TW200929566A - Method for fault diagnosis of photovoltaic power generating system - Google Patents

Method for fault diagnosis of photovoltaic power generating system Download PDF

Info

Publication number
TW200929566A
TW200929566A TW96148319A TW96148319A TW200929566A TW 200929566 A TW200929566 A TW 200929566A TW 96148319 A TW96148319 A TW 96148319A TW 96148319 A TW96148319 A TW 96148319A TW 200929566 A TW200929566 A TW 200929566A
Authority
TW
Taiwan
Prior art keywords
value
extension
weight
fault
power generation
Prior art date
Application number
TW96148319A
Other languages
Chinese (zh)
Other versions
TWI365543B (en
Inventor
Kuei-Hsiang Chao
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW096148319A priority Critical patent/TWI365543B/en
Publication of TW200929566A publication Critical patent/TW200929566A/en
Application granted granted Critical
Publication of TWI365543B publication Critical patent/TWI365543B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method for fault diagnosis of photovoltaic (PV) power generating system is disclosed. The method is to construct a fault matter-element model for each atmosphere conditions of the PV power generating system bases on extension theory. And an extension neural network is constructed to cooperate the fault matter-element model. The extension neural network is inputted training samples to train the extension neural network. The extension neural network is employed to diagnose various fault categories of PV power generating system after the training is accomplished.

Description

200929566 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽光發電系統之故障診斷方 法’且特別是有關於一種利用可拓類神經網路(Extension neural network,ENN)架構來辨識太陽能模板發生故障之 類別的方法。 【先前技術】 太陽能模板可能受沙塵、積雪、落葉或鳥糞等堆積在 模板上而導致產生「遮蔽故障」現象,亦或是因異金屬接 觸而產生接觸腐蝕、封裝材料劣化造成水氣滲入而形成内 部電池鏽蝕或遭受雷擊等而產生「模板故障」,兩者均會 使得太陽光發電系統之發電量下降,並且發電效率也大為 衰減,進而造成其輸出電力產生瞬間變動,對電力系統局 4或整體造成諸如:瞬間壓降、電壓變動與諧波等影響^ 力品質之問題,對於整體電力網路之影響不言可喻。 由於太陽光發電系統產生之電力輸出信號僅為電壓 和電流’因此當其發生故障時,若欲藉由目視法觀測太陽 電池模板表面故障發生之狀況,極可能造成檢測上之誤 判。且當面對百萬赶級之太陽光發電糾,太陽電池模板 數量龐大,很難以目視法逐一確認故障發生之區域。 目前已被提出之太陽電池模板故障診斷技術中,有著 檢測成本耗費頗高及診斷系統之應用錢受到限制等缺 點故使仔實用性大為減低。此外,應用高頻反射量測法 200929566 (High frequency reaction measurement)和日夺域反射法(Time domain relectometry,TDR)進行故障診斷,其診斷方法受限 於操作者須具備足夠之太陽光發電系統相關專業知識及 必須確保接線長度計算之準確性,否則易發生模板故障區 域之誤判,因此應用此故障診斷技術對於系統維護之便利 性並無多大助益。 【發明内容】 本發明的目的是在提供一種太陽光發電系統之故障 診斷方法,用以改善上述實用性與判斷準確性之問題,提 供一架構簡單、判斷迅速且準確之故障診斷方法。 基於上述目的,本發明提出一種有關於太陽光發電系 統之故障診斷技術,所提故障診斷技術係應用可拓類神經 網路理論(Extension neural network theory)之故障診斷 方法判別故障發生之類型。其結合可拓理論與類神經網路 (Neural network )技術而完成可拓類神經網路故障診斷演 算法進行故障辨識。 依照本發明一較佳實施例,一種太陽光發電系統之故 障診斷方法包含透過可拓理論以及太陽光發電系統之故 障特性參數,將太陽光發電系統之故障情形表示成一故障 可拓物元模型的型式,其中故障可拓物元模型包含複數個 子物元模型,每一個子物元模型對應故障情形中之一種故 障類別。 首先建立一配合故障可拓物元模型之可拓類神經網 6 200929566 :運拓類神經網路為結合類神經網路所具有平行處 叶管以進-與學習能力’以及可拓理論藉由關聯函數值之 “乂進仃》類處理之特性所構成。可拓__ 監督式學習法則,可接受連續輸入與離散輪出等特性: 且極;1合制於所欲㈣之物件特徵具數值範圍化特性。 f本實施例中,可拓類神經網路包含—輪人層以及一 =層’輸人層包含複數個輸人層節點,心層包含複數 Γ:出::物元對應一輸出層節點,每-輸入層節點及 ==點間有二個連結權重值,每-輪出層節點對 :=::r障類別之一,每-輸,點對應 輪入已知故障類別之訓練諸對可拓類神經網路進 行訓練’若資料之雜結果與目標值產200929566 IX. Description of the Invention: [Technical Field] The present invention relates to a method for fault diagnosis of a solar power generation system, and in particular to an extension neural network (ENN) architecture A method of identifying the type of failure of a solar panel. [Prior Art] Solar stencils may be deposited on the stencil due to dust, snow, deciduous or bird droppings, resulting in "shadowing failure", or contact corrosion due to contact with different metals, deterioration of packaging materials, and moisture infiltration. The formation of internal battery rust or lightning strikes and other "template failure", both will reduce the power generation of the solar power generation system, and the power generation efficiency is also greatly attenuated, resulting in instantaneous changes in its output power, the power system Bureau 4 or the overall causes such as: instantaneous voltage drop, voltage fluctuations and harmonics affect the quality of the power, the impact on the overall power network is self-evident. Since the power output signal generated by the solar power generation system is only voltage and current', when the fault occurs, if the condition of the surface failure of the solar cell template is to be observed by visual observation, it is highly likely that the detection is misjudged. And when faced with millions of gradual solar power generation, the number of solar cell templates is huge, and it is difficult to visually confirm the area where the failure occurred. At present, the solar cell template fault diagnosis technology has been proposed, and the utility of the detection cost is high and the application cost of the diagnostic system is limited, so that the practicality is greatly reduced. In addition, the high frequency reaction measurement method 200929566 (High frequency reaction measurement) and the time domain relectometry (TDR) are used for fault diagnosis. The diagnosis method is limited by the operator having sufficient solar power generation system. Expertise and the need to ensure the accuracy of the wiring length calculation, otherwise it is prone to misjudgment of the template fault area, so the application of this fault diagnosis technology is not very helpful for the convenience of system maintenance. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for fault diagnosis of a solar power generation system for improving the above-mentioned practicality and accuracy of judgment, and to provide a fault diagnosis method which is simple in structure, quick in judgment, and accurate. Based on the above object, the present invention proposes a fault diagnosis technique for a solar power generation system, and the proposed fault diagnosis technique uses a fault diagnosis method of the extension neural network theory to discriminate the type of fault occurrence. Combined with extension theory and neural network technology, the extension neural network fault diagnosis algorithm is used to identify faults. According to a preferred embodiment of the present invention, a fault diagnosis method for a solar power generation system includes expressing a fault condition of a solar power generation system as a faulty extension matter element model through a extension theory and a fault characteristic parameter of a solar power generation system. The type, wherein the faulty extension matter element model comprises a plurality of child matter element models, and each of the child matter element models corresponds to one of the fault categories. Firstly, an extension-like neural network with fault-extension matter-element model is established. 200929566: The network of the extension-type neural network has a parallel-like tube with a parallel-like tube, and the learning ability' and the extension theory are used. It is composed of the characteristics of the processing of the value of the associated function. The extension __ supervised learning rule can accept the characteristics of continuous input and discrete rotation: and extremely; In the present embodiment, the extension-type neural network includes a wheel-man layer and a layer-input layer that includes a plurality of input layer nodes, and the core layer includes a plurality of Γ: out:: matter element corresponding An output layer node, there are two connection weight values between each input layer node and == point, and each round-off layer node pair: one of the =::r barrier categories, each-transmission, point corresponding to a known fault Training of categories to train the extensional neural network for training 'If the data is mixed with the target value

整=相連結之權重值,再進行訓練,直到與輸出目^ 相近為止(符合所設定之辨識率)。在本實施例中,所採 用之钏練模式為將每-故障類型之訓練樣本輸人,藉由可 拓距離(EXtensi()n distanee,肋)的計算以估算相對權重 值是否正確,並僅針對錯誤之權重值依—定的演算方式重 輸入測試樣本給已訓練完成之可拓類神經網路,進行 判斷輸入载樣本所屬之故障類別為何,使得每一輸出層 節點對應-故障分類,僅會有一輸出層節點輸丨卜以表 示該節點所代表之故障類別。在本實施例中,根據輸入之 測試樣本,計算其與每—分類群集之可#距離,其中最小 200929566 之可拓距離即為測試樣本所屬群集類別。 本發明一較佳實施例所提之故障診斷方法當太陽光 發電系統容量擴增時,只需作部分參數變更即可完成,因 此可減少故障診斷更新時程,增加太陽光發電系統之維護 便利性及擴充性。此外,由於所提技術不同於傳統類神經 網路之學習機制,因此診斷之演算流程與速度相當簡易與 迅速。 【實施方式】 目前大多數運轉中之太陽光發電系統,主要是以太陽 能模板為基本發電單元,依據負載所需之電力,以太陽能 模板串聯增加輸出電壓及並聯增加輸出電流之方式,組接 成輸出功率較大之太陽光發電陣列。在本實施例中,以每 片輸出為75W’ 17V,4.4A之4片太陽能模板串接成一陣列 支路’並且並聯10陣列支路,組成一 3kw之太陽光發電陣 列,其額定輸出電壓為68V、額定輸出電流為44a時,將產 生最大3000W之輸出功率。 一清參照第1圖,其緣示係依照本發明一較佳實施例的 種太陽光發電系統之故障診斷方法的流程圖^該太陽光 發電系統之故障診斷方法,包含下列步驟: —透過可拓理論先行建立太陽光發電系統之故障可拓 物7L模型’其中故障可㈣元模型包含複數個子物元模 型’每一個子物元模型對應—種故障類別,如步驟210所 不。接著建立-配合故障可拓物元模型之可拓類神經網 8 200929566 路如步驟220所示。再齡λ &amp; 進行可#_經_之㈣二故_狀訓練資料, 率(如t程序,直到符合所設定之辨識 輸入待測資料,tUe 23G所示。訓練完成後,即可 行故障類別之辨識/丨練元成之可拓類神經網路架構進 驟2_示。β讀待測資料所屬之故障類別,如步 ❹ Ο 發明實施例中,所提之太陽光發電系統 0斷方法進-步分別詳述如下: 咖)1)建立太陽光發電系統之故障可拓物元模型(步 P由於太陽光發統發生輯時其輸出電壓、電流及 ;在不同/Ja度與日照強度下均不相同,因此若要準轉 的5乡斷故障類別,必須針對各大氣區間分別建立故障可拓 物元模型。 在本實施例中,依據台灣地區平均氣溫及相對曰照條 件,將大氣條件區分為7種大氣區間,請參照第丨表所 不 〇 第1表7種大氣區間之區分條件 曰照強度(W/m2) 溫度(° C ) A區 200〜400 5〜10 B區 401-500 11 〜15 C區 501〜600 16 〜18 601〜700 19 〜20 Eg 701-800 21 〜25 G區 801〜900 16-30 901-1000 31 〜40 第1表中大氣區間C~G為多數太陽光發電系統運轉時 9 200929566 之大氣條件’因此太陽光發電系統運轉在此區間時,將進 行故障診斷。而a、b兩區間由於曰照強度不足,太陽光 發電系統所輸出之電氣信號較小,不適合作為故障診斷之 數據,因此將不進行故障診斷。 在本實施例中,以每塊75W之太陽能板組成4串1〇並之 3kW太陽光發電系統在大氣區間G區為例,建立故障可拓 物兀模型’加以說明。根據太陽光發電系、統之故障特徵參 數(太陽光發電陣列所輸出之功率、錢及電流),將太 陽光發電系統之故障類別分為六類(亦即將故障物元模型 刀為/、個子物TG _型),此六種故障類別及其符號之表示 分別說明如下: 1 八吻糸統正常運轉 PF2:十串聯支路中之任一支路中發生一模板故障 支路中之任二支路中各發生-模板故障 十串聯支路中中各發生一模板故障 …十串聯二=路中各發生-模板故障 表示=中所定義之物元㈣可以式⑴加以 R = (N,C,V): _v rf, Cl, V γ 2 • · · = C2, V2 RP L. Fn ^ • • · k V m - ,厂&quot;、夕維物元,#為 具有特徵向量C = [c,c θ’物…的名稱, u 2’ ···,c«]以及對應於特徵向量之量 200929566 向量 V 1 2, ·.·,(I,而 '=(Ν 多維物元々之子物 兔工此_刀 /2為子物元之维备 特徵數。 心,數’ W為各子物元的 將上述六種故障類別根據式 物元模型,以筮) 建立相對應之故障 發電系統所輸出之功Γ表示。在本實施例中,將太陽光 特徵元。 ㈣及電流作為各子物元模型之 ❹ 參 故障類別 物元模型 PF! 及Fl = * 孚,、,〈62.8,67.0〉、 L·, (40.6,43.4) pmt, (2558.0,2904.9) pf2 及尸2 =《 PF2&gt; (58.8,63.6) Ln (38.1,41.2) p邮,〈2244.5,2621.9〉, pf3 及η =, PF3, v^, (53.3,58.5) L·, (34.4,37.8) P〇ut, (1838.7,2218.2) » pf4 i?F4 PF4, v^, (46.8,51.9) ' L〇 (30.3,33.6) .(1417.9,1742.9)^ » PFs ^F5 = PF5, vouP (40.2,44.7)] W» (26.0,28.9) (1047.5,1295.5) &gt; 11 \pf6, (33.6,37.4) PF6 〜= Ln (21.7,24.2) p^, (732.9,906.3) »Integer = the weight value of the link, and then train until it is close to the output ^ (according to the set recognition rate). In this embodiment, the training mode adopted is to input the training sample of each fault type, and the calculation of the extension distance (EXtensi() n distanee, rib) is used to estimate whether the relative weight value is correct, and only Re-input the test sample to the trained extended extension neural network according to the weighted value of the error, and determine the fault category to which the input sample belongs, so that each output layer node corresponds to the fault classification, only There will be an output layer node to indicate the fault category represented by the node. In this embodiment, according to the input test sample, the distance to the per-class cluster is calculated, and the minimum extension distance of 200929566 is the cluster category to which the test sample belongs. The fault diagnosis method according to a preferred embodiment of the present invention can be completed only when some parameters are changed when the capacity of the solar power generation system is expanded, thereby reducing the fault diagnosis update schedule and increasing the maintenance convenience of the solar power generation system. Sex and expandability. In addition, since the proposed technique is different from the learning mechanism of the traditional neural network, the calculation process and speed of the diagnosis are quite simple and rapid. [Embodiment] At present, most of the solar power generation systems in operation mainly use solar panels as the basic power generation unit. According to the power required by the load, the solar modules are connected in series to increase the output voltage and increase the output current in parallel. A solar power generation array with a large output power. In this embodiment, each piece of output is 75W' 17V, four solar panels of 4.4A are connected in series to form an array branch 'and parallel array of 10 branches to form a 3kw solar power generation array, and its rated output voltage At 68V, the rated output current is 44a, which will produce an output power of up to 3000W. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method for fault diagnosis of a solar power generation system according to a preferred embodiment of the present invention. The method for fault diagnosis of a solar power generation system includes the following steps: The extension theory first establishes the faulty extension 7L model of the solar power generation system. The faulty (four) metamodel includes a plurality of sub-objective models, each of which corresponds to a fault category, as shown in step 210. Then, the extension-type neural network with the fault-extension matter-element model is established. The road is as shown in step 220. Re-age λ &amp; can perform #_经_(四)二故__ training data, rate (such as t program, until it meets the set identification input data to be tested, tUe 23G. After the training is completed, the fault category can be performed. The recognition/recognition of Yuancheng's extension-type neural network architecture is shown in step 2. The reading of the fault category to which the data to be tested belongs, such as the step ❹ In the inventive example, the proposed solar power system 0-break method The advance-steps are detailed as follows: 咖) 1) Establish a fault-extension matter element model of the solar power generation system (step P due to the generation of the solar voltage, its output voltage, current and; in different /Ja degrees and sunshine intensity) The following are not the same, so if you want to turn the 5 township fault category, you must establish a fault extension matter element model for each atmospheric interval. In this example, according to the average temperature and relative conditions of the Taiwan region, the atmosphere will be The conditions are divided into seven types of atmospheric intervals. Please refer to Table 1. Table 7: Classification of atmospheric intervals (W/m2) Temperature (° C ) Area A 200~400 5~10 Area B 401 -500 11 ~ 15 C area 501 ~ 600 16 ~ 18 601 ~ 700 19 to 20 Eg 701-800 21 to 25 G area 801 to 900 16-30 901-1000 31 to 40 The first section of the atmospheric section C~G is the atmospheric condition of most solar power generation systems. When the power generation system is operating in this section, fault diagnosis will be performed. However, due to insufficient strength of the a and b sections, the electrical signal output by the solar power generation system is small, which is not suitable as data for fault diagnosis, so no fault diagnosis will be performed. In the present embodiment, a solar power panel of 75 W is used to form a series of 4 kW and a 3 kW solar power generation system in the atmospheric zone G zone as an example, and a faulty extension material 兀 model is established. The fault characteristic parameters (power, money and current output by the solar power generation array) are classified into six categories (the fault element model knife is /, the individual object TG _ type) The representations of the six fault categories and their symbols are as follows: 1 Normal operation of the eight-knot system PF2: Each of the two branch paths of a template fault branch occurs in any of the ten series branches A template failure occurs in each of the ten-series spurs in the slab-fault series. Ten series two = each occurrence in the path - template failure representation = the matter element defined in (4) can be given by formula (1) with R = (N, C, V): _v rf, Cl, V γ 2 • · · = C2, V2 RP L. Fn ^ • • · k V m - , factory &quot;, Xiwei matter element, # is a feature vector C = [c,c θ' The name of ..., u 2' ···, c«] and the amount corresponding to the feature vector 200929566 Vector V 1 2, ·.·, (I, and '=(Ν 多维 物 物 兔 兔 兔 兔 兔 兔2 is the number of features of the child element. The heart, the number 'W is the sub-objective element. The above six fault categories are based on the matter-element model, and 筮) is used to establish the corresponding faulty power generation system. In this embodiment, the solar eigenvector is used. (4) and the current as the sub-element model of each sub-parameter PF! and Fl = * Fu,,, <62.8, 67.0>, L·, (40.6, 43.4) pmt, (2558.0, 2904.9) pf2 and Corpse 2 = "PF2&gt; (58.8, 63.6) Ln (38.1, 41.2) p post, <2244.5, 2621.9>, pf3 and η =, PF3, v^, (53.3, 58.5) L·, (34.4, 37.8) P 〇ut, (1838.7, 2218.2) » pf4 i?F4 PF4, v^, (46.8,51.9) ' L〇(30.3,33.6) .(1417.9,1742.9)^ » PFs ^F5 = PF5, vouP (40.2,44.7 )] W» (26.0, 28.9) (1047.5, 1295.5) &gt; 11 \pf6, (33.6, 37.4) PF6 ~= Ln (21.7,24.2) p^, (732.9,906.3) »

蠢 200929566 第2表中事物(〜)代表太陽光發電陣列之六種故障 形式之子物元,,,〜}為故障集^分別 代表第《種故障類別,各子物元皆使用三個特徵元f分別 為太陽光發電陣列所輸出之電塵(v。」、所輸出之冑流^」 以及所輸出之功率(匕)°各子物元模型之量值範圍為其 相對應特徵之經典域,而此經典域是以大氣區間g區日砰 強度及溫度之最大值、最小值為大氣條件下,太陽光發電 陣列於六種故障類型發生時,所產生之六個電壓、電流及 功率之最大值及最小值範圍為依據。 (2 )建立可拓類神經網路(步驟) ::照第2圖,其繪示依照本發明一較佳實施例的一 :可拉類神經網路之架構圖。可拓類神經網路_包含一 層,以及_輸出層42〇。其中輸入層41〇包含複數 二層即點4U,用以接收輸人特徵樣本,亦即物元特 徵的里值(巧〜私),並且設定、 徵樣本之映僮#山思一 A 集產生輸入特 應-輪出= 複數個物元,每-物元對 』出層即點(化〜〇421。在輪出層42〇 一土 —輪出層節點421發生變動,藉 人 之辨識結果。 ㈣“代表以特徵樣本 12 200929566 元特徵之經典域的最 ^ ^ 值另—權重值( X特徵之經典域的最小值。 輸入層節點數為各子物元 實施例中,輪A s ~ 的特徵數(1〜m ),在本 輸入層節點數為3 ( 三個特徵:)。^ + s ~ 才P為各子物元模型採用 ^輸出層節點數為所建立夕工a-(1〜η),本眘堤立之子物几模型總數 類型,如mat ,.數為6(即為六種故障 如第2表所示)β因此, 網路架構共需9個 纟實施例中之可拓類神經 臧9個即點與36個連結數。 在本實施例中’權重值43 故障類別之耠a样+ &amp; 耵初始叹疋值為已知所屬 (如第2 元之經典域的最大值及最小值 輸入層節分別代表連接於第j個 :點與以個輸出層節點之最小及最大權重值。 230) 類神經網路之監督式學習訓練程序(步驟 可拓類神經網路之聲翌 m )代表輸入物 習權重值調整使法則為監督式學習,其藉由學 或達到盘目㈣于可拓類神經網路具有較佳之辨識率,亦 〜目標值相同之輸出特性 a 須先行定義相關變數。 進仃學S程序則,必 設訓練樣本為| 本總數。篦U田接丄 2,…,其中'為訓練樣 樣本的特徵她翁 ^ , Ν,〜,…,〜} ’ m代表 評估可拓二個樣本所屬之故障類別。為了 1石Γ拓類神經網路之 差數目’ 總誤差比 p N Άγ =—气 )可表示如下 差數目,°卓確性,^為整體估測之誤 (2) 13 200929566 請參照第3圖,其繪示 網路之流程圖。可括類計f第1圖中之訓練可括類神經 少包含下列步驟 _網路之監督式學習訓練程序至 初始Sr,1並=連結於輸入層節點與輸出層節點間之 。 、 不成可拓物元模型之形式如下 「乂,A,匕。Stupid 200929566 The second table of things (~) represents the sub-objects of the six fault forms of the solar power generation array, and, for the fault set ^ respectively represent the "fault category, each sub-element uses three feature elements. f is the electric dust (v." output from the solar power generation array, the output turbulence ^", and the power (匕) of the output. The magnitude of each sub-element model is the classical domain of its corresponding feature. The classical domain is based on the maximum and minimum values of the intensity and temperature of the g-zone in the atmospheric interval, and the six voltages, currents, and powers generated by the solar power generation array when six types of faults occur. The maximum and minimum ranges are based on. (2) Establishing an extension-like neural network (step): According to FIG. 2, a diagram of a pullable neural network according to a preferred embodiment of the present invention is illustrated. The architecture diagram. The extension class neural network _ includes a layer, and the _output layer 42. The input layer 41 〇 includes a plurality of layers, ie, 4 U, for receiving the input feature samples, that is, the value of the matter element features. (smart to private), and set and levy the sample童#山思一A集 produces input specials-rounds=multiple matter elements, each element-to-object pair is out of layer (pointing ~〇421. in the turn-out layer 42〇一土—round-out node 421 The change occurs, and the identification result of the borrower is obtained. (4) “The most ^^ value of the classical domain of the characteristic sample 12 200929566 meta-characteristics-the weight value (the minimum value of the classical domain of the X feature. The number of input layer nodes is the sub-primitive element) In the embodiment, the number of features of the wheel A s ~ (1~m), the number of nodes in the input layer is 3 (three features:). ^ + s ~ P is the sub-element model using ^ output layer nodes For the established work-a-(1~η), the total number of models of the sub-objects of Benshini, such as mat, is 6 (that is, six faults are shown in the second table). Therefore, the network architecture A total of 9 extension-type neural crests in 9 embodiments are required, ie, 9 points and 36 connection numbers. In this embodiment, the weight value 43 is the fault category 耠a-like + &amp; 耵 initial sigh value is known Affiliation (such as the maximum and minimum input layer sections of the classic domain of the 2nd element represent the minimum and maximum weights connected to the jth: point and the output layer nodes respectively 230) The supervised learning training program of the neural network (step sm of the extensional neural network) represents the adjustment of the input value of the learning habits, so that the law is supervised learning, which learns or reaches the target (4) The extension type neural network has a better recognition rate, and the output characteristic a with the same target value must first define the relevant variables. For the learning S program, the training sample must be set to | the total number. ,..., where 'the characteristics of the training sample sample her Weng ^, Ν, ~, ..., ~} ' m represents the evaluation of the fault category of the extension of the two samples. For the number of differences between the 1 stone core extension neural network' The total error ratio p N Ά γ = - gas can be expressed as the following difference, ° accuracy, ^ is the overall estimation error (2) 13 200929566 Please refer to Figure 3, which shows the flow chart of the network. The training in Figure 1 can include the following types of steps: _ network supervised learning training program to the initial Sr, 1 and = connected between the input layer node and the output layer node. The form of the extension meta-model is as follows: "乂, A, 匕.

Rk 尧= 1,2, K2 c3,匕Rk 尧 = 1, 2, K2 c3, 匕

於式(3)中,c ^ XT J ,、域值而經典域之範圍可由訓練樣本所決 定。其中 (4) (5) w&gt;9' (i = l-,Np) /、中,%為第y’個特徵對應第&amp;個分類之權重最小值,π為 第/個特徵對應第Α個分類之權重最大值。在本實施例中, 利用第2表中各類別之子物元模型所對應於各特徵之量 值’作為連結於各輸入層節點與各輸出層節點間之初始權 重值。 步驟222 .計算每一初始權重值之初始權中心(Initial cluster center)。 Z* ={〜,〜,.··,〜} (6) +^)/2 (7) k = l 2,..., „ ; j = l&gt;2,.··,m (8) 14 200929566 步驟223 :讀取第z•個訓練樣本及其分類編號尸。 ~ {xn» , pen (9) 步驟224 .應用可拓距離(ED)計算訓練樣本γ與第免 個分類群集之距離,也就是計算訓練樣本與每一分類群集 之可拓距離,其數學表示式如下:In equation (3), c ^ XT J , the domain value and the range of the classical domain can be determined by the training sample. Where (4) (5) w&gt;9' (i = l-, Np) /, medium, % is the minimum weight of the y'th feature corresponding to the & and π is the first feature corresponding to the third The weight of each category is the maximum. In the present embodiment, the magnitude value corresponding to each feature in the child matter model of each category in the second table is used as the initial weight value connected between each input layer node and each output layer node. Step 222. Calculate an initial cluster center of each initial weight value. Z* ={~,~,.··,~} (6) +^)/2 (7) k = l 2,..., „ ; j = l&gt;2,.··,m (8) 14 200929566 Step 223: Read the z-th training sample and its classification number. ~ {xn» , pen (9) Step 224. Apply the extension distance (ED) to calculate the distance between the training sample γ and the first classification cluster. , that is, calculate the extension distance between the training sample and each classification cluster. The mathematical expression is as follows:

EDik=Y (10) Μ A: = 1,2,·.· 請參照第4圖’其繪示為本實施例中所提之可拓距離 (ED)的示意圖。可拓距離(ED)可用以表示點χ與範 圍〈V,/〉之距離,其中χ為群集之權中心為權重群集 最小值,β為權重群集最大值。由第4圖得知可拓距離可 因為不同之數值範圍形成距離計算上之差異,因而產生如 同靈敏度數值變化之不同。—般而言,若物元特徵之範圍 較大時,其意味著訓練資料較為廣泛模糊,因此表現在距EDik = Y (10) Μ A: = 1, 2, .... Please refer to Fig. 4' for a schematic diagram of the extension distance (ED) proposed in the present embodiment. The extension distance (ED) can be used to represent the distance between the point and the range <V, />, where the center of the weight of the cluster is the weight cluster minimum and β is the weight cluster maximum. It can be seen from Fig. 4 that the extension distance can be different from the numerical value difference, and thus the difference in the sensitivity value is generated. In general, if the range of matter elements is large, it means that the training materials are more widely blurred, so they are expressed in the distance.

離計算上之靈敏度較低;相反地,若物元特徵之範圍較小 時’代表著所需資料樣本較為精確,所以可以表現出距離 δ十算上之尚靈敏度。 +步驟225 :經由計算比較後找到々•,使得幼;=mjn{£^}, 若此時々·=;;(即輸入特徵樣本p與其所屬之故障類別〆相 同)則演算程序跳至步驟227;否則繼續執行步驟226 〇 步驟226:調整並更新从及认群集之權重值如下: U)更新p 一汾及轉集之權中心值,亦即更新輸入特 徵樣本本身應屬分類群集(尸-认群集)的權中心值以及更 15 200929566 新輸入特徵樣本誤判對應之分類群集(认群集)的權中 心值。 (11) (12)The sensitivity of the calculation is relatively low; conversely, if the range of the matter element is small, the representation of the required data sample is more accurate, so the sensitivity of the distance δ can be expressed. +Step 225: After calculating and comparing, find 々•, so that young;=mjn{£^}, if 々·=;; (ie, the input feature sample p is the same as the fault category 所属 to which it belongs), the calculation program jumps to step 227 Otherwise, proceed to step 226. Step 226: Adjust and update the weight values of the slave and the cluster as follows: U) Update the weight of the center of the p and the transfer, that is, update the input feature sample itself should belong to the classification cluster (corpse - The weight center value of the cluster is recognized and the weight center value of the classification cluster (recognition cluster) corresponding to the 200929566 new input feature sample misjudgment. (11) (12)

(b)更新户—錢集之權重值,㈣更新輸入特徵 樣本本S應屬分類群集(Μ群集)的權重值以及更新輸 入特徵樣本誤判對應之分類群集群集)的權重值。 &lt;(new) = &lt;(oW)+7(^-2^&gt;) (13)(b) Update the weight value of the household-money set, and (4) update the input characteristics. The sample book S should be the weight value of the classification cluster (Μ cluster) and the weighted value of the classified cluster cluster corresponding to the error of the updated input feature sample. &lt;(new) = &lt;(oW)+7(^-2^&gt;) (13)

wL.(Kew)= k j WUh.{new)= k J ~^χυ yL(old) \ zU[old)、 (14) 式(11)〜式(14)中之7代表其學習率(Learningrate)。 在此步驟中’僅群集々及*·之權重在學習過程中進行調 整’而其㈣重值並不改變。由於上述之特性,使得可拓 類神經網路較其他類神經網路架構擁有 優勢’並且於新的應用領域中具有較高之適應性。^之 :參照第5a圖及第5,圖,其繪示為兩群集 ^程序中進行調整之結果的示意圖。由 狀態測試資料與群隼… ㈣原始 f料切Γ 離(取)與原始狀態測 B之可拓距離(%)產生明顯之變化。且 為調整後測試資料與群集A之可拓距 ’ 為調整後測試 ㈣太麻思 ^貢科與群集B之可拓距離),因此訓 練樣本⑽屬群集由群集Α(ζ·α)變化至群集Μ%)。 16 200929566 步驟227 :重複步驟223至步驟226之演算程岸,亩 到所有的訓練樣本均已分類完畢,並且結束一學習批次 (Epoch)° 步驟228 :若分類程序已經達到收斂狀態,或是總誤 差率(尽)已達到預設之目標值則停止演算程序,否則返 回至步驟223。 (4)可拓類神經網路之故障診斷演算流程(步驟24〇)wL.(Kew)= kj WUh.{new)= k J ~^χυ yL(old) \ zU[old), (14) 7 of the formulas (11) to (14) represent the learning rate (Learning rate) . In this step, 'only the clusters and the weights of *· are adjusted during the learning process' and their (iv) weights do not change. Due to the above characteristics, the extension-like neural network has advantages over other neural network architectures and has high adaptability in new application fields. ^: Refer to Figure 5a and Figure 5, which are diagrams showing the results of adjustments made in the two clusters. From the state test data and the group 隼... (4) The original f material cut Γ (take) and the original state measurement B's extension distance (%) produces a significant change. And for the adjusted test data and the cluster A's extension distance' is the post-adjustment test (4) Taixus ^Gongko and cluster B extension distance), so the training sample (10) belongs to the cluster changed from cluster Α(ζ·α) to Cluster Μ%). 16 200929566 Step 227: Repeat steps 223 to 226 to calculate the course, all the training samples have been classified, and end a learning batch (Epoch). Step 228: If the classification procedure has reached convergence, or If the total error rate (out) has reached the preset target value, the calculation program is stopped, otherwise it returns to step 223. (4) Fault diagnosis calculation process of extension type neural network (step 24〇)

士请參照第6圖,其繪示依照第丨时之進行故障診斷 的流程圖。當可拓類神經網路完成學習程序後,即可進行 辨識或分類,而其演算程序包含: 步驟241 ·讀取訓練元成後之可拉類神經網路的權重 值矩陣,將訓練完成之可拓類神經網路的權重值作為辨識 用之可拓類神經網路的權重值。 ,驟242 :利用式(7),根據所讀取之權 益一_ 知一、一 計算每一分類群集之群集權中心值 步驟243 :讀取欲進行故障診斷之測試樣本 xtm} ( 15) 〜步驟244·應用式(1G)所提可拓距離(ed)之定義, 計算測試樣本與每一分類群集之距離。 步驟245 .找尋測試樣本所屬之分類群集(㈠使得 賊=},並且設定其相對應之輸出節科=ι,藉以 試樣本所屬群集_ 1所有測試樣本均已分類完 成則停止運算程序,否則回到步驟243。 本實施例中’以大氣區間G區36筆資料作為訓練 17 200929566 樣本,6000筆資料作為測試樣本。可 之輸出,依據電«、電流及輸出功率診斷法 :識類別分為六種,每次僅有-辨識結; =字分別表示六種故障類別,再與目標值進行比較。 為了驗證本發明所提可拓類神經故障診斷法之可行性 仃大氣區間G區之待測資料作為測試。第3表Please refer to Figure 6, which shows the flow chart for troubleshooting according to the second time. After the extension type neural network completes the learning process, it can be identified or classified, and its calculation program includes: Step 241 · Read the weight value matrix of the pullable neural network after the training element is completed, and the training is completed. The weight value of the extension-like neural network is used as the weight value of the extension-type neural network for identification. Step 242: Using formula (7), calculate the cluster weight center value of each classification cluster according to the read interest_step 243: Read the test sample xtm} to be diagnosed (15)~ Step 244: Apply the definition of the extension distance (ed) proposed by (1G), and calculate the distance between the test sample and each classification cluster. Step 245. Find the classification cluster to which the test sample belongs ((1) make the thief =}, and set its corresponding output section = ι, by which the sample belongs to the cluster _ 1 all test samples are classified and the operation program is stopped, otherwise Going back to step 243. In the present embodiment, 'the data of the atmospheric interval G area 36 is used as the training 17 200929566 sample, and 6000 data is used as the test sample. The output can be based on the electric «, current and output power diagnosis method: identification category Six kinds, each only has a -identification knot; = word respectively represents six fault categories, and then compared with the target value. In order to verify the feasibility of the extension-type neurological fault diagnosis method of the present invention, the atmospheric interval G area is to be treated. Test data as a test. Table 3

區中任意選擇之8筆測試資料,表 “為在G 丫&lt;日照強度、溫度與 =支路數為太陽紐電系統之卫作狀g參數,而電塵、、 陽陣列之輸出值,並且亦作為待測物元 ΐ户1 表為故障診斷之結果,其與第3表測試 資科所列之故障類別作比較可知,所 診斷法可準確辨識出故障類別。 ?左故障 鲁 ^卜,域光發⑽將大氣區間C〜G之測試資料如 第表所不。而第6表所顯示之辨識結果亦可證明 故障診斷法於此5大氣區間,亦可個別辨識6種故障類別。 第7表所示為所提可拓類神經網路與其他 :障診斷法之比較結果。由第7表中可知,可拓類神= 路故障讀法之結構較倒傳遞類神經演算法簡易, 神經網路架構只需9個節點與36個連結數。 此外,可拓類神經網路於學習階段,僅訓練調整現有 連結數之核與下限權重值,所以當訓練資料數量龐大或 、資料加入時,便可顯示出可拓類神經網路具 之適應特性。 〃、逆 從疊代次數與辨識準確率比較可看出,可拓類神經網 18 200929566 路所需之予習時間較短,同時在6〇〇〇筆測試資料之 率上僅妄士 &lt;姑 運座王5筆錯誤,因此辨識準確率亦高於其它故障診 斷廣异法。除此之外,所提可拓類神經網路之最佳化權重 值上下限範圍,在訓練前可先行經由專家經驗值所決定, 所以在訓練後更可輕易地突顯出辨識輸出結果所屬之故 障類別。8 test data arbitrarily selected in the district, the table "for the G 丫 &lt; sunshine intensity, temperature and = branch number is the sun-power system of the health-like g parameter, and the output value of the electric dust, the positive array, and Also as the result of the fault diagnosis of the object to be tested, the meter is compared with the fault categories listed in the test chart of the third table. The diagnosis method can accurately identify the fault category. The field light (10) will test the data of the atmospheric interval C~G as shown in the table. The identification results shown in the sixth table can also prove that the fault diagnosis method is in the 5 atmosphere interval, and the six fault categories can be individually identified. The table 7 shows the comparison between the proposed extension neural network and other obstacle diagnosis methods. It can be seen from the seventh table that the structure of the extension type god=road fault reading method is simpler than the inverse transmission type neural algorithm. The neural network architecture requires only 9 nodes and 36 links. In addition, the extension-based neural network only trains to adjust the core and lower weight values of the existing links in the learning phase, so when the amount of training data is large or the data is added When you can show the extension god The adaptive characteristics of the network. The comparison between the number of iterations and the accuracy of the identification can be seen that the extension time of the extension-type neural network 18 200929566 is shorter, and the rate of test data is 6 On the other hand, only the gentleman &lt; Gu Yunjiao 5 pen error, so the identification accuracy is higher than other fault diagnosis broad methods. In addition, the optimized extension neural network optimization weight value upper and lower limits range It can be determined by the expert experience value before training, so it is easy to highlight the fault category to which the identification output belongs after training.

第3表大氣區間G之測試資料 測試 項目 日照 強度 (W/m2) 溫度 (°C) 故障_ 開關 數 電壓 (V) 電流 (A) 功率 (W) 故障 類別 1 917 37 4 41.0 26.5 1086.5 pf5 2 983 31 0 66.6 43.1 2878.4 PFi ___3__ 950 33 4 49.3 31.9 1572.6 pf5 4 928 38 5 34.7 22.4 777.3 pf6 5 931 32 2 54.9 35.5 1948.9 pf3 6 998 36 3 51.7 33.5 1731.9 pf4 7 946 34 1 61.3 39.7 2433.6 pf2 8 905 35 3 47.1 30.4 1431.8 pf4 19 200929566Table 3 Test data of atmospheric interval G Test item Sunshine intensity (W/m2) Temperature (°C) Fault _ Switching voltage (V) Current (A) Power (W) Fault category 1 917 37 4 41.0 26.5 1086.5 pf5 2 983 31 0 66.6 43.1 2878.4 PFi ___3__ 950 33 4 49.3 31.9 1572.6 pf5 4 928 38 5 34.7 22.4 777.3 pf6 5 931 32 2 54.9 35.5 1948.9 pf3 6 998 36 3 51.7 33.5 1731.9 pf4 7 946 34 1 61.3 39.7 2433.6 pf2 8 905 35 3 47.1 30.4 1431.8 pf4 19 200929566

第4表大氣區間G之故障診斷結果 — 測 試 第 個樣本對應各故障類別之輸出值 大氣 辨識 結果 項 S Oil 〇η 〇α 〇i4 〇i5 〇i6 區間 類別 1 0 0 0 0 1 0 G pf5 2 1 0 0 0 0 0 G PFi 3 0 0 0 0 1 0 G pf5 4 0 0 0 0 0 1 G pf6 5 0 0 1 0 0 0 G pf3 6 0 0 0 1 0 0 G pf4 7 0 1 0 0 0 0 G pf2 8 0 0 0 1 0 0 G pf4The fault diagnosis result of the atmospheric interval G of the fourth table - test the output value of the first sample corresponding to each fault category. The atmospheric identification result item S Oil 〇 〇 〇α 〇i4 〇i5 〇i6 Interval category 1 0 0 0 0 1 0 G pf5 2 1 0 0 0 0 0 G PFi 3 0 0 0 0 1 0 G pf5 4 0 0 0 0 0 1 G pf6 5 0 0 1 0 0 0 G pf3 6 0 0 0 1 0 0 G pf4 7 0 1 0 0 0 0 G pf2 8 0 0 0 1 0 0 G pf4

第5表大氣區間C〜G之測試資料 測試 項目 曰照 強度 (W/m2) 溫度 (°C) 故障 開關 數 電壓 (V) 電流 (A) 功率 (W) 大 氣 區 間 故障 類別 1 1000 37 3 51.9 33.6 1742.3 G pf4 2 850 26 0 61.8 40.0 2476.7 F PFi 3 680 19 4 30.3 19.6 594.9 D pf5 4 510 17 2 30.1 19.5 588.6 C pf3 5 770 23 1 51.1 33.1 1692.8 E pf2 6 570 16 5 21.3 13.8 295.0 C pf6 第6表大氣區間C〜G之故障診斷結果 20 200929566 曇 第z•個樣本對應各故障類 別之輸出值 測試 〇,7 〇i2 〇u 〇(4 Oil 〇ie 1 0 0 0 1 0 0 2 1 0 0 0 0 0 3 0 0 0 0 1 o' 4 0 0 1 0 0 0 5 0 1 0 0 0 0 6 0 0 0 0 0 1 大氣區間 辨識 結果 類別 c D E F G 0 ----— 0 0 0 1 pf4 0 0 0 1 0 PF, 1 0 1 0 0 0 pf5 1 0 0 0 0 pf3 0 -— 0 1 0 0 pf2 1 0 丄 丄 0 pf6Table 5 Atmospheric interval C~G Test data Test item reference intensity (W/m2) Temperature (°C) Fault switch number voltage (V) Current (A) Power (W) Atmospheric interval fault category 1 1000 37 3 51.9 33.6 1742.3 G pf4 2 850 26 0 61.8 40.0 2476.7 F PFi 3 680 19 4 30.3 19.6 594.9 D pf5 4 510 17 2 30.1 19.5 588.6 C pf3 5 770 23 1 51.1 33.1 1692.8 E pf2 6 570 16 5 21.3 13.8 295.0 C pf6 6 Table Atmospheric Interval C~G Fault Diagnosis Results 2009 200929566 昙The third sample corresponds to the output value of each fault category Test 〇,7 〇i2 〇u 〇(4 Oil 〇ie 1 0 0 0 1 0 0 2 1 0 0 0 0 0 3 0 0 0 0 1 o' 4 0 0 1 0 0 0 5 0 1 0 0 0 0 6 0 0 0 0 0 1 Atmospheric interval identification result category c DEFG 0 ----— 0 0 0 1 Pf4 0 0 0 1 0 PF, 1 0 1 0 0 0 pf5 1 0 0 0 0 pf3 0 -— 0 1 0 0 pf2 1 0 丄丄0 pf6

第7表纟不同故障診斷演算法下之辨識比較結果(大氣 區間G區) 演算法 疊代次數 建構、 所需之資 料數量 Cs/Ns 辨識準確 率(%) 叮拓類神 __經網路 10 36 5995/6000 99.917 倒傳遞類 神經網路 1500 6000 5844/6000 97.401 K-Means 分 類分群法 ί£Ί ~ 500 6000 4511/6000 75.183 f s .辨識正確樣本數 丄總測試檨太鉍 睛參照第7圖’其繪示依照本發明一較佳實施例的一 種可拓類神經網路進行辨識之學習曲線圖。第7圖為採行 可拓類神經路且學習率為0.2時進行辨識之學習曲線,由 圖中所示之總誤差率可知’因為可拓類神經網路之初始權 21 200929566 重設定已經考慮各故障辨識類別之特徵數值最大及最小 值,所以總誤差率之初始值已較一般類神經網路甚小許 - 多,故其收斂較其他方式快且準確。 . 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和靶圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 參 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 月&amp;更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示依照本發明一較佳實施例的一種太陽光 發電系統之故障診斷方法的流程圖。 第2圖係繪示依照本發明一較佳實施例之一種可拓類 神經網路的架構圖。 第3圖係繪示依照第丨圖中之可拓類神經網路進行訓 φ 練的流程圖。 第4圖係繪示依照本發明一較佳實施例之一種可拓距 離(ED )的示意圖。 第5a圖係繪不為兩群集權重在學習程序中調整前之 示意圖。 第5b圖係繪不為兩群集權重在學習程序中調整後之 示意圖。 第6圖係繪示依照第!圖中之進行故障診斷的流程 22 200929566 圖。 第7圖係繪示依照本發明一較佳實施例的一種可拓類 神經網路進行辨識之學習曲線圖 221〜228 :步驟 400 :可拓類神經網路 411 :輸入層節點 421 :輸出層節點Table 7: Identification and comparison results under different fault diagnosis algorithms (G-zone in the atmospheric interval) Number of generations of algorithm generation, number of required data Cs/Ns Identification accuracy (%) 叮拓神__ via the network 10 36 5995/6000 99.917 Inverted-transfer-like neural network 1500 6000 5844/6000 97.401 K-Means classification grouping method ί£Ί ~ 500 6000 4511/6000 75.183 fs. Identifying the correct number of samples 丄 Total test 檨 too eye-catching reference 7 FIG. 2 is a learning curve diagram of an extension type neural network for identification according to a preferred embodiment of the present invention. Figure 7 is a learning curve for identifying the extensional neural pathways with a learning rate of 0.2. The total error rate shown in the figure is known as 'because the initial weight of the extensional neural network 21 200929566 reset has been considered The maximum and minimum characteristic values of each fault identification category, so the initial value of the total error rate is much smaller than that of the general neural network, so its convergence is faster and more accurate than other methods. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and various modifications and refinements can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the detailed description of the drawings is as follows: Figure 1 shows a A flow chart of a method for fault diagnosis of a solar power generation system of a preferred embodiment. 2 is a block diagram showing an extension type neural network in accordance with a preferred embodiment of the present invention. Figure 3 is a flow chart showing the training of the extension-like neural network in the figure. Figure 4 is a schematic illustration of an extendable distance (ED) in accordance with a preferred embodiment of the present invention. Figure 5a is a schematic diagram of the two cluster weights before adjustment in the learning program. Figure 5b is a schematic diagram of the adjustment of the two cluster weights in the learning program. Figure 6 is drawn according to the first! The process of troubleshooting in the figure 22 200929566 Figure. FIG. 7 is a learning curve diagram 221 to 228 for identifying an extension-like neural network according to a preferred embodiment of the present invention: Step 400: Extension-type neural network 411: Input layer node 421: Output layer node

【主要元件符號說明】 210〜240 :步驟 241〜245 :步驟 410 :輸入層 420 :輸出層 430 :權重值[Description of Main Component Symbols] 210 to 240: Steps 241 to 245: Step 410: Input Layer 420: Output Layer 430: Weight Value

23twenty three

Claims (1)

200929566 十、申請專利範圍: 1. 一種太%光發電系統之故陸I e &amp;玟障:斷方法,係用以診斷 一太%光發電系統之故障情开彡 渾度t,該故障診斷方法包含: (=據可拓理論中所定義之物元模型以及複數個關 於該太%先發電系統之故障特性參數建立—故障可拓物 元模型’其中該故障可抬物元模型係用以表示該太陽光發 電系統之故障類型;200929566 X. Patent application scope: 1. A land-based I e &amp; barrier: breaking method for diagnosing the fault condition of a solar photovoltaic system, the fault diagnosis The method comprises: (= according to the matter-element model defined in the extension theory and a plurality of fault characteristic parameters for the too-first power generation system--fault extension matter element model, wherein the fault-liftable matter element model is used Indicates the type of failure of the solar power generation system; ⑴建立-配合該故障可括物元模型的可拓類神經 網路’其中該可拓類神經網路包含一輸入層以及一輸出 層,該輸入層包含複數個輪入層節點,該輸出層包含複數 個物兀’每—物元對應_輸出層節點,每—輸人層節點及 每-輸出層節點間有二個連結權重值,每—輸出層節點對 應該太陽光發電㈣之故_型其巾之―,每—輸入層節 點對應母一故障特性參數; (〇訓練該可拓類神經網路,係輸入一已知故障類型 之訓練資料以對該可拓類神經網路進行訓練;以及 ()使用該訓練完成之可拓類神經網路診斷該太陽 光發電系統的故障情形。 如申叫專利圍第1項所述之太陽光發電系、統之故 障診斷方法’其中步驟(a)包含: 口建立複數個大氣區間,係依據該太陽光發電系統所處 地區之平均氣溫及相對日照條件,將大氣條件 區分為該些 大氣區間;以及 24 200929566 建立對應於每一大氣區間之故障可拓物元模型,係根 據該太陽光發電系統在各該大氣區間之故障情形,建立其 對應之故障可拓物元模型。 入3.如申請專利範圍第2項所述之太陽光發電系統之故 障斷方法,其中各該大氣區間之故障可拓物元模型包含 複數個子物元模型,每一個子物元模型對應一分類群集, 鬌 各該分類群集為該太陽光發電系統在各該大氣區間之故 障情形的其中一故障類別。 / 4.如申哨專利範圍第i項或第3項所述之太陽光發電 系統之故障診斷方法,其中該可㈣論中所定義之物元模 型為 ^ = (N,C,V) = h Rf2 、,〜v C2,V2 *·· ··. - 〜,K(1) Establishing-cooperating with the fault may include an extension-like neural network of a matter-element model, wherein the extension-type neural network includes an input layer and an output layer, the input layer includes a plurality of round-trip nodes, the output layer Including a plurality of objects 每 'every material element corresponding _ output layer node, there are two connection weight values between each input layer node and each output layer node, and each output layer node corresponds to solar power generation (four) _ Type-the input layer node corresponds to the parent-fault characteristic parameter; (〇 training the extension-type neural network, inputting a training data of a known fault type to train the extension-type neural network And () using the trained extension-type neural network to diagnose the failure condition of the solar power generation system. For example, the solar power generation system described in the first paragraph of the patent, the fault diagnosis method of the system' a) includes: establishing a plurality of atmospheric intervals according to the average temperature and relative sunshine conditions of the area in which the solar power generation system is located, and distinguishing the atmospheric conditions into the atmospheric intervals; and 24 200929566 A fault extension matter element model corresponding to each atmospheric interval is established, and a corresponding fault extension matter element model is established according to the fault condition of the solar power generation system in each of the atmospheric intervals. The failure method of the solar power generation system according to the above, wherein each of the faulty extension matter elements of the atmospheric interval comprises a plurality of sub-element models, each sub-element model corresponding to a classification cluster, and each of the classification clusters is The fault diagnosis method of the solar power generation system in the faulty condition of the solar power generation system. 4. The fault diagnosis method of the solar power generation system according to the item or the third item of the whistle patent scope, wherein the (4) The matter-element model defined in the theory is ^ = (N, C, V) = h Rf2 ,, ~v C2, V2 *·· ··. - ~, K :中為-多維物元’ #為事物(R)的名稱, ”、有特徵向量C=[C&quot; C2,…,C«]以及對應於該特徵向量 的特徵數,之子物7L,”為子物元之總數,m為每-子物元 25 200929566 、·先所輸出之電壓、該太陽光發電系統所輸出之電流以及該 太陽光發電系統所輸出之功率。 6·如申6月專利範圍第^所述之太陽光發電系統之故 障診斷方法’其巾該故障可拓物元模型包含複數個特徵 疋,每一特徵元對應該些故障特性參數其中之一。 鬌 7·如申請專利範圍第6項所述之太陽光發電系統之故 β斷方法’其中該輪入層節點數為該故障可拓物元模型 的特徵元數,該輸出層節點數為該故障可拓物元模型的子 宁印寻利範圍第3項所述之太 障診斷方法,其中該步驟⑴包含: 9 味(Cl)认定所有連結於該可拓類神經網路中之輸入層 層節點的權重值’其中該權重值的初始值為該 之各特徵元===元模Γ’每—分類群集中 、场1值的最大值以及最小值; 結該η:算每—權重值之權中心值’該權中心值為連 λ㊉卩點與該輸出層節點之二權重值的平均值. 為該==:::本及其分類編號’該訓練樣本皆 距離;(⑷〇該訓練樣本與每—分類群集之間的—可拓 26 200929566 (c5)找出該可拓距離之最小值,使所屬分類群集對 應的輸出層節點的輸出值為丨,藉此該太陽光發電系統之 故障類別即為該輸出層節點所對應之故障類別; (c6)當該輸出層節點所代表之故障類別與該訓練樣 本所屬之故障類別不同_,則進行更新該權重值以及該權 中心值;以及 (c7)计算一總誤差率,該總誤差率為誤差數與該訓 練樣本總數之比值,當兮油租关·玄(执 w 田落、.吻誤差率小於一預設值,則訓練 結束;否則回到步驟(c3)。 、 &quot;月專利範圍第8項所述之太陽光發 障診斷方法,其中該可拓距離之數學表示式為 Μ k = l, 2,.. ζ、中幼* •為該训練樣本輿久八逮s热隹 ®為第_練樣本及其分類編號之可拓距離,&lt; 個分類之權中心值,' 個特徵對應第灸 最小值,π為第^ 應第續分類之權重 為所屬分二Τ對應相分類之權重最大值^ 貝頬別,《為分類總數。 27 200929566 一錯誤輸出分類群集之權中心值作調整,纟t該訓練樣本 所屬分類群集之權中心值的調整方式可以表示如下·· Z ^ =Zp/+V(x^ Z old' PJ · 甘 φ , -new v. ,'甲 &amp;為一更新後該訓練樣本所屬分類群集之權中心 值,5,·為一更新前該訓練樣本所屬分類群集之權中心值; ”為所設疋之學習率;4為該訓練樣本;該錯誤輸出分 類群集之權中心值的調整方式可以表示如下: old /、中’ 為一更新後該錯誤輸出分類群集之權中心值;zg 為一更新前錯誤輸出分類群集之權中心值;^為該所設= 之學習率;X#為該訓練樣本。:中为-Multidimensional matter element '# is the name of the thing (R), ", has the feature vector C=[C&quot; C2,...,C«] and the feature number corresponding to the feature vector, the child 7L," is The total number of sub-objects, m is the per-sub-element 25 200929566, the voltage output first, the current output by the solar power generation system, and the power output by the solar power generation system. 6. The method for fault diagnosis of a solar power generation system as described in the patent scope of the invention in June is characterized in that the faulty extension matter element model includes a plurality of features, each of which corresponds to one of the fault characteristic parameters. .鬌7· The β-break method of the solar power generation system described in claim 6 wherein the number of the round-trip nodes is the characteristic number of the fault-extension matter element model, and the number of the output layer nodes is The failure-prolongable matter element model of the sub-Ning Yin search scope of the third method of the fault diagnosis method, wherein the step (1) comprises: 9 (Cl) identifies all the input layers connected to the extension-type neural network The weight value of the layer node 'where the initial value of the weight value is the characteristic element === yuan Γ 'per-class cluster, the maximum value and the minimum value of the field 1; knot η: count per-weight The weighted center value of the value is the average value of the weighted value of the λ 卩 point and the output layer node. For the ==::: and its classification number 'the training samples are all distances; ((4)〇 The training sample and each of the classification clusters - extension 26 200929566 (c5) find the minimum value of the extension distance, so that the output value of the output layer node corresponding to the classification cluster is 丨, whereby the solar power generation The fault category of the system is the fault corresponding to the output layer node. (c6) when the fault category represented by the output layer node is different from the fault category to which the training sample belongs, updating the weight value and the weight center value; and (c7) calculating a total error rate, the total The error rate is the ratio of the number of errors to the total number of training samples. When the oil is rented off, the training error ends when the error rate is less than a preset value; otherwise, the process returns to step (c3). The method for diagnosing solar radiation according to item 8 of the patent scope, wherein the mathematical expression of the extension distance is Μ k = l, 2, .. ζ, middle and young* • for the training sample 舆久八s 隹 隹 隹 is the extension distance of the _ training sample and its classification number, &lt; the center value of the weight of the classification, 'the characteristic corresponds to the minimum moxibustion, π is the weight of the second classification. The maximum weight of the two-phase corresponding phase classification ^Beibei, "for the total number of classifications. 27 200929566 The weight center value of an error output classification cluster is adjusted, 纟t The adjustment of the weight center value of the classification cluster to which the training sample belongs can be expressed As follows·· Z ^ =Zp/+V(x^ Z o Ld' PJ · 甘φ , -new v. , 'A &amp; is the weighted center value of the classification cluster to which the training sample belongs after an update, 5, · is the weight center value of the classification cluster to which the training sample belongs before updating; For the training rate set; 4 is the training sample; the adjustment of the weight center value of the error output classification cluster can be expressed as follows: old /, medium ' is the weighted center value of the error output classification cluster after an update; zg The weighted center value of the classification cluster is output for a pre-update error; ^ is the learning rate of the set =; X# is the training sample. 11.如申凊專利範圍第8項或第1〇項所述之太陽光發 電系統之故障診斷方法,其中該步驟(c6)中,更新該權 重值之方法為僅針對該訓練樣本所屬分類群集之權重值 及-錯誤輸出分類群集之權重值作調整,其中該訓練樣本 所屬分類群集之權重值的調整方式可以表示如下: +η(4 •Ζ U{old)、 Pj . 其中,為一更新後該訓練樣本所屬分類群集之權重 極小值,為一更新前該訓練樣本所屬分類群集之權重 極小值,·)為一更新後該訓練樣本所屬分類群集之權 重極大值;為—更新前㈣練樣本所屬分類群集之權 28 200929566 重極大值;7為—所設定之學習率;4為該訓練樣本;該 錯誤輸出群集權重值的調整方式可以表示如下: L(new) -4Γ)) jL{ne\\f) '、 k'j為一更新後該錯誤輸出分類群集之權重極小 · ynL^old)11. The method for fault diagnosis of a solar power generation system according to claim 8 or claim 1, wherein in the step (c6), the method of updating the weight value is only for the classification cluster to which the training sample belongs. The weight value and the weight value of the error output classification cluster are adjusted. The adjustment method of the weight value of the classification cluster to which the training sample belongs may be expressed as follows: +η(4 •Ζ U{old), Pj. The minimum weight value of the classification cluster to which the training sample belongs is the weight minimum value of the classification cluster to which the training sample belongs before updating, and is the weight maximum value of the classification cluster to which the training sample belongs after being updated; The weight of the cluster to which the sample belongs 28 200929566 The maximum value; 7 is the set learning rate; 4 is the training sample; the error output cluster weight value can be adjusted as follows: L(new) -4Γ)) jL{ Ne\\f) ', k'j is an update after the error output classification cluster has a very small weight · ynL^old) ’心為—更新前該錯誤輸出分類群集之權重極小值; h為一更新後該錯誤輸出分類群集之權重極大值;你^。的 為更新剛該錯誤輸出分類群集之權重極大值;^為該所 設定之學習率; &lt; 為該訓練樣本。 12. 如申請專利範圍第η項所述之太陽光發電系統之 故,診斷方法,其中該步驟(e3)中,該訓練樣本包含該 太陽光發電系統所輸出之電壓、該太陽光發電系統所輸出 之電流以及該太陽光發電系統所輸出之功率。 13. 如申請專利範圍第丨項或第8項所述之太陽光發電 系統之故障診斷方法,其中該步驟(d)包含: (d 1 )取得該訓練完成之可拓類神經網路的權重值, 將該訓練完成之可拓類神經網路的權重值作為辨識用之 可拓類神經網路的權重值; (d2)根據所取得之權重值,計算每一分類群集之權 中心值; (d3 )讀取欲進行故障診斷之測試樣本; 29 200929566 (d4 )計算該測試樣本與每一分類群集之可拓距離; 以及 (d5 )找出一組最小之可拓距離,使其所屬分類群集 對應的輸出層節點的輸出值為1,藉以顯示該測試樣本所 屬群集之類別。 十一、圖式:'The heart is—the minimum value of the weight of the error output classification cluster before the update; h is the weight maximum of the error output classification cluster after an update; you ^. The maximum value of the weight of the cluster is just updated for the error; ^ is the learning rate set for the test; &lt; is the training sample. 12. The method of diagnosis according to the solar photovoltaic power generation system of claim n, wherein in the step (e3), the training sample comprises a voltage output by the solar power generation system, and the solar power generation system The output current and the power output by the solar power generation system. 13. The method of fault diagnosis of a solar power generation system according to the invention of claim 8 or 8, wherein the step (d) comprises: (d1) obtaining a weight of the extension-type neural network of the training completion Value, the weight value of the trained extension type neural network is used as the weight value of the extension type neural network for identification; (d2) calculating the weight center value of each classification cluster according to the obtained weight value; (d3) reading the test sample to be diagnosed; 29 200929566 (d4) calculating the extension distance of the test sample and each classification cluster; and (d5) finding a minimum set of extension distances to classify The output layer node corresponding to the cluster has an output value of 1, which displays the category of the cluster to which the test sample belongs. XI. Schema: 如次頁Secondary page 3030
TW096148319A 2007-12-17 2007-12-17 Method for fault diagnosis of photovoltaic power generating system TWI365543B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096148319A TWI365543B (en) 2007-12-17 2007-12-17 Method for fault diagnosis of photovoltaic power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096148319A TWI365543B (en) 2007-12-17 2007-12-17 Method for fault diagnosis of photovoltaic power generating system

Publications (2)

Publication Number Publication Date
TW200929566A true TW200929566A (en) 2009-07-01
TWI365543B TWI365543B (en) 2012-06-01

Family

ID=44864538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148319A TWI365543B (en) 2007-12-17 2007-12-17 Method for fault diagnosis of photovoltaic power generating system

Country Status (1)

Country Link
TW (1) TWI365543B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404960B (en) * 2010-01-05 2013-08-11 Nat Univ Chin Yi Technology Method for islanding phenomenon detection of photovoltaic power generating systems
CN103995775A (en) * 2014-05-20 2014-08-20 浪潮电子信息产业股份有限公司 Testing data generating method based on neural network
TWI491801B (en) * 2013-03-18 2015-07-11 Nat Univ Chin Yi Technology Wind power fault prediction system and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404960B (en) * 2010-01-05 2013-08-11 Nat Univ Chin Yi Technology Method for islanding phenomenon detection of photovoltaic power generating systems
TWI491801B (en) * 2013-03-18 2015-07-11 Nat Univ Chin Yi Technology Wind power fault prediction system and method thereof
CN103995775A (en) * 2014-05-20 2014-08-20 浪潮电子信息产业股份有限公司 Testing data generating method based on neural network

Also Published As

Publication number Publication date
TWI365543B (en) 2012-06-01

Similar Documents

Publication Publication Date Title
CN107391852B (en) Transient stability real-time evaluation method and device based on deep belief network
Ciulla et al. Forecasting the cell temperature of PV modules with an adaptive system
Dhimish et al. Multi‐layer photovoltaic fault detection algorithm
CN104269867B (en) A kind of node power of disturbance transfer distributing equilibrium degree analytical method
CN104459373B (en) A kind of temporary range of decrease value calculating method of node voltage based on BP neural network
CN107103154A (en) A kind of photovoltaic module model parameter identification method
CN105141255A (en) Fault diagnosis method of photovoltaic array
CN110429637A (en) A kind of method for visualizing of probability Static Voltage Stability Region
CN105005708A (en) Generalized load characteristic clustering method based on AP clustering algorithm
CN110429636A (en) A kind of method of static voltage stability Contingency screening and ranking
Su et al. An optimized algorithm for optimal power flow based on deep learning
Chang et al. Data-driven estimation of voltage-to-power sensitivities considering their mutual dependency in medium voltage distribution networks
TW200929566A (en) Method for fault diagnosis of photovoltaic power generating system
Rafeeq Ahmed et al. Maximum power point tracking of PV grids using deep learning
CN108694475A (en) Short-term time scale photovoltaic cell capable of generating power amount prediction technique based on mixed model
Omer et al. Adaptive boosting and bootstrapped aggregation based ensemble machine learning methods for photovoltaic systems output current prediction
Sun et al. Short-term photovoltaic power prediction modeling based on AdaBoost algorithm and Elman
Tziolis et al. Direct short-term net load forecasting based on machine learning principles for solar-integrated microgrids
CN103942416B (en) Voltage estimation method based on weighted node spanning tree
Gao et al. SPSO-DBN based compensation algorithm for lackness of electric energy metering in micro-grid
Gupta et al. Time series data mining in rainfall forecasting using artificial neural network
CN109388845A (en) Based on backward learning and the complicated photovoltaic array parameter extracting method evolved of enhancing
TWI379093B (en) Method and portable device for fault diagnosis of photovoltaic power generating system
CN106570561B (en) A kind of insoluble sediment density forecasting system of insulator surface and method
Kasaeian et al. Solar radiation prediction based on ICA and HGAPSO for Kuhin City, Iran

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees