動勢Vg[v]。 ❹Ag (50 nm). In addition, "/" means the division of each layer. On the other hand, as shown in Fig. 15, the general organic solar cell system has a small difference in light between the above-mentioned surroundings (the "dark" (not shown) and the bright (the corresponding "bright"). An electromotive force Vg[v] as described above is generated. ❹

未發生電動勢Vg[V]的原因係陽極46與電洞輪送層48間並 未控制定向。 上述第2實施形態的有機太陽電池,係在第丨金屬電極 46(陽極)與第2電極52(陰極)的一對電極間,至少具備有: 光電轉換層(其係將在吸收光的p型材料與N型材料間之邊 界面所產生的激子,分離為電洞及電荷)、卩及電子輸送層 (其係積層於光電轉換層靠第2電極52侧,並從該光電轉換 層中取出電子並輸送給第2電極52)的有機太陽電池;其 中’包含有:屬於沿鄰接第1金屬電極46的該光電轉換層 表層之不連續塊體,並對結晶性分子9方向進行控制的钟曰 控制構件8(5、7)。 若依如此方式進行,因為結晶控制構件8(5、7)係依照該 表層的表面粗Μ度(rQUghness)而進行定向的控制,因而從 光電轉換層中取出電荷並移往陰極52變為容易。所以,假 ,在第1金屬電極46與第2電極52間所產生的電壓較高二 習知技術’整體仍可較習知技術提升發電效率。此外,因為 97136288 32 200930144 此種有機太陽電池將依低驅動電壓產生動作,因而將可減輕 對元件自體的負荷’結果便可較習知技術更加延長元件的壽 命0 • 上述實施形態的有機太陽電池,除取代發光層49,改為 設置光電轉換層之外,其餘具備有大致與上述第1實施形態 的有機半導體元件3各構造為相同之構造,分別均可發揮大 致相同的效果。 ❹ 另外’本實施形態並不僅褐限於上述,而可為各種變化。 以下,針對此種變化例依序進行說明。 上述實施形態中,上述凝聚分子亦可取代上述M〇〇3等, 改為採用例如LiF。另外,結晶性分子9亦可使用例如 六噻吩〇-36又丨1:1^0卩116116)(611)。 上述實施形態中,陽極46係透明或半透明的電極,惟並 不僅侷限於此’亦可為不透明。 ® 上述實祕態巾,陽極46主要係就以金(Au)作為材質進 行說明,惟並不僅偈限於此,除上述所說明的銀、銅、ιτ〇 或ΙΖ0等的氧化物半導體之外,尚可為諸如麵、銷、銘、無 機化合物或氟化物中任一者。 ~ 上述實施形態中’上述凝聚分子係可從例如c6q(富勒 婦)、奈米碳管、ALq3等有機系材料;⑽(氣化鐘)等氣化物 系材料;Mo〇x、W〇x、Ti0x、Zn0x(x係整數)等金屬氧化物; 氧等氣體性分子;所謂SAM膜等自組膜;金屬、氧化物之奈 97136288 33 200930144 米膠體等之中選擇其中一者。 上述實施形態的各有機半導體元件3之構造,係可使用於 • 諸如使用有機材料的開關元件,即所謂的有機開關元件。此 • 種有機開關元件係可舉例如有機電晶體。若依如此方式進 行,將可發揮與上述實施形態大致相同的效果。 上述實施形態中,藉由對陽極46與電洞輸送層48間的定 向進行控制便可降低驅動電壓,惟並不僅侷限於此,除各層 ❹ 的層構造相反之外,藉由大致如同上述實施形態,對陰極 52與電子輸送層50間的定向進行控制,便可降低驅動電壓。 另外’上述實施形態中,經定向控制的有機半導體,就材 質係使用非晶質以外的材質’而具有結晶性的平面性、棒狀 等分子構造。 上述實施形態中,將第1金屬電極(陽極)46部分覆蓋的 凝聚分子等凝聚物5’並非必需在有機半導體元件3或有機 Φ 太陽電池製造時’從開始起便依被覆率1%以上、未滿100% 的方式進行製造’亦可例如最先將平坦凝聚物5依覆蓋第1 金屬電極46整面(被覆率100%)的方式進行製造後,再利用 例如蝕刻或剎傷等方式,使被覆率未滿100%。 另外,上述實施形態中’在面朝第1金屬電極46的電洞 •注入層47等表層中混入凝聚分子,惟並不僅侷限於此,即 使在基板45與第1金屬電極46間採用相同的構造並進行定 向控制,亦町遠與上述實施形態大致相同的效果。 34 97136288 200930144 上述實施形態的凝聚分子係當HOMO能階接近基板45的 HOMO能階、或經控制定向的結晶性分子9之HOMO能階時, 便將增加注入效率。各材質的HOMO能階係:Au(5. l[eV])、The reason why the electromotive force Vg [V] does not occur is that the orientation between the anode 46 and the hole transporting layer 48 is not controlled. The organic solar cell according to the second embodiment is provided with at least a photoelectric conversion layer between the pair of electrodes of the second metal electrode 46 (anode) and the second electrode 52 (cathode) (which is to absorb light p) The excitons generated by the boundary surface between the type material and the N-type material are separated into holes and charges, and the electron transport layer (which is laminated on the side of the second electrode 52 of the photoelectric conversion layer, and from the photoelectric conversion layer An organic solar cell in which electrons are taken out and supplied to the second electrode 52); wherein 'includes: a discontinuous block belonging to the surface layer of the photoelectric conversion layer adjacent to the first metal electrode 46, and controls the direction of the crystalline molecule 9 The clock control member 8 (5, 7). If it is carried out in this manner, since the crystallization control member 8 (5, 7) is controlled in accordance with the surface roughness (rQUghness) of the surface layer, it is easy to take out the charge from the photoelectric conversion layer and move it to the cathode 52. . Therefore, if the voltage generated between the first metal electrode 46 and the second electrode 52 is higher, the conventional technology can improve the power generation efficiency as compared with the conventional technology. In addition, because 97136288 32 200930144, such an organic solar cell will operate according to a low driving voltage, thereby reducing the load on the component itself, and the result can extend the life of the component more than the conventional technology. The battery is provided with the same structure as that of the organic semiconductor element 3 of the above-described first embodiment, except that the light-emitting layer 49 is replaced with the photoelectric conversion layer, and substantially the same effect can be obtained. ❹ In addition, the present embodiment is not limited to the above, but may be variously changed. Hereinafter, such a variation will be described in order. In the above embodiment, the aggregating molecule may be replaced by, for example, LiF instead of the above M〇〇3. Further, as the crystalline molecule 9, for example, hexathiophene-36 and 1:1^0卩116116) (611) can also be used. In the above embodiment, the anode 46 is a transparent or translucent electrode, but it is not limited to this and may be opaque. ® The above-mentioned solid-state towel, the anode 46 is mainly made of gold (Au) as a material, but is not limited thereto, except for the oxide semiconductor such as silver, copper, ιτ〇 or ΙΖ0 described above. It can be any of such as face, pin, inscription, inorganic compound or fluoride. ~ In the above embodiment, the above-mentioned aggregated molecular system may be, for example, an organic material such as c6q (Fuller), a carbon nanotube, or ALq3, or a vapor-based material such as (10) (gasification clock); Mo〇x, W〇x Metal oxides such as Ti0x and Zn0x (x-based integers); gas molecules such as oxygen; self-assembled films such as SAM films; and ones selected from the group consisting of metals and oxides, 97136288 33 200930144 m. The configuration of each of the organic semiconductor elements 3 of the above embodiment can be used for a switching element such as an organic material, that is, a so-called organic switching element. Such an organic switching element is exemplified by an organic transistor. If it is carried out in this manner, substantially the same effects as those of the above embodiment can be obtained. In the above embodiment, the driving voltage can be lowered by controlling the orientation between the anode 46 and the hole transport layer 48, but it is not limited thereto, and the implementation is substantially the same as the above except that the layer structure of each layer is reversed. In the form, the orientation between the cathode 52 and the electron transport layer 50 is controlled to lower the driving voltage. Further, in the above-described embodiment, the organic semiconductor which is controlled by orientation has a molecular structure such as a planarity or a rod shape in which a material other than amorphous material is used. In the above-described embodiment, the aggregated material 5' such as agglomerated molecules partially covered by the first metal electrode (anode) 46 is not necessarily required to be coated at a rate of 1% or more from the beginning when the organic semiconductor element 3 or the organic Φ solar cell is manufactured. For example, the flat aggregate 5 may be manufactured so as to cover the entire surface of the first metal electrode 46 (the coverage ratio is 100%), and then, for example, etching or scratching may be used. Make the coverage rate less than 100%. In the above-described embodiment, the aggregated molecules are mixed in the surface layer such as the hole/injection layer 47 facing the first metal electrode 46. However, the present invention is not limited thereto, and the same applies to the substrate 45 and the first metal electrode 46. The structure is controlled and the orientation control is performed, and the same effect as that of the above embodiment is also obtained. 34 97136288 200930144 The condensed molecular system of the above embodiment increases the injection efficiency when the HOMO energy level approaches the HOMO energy level of the substrate 45 or the HOMO energy level of the controlled oriented crystalline molecule 9. HOMO energy system of each material: Au (5. l[eV]),

CuPC(5. l[eV])、稠五苯(5. l[ey])、μ〇〇3(5· 3[eV])、 C6〇(6. 0[eV])、Alq3(5. 9[eV])、LiF(> 7[eV])。 上述實施形態中’在與第1金屬電極46間相接觸面的電 洞/主入層47表層上將形成凹凸形狀,惟並不僅侷限於此, €> 亦可例如存在奈米級構造物(微粒)的形態。此情況,該構造 物係可採用例如所謂的奈米圖案構造或蜂巢構造^此處所謂 「奈米圖案構造」係指使大小數nm的微粒紛散並構成凹凸 形狀的模樣。 上述實施形態的有機半導體元件3或有機太陽電池,除上 述構造之外,上述不連續塊體亦可為具有凹凸形狀的構造 物。 ® 若依如此方式進行,藉由存在此種具有凹凸形狀構造物, 便增加與第1金屬電極46間相接觸面的電洞注入層47等表 層之表面粗糙度,因而可使對第丨金屬電極46與第2電極 52間所應施加的驅動電壓低電壓化。 上述實施形態的有機半導體元件3或有機太陽電池,除上 述構造之外,上述構造物係採用奈米圖案構造或蜂巢構造。 若依如此方式進行’藉由此種奈米圖案構造的構造物或蜂 巢構造的構造物之存在,便可增加與第i金屬電極46間相 97136288 35 200930144 接觸面的電洞注人層47等表層之表面粗糖度,因而可使對 第1金屬電極46與第2電極52間所應施加的驅動電壓雷 壓化。 低電 • 再者’上述實施形態中’高結晶性分子(即不易成為非曰 質的材料分子),係可舉例如:含有CuPc的醜菁衍:物明 PTCBI等茈衍生物、稠五苯等芳香族縮合多環衍生物、㈣了 等嗟吩衍生物等。另外,此種高結晶性材料未必僅有低分子 ❹系材料,亦可採用咼分子系材料,例如P3HT等。 再者’上述有機半導體元件3係當陽極46與陰極52在正 電壓下的情況,外部光的照射便可進行電流 亦可活用作為感測器。 ^ 上述實施形態中,有機半導體元件3等係依照基板45、 陽極46、凝聚分子層、電洞注入層47、電洞輸送層指等的 順序積層,惟並不僅侷限於此,亦可為如下述的積層構造。 ❹此處所謂的「凝聚分子層」係指上述實施㈣中所謂在陽極 46與電洞注入層47間控制定向的結晶控制構件8之部分。 以下的積層構造甲,有機半導體元件3等的積層構造中, 僅就從上述基板45起至電洞注入層47等眼前的積層構造, 將各層的區隔依「/」表示例示,為求簡單化,相關電洞輸 送層48以後的積層便省略。 積層例1 :基板45/凝聚分子層/金屬層(相當於陽極46) 積層例2 :奈米凹凸基板(兼具基板45與凝聚分子的機能、 97136288 36 200930144 相當於基板45)/金屬層(陽極46) 積層例3 :基板45/奈米凹凸金屬層(相當於陽極46) .積層例4:基板45/奈米構造物/金屬層(相當於陽極46) .積層例5 :基板45/金屬層(相當於陽極46)/奈米構造物 另外,上述實施形態中,例如當採用將平面狀凝聚分子利 用蒸鍍而混入的手法時,亦可使該凝聚分子的蒸鍍速度依既 定態樣進行變化。 ❹ 上述實施形態中,結晶控制構件8厚度T的一例係就3nm 進行說明,惟並不僅侷限於此,依照與各層間的關係,亦可 設定為其他的較適當厚度。 【圖式簡單說明】 圖1為剖視圖,係表示將第1實施形態顯示面板的有機電 場發光元件放大表示之構成例部分。 圖2為剖視圖,係表示將圖1所示特定範圍放大時的構造 ❹例。 圖3為剖視圖,係表示將圖1所示特定範圍放大時的構造 例。 圖4為剖視圖,係表示將圖1所示特定fe圍放大時的構造 例0 ' 圖5為剖視圖,係表示將圖1所示特定範圍放大時的構造 例。 圖6為剖視圖,係表示將圖1所示特定範圍放大時的構造 97136288 37 200930144 例。 圖7為剖視圖,係表示將圖1所示特定範圍放大時的構造 例。 圖8為利用X射線繞射施行定向控制的驗證結果一例。 圖9為利用X射線繞射施行定向控制的驗證結果一例。 圖10為利用X射線繞射施行定向控制的驗證結果一例。 圖11為有機電場發光元件驅動電壓的驗證結果一例圖 ❹ 式。 圖12為有機電場發光元件驅動電壓的驗證結果一例圖 式。 圖13為在玻璃基板上的陽極或該陽極上,有存在各凝聚 分子時的表面粗糖度驗證例圖式。 圖14為第2實施形態的有機太陽電池之電壓電流密度特 性一例圖式。 ❹ 圖15為一般有機太陽電池的電壓電流密度特性一例圖 式。 【主要元件符號说明】 3 有機電場發光元件(有機半導體元件) 5 凝聚物(結晶控制構件) 7 凝聚物(結晶控制構件) 8 結晶控制構件 9 結晶性分子 97136288 38 200930144 45 玻璃基板 46 陽極(第1金屬電極) 47 電洞注入層 48 » 電洞輸送層 49 發光層 50 電子輸送層 51 電子注入層 〇 52 陰極(第2電極) F10〜F13 、 F20〜F23 定向控制特性 Θ 1 定向角 W 特定範圍 T 厚度 ❹ 97136288 39CuPC (5. l[eV]), pentacene (5. l[ey]), μ〇〇3 (5·3[eV]), C6〇(6. 0[eV]), Alq3 (5. 9[eV]), LiF(> 7[eV]). In the above embodiment, the surface of the hole/main entrance layer 47 that is in contact with the first metal electrode 46 is formed into a concavo-convex shape, but the present invention is not limited thereto. Further, for example, a nano-structure may be present. The form of (fine particles). In this case, the structure may be, for example, a so-called nano-pattern structure or a honeycomb structure. Here, the "nano pattern structure" means a pattern in which particles having a size of several nm are dispersed to form a concavo-convex shape. In the organic semiconductor element 3 or the organic solar cell of the above-described embodiment, in addition to the above structure, the discontinuous block may have a structure having an uneven shape. In such a manner, by having such a structure having a concavo-convex shape, the surface roughness of the surface layer such as the hole injection layer 47 which is in contact with the first metal electrode 46 is increased, so that the second metal can be used. The driving voltage to be applied between the electrode 46 and the second electrode 52 is reduced in voltage. In the organic semiconductor element 3 or the organic solar cell of the above-described embodiment, in addition to the above structure, the structure is a nano pattern structure or a honeycomb structure. By performing the structure of the structure or the honeycomb structure constructed by such a nano pattern in this manner, the hole injection layer 47 of the contact surface with the i-th metal electrode 46 97136288 35 200930144 can be increased. The surface roughness of the surface layer makes it possible to suppress the driving voltage applied between the first metal electrode 46 and the second electrode 52. In the above-described embodiment, the 'highly crystalline molecule (that is, the material molecule which is not easily a non-ruthenium) may be, for example, an ugly derivative containing CuPc: an anthracene derivative such as PTCBI, or pentacene. An aromatic condensed polycyclic derivative, (iv) an isoprene derivative, or the like. Further, such a highly crystalline material is not necessarily a low molecular lanthanide material, and a ruthenium molecular material such as P3HT may also be used. Further, in the above-mentioned organic semiconductor element 3, when the anode 46 and the cathode 52 are at a positive voltage, external current can be used to conduct current, and it can also be used as a sensor. In the above embodiment, the organic semiconductor element 3 or the like is laminated in the order of the substrate 45, the anode 46, the agglomerated molecular layer, the hole injection layer 47, the hole transport layer finger, etc., but is not limited thereto, and may be as follows The layered structure described. The term "agglomerated molecular layer" as used herein refers to a portion of the above-described embodiment (4) in which the crystal control member 8 for controlling the orientation between the anode 46 and the hole injection layer 47 is controlled. In the laminated structure of the laminated structure A, the organic semiconductor element 3, and the like, only the laminated structure from the substrate 45 to the front of the hole injection layer 47, etc., the interval of each layer is represented by "/", which is simple. The layer after the relevant hole transport layer 48 is omitted. Laminated Example 1: Substrate 45/Coherent Molecular Layer/Metal Layer (corresponding to anode 46) Laminated Example 2: Nanoconcave substrate (function of substrate 45 and agglomerated molecules, 97136288 36 200930144 equivalent to substrate 45) / metal layer ( Anode 46) Laminated Example 3: Substrate 45/nano-convex metal layer (corresponding to anode 46). Laminated Example 4: Substrate 45/nanostructure/metal layer (corresponding to anode 46). Laminated Example 5: Substrate 45/ Metal layer (corresponding to anode 46)/nano structure. In the above embodiment, for example, when a method of mixing planar cohesive molecules by vapor deposition is employed, the vapor deposition rate of the aggregated molecules may be determined according to a predetermined state. Make changes. In the above embodiment, an example of the thickness T of the crystal control member 8 is described as 3 nm. However, the present invention is not limited thereto, and other suitable thicknesses may be set depending on the relationship with each layer. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a configuration example of an organic electric field light-emitting device of a display panel of a first embodiment. Fig. 2 is a cross-sectional view showing an example of a configuration in which a specific range shown in Fig. 1 is enlarged. Fig. 3 is a cross-sectional view showing an example of a structure in which a specific range shown in Fig. 1 is enlarged. Fig. 4 is a cross-sectional view showing a configuration example 0' in which the specific fe circumference shown in Fig. 1 is enlarged. Fig. 5 is a cross-sectional view showing an example of a structure in which the specific range shown in Fig. 1 is enlarged. Fig. 6 is a cross-sectional view showing an example of a structure 97136288 37 200930144 when the specific range shown in Fig. 1 is enlarged. Fig. 7 is a cross-sectional view showing an example of a structure in which a specific range shown in Fig. 1 is enlarged. Fig. 8 is an example of verification results of directional control by X-ray diffraction. Fig. 9 is an example of verification results of directional control by X-ray diffraction. Fig. 10 is an example of verification results of directional control by X-ray diffraction. Fig. 11 is a view showing an example of the result of verification of the driving voltage of the organic electroluminescent device. Fig. 12 is a view showing an example of the result of verification of the driving voltage of the organic electroluminescent device. Fig. 13 is a view showing an example of verification of the surface roughness of the anode on the glass substrate or on the anode in the presence of each agglomerated molecule. Fig. 14 is a view showing an example of voltage current density characteristics of the organic solar battery of the second embodiment. ❹ Figure 15 is a diagram showing an example of voltage-current density characteristics of a general organic solar cell. [Explanation of main component symbols] 3 Organic electric field light-emitting element (organic semiconductor element) 5 Aggregate (crystallization control member) 7 Aggregate (crystallization control member) 8 Crystal control member 9 Crystalline molecule 97136288 38 200930144 45 Glass substrate 46 Anode (No. 1 metal electrode) 47 hole injection layer 48 » hole transport layer 49 light-emitting layer 50 electron transport layer 51 electron injection layer 〇 52 cathode (second electrode) F10~F13, F20~F23 directional control characteristics Θ 1 orientation angle W specific Range T Thickness ❹ 97136288 39

Claims (1)

200930144 七、申請專利範圍: 1. 一種有機半導體元件,其係在第1金屬電極與第2電極 的一對電極間,至少具備有: ^ 發光層; 電洞注入層’其乃從上述第1金屬電極中取出電洞; 電洞輸送層’其乃積層於上述發光層之上述第1金屬電極 侧’並將利用上述電洞注入層所取出的電洞,供應給上述發 ❹ 光層;以及 電子注入層,其乃積層於上述發光層之上述第2電極侧, 從上述第2電極中取出電子並供應給上述發光層; 如此所成之有機半導體元件,其特徵在於, l 3有結晶控制構件,其係為沿鄰接上述第1金屬電極的 上述電/同主入層表層之不連續塊體,且控制結晶性分子方 向。 ❿2.如申請專利範圍第i項之有機半導體元件,其中,上述 結晶控制構件係對上述結晶性分子的平面狀分子及棒狀分 子至 >、者的結晶方向進行控制。 3. 如中請專利範圍第1項之有機半導體元件,其中,上述 ^日 日控制構件係為在上述電洞注人層的表層上形成凹凸形 狀所混入的凝聚物。 4. 如申請專利範圍第3項之有機半導體元件,其中,上述 結晶控制構件係與構成上述電洞注入層的材質分子為不同 97136288 200930144 的凝聚分子。 5.如申請專利範圍第4項之有機半導體元件’其中’上述 凝聚分子係混入Mo〇3。 , 6.如申請專利範圍第4項之有機半導體元件’其中,上述 凝聚分子係混入Ceo。 7.如申請專利範圍第4項之有機半導體元件,其中’上述 凝聚分子係混入。 ⑮ 8.如申請專利範圍第1項之有機半導體元件,其中,上述 第1金屬電極係含有金、銀或銅。 9. 如申請專利範圍第8項之有機半導體元件,其中’上述 電洞注入層係含有CuPc。 10. 如申請專利範圍第8項之有機半導體元件,其中,上 述電洞注入層係含有稍五苯。 11·如申請專利範圍第4項之有機半導體元件,其中,上 ❹述凝聚分子係有機系材料、氟化物系材料、金屬氧化物、氣 體性分子、自組膜(self-assembled film)、金屬、氧化物 之奈米膠體中任一者。 12.如申請專利範圍第4項之有機半導體元件,其中,具 有從下層依序積層著上述第1金屬電極、上述電洞注入層、 上述電洞輸送層、上述發光層、上述電子注入層及上述第2 電極的基板; 而上述凝聚分子係具有相對上述基板為1度以上、9〇度 97136288 41 200930144 以下的定向。 13·如申請專利範圍第1項之有機半導體元件,其中,上 述不連續境體係覆蓋上述第1金屬電極表面比例的被覆率 為1%以上、未滿100%之薄膜。 14. 如申請專利範圍第1項之有機半導體元件,其中,上 述不連續塊體係具有凹凸形狀的構造物。 15. 如中請專利範圍第14項之有機半導體元件,其中,上 ❹述構造物係採用奈米®案構造或蜂巢構造。 16. 如申請專利範圍第丨項之有機半導體元件,1中上 述發光層係利用配合上述第丨金屬電極與上述第2電極之間 的施加電壞所產生之電場,而輸出可見光。 種有機太陽電池,其係在第丨金屬電極與第2電極 的一對電極間,至少具備有: ‘ 《電轉換層,其乃將在吸收光的P型材料與N型材料之邊 界面所產生的激子(excit〇n),分離為電洞及電荷;以及 電子輸送層’其乃積層於上述光電轉換層之上述第2電極 侧’從上述光電轉換層中取出上述電荷並輸送給上述 電極; 如此所成之有機太陽電池,其特徵在於, 包含有結晶控制構件,其係為沿鄰接上述第j金屬電極的 上述光電轉換層表層之不連續塊體,且控制結晶性分 向。 97136288 42 200930144 18. —種顯示面板,其係具備有下述有機半導體元件的顯 示面板,該有機半導體元件係在第1金屬電極與第2電極的 一對電極間,至少具備有: 發光層; 電洞注入層,其乃從上述第1金屬電極中取出電洞; 電洞輸送層,其乃積層於上述發光層之上述第1金屬電極 側,並將利用上述電洞注入層所取出的電洞,供應給上述發 ❺ 光層;以及 電子注入層,其乃積層於上述發光層之上述第2電極側, 從上述第2電極中取出電子並供應給上述發光層; 如此之顯示面板,其特徵在於, 其所具有之有機半導體元件,係包含有: 結晶控制構件,其係為沿鄰接上述第1金屬電極的上述電 洞注入層表層之不連續塊體,且控制結晶性分子方向。 97136288 43200930144 VII. Patent Application Range: 1. An organic semiconductor device comprising at least a light-emitting layer between a pair of electrodes of a first metal electrode and a second electrode; a hole injection layer of the first a hole is taken out from the metal electrode; the hole transport layer 'which is laminated on the first metal electrode side of the light-emitting layer' and supplied to the light-emitting layer by the hole taken out by the hole injection layer; An electron injection layer laminated on the second electrode side of the light-emitting layer, and extracting electrons from the second electrode and supplying the light to the light-emitting layer; the organic semiconductor device thus formed is characterized in that the crystal has a crystal control The member is a discontinuous block along the surface of the electric/identical main layer adjacent to the first metal electrode, and controls the direction of the crystalline molecules. The organic semiconductor device according to claim i, wherein the crystal control member controls a crystal direction of the planar molecule and the rod-shaped molecule of the crystalline molecule to the >. 3. The organic semiconductor device according to the first aspect of the invention, wherein the above-mentioned day control member is an aggregate in which a concavo-convex shape is formed on a surface layer of the hole injection layer. 4. The organic semiconductor device according to claim 3, wherein the crystal control member is a condensed molecule different from the material constituting the hole injection layer of 97136288 200930144. 5. The organic semiconductor device of claim 4, wherein the above-mentioned agglomerated molecule is mixed with Mo〇3. 6. The organic semiconductor device of claim 4, wherein the agglomerated molecules are mixed into the Ceo. 7. The organic semiconductor device according to claim 4, wherein the above-mentioned agglomerated molecules are mixed. The organic semiconductor device according to claim 1, wherein the first metal electrode contains gold, silver or copper. 9. The organic semiconductor device of claim 8, wherein the hole injection layer contains CuPc. 10. The organic semiconductor device of claim 8, wherein the hole injection layer contains pentacene. 11. The organic semiconductor device of claim 4, wherein the condensed molecular organic material, the fluoride material, the metal oxide, the gas molecule, the self-assembled film, and the metal Any of the oxide colloids. 12. The organic semiconductor device according to claim 4, wherein the first metal electrode, the hole injection layer, the hole transport layer, the light-emitting layer, and the electron injection layer are sequentially stacked from a lower layer. The substrate of the second electrode; and the agglomerated molecule has an orientation of 1 degree or more and 9 degrees 97 97136288 41 200930144 or less with respect to the substrate. The organic semiconductor device according to the first aspect of the invention, wherein the discontinuous system covers a film having a surface ratio of the first metal electrode of 1% or more and less than 100%. 14. The organic semiconductor device according to claim 1, wherein the discontinuous block system has a structure having an uneven shape. 15. The organic semiconductor component of claim 14, wherein the above-mentioned structure is a nano® structure or a honeycomb structure. 16. The organic semiconductor device according to claim 2, wherein the light-emitting layer of the first embodiment emits visible light by an electric field generated by applying electrical breakdown between the second metal electrode and the second electrode. The organic solar cell is provided between at least a pair of electrodes of the second metal electrode and the second electrode, and has at least: 'the electric conversion layer, which is to be on the boundary surface between the P-type material and the N-type material that absorb light. The generated excitons (excit〇n) are separated into holes and charges; and the electron transport layer 'which is laminated on the second electrode side of the photoelectric conversion layer' to take out the charges from the photoelectric conversion layer and deliver the above charges An organic solar cell as described above, comprising: a crystal control member which is a discontinuous block along a surface layer of the photoelectric conversion layer adjacent to the j-th metal electrode, and controls a crystal orientation. 97136288 42 200930144 18. A display panel comprising: a display panel having an organic semiconductor element, wherein the organic semiconductor element is provided with at least a light-emitting layer between a pair of electrodes of the first metal electrode and the second electrode; a hole injection layer for taking out a hole from the first metal electrode; and a hole transport layer laminated on the first metal electrode side of the light-emitting layer and taking out the electricity extracted by the hole injection layer a hole for supplying the light-emitting layer; and an electron injection layer laminated on the second electrode side of the light-emitting layer, and extracting electrons from the second electrode and supplying the light to the light-emitting layer; The organic semiconductor device includes a crystal control member that is a discontinuous block along the surface layer of the hole injection layer adjacent to the first metal electrode, and controls a crystal molecular direction. 97136288 43
TW097136288A 2007-12-27 2008-09-22 Organic semiconductor element, organic solar cell and display panel TW200930144A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/075077 WO2009084078A1 (en) 2007-12-27 2007-12-27 Organic semiconductor device, organic solar cell and display panel

Publications (1)

Publication Number Publication Date
TW200930144A true TW200930144A (en) 2009-07-01

Family

ID=40823818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097136288A TW200930144A (en) 2007-12-27 2008-09-22 Organic semiconductor element, organic solar cell and display panel

Country Status (6)

Country Link
US (1) US8519381B2 (en)
EP (1) EP2226866A1 (en)
JP (1) JPWO2009084078A1 (en)
KR (1) KR101183041B1 (en)
TW (1) TW200930144A (en)
WO (1) WO2009084078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137287A (en) * 2010-10-15 2014-11-05 密歇根大学董事会 Materials for controlling the epitaxial growth of photoactive layers in photovoltaic devices

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183041B1 (en) * 2007-12-27 2012-09-20 파이오니아 가부시키가이샤 Organic semiconductor device, organic solar cell and display panel
JP2010282997A (en) * 2009-06-02 2010-12-16 Seiko Epson Corp Solar cell and method for manufacturing the same
EP2562838A1 (en) * 2010-04-20 2013-02-27 Sumitomo Chemical Company, Limited Organic light-emitting element
US9029837B2 (en) * 2010-10-12 2015-05-12 The Regents Of The University Of Michigan Photoactive devices including porphyrinoids with coordinating additives
KR20120054927A (en) * 2010-11-22 2012-05-31 한국전자통신연구원 Compound semiconductor solar cell
EP2833427A4 (en) 2012-05-09 2016-02-24 Lg Chemical Ltd Organic electrochemical device, and method for manufacturing same
JP6222229B2 (en) * 2013-06-20 2017-11-01 日産化学工業株式会社 Method for producing n-type organic semiconductor thin film
JP2015138746A (en) * 2014-01-24 2015-07-30 ソニー株式会社 Organic el element, display device, and lighting device
WO2016063781A1 (en) * 2014-10-21 2016-04-28 住友化学株式会社 Organic photoelectric conversion element and method for manufacturing same
CN109417132B (en) * 2016-09-30 2021-11-26 京东方科技集团股份有限公司 Organic light emitting diode, manufacturing method thereof, display panel and display device
CN107845728B (en) * 2017-11-20 2019-08-20 重庆大学 A kind of OFET pipe and preparation method thereof with output high current
KR20220097064A (en) * 2020-12-31 2022-07-07 엘지디스플레이 주식회사 Light Emitting Display Device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530314B2 (en) * 1996-07-25 2004-05-24 三洋電機株式会社 Method for manufacturing organic electroluminescence device
US6885147B2 (en) * 1998-05-18 2005-04-26 Emagin Corporation Organic light emitting diode devices with improved anode stability
JP2000340367A (en) 1999-05-31 2000-12-08 Fuji Electric Co Ltd Organic electroluminescence element and its manufacture
JP4032783B2 (en) 2002-03-15 2008-01-16 株式会社デンソー Organic EL device
US7868957B2 (en) * 2003-12-02 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device and liquid crystal display device and method for manufacturing the same
US7764012B2 (en) * 2004-04-16 2010-07-27 Semiconductor Energy Laboratory Co., Ltd Light emitting device comprising reduced frame portion, manufacturing method with improve productivity thereof, and electronic apparatus
JP2006255878A (en) 2005-02-15 2006-09-28 Kyoto Univ Manufacturing method of microstructure and its utilization
JP4989907B2 (en) * 2005-03-24 2012-08-01 株式会社半導体エネルギー研究所 Semiconductor device and electronic equipment
JP5013571B2 (en) * 2005-08-22 2012-08-29 国立大学法人 筑波大学 Organic semiconductor molecule orientation control method and organic thin film solar cell
JP4872051B2 (en) 2006-03-20 2012-02-08 パナソニック電工株式会社 Organic thin film solar cell
WO2008001577A1 (en) 2006-06-30 2008-01-03 Pioneer Corporation Organic solar cell
US8974918B2 (en) * 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
EP2214222A4 (en) * 2007-11-13 2013-01-02 Japan Adv Inst Science & Tech Organic el element
KR101183041B1 (en) * 2007-12-27 2012-09-20 파이오니아 가부시키가이샤 Organic semiconductor device, organic solar cell and display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137287A (en) * 2010-10-15 2014-11-05 密歇根大学董事会 Materials for controlling the epitaxial growth of photoactive layers in photovoltaic devices
CN104137287B (en) * 2010-10-15 2017-04-26 密歇根大学董事会 For controlling the epitaxially grown material of photovoltaic device photoactive layer

Also Published As

Publication number Publication date
US20100263727A1 (en) 2010-10-21
KR20100087204A (en) 2010-08-03
US8519381B2 (en) 2013-08-27
EP2226866A1 (en) 2010-09-08
KR101183041B1 (en) 2012-09-20
JPWO2009084078A1 (en) 2011-05-12
WO2009084078A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
TW200930144A (en) Organic semiconductor element, organic solar cell and display panel
Zhang et al. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes
Yu et al. High‐performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment
Myers et al. Organic semiconductors and their applications in photovoltaic devices
JP5461775B2 (en) Photosensitive optoelectronic device
US7796320B2 (en) Stacked layer electrode for organic electronic devices
TWI402981B (en) Organic double-heterostructure photovoltaic cells having reciprocal-carrier exciton blocking layer
Liu et al. Toward see‐through optoelectronics: Transparent light‐emitting diodes and solar cells
JP5461836B2 (en) Low resistance thin film organic solar cell electrode
Ullah et al. Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer
Ji et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode
JP2013541217A (en) Materials for controlling the epitaxial growth of photosensitive layers in photovoltaic devices
TW200814393A (en) Organic optoelectronic device electrodes with nanotubes
WO2011146915A1 (en) Monolithic parallel multijunction oled with independent tunable color emission
Ichikawa et al. Sensitization of organic photovoltaic cells based on interlayer excitation energy transfer
Sun et al. Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer
CN105118921A (en) Organic photoelectric detector with high external quantum efficiency and broad spectral response and preparation method thereof
Quintero-Bermudez et al. Mechanisms of LiF interlayer enhancements of perovskite light-emitting diodes
JP2012037703A (en) Display device
Tan et al. Highly efficient inverted perovskite solar cells with CdSe QDs/LiF electron transporting layer
JP5118296B2 (en) Stacked organic solar cell
Tang et al. Recent developments of hybrid nanocrystal/polymer bulk heterojunction solar cells
US20130263924A1 (en) Organic Solar Cell Comprising Self-Assembled Organic/Inorganic Nanocomposite in Photoactive Layer, and Method for Preparing the Same.
Sim et al. Cascade organic solar cells with energy-level-matched three photon-harvesting layers
US20070236138A1 (en) Organic light-emitting diodes with nanostructure film electrode(s)