TW200928909A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200928909A
TW200928909A TW96151269A TW96151269A TW200928909A TW 200928909 A TW200928909 A TW 200928909A TW 96151269 A TW96151269 A TW 96151269A TW 96151269 A TW96151269 A TW 96151269A TW 200928909 A TW200928909 A TW 200928909A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
touch screen
conductive layer
electrode plate
display device
Prior art date
Application number
TW96151269A
Other languages
Chinese (zh)
Other versions
TWI354920B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151269A priority Critical patent/TWI354920B/en
Publication of TW200928909A publication Critical patent/TW200928909A/en
Application granted granted Critical
Publication of TWI354920B publication Critical patent/TWI354920B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a touch panel. The touch panel includes a first electrode plate, and a second electrode plate separated from the first electrode plate. The first electrode plate includes a first substrate and a first conductive layer disposed on a lower surface of the first substrate. The second electrode plate includes a second substrate and a second conductive layer disposed on an upper surface of the second substrate. At least one of the first conductive layer and the second conductive layer includes a plurality of carbon nanotube ribbon film structure parallel to each other and spaced therein. The present invention also relates to a displaying device using the touch panel.

Description

200928909 九、發明說明: • 【發明所屬之技術領域】 . 本發明涉及一種觸摸屏及使用該觸摸屏的顯示裝置, 尤其涉及一種基於奈米碳管的觸摸屏及使用該觸摸屏的顯 示裝置。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系统等各種電子 設備的高性能化和多樣化的發展,在液晶等顯示元件的前 @面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子 設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的顯示 元件的顯示内容進行視覺確認,一邊利用手指或筆等方式 按壓觸摸屏來進行操作。由此,可以操作電子設備的各種 功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前的觸 摸屏通常分爲四種類型,分別爲電阻式、電容感應式、紅 ❹外線式以及表面聲波式。其中電阻式觸摸屏的應用最爲廣 泛,請參見文獻 “Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel” Kazuhiro Noda,Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol.84, P39-45(2001) ° 先前的電阻式觸摸屏一般包括一上基板,該上基板的 下表面形成有一上透明導電層;一下基板,該下基板的上 表面形成有一下透明導電層;以及多個點狀隔離物(Dot 6 200928909BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch panel and a display device using the same, and more particularly to a carbon nanotube-based touch panel and a display device using the same. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display element such as a liquid crystal are gradually increasing. The user of such an electronic device operates by pressing the touch panel by a finger, a pen, or the like while visually checking the display content of the display element located on the back surface of the touch panel through the touch panel. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely, resistive, capacitive inductive, red-anterior, and surface acoustic. Resistive touch screens are the most widely used, see the literature "Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel" Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol. 84, P39-45 (2001) ° The prior resistive touch screen generally comprises an upper substrate, the upper surface of the upper substrate is formed with an upper transparent conductive layer; the lower substrate, the upper surface of the lower substrate is formed with a lower transparent conductive layer; Multiple point spacers (Dot 6 200928909

Spacer)設置在上透明導電層與下透明導電層之間。其中, . 該上透明導電層與該下透明導電層通常採用具有導電特 性的銦錫氧化物(Indium Tin Oxide,ITO)層(下稱ιτΟ層)。 當使用手指或筆按壓上基板時,上基板發生扭曲,使得按 壓處的上透明導電層與下透明導電層彼此接觸。通過外接 的電子電路分別向上透明導電層與下透明導電層依次施 加電壓,觸摸屏控制器通過分別測量第一導電層上的電墨 ❹變化與第二導電層上的電壓變化,並進行精確計算,將它 轉換成觸點坐標。觸摸屏控制器將數字化的觸點坐標傳遞 給中央處理器。中央處理器根據觸點坐標發出相應指令, 啓動電子設備的各種功能切換,並通過顯示器控制器控制 顯示元件顯示。 然而,ITO層作爲透明導電層通常採用離子束濺射或 蒸鍍等工藝製備,在製備的過程,需要較高的真空環境及 需要加熱到200〜300°c,因此,使得IT〇層的製備成本較 〇高。此外’ΙΤΟ層作爲透明導電層具有機械性能不够好、 難以彎曲及阻值分佈不均勻等缺點。另外,ΙΤ〇在潮濕的 空氣中透明度會逐漸下降。從而導致先前的電阻式觸摸屏 及顯不裝置存在耐用性不够好,靈敏度低、線性及準確性 較差等缺點。 有鑒於此,確有必要提供一種耐用性好,且靈敏度高、 線性及準確性强的觸摸屏及顯示裝置。 【發明内容】 一種觸摸屏,包括:一第一電極板,該第一電極板包 7 200928909 括一第一基體及一第一導電層設置在該第一基體的下表 . 面;以及一第二電極板,該第二電極板與第一電極板間隔 没置,該第一電極板包括一第二基體及一第二導電層設置 在該第二基體的上表面;其中’上述第一導電層和第二導 電層中的至少一個導電層包括多個平行且間隔設置的奈米 碳管帶狀膜結構。 一種顯示裴置,包括:一觸摸屏,該觸摸屏包括一第 ❹一電極板及一第二電極板,該第一電極板包括一第一基體 及一第一導電層設置在該第一基體的下表面,該第二電極 板與第一電極板間隔設置’且包括一第二基體及一第二導 電層没置在該第二基體的上表面;及一顯示設備,該顯示 設備正對且靠近上述觸摸屏的第二電極板設置;其中,上 述第一導電層和第二導電層中的至少一個導電層包括多個 平行且間隔設置的奈米碳管帶狀膜結構。 與先前技術相比較,本技術方案提供的觸摸屏及顯示 〇裝置具有以下優點:其一,由於透明導電層中的多個奈采 碳管帶狀膜結構平行且間隔設置,因此,所述透明導電層 具有較好的力學性能,從而使得上述的透明導電層具有較 好的機械强度和韌性,故,可以相應的提高觸摸屏的耐用 性,進而提高使用該觸摸屏的顯示裝置的耐用性。其二, 上述透明導電層中的多個奈米碳管帶狀膜結構平行且間隔 設置,從而使得透明導電層具有均勻的阻值分佈和透光 陡從而有利於提高觸摸屏及使用該觸摸屏的顯示裝置的 分辨率和精確度。 8 200928909 【實施方式】 •以下將結合附圖詳細說明本技術方案提供的觸摸屏及 -顯示裝置。 «月參閱圖1及圖2,本技術方案實施例提供一種觸摸 屏10,該觸摸屏10包括一第一電極板12,一第二電極板 14以及設置在第一電極板12與第二電極板14之間的多個 透明點狀隔離物16。 ❹ 該第-電極板12包括一第一基體12〇, 一第一導電層 U2以及兩個第—電極m。該第—基體m爲平面結構, 該第-導電層122與兩個第一電極124均 ㈣的下表面。兩個第一電極124分別設置在=導= 122沿第—方向的兩端並與第-導電層122電連接。該第 ;加够一恭 第一基體140, 一第二導電層142以及 兩個第一電極144。兮笛-立抽1yirk泣Τ °第一基體140爲平面結構,該第二 導電層142與兩個第二電極144 一 0上表面。兩個第二電極 :第:基體140的 筮一七a认 电蚀144刀別汉置在第二導電層142沿 方向的兩端並與第二導電層142電連接。該第一 垂直於該第二方向,即兩個第—電極Β m正交μ甘士與兩個第二電極 定柔軟度的薄膜或薄& ^ *爲透明的且具有- 羯以板,該第二基體14G爲透 第一基體140的材料可選擇 δΛ 等硬性材料或柔性材料金剛石及塑料 作用。該第一電極124與 " 主要起支撑的 夺米碳管…: 電極144的材料爲金屬、 卡^4膜或其他導電材料,只要確保導電性即可。本 9 200928909 實施例中,該第一基體120材料爲聚酯膜,該第二基體14〇 爲玻璃基板’該第一電極124與第二電極144爲導電的銀 椠層。 可以理解’所述電極亦可設置於所述導電層與所述基 體之間或設置在所述基體之上,且與所述導電層電連接, 並不限於上述的設置方式。只要能使上述的電極與導電層 之間形成電連接的方式都應在本發明的保護範圍内。 ❹ 進一步地’該第二電極板14上表面外圍設置有一絕緣 層18。上述的第一電極板12設置在該絕緣層is上,且該 第一電極板12的第一導電層122正對第二電極板14的第 二導電層142設置。上述多個透明點狀隔離物16設置在第 二電極板14的第二導電層142上,且該多個透明點狀隔離 物16彼此間隔設置。第一電極板12與第二電極板14之間 的距離爲2〜10微米。該絕緣層18與透明點狀隔離物16 均可採用絕緣透明樹脂或其他絕緣透明材料製成。設置絕 〇緣層18與點狀隔離物16可使得第一電極板14與第二電極 板12電絕緣。可以理解,當觸摸屏1〇尺寸較小時,點狀 隔離物16爲可選擇的結構’只需確保第一電極板14與第 —電極板12電絕緣即可。 所述第一導電層122與第二導電層142中的至少一個 導電層包括多個平行且間隔設置的奈米碳管帶狀膜結構。 所述奈米碳管帶狀膜結構爲一層奈米碳管薄膜,該奈来碳 管薄膜包括多個定向排列的奈米碳管。另外,所述奈米碳 管帶狀膜結構也可爲重叠設置的多層奈米碳管薄骐,每一 200928909 奈米碳管薄膜包括多個定向排列的奈米碳管,且相鄰的兩 •層奈米碳管薄膜中的奈米碳管沿同一方向排列或沿不同方 向排列。所述奈米碳管薄膜進一步包括多個首尾相連的奈 米碳管束片段’每個奈米碳管束片段具有相等的長度且每 個奈米碳管束片段由多個相互平行的奈米碳管束構成,所 述多個奈米碳管束片段兩端通過凡德瓦爾力相互連接。該 相鄰的奈米碳管束之間通過凡德瓦爾力緊密結合,該奈米 ❹碳管束包括多個長度相等且平行排列的奈米碳管。所述奈 米碳管可以爲單壁奈米碳管、雙壁奈米碳管及多壁奈米碳 管中的一種或多種。所述奈米碳管帶狀膜結構的寬度爲i 毫米〜10厘米。所述奈米碳管帶狀膜結構的厚度爲〇.5奈 米〜100微米。所述奈米碳管帶狀膜結構之間的間距爲5奈 米〜1毫来。 本實施例中’該第一導電層122與第二導電層142均 包括多個平行且間隔設置的奈米碳管帶狀膜結構。所述奈 〇米碳管帶狀膜結構爲一奈米碳管薄膜。優選地,第一導電 層122中的奈米碳管帶狀膜結構沿上述第一方向平行且間 隔設置,第二導電層142中的奈米碳管帶狀膜結構沿上述 第二方向平行且間隔設置。 此外,由於所述第一導電層122與第二導電層142中 的奈米碳管帶狀膜結構平行且間隔設置。優選地,所述第 一導電層122與第二導電層142中的奈米碳管帶狀膜結構 平行且等間距設置’從而使得所述第一導電層122與第二 導電層142具有均勻的阻值分佈和透光特性,有利於提高 11 200928909 觸摸屏ίο的分辨率和準確率。 導電層 142的 本實施例所述第一導電層122和/或第 製備方法主要包括以下步驟: 該陣列爲超 步驟一:提供一奈米碳管陣列,優選地, 順排奈米碳管陣歹||。 本技術方案實施例提供的奈来碳管陣列爲單壁奈 官陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的二種 ❹或多#纟實施例中,該超順排奈米碳管陣列的製備方 採用化學氣相沈積法,其具體步驟包括:(a)提供—平整 基底,該基底可選用P型或N型石夕基底,或選用形成有氧 化層的矽基底’本實施例優選爲採用4英寸的矽基底;(b) 在基底表面均勻形成一催化劑層,該催化劑層材料可選用 鐵(Fe)、始(C。)、鎳(Ni)或其任意組合的合金之一; (c)將上述形成有催化劑層的基底在7〇〇〜9〇〇艺的空氣中 退火約30分鐘〜90分鐘;(d)將處理過的基底置於反應爐 ❹=,在保護氣體環境下加熱到5〇〇〜74〇<t,然後通入碳源 乱體反應約5〜30分鐘’生長得到超順排奈米碳管陣列, 其高度爲200〜400微米。該超順排奈米碳管陣列爲多個彼 此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣 列。通過上述控制生長條件,該超順排奈米碳管陣列中基 本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接 觸形成陣列。該奈米碳管陣列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、曱烧等化學性 12 200928909 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體’本實施例優選的保護氣體爲 氬氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、雷射蒸 發沈積法等。 步驟二:採用一拉伸工具從奈米碳管陣列中拉取獲得 ◎ 一奈米碳管薄膜。其具體包括以下步驟:(a)從上述奈米 碳管陣列中選定一定寬度的多個奈米碳管片斷,本實施例 優選爲採用具有一定寬度的膠帶接觸奈米碳管陣列以選定 疋寬度的多個奈米碳管片斷;(b)以一定速度沿基本垂 直於奈米碳管陣列生長方向拉伸該多個奈米碳管片斷以 形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 〇用,該選定的多個奈米碳管片斷分別與其它奈米碳管片斷 首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。該 奈米碳管薄m包括多個f尾相冑且定向排列的奈米碳管 束。該奈米碳管薄膜中奈米碳管的排列方向基本平行於奈 来碳管薄膜的拉伸方向。 ,睛參閱圖3’該奈米碳管薄膜爲擇優取向排列的多個奈 米碳管束首尾相連形成的具有一定寬度的奈米碳管薄膜。 =奈米碳管薄膜中奈米碳管的排列方向基本平行於奈米碳 S薄膜的拉伸方向。該直接拉伸獲得的擇優取向的奈求碳 13 200928909 .管薄膜具有更好的均勻性,即具有更 -獲得奈。同時該直接拉伸 本實旆❹ 進行4化應用。 本實施财,該奈㈣管薄商寬度與㈣碳管陣列 可根撼Ϊ基底的尺寸有關,該奈米碳管薄膜的長度不限, 據實際需求製得。該奈米碳管薄膜的厚度爲〇5太 〜100微米。該奈㈣管薄财的奈来碳管可 夺;碳 ❹管、雙壁奈米碳管及多壁奈米碳管中的一種或多種 壁奈未碳管的直徑爲0.5奈米〜50奈米’該雙壁奈其 的直徑爲1.G奈米〜50奈米,該多壁奈米碳管的直徑爲^ 奈米〜50奈米。 步驟三:製備多個上述奈米碳管薄膜,形成一奈米碳 管帶狀膜結構’將該奈米碳管帶狀膜結構平行且間隔設 在所述第一基體U0或第二基體14〇表面,形成所述第L 導電層122及第二導電層142。 ❹ 所述奈米碳管帶狀膜結構爲一奈米碳管薄膜或重叠設 置的多個奈米碳管薄膜。所述重叠設置的多個奈米碳管薄 膜中相鄰兩層奈米碳管薄膜中的奈米碳管的排列方式不 限,可沿同一方向排列,也可沿不同方向排列。所述奈米 碳管帶狀膜結構之間的設置間距爲5奈米〜1毫米,具體可 根據觸摸屏的透光性進行選擇。 另外’所述多個奈米碳管薄膜也可通過以下步驟製 備.採用一拉伸工具從奈米碳官陣列中拉取奈来碳管獲得 一較大尺寸的奈米碳管薄膜;將該奈米碳管薄膜切割成大 14 200928909 小尺寸相等的多個奈米碳管薄膜。可以理解,本技術 實施例提供的所述奈米碳管薄膜的製備不限於上述製傷ς 法,也可通過礙塵法製備一奈米碳管薄膜,該奈米 膜中的多個奈米碳管沿同一方向排列、沿不同方向排列或 各相同性排列。此外,還可採用絮化法製備—奈米碳管薄 膜,該奈米碳管薄膜包括多個相互纏繞的奈米碳管。 由於本實施例超順排奈米碳管陣列中的奈米碳管非常 ❹ 純淨,且由於奈米碳管本身的比表面積非常大,所以該夺 米碳管薄膜本身具有較㈣黏性。,由該奈米碳管^ 膜組成的奈米碳管帶狀膜結構作爲第一導電層122與第二 導電層142時可直接黏附在所述第一基體12〇或 140 上。 另外,可使用有機溶劑處理上述黏附在第一基體12〇 或第二基體140上的奈米碳管帶狀膜結構。具體地,可通 過試管將有機溶劑滴落在奈米碳管帶狀膜結構表面浸潤整 〇個奈米碳管帶狀膜結構。該有機溶劑爲揮發性有機溶劑, 如乙醇、曱醇、丙酮、二氯乙院或氣仿,本實施例中採用 乙醇。該奈米碳管帶狀膜結構經有機溶劑浸潤處理後,在 揮發性有機溶劑的表面張力的作用下,該奈米碳管帶狀膜 結構可牢固地貼附在基體表面,且表面體積比减小,黏性 降低’具有良好的機械强度及勃性。 所述第一導電層122中的奈米碳管帶狀膜結構的兩端 與所述第一電極124電連接,所述第二導電層m2中的奈 米峡管帶狀膜結構的兩端與所述第二電極144電連接。所 15 200928909 述第-導電層122中的奈米碳管帶狀膜結構的排列方 偏離所述第一方向。優選的,所述第一導電層η〗中 .米碳管帶狀膜結構沿所述第一方向平行且等間距設置。、二 述第二導電層142中的奈米碳管帶狀膜結構的排列方向可 偏離所述第二方向。優選的,所述第二導電層中太 米碳管帶狀膜結構沿所述第二方向平行且等^距設置^ 述第一電極124和所述第二電極144爲帶狀電極。 〇 步地,由於設置有奈米碳管帶狀膜結構的區域盘 未設置奈米碳管帶狀膜結構的區域具有不同的光折射率斑 透射率,爲使觸摸屏整體透光性的視覺差異最小,可以2 奈米碳管帶狀膜結構之間的間隙中形成一填充層(圖未 示),該填充層的材料具有與奈米碳管帶狀膜結構相同或接 近的折射率和透射率。 另外’該第一電極板12上表面可進一步設置一透明保 ,126,該透明保護膜126可由氮化矽、氧化矽、苯丙 〇 % 丁烯(BCB)、聚醋以及丙稀酸樹脂等材料形成。該透明 保護膜126也可採用-層纟面硬化處理、光滑防刮的塑料 層,如聚對苯二曱酸乙二醇酯(PET)膜,用於保護第一 電極板12,提高耐用性。該透明保護膜126還可用於提供 一些其它的附加功能,如可以减少眩光或降低反射。 此外,可選擇地,爲了减小由顯示設備産生的電磁干 擾,避免從觸摸屏10發出的信號產生錯誤,還可在第二基 體14〇的下表面上設置一屏蔽層(圖未示 > 該屏蔽層可由 銦錫氧化物(ITO)薄膜、銻錫氧化物(AT〇)薄、鎳金薄 16 200928909 膜、銀薄膜膜或奈米碳管薄膜等導電材料形成。本實施例 •中,所述的屏蔽層包含一奈米碳管薄膜,該奈米碳管薄膜 中的奈米碳管的排列方式不限,可爲定向排列也可爲其它 的排歹J方式。本實施例令,該屏蔽層中的奈米碳管定向排 歹J該不米碳官薄膜作爲電接地點,起到屏蔽的作用,從 而使得觸摸屏10能在無干擾的環境中工作。 凊參閱圖4’本技術方案實施例還提供一使用上述觸摸 ❹屏10的顯示裝置100,其包括上述觸摸屏10及一顯示設 備20。該顯示設備2〇正對且靠近上述觸摸屏的第二電 極板14設置。該觸摸屏10可以與該顯示設備2〇間隔一預 定距離設置,也可集成在該顯示設備2〇上。當該觸摸屏 10與該顯示設備20集成設置時,可通過黏結劑將該觸摸 屏10附著到該顯示設備20上。 本技術方案顯示設備20可以爲液晶顯示器、場發射顯 示器、電漿顯示器、電致發光顯示器、真空螢光顯示器及 ❹陰極射線管等顯示設備。 進一步地,當在該觸摸屏10第二基體140的下表面上 設置一屏蔽層22時,可在該屏蔽層22遠離第二基體140 的表面上設置一鈍化層24’該鈍化層24可由氮化破、氧 化矽等材料形成。該鈍化層24與顯示設備20的正面間隔 一間隙26設置。該鈍化層24作爲介電層使用,且保護該 顯示設備20不致於由於外力過大而損壞。 另外,該顯示裝置1〇〇進一步包括一觸摸屏控制器30、 一中央處理器40及一顯示設備控制器50。其中,該觸摸 17 200928909 屏控制器30、該中央處理器4〇及該顯示設備控制器刈三 者通過電路相互連接,該觸摸屏控制器3〇與該觸摸屏 電連接,該顯示設備控制器50與該顯示設備20電連接。 ,觸摸屏控制器30通過手指等觸摸物6()冑摸的圖標或菜 f位置來疋位選擇信息輸人,並將該信息傳遞給中央處理 器40。該中央處理器4〇通過該顯示器控制器刈控制該顯 示元件20顯示。 ’ ❹ 使用時,在第一電極板12中的第一電極124之間及在 第二電極板14中的第二電極144之間分時施加5V電壓。 使用者一邊視覺確認在觸摸屏1〇下面設置的顯示元件加 的顯示,一邊通過觸摸物60如手指或筆按壓觸摸屏10第 一電極板12進行操作。第一電極板12中第一基體120發 生彎曲,使得按壓處70的第一導電層122與第二電極板 的第一導電層142接觸形成導通。觸摸屏控制器3〇通 過分別測量第一導電層122第一方向上的電壓變化與第二 〇 =電層142第二方向上的電壓變化’並進行料計算,將 匕轉換成觸點坐標。觸摸屏控制器3〇將數字化的觸點坐標 傳遞⑺中央處理器40。中央處理器4〇根據觸點坐標發出 相應扣7,啓動電子設備的各種功能切換,並通過顯示器 控制器50控制顯示元件2〇顯示。 與先前技術相比較,本技術方案提供的觸摸屏及顯示 裝置具有以下優點:其一,由於透明導電層中的多個奈米 碳管帶狀膜結構平行且間隔設置,因此,所述透明導電層 具有較好的力學性能,從而使得上述的透明導電層具有較 18 200928909 好的機械强度和勒性,故,可以相應的提高觸摸屏的耐用 ’性,進而提高使用該觸摸屏的顯示裝置的耐用性。其二, 上述透明導電層中的多個奈米碳管帶狀膜結構平行且間隔 設置,從而使得透明導電層具有均勻的阻值分佈和透光 性,從而有利於提高觸摸屏及使用該觸摸屏的顯示裝置的 分辨率和精確度。 綜上所述,本發明確已符合發明專利之要件,遂依法 ❹提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 ’ 【圖式簡單說明】 圖1係本技術方案實施例觸摸屏的立體結構示意圖。 圖2係本技術方案實施例觸摸屏的侧視結構示意圖。 圖3係本技術方案實施例觸摸屏中奈米碳管薄膜的掃 〇描電鏡照片。 圖4係本技術方案實施例顯示裝置的側視結構示意 圖。 【主要元件符號說明】 觸摸屏 1〇 第一電極板 12 第一電極板 14 點狀隔離物 16 絕緣層 19 120 200928909 第一基體 第一導電層 第一電極 第二基體 第二導電層 第二電極 透明保護膜 _顯示裝置 ❹ 顯示設備 觸摸屏控制器 中央處理器 顯示設備控制器 觸摸物 按壓處 屏蔽層 ❹鈍化層 間隙 122 124 140 142 144 126 100 20 30 40 50 60 70 22 24 26 20Spacer) is disposed between the upper transparent conductive layer and the lower transparent conductive layer. Wherein, the upper transparent conductive layer and the lower transparent conductive layer are usually made of an indium tin oxide (ITO) layer (hereinafter referred to as an ITO layer) having a conductive property. When the upper substrate is pressed with a finger or a pen, the upper substrate is twisted so that the upper transparent conductive layer and the lower transparent conductive layer at the pressing contact each other. The voltage is sequentially applied to the upper transparent conductive layer and the lower transparent conductive layer through the external electronic circuit, and the touch screen controller measures the change of the electro-ink mark on the first conductive layer and the voltage change on the second conductive layer, respectively, and performs accurate calculation. Convert it to contact coordinates. The touch screen controller passes the digitized contact coordinates to the central processor. The central processor issues a corresponding command according to the contact coordinates, activates various function switching of the electronic device, and controls the display of the display component through the display controller. However, the ITO layer is usually prepared by ion beam sputtering or evaporation as a transparent conductive layer. In the preparation process, a high vacuum environment is required and heating to 200 to 300 ° C is required, thus preparing the IT layer. The cost is relatively high. In addition, the ruthenium layer as a transparent conductive layer has disadvantages such as insufficient mechanical properties, difficulty in bending, and uneven distribution of resistance. In addition, the transparency of the crucible will gradually decrease in the moist air. As a result, the previous resistive touch screens and display devices have disadvantages such as insufficient durability, low sensitivity, linearity, and poor accuracy. In view of this, it is indeed necessary to provide a touch screen and display device with high durability, high sensitivity, linearity and accuracy. SUMMARY OF THE INVENTION A touch screen includes: a first electrode plate, the first electrode plate package 7 200928909 includes a first substrate and a first conductive layer disposed on the lower surface of the first substrate; and a second An electrode plate, the second electrode plate is not spaced apart from the first electrode plate, the first electrode plate includes a second substrate and a second conductive layer disposed on an upper surface of the second substrate; wherein the first conductive layer And at least one of the second conductive layers comprises a plurality of parallel and spaced carbon nanotube ribbon film structures. A display device includes: a touch screen, the touch screen includes a first electrode plate and a second electrode plate, the first electrode plate includes a first substrate and a first conductive layer disposed under the first substrate a surface, the second electrode plate is spaced apart from the first electrode plate and includes a second substrate and a second conductive layer not disposed on the upper surface of the second substrate; and a display device, the display device is facing and close The second electrode plate of the touch screen is disposed; wherein at least one of the first conductive layer and the second conductive layer comprises a plurality of parallel and spaced carbon nanotube film structures. Compared with the prior art, the touch screen and the display device provided by the technical solution have the following advantages: First, since the plurality of carbon nanotube strip film structures in the transparent conductive layer are parallel and spaced, the transparent conductive The layer has better mechanical properties, so that the above transparent conductive layer has better mechanical strength and toughness, so that the durability of the touch screen can be correspondingly improved, thereby improving the durability of the display device using the touch screen. Secondly, the plurality of carbon nanotube strip-shaped film structures in the transparent conductive layer are arranged in parallel and spaced apart, so that the transparent conductive layer has a uniform resistance distribution and a steep light transmission, thereby facilitating the improvement of the touch screen and the display using the touch screen. The resolution and accuracy of the device. 8 200928909 [Embodiment] The touch panel and the display device provided by the present technical solution will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , the embodiment of the present disclosure provides a touch screen 10 including a first electrode plate 12 , a second electrode plate 14 , and first and second electrode plates 12 and 14 . A plurality of transparent dot spacers 16 therebetween. The first electrode plate 12 includes a first substrate 12A, a first conductive layer U2, and two first electrodes m. The first substrate m is a planar structure, and the first conductive layer 122 and the two first electrodes 124 are both lower surfaces of the fourth electrode. The two first electrodes 124 are respectively disposed at both ends of the =guide=122 in the first direction and are electrically connected to the first conductive layer 122. The first base 140, a second conductive layer 142 and two first electrodes 144 are added. The first substrate 140 has a planar structure, and the second conductive layer 142 and the two second electrodes 144 have an upper surface. The two second electrodes: the first layer of the substrate 140 are electrically etched at both ends of the second conductive layer 142 and electrically connected to the second conductive layer 142. The first perpendicular to the second direction, that is, the two first electrodes 正交 m orthogonal μ glycan and the two second electrodes are soft film or thin & ^ * is transparent and has - 羯 plate, The material of the second substrate 14G that is transparent to the first substrate 140 may be selected from a hard material such as δ 或 or a flexible material such as diamond and plastic. The first electrode 124 and the "mainly supported carbon nanotubes": the material of the electrode 144 is metal, a card film or other conductive material, as long as conductivity is ensured. In the embodiment of the present invention, the first substrate 120 is a polyester film, and the second substrate 14 is a glass substrate. The first electrode 124 and the second electrode 144 are electrically conductive silver layer. It can be understood that the electrode may be disposed between the conductive layer and the substrate or on the substrate, and is electrically connected to the conductive layer, and is not limited to the above arrangement. Any manner in which an electrical connection between the above electrode and the conductive layer can be made is within the scope of the present invention. Further, an insulating layer 18 is provided on the periphery of the upper surface of the second electrode plate 14. The first electrode plate 12 is disposed on the insulating layer is, and the first conductive layer 122 of the first electrode plate 12 is disposed opposite to the second conductive layer 142 of the second electrode plate 14. The plurality of transparent dot spacers 16 are disposed on the second conductive layer 142 of the second electrode plate 14, and the plurality of transparent dot spacers 16 are spaced apart from each other. The distance between the first electrode plate 12 and the second electrode plate 14 is 2 to 10 μm. Both the insulating layer 18 and the transparent dot spacer 16 may be made of an insulating transparent resin or other insulating transparent material. The provision of the insulating edge layer 18 and the dot spacers 16 allows the first electrode plate 14 to be electrically insulated from the second electrode plate 12. It will be understood that the dot spacer 16 is of an alternative structure when the size of the touch screen 1 is small. It is only necessary to ensure that the first electrode plate 14 is electrically insulated from the first electrode plate 12. The at least one of the first conductive layer 122 and the second conductive layer 142 includes a plurality of parallel and spaced carbon nanotube ribbon film structures. The carbon nanotube film structure is a layer of carbon nanotube film comprising a plurality of aligned carbon nanotubes. In addition, the carbon nanotube film structure may also be a stacked multi-layered carbon nanotube thin layer, each 200928909 carbon nanotube film comprises a plurality of aligned carbon nanotubes, and two adjacent ones. • The carbon nanotubes in the layer of carbon nanotube film are arranged in the same direction or in different directions. The carbon nanotube film further comprises a plurality of end-to-end carbon nanotube bundle segments each having a respective length and each of the carbon nanotube bundle segments being composed of a plurality of mutually parallel carbon nanotube bundles The two ends of the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. The adjacent carbon nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes of equal length and arranged in parallel. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube ribbon film structure has a width of from 1 mm to 10 cm. The carbon nanotube ribbon film structure has a thickness of from 0.5 nm to 100 μm. The spacing between the carbon nanotube film structures is 5 nm to 1 mm. In the present embodiment, the first conductive layer 122 and the second conductive layer 142 each include a plurality of parallel and spaced carbon nanotube ribbon film structures. The naphtha carbon nanotube ribbon film structure is a carbon nanotube film. Preferably, the carbon nanotube film structures in the first conductive layer 122 are parallel and spaced apart along the first direction, and the carbon nanotube film structures in the second conductive layer 142 are parallel along the second direction and Interval setting. In addition, since the first conductive layer 122 and the carbon nanotube film structure in the second conductive layer 142 are parallel and spaced apart. Preferably, the first conductive layer 122 and the carbon nanotube strip film structure in the second conductive layer 142 are parallel and equidistantly disposed such that the first conductive layer 122 and the second conductive layer 142 have uniformity. The resistance distribution and light transmission characteristics are beneficial to improve the resolution and accuracy of the 11 200928909 touch screen ίο. The first conductive layer 122 and/or the first preparation method of the conductive layer 142 of the present embodiment mainly comprises the following steps: the array is super step one: providing a carbon nanotube array, preferably, a tandem carbon nanotube array歹||. The carbon nanotube array provided by the embodiment of the present technical solution is a single-walled nematic array, a double-walled carbon nanotube array, and two kinds of ❹ or more in the multi-walled carbon nanotube array. The preparation method of the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type stone base substrate, or a germanium formed with an oxide layer. The substrate 'this embodiment preferably uses a 4 inch germanium substrate; (b) uniformly forms a catalyst layer on the surface of the substrate, and the catalyst layer material may be selected from iron (Fe), initial (C.), nickel (Ni) or any of them. One of the combined alloys; (c) annealing the substrate on which the catalyst layer is formed in air of 7 to 9 minutes for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace =, heated to 5〇〇~74〇<t in a protective gas atmosphere, and then passed into a carbon source for about 5~30 minutes to grow to obtain a super-aligned carbon nanotube array with a height of 200~400 Micron. The super-sequential carbon nanotube array is a series of pure carbon nanotubes formed by a plurality of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions as described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals forces. The carbon nanotube array is substantially the same area as the above substrate. In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or strontium. The preferred carbon source gas is acetylene; the shielding gas is nitrogen or an inert gas. A preferred shielding gas is argon. It is to be understood that the carbon nanotube array provided in the present embodiment is not limited to the above production method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. Step 2: Pulling a carbon nanotube film from the carbon nanotube array using a stretching tool to obtain a ◎ one carbon nanotube film. Specifically, the method comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array; in this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a width of the carbon nanotube. a plurality of carbon nanotube segments; (b) stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube segments are respectively combined with the other due to the use of the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube thin m comprises a plurality of n-tailed and aligned carbon nanotube bundles. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. Referring to Fig. 3', the carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferred orientation. The alignment direction of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the nanocarbon S film. The direct orientation of the preferred orientation of the desired carbon 13 200928909. The tube film has better uniformity, that is, has more - obtained naphthalene. At the same time, the direct stretching of the actual 旆❹ is carried out. In this implementation, the width of the nematic (four) tube is related to the size of the (four) carbon tube array, and the length of the carbon nanotube film is not limited, and is obtained according to actual needs. The thickness of the carbon nanotube film is 〇5 to 〜100 μm. The Nai (four) tube of the thin carbon can be captured; the diameter of one or more of the carbon nanotubes, the double-walled carbon nanotubes and the multi-walled carbon nanotubes is 0.5 nm to 50 nm. 'The diameter of the double-walled niche is 1.G nanometer ~ 50 nm, and the diameter of the multi-walled carbon nanotube is ^ nanometer ~ 50 nm. Step 3: preparing a plurality of the above-mentioned carbon nanotube films to form a carbon nanotube film structure. The carbon nanotube film structure is parallel and spaced apart from the first substrate U0 or the second substrate 14 The L-th conductive layer 122 and the second conductive layer 142 are formed on the surface of the crucible. ❹ The carbon nanotube film structure is a carbon nanotube film or a plurality of carbon nanotube films which are arranged in an overlapping manner. The arrangement of the carbon nanotubes in the adjacent two layers of the carbon nanotube film in the plurality of stacked carbon nanotube films is not limited, and may be arranged in the same direction or in different directions. The spacing between the carbon nanotube film structures is 5 nm to 1 mm, which can be selected according to the light transmittance of the touch screen. In addition, the plurality of carbon nanotube films can also be prepared by the following steps: using a stretching tool to extract the carbon nanotubes from the nano carbon array to obtain a larger size carbon nanotube film; The carbon nanotube film is cut into large 14 200928909 small carbon nanotube films of equal size. It can be understood that the preparation of the carbon nanotube film provided by the embodiment of the present invention is not limited to the above-mentioned scar manufacturing method, and a carbon nanotube film can also be prepared by a dust barrier method, and a plurality of nanometers in the nano film are prepared. The carbon tubes are arranged in the same direction, arranged in different directions, or arranged in the same order. In addition, a nanocarbon film can be prepared by a flocculation method, and the carbon nanotube film comprises a plurality of intertwined carbon nanotubes. Since the carbon nanotubes in the super-sequential carbon nanotube array of the present embodiment are very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has a relatively (four) viscosity. The carbon nanotube film structure composed of the carbon nanotube film can be directly adhered to the first substrate 12 or 140 as the first conductive layer 122 and the second conductive layer 142. Further, the above-described carbon nanotube film structure adhered to the first substrate 12A or the second substrate 140 may be treated with an organic solvent. Specifically, the organic solvent may be dropped on the surface of the carbon nanotube film structure by a test tube to infiltrate the entire carbon nanotube film structure. The organic solvent is a volatile organic solvent such as ethanol, decyl alcohol, acetone, dichloroethane or gas, and ethanol is used in this embodiment. After the carbon nanotube film structure is infiltrated by an organic solvent, the carbon nanotube film structure can be firmly attached to the surface of the substrate under the action of the surface tension of the volatile organic solvent, and the surface volume ratio is Reduced, reduced viscosity 'has good mechanical strength and boring. Both ends of the carbon nanotube film-like film structure in the first conductive layer 122 are electrically connected to the first electrode 124, and both ends of the nano-gorge tube strip-like film structure in the second conductive layer m2 The second electrode 144 is electrically connected. 15 200928909 The arrangement of the carbon nanotube film structure in the first conductive layer 122 is offset from the first direction. Preferably, the first conductive layer n is formed in parallel and equally spaced along the first direction. The alignment direction of the carbon nanotube film structure in the second conductive layer 142 may be offset from the second direction. Preferably, the carbon nanotube film-like film structure in the second conductive layer is parallel and equidistantly disposed along the second direction, and the first electrode 124 and the second electrode 144 are strip electrodes. In a stepwise manner, since the region in which the carbon nanotube film-like film structure is disposed is not provided with a carbon nanotube film-like film structure, the light refractive index transmittance is different, so that the visual difference of the overall light transmittance of the touch panel is obtained. The smallest, a filling layer (not shown) may be formed in the gap between the two carbon nanotube strip film structures, the material of the filling layer having the same or close refractive index and transmission as the carbon nanotube film structure. rate. In addition, the upper surface of the first electrode plate 12 may further be provided with a transparent protective layer 126. The transparent protective film 126 may be made of tantalum nitride, cerium oxide, benzophenone% butylene (BCB), polyester, and acrylic resin. Material formation. The transparent protective film 126 can also be coated with a smooth, scratch-resistant plastic layer, such as a polyethylene terephthalate (PET) film, for protecting the first electrode plate 12, thereby improving durability. . The transparent protective film 126 can also be used to provide some other additional functions such as reducing glare or reducing reflection. In addition, in order to reduce the electromagnetic interference generated by the display device and avoid the error of the signal emitted from the touch screen 10, a shielding layer may be disposed on the lower surface of the second substrate 14A (not shown). The shielding layer may be formed of a conductive material such as an indium tin oxide (ITO) film, a tantalum tin oxide (AT〇) thin film, a nickel gold thin film 16 200928909 film, a silver thin film film or a carbon nanotube film. In this embodiment, The shielding layer comprises a carbon nanotube film, and the arrangement of the carbon nanotubes in the carbon nanotube film is not limited, and may be an orientation arrangement or another drainage method. In this embodiment, the The carbon nanotube orientation in the shielding layer is used as an electrical grounding point to shield the touch screen 10, so that the touch screen 10 can work in a non-interfering environment. 凊 Refer to FIG. 4' The embodiment further provides a display device 100 using the above touch screen 10, which comprises the above touch screen 10 and a display device 20. The display device 2 is disposed adjacent to the second electrode plate 14 of the touch screen. The touch screen 10 can With the The display device 2 is spaced apart by a predetermined distance and can also be integrated on the display device 2. When the touch screen 10 is integrated with the display device 20, the touch screen 10 can be attached to the display device 20 by an adhesive. The display device 20 of the present invention may be a display device such as a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. Further, when the second substrate 140 of the touch screen 10 is When a shielding layer 22 is disposed on the lower surface, a passivation layer 24' may be disposed on the surface of the shielding layer 22 away from the second substrate 140. The passivation layer 24 may be formed of a material such as nitrided, yttria, etc. The passivation layer 24 and The front surface of the display device 20 is spaced apart by a gap 26. The passivation layer 24 is used as a dielectric layer, and the display device 20 is protected from damage due to excessive external force. In addition, the display device 1 further includes a touch screen controller 30. a central processing unit 40 and a display device controller 50. The touch 17 200928909 screen controller 30, the central processing unit 4 and the display The device controllers are connected to each other through a circuit, the touch screen controller 3 is electrically connected to the touch screen, and the display device controller 50 is electrically connected to the display device 20. The touch screen controller 30 touches the object 6 by a finger or the like. The touch icon or dish f position is used to select the information input and pass the information to the central processing unit 40. The central processing unit 4 controls the display of the display element 20 through the display controller. A voltage of 5 V is applied between the first electrodes 124 in the first electrode plate 12 and the second electrode 144 in the second electrode plate 14. The user visually confirms the display elements disposed under the touch screen 1 The added display operates while pressing the first electrode plate 12 of the touch screen 10 by a touch object 60 such as a finger or a pen. The first substrate 120 in the first electrode plate 12 is bent such that the first conductive layer 122 of the pressing portion 70 is in contact with the first conductive layer 142 of the second electrode plate to form a conduction. The touch screen controller 3 converts 匕 into contact coordinates by measuring the voltage change in the first direction of the first conductive layer 122 and the voltage change in the second direction of the second 〇 = electrical layer 142, respectively, and performing material calculation. The touch screen controller 3 transmits (7) the centralized processor 40 the digitized contact coordinates. The central processing unit 4 sends a corresponding button 7 according to the contact coordinates, activates various function switching of the electronic device, and controls the display element 2 to display through the display controller 50. Compared with the prior art, the touch screen and the display device provided by the technical solution have the following advantages: First, since the plurality of carbon nanotube film films in the transparent conductive layer are parallel and spaced, the transparent conductive layer The invention has better mechanical properties, so that the above transparent conductive layer has better mechanical strength and strength than 18 200928909, so that the durability of the touch screen can be correspondingly improved, thereby improving the durability of the display device using the touch screen. Secondly, the plurality of carbon nanotube film-like films in the transparent conductive layer are parallel and spaced apart, so that the transparent conductive layer has a uniform resistance distribution and light transmittance, thereby facilitating the improvement of the touch screen and the use of the touch screen. The resolution and accuracy of the display device. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view of a touch screen of an embodiment of the present technical solution. FIG. 2 is a schematic side view showing the structure of a touch screen according to an embodiment of the present technical solution. Fig. 3 is a scanning electron micrograph of a carbon nanotube film in a touch screen of an embodiment of the present technical solution. Fig. 4 is a schematic side view showing the display device of the embodiment of the present technical solution. [Description of main component symbols] Touch screen 1 〇 first electrode plate 12 first electrode plate 14 dot spacer 16 insulating layer 19 120 200928909 first substrate first conductive layer first electrode second substrate second conductive layer second electrode transparent Protective film _ display device ❹ display device touch screen controller central processing unit display device controller touch object pressing layer shielding layer passivation layer gap 122 124 140 142 144 126 100 20 30 40 50 60 70 22 24 26 20

Claims (1)

200928909 十、申請專利範圍 1. 一種觸摸屏,包括: 一第一電極板,該第一電極板包括一第一基體及一第 一導電層設置在該第一基體的下表面;以及 一第二電極板,該第二電極板與第一電極板間隔設 置’該第二電極板包括一第二基體及一第二 置在該第二基體的上表面; ❹ 其改良在於:所述第一導電層和第二導電層中的至少一 個導電層包括多個平行且間隔設置的奈米碳管帶狀膜 結構。 2. 如申請專利範圍第1項所述的觸摸屏,其中,所述奈米 碳管帶狀膜結構包括至少一層奈米碳管薄膜,該奈米碳 管薄膜包括多個定向排列的奈米碳管。 3. 如申请專利範圍第2項所述的觸摸屏,其中,所述奈求 碳管帶狀膜結構包括重叠設置的多層奈米碳管薄膜,每 © 一奈米碳管薄膜包括多個定向排列的奈米碳管,且相鄰 的兩層奈米碳管薄膜中的奈米碳管沿同一方向排列或 沿不同方向排列。 4·如申請專利範圍第3項所述的觸摸屏,其中,所述奈米 碳管薄膜進一步包括多個首尾相連的奈米碳管束片 段’每個奈米碳管束片段具有相等的長度且每個奈米碳 管束片段由多個相互平行的奈米碳管束構成,所述多個 奈米碳管束片段兩端通過凡德瓦爾力相互連接。 5.如申請專利範圍第4項所述的觸摸屏,其中,所述相鄰 21 200928909 的奈米碳管束之間通過凡德瓦爾力緊密結合,每一奈米 碳管束包括多個長度相等且平行排列的奈米碳管。 6. 如申請專利範圍第5項所述的觸摸屏,其中,所述奈米 碳管層中的奈米碳管爲單壁奈米碳管、雙壁奈米碳管 及多壁奈米碳管中的一種或多種。 7. 如申請專利範圍第6項所述的觸摸屏,其中,所述單壁 奈米碳管的直徑爲0.5奈米〜50奈米,所述雙壁奈米碳 管的直徑爲1.0奈米〜50奈米,所述多壁奈米破管的直 徑爲1.5奈米〜50奈米。 8.如申請專利範圍第1項所述的觸摸屏,其中,所述奈米 碳管帶狀膜結構的寬度爲1毫米〜1〇厘米。 9·如申請專利範圍第1項所述的觸摸屏,其中,所述奈米 碳管帶狀膜結構的厚度爲〇 5奈米〜1〇〇微米。 Π).如申請專利範圍第i項所述的觸摸屏,其中,所述奈 米碳管帶狀膜結構之間的間距爲5奈米〜i毫米。 〇 11·如中請專利_第i項所述的觸摸屏,其中,所述第 一導電層和第二導電層妁台 ^ ^ ^ 电層均包括平行且間隔設置的多個 不…帶狀膜結構,且所述第-導電層中夺米碳管帶 交叉設置。 等電層中的奈米碳管帶狀膜結構 12.如申請專利範圍第1;1 電&&谁..^ 項所述的觸摸屏,其中,該第一 電極板進一步包括兩個第一 -導電層的兩端,所述第 & —方向設置在第 結構的兩端分別與兩個第^電層中的奈来碳管帶狀膜 弟一電極電連接。 22 200928909 13·如申請專利範圍第12項所述的觸摸屏,其申,該第二 電極板進一步包括兩個第二電極沿第二方向設置在第 ' 二導電層的兩端,所述第二導電層中的奈米碳管帶狀膜 結構的兩端分別與兩個第二電極電連接。 14.如申請專利範圍第13項所述的觸摸屏,其中,所述第 一導電層中的奈米碳管帶狀膜結構沿第一方向平行且 間隔設置,所述第二導電層中的奈米碳管帶狀膜結構沿 ❹ 第二方向平行且間隔設置。 15·如申請專利範圍第14項所述的觸摸屏,其中,所述第 一方向垂直於所述第二方向。 16. 如申請專利範圍第!項所述的觸摸屏,其中,所述觸 摸屏進-步包括-絕緣層設置在所述第二電極板上表 面外圍’所述第-電極板設置在該絕緣層上。 17. 如申請專利範圍第16項所述的觸摸屏,其中,所述觸 摸屏進一步包括多個透明點狀隔離物設置在所述第一 ❹ 電極板與所述第二電極板之間。 18. 如申請專利範圍第17項所述^觸摸屏,其中,所述多 個點狀隔離物設置在上述第一導電層和第二導電層之 申請專利範圍第!項所述的觸摸屏,其中,所述觸 摸屏進一步包括一屏蔽芦, Μ ^ "該屏蔽層鼓置在所述觸摸 2第:基體的下表面’該屏蔽層爲銦錫氧化物薄膜、 銻錫氧化物薄膜、鎳金薄膜 蹲膜、銀薄膜或奈米碳管薄膜。 2〇·如申請專利範圍第丄項所 膘 τ延的觸摸屏,其中,所述第 23 200928909 一基體材料爲聚酯,所述第二基體材料爲玻璃、石英、 金剛石或塑料。 21.如申請專利範圍第1項所述的觸摸屏,其中,該觸摸 屏進步包括一透明保護膜,該透明保護膜設置在該 f一電極板上表面,該透明保護膜的材料爲氮化矽、 氧化珍、$两環了稀、聚酉旨、丙婦酸樹脂或聚對苯二 甲酸乙二醇酯。 ❹22.—種顯示裝置,包括: 一觸摸屏,該觸摸屏包括一第一電極板及一第二電極 板,該第一電極板包括一第一基體及一第一導電層設 置在該第-基體的下表面,該第二電極板與第一電極 板間隔設置,且包括一第二基體及一第二導電層設置 在該第^一基體的上表面;及 一顯示設備,該顯示設備正對且靠近上述觸摸屏的第 二電極板設置; 〇 其改良在於:所述第一導電層和第二導電層中的至少 一個導電層包括多個平行且間隔設置的奈米碳管帶狀 膜結構。 23·如申請專利範圍第22項所述的顯示裝置,其中,所述 顯示裝置進一步包括一觸摸屏控制器、一中央處理器 及一顯示設備控制器,其中,該觸摸屏控制器、該中 央處理器及該顯示設備控制器三者通過電路相互連 接,該觸摸屏控制器與該觸摸屏電連接,該顯示設備 控制器與該顯示設備電連接。 24 200928909 24. 如申請專利範圍第22項所述的顯示裝置,其中,所述 顯示設備爲液晶顯示器、場發射顯示器、電漿顯示器、 電致發光顯示器、真空螢光顯示器及陰極射線管齅# 器中的一種。 25. 如申請專利範圍第22項所述的顯示裝置,其中,所述 觸摸屏與所述顯示設備間隔設置或所述觸摸屏集成衣 所述顯示設備上。 ❹26·如申請專利範圍第22項所述的顯示裝置,其中,戶斤述 顯示裝置進一步包括一鈍化層,該鈍化層設置在所述 觸摸屏遠離第二基底的表面上’該鈍化層的材料爲氮 化石夕或氧化碎。200928909 X. Patent Application Area 1. A touch screen comprising: a first electrode plate, the first electrode plate comprising a first substrate and a first conductive layer disposed on a lower surface of the first substrate; and a second electrode a second electrode plate is spaced apart from the first electrode plate. The second electrode plate includes a second substrate and a second surface disposed on the upper surface of the second substrate. The improvement is: the first conductive layer And at least one of the second conductive layers comprises a plurality of parallel and spaced carbon nanotube ribbon film structures. 2. The touch screen of claim 1, wherein the carbon nanotube film structure comprises at least one layer of carbon nanotube film comprising a plurality of aligned nanocarbons tube. 3. The touch screen of claim 2, wherein the carbon nanotube film structure comprises a plurality of stacked carbon nanotube films, each of which comprises a plurality of alignments The carbon nanotubes, and the carbon nanotubes in the adjacent two layers of carbon nanotube film are arranged in the same direction or arranged in different directions. 4. The touch screen of claim 3, wherein the carbon nanotube film further comprises a plurality of end-to-end carbon nanotube bundle segments each having a length of each length and each The carbon nanotube bundle segment is composed of a plurality of mutually parallel carbon nanotube bundles, and the ends of the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. 5. The touch screen of claim 4, wherein the adjacent carbon nanotube bundles of adjacent 21 200928909 are closely coupled by van der Waals force, and each nano carbon nanotube bundle comprises a plurality of equal lengths and parallel Arranged carbon nanotubes. 6. The touch screen of claim 5, wherein the carbon nanotubes in the carbon nanotube layer are single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. One or more of them. 7. The touch screen of claim 6, wherein the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm. 50 nm, the diameter of the multi-walled nanotube is 1.5 nm to 50 nm. 8. The touch panel of claim 1, wherein the carbon nanotube film structure has a width of from 1 mm to 1 cm. The touch panel of claim 1, wherein the carbon nanotube film structure has a thickness of 〇 5 nm to 1 μm. The touch panel of claim i, wherein the spacing between the carbon nanotube film structures is 5 nm to 1 mm. The touch screen of claim 1, wherein the first conductive layer and the second conductive layer each comprise a plurality of non-... strip films arranged in parallel and at intervals Structure, and the carbon nanotube strips in the first conductive layer are arranged in a cross. The carbon nanotube strip-shaped film structure in the isoelectric layer. The touch panel of the invention of claim 1, wherein the first electrode plate further comprises two The two ends of the first conductive layer are disposed at both ends of the first structure and are electrically connected to the inner electrodes of the carbon nanotubes in the two second electrical layers. The touch panel of claim 12, wherein the second electrode plate further comprises two second electrodes disposed at two ends of the second conductive layer in a second direction, the second Both ends of the carbon nanotube film structure in the conductive layer are electrically connected to the two second electrodes, respectively. The touch panel of claim 13, wherein the carbon nanotube film structure in the first conductive layer is parallel and spaced apart along the first direction, and the second conductive layer The carbon nanotube film-like film structures are arranged in parallel and spaced along the second direction of the crucible. The touch screen of claim 14, wherein the first direction is perpendicular to the second direction. 16. If you apply for a patent scope! The touch panel of the present invention, wherein the touch screen further comprises: an insulating layer disposed on a periphery of the surface of the second electrode plate; wherein the first electrode plate is disposed on the insulating layer. 17. The touch screen of claim 16, wherein the touch screen further comprises a plurality of transparent dot spacers disposed between the first 电极 electrode plate and the second electrode plate. 18. The touch panel of claim 17, wherein the plurality of dot spacers are disposed on the first conductive layer and the second conductive layer; The touch screen of the present invention, wherein the touch screen further comprises a shielding reed, the shielding layer is disposed on the lower surface of the touch 2: the base body. The shielding layer is an indium tin oxide film, and a tin tin An oxide film, a nickel gold film tantalum film, a silver film or a carbon nanotube film. 2. The touch panel of claim 23, wherein the 23 200928909 a base material is a polyester, and the second base material is glass, quartz, diamond or plastic. The touch screen of claim 1, wherein the touch screen advance comprises a transparent protective film disposed on the surface of the f-electrode plate, the transparent protective film is made of tantalum nitride, Oxidation Jane, $ two rings of rare, polyphthalate, propylene glycol or polyethylene terephthalate. The display device includes: a touch screen, the touch screen includes a first electrode plate and a second electrode plate, the first electrode plate includes a first substrate and a first conductive layer disposed on the first substrate a lower surface, the second electrode plate is spaced apart from the first electrode plate, and includes a second substrate and a second conductive layer disposed on an upper surface of the first substrate; and a display device, the display device is opposite The second electrode plate is disposed adjacent to the touch screen; the improvement is that at least one of the first conductive layer and the second conductive layer comprises a plurality of parallel and spaced carbon nanotube film structures. The display device of claim 22, wherein the display device further comprises a touch screen controller, a central processing unit and a display device controller, wherein the touch screen controller and the central processing unit And the display device controller is connected to each other through a circuit, the touch screen controller is electrically connected to the touch screen, and the display device controller is electrically connected to the display device. The display device according to claim 22, wherein the display device is a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. One of the devices. 25. The display device of claim 22, wherein the touch screen is spaced apart from the display device or the touch screen is integrated on the display device. The display device of claim 22, wherein the display device further comprises a passivation layer disposed on a surface of the touch screen away from the second substrate, wherein the material of the passivation layer is Nitride or oxidized.
TW96151269A 2007-12-31 2007-12-31 Touch panel and displaying device using the same TWI354920B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151269A TWI354920B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151269A TWI354920B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200928909A true TW200928909A (en) 2009-07-01
TWI354920B TWI354920B (en) 2011-12-21

Family

ID=44864289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151269A TWI354920B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI354920B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489173B (en) * 2012-07-23 2015-06-21 Shih Hua Technology Ltd Method for making liqiuid module with touch capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489173B (en) * 2012-07-23 2015-06-21 Shih Hua Technology Ltd Method for making liqiuid module with touch capacity

Also Published As

Publication number Publication date
TWI354920B (en) 2011-12-21

Similar Documents

Publication Publication Date Title
TWI354921B (en) Touch panel and displaying device using the same
US8237675B2 (en) Touch panel and display device using the same
US8237669B2 (en) Touch panel and display device using the same
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
CN101458603B (en) Touch screen and display device
CN101470565A (en) Touch screen and display equipment
KR20090064309A (en) Touch panel and display device using the same
CN101458608A (en) Touch screen, method for producing the touch screen, and display device using the touch screen
US8237671B2 (en) Touch panel and display device using the same
CN101458604B (en) Touch screen and display device
TW200926471A (en) Touch panel and displaying device using the same
CN101464766B (en) Touch screen and display equipment
TWI386831B (en) Touch panel and displaying device using the same
KR20090068164A (en) Touch panel and display device using the same
TW200929649A (en) Touchable control device
TWI423083B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
CN101458605B (en) Touch screen and display device
TWI362776B (en) Touch panel and displaying device using the same
TWI412962B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
TW200929642A (en) Touch panel, method for making the same, and displaying device adopting the same
TWI482324B (en) Touch panel and displaying device using the same
TWI355765B (en) Touch panel and displaying device using the same