200927944 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種轉爐煉鋼製程,特別是指一種可 以訂定石灰用量標準的轉爐煉鋼製程。 【先前技術】 ❺200927944 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a converter steelmaking process, and more particularly to a converter steelmaking process in which a lime dosage standard can be set. [Prior Art] ❺
高爐煉鐵過程中,會先加入焦炭、石料(例如:石灰石 、蛇紋石)等助熔劑,將燒結鐵礦粒加熱熔融成鐵水後,送 往煉鋼廠進行煉鋼。接著便會進入轉爐煉鋼過程,首先將廢 鋼放入一轉爐底部,再將經高爐煉鐵而由鐵水容器運送來 的鐵水,經過事前處理後再倒入盛銑桶内,並裝填入轉爐 内進行吹氧精煉。為了達到客戶要求之良質鋼品的出鋼成 份規格,在吹止前會再添加入適量石灰、白雲石輕燒白 雲石、螢石、錳合金鐵和矽合金鐵等一起熔解,將熔鋼成 分作調質以符合規範後產出鋼液,以進行後續之作業程序 ,至於鋼液中的雜質元素磷、硫,則是利用石灰予以脫除 ’並產生未溶於鋼液中的爐渣。 以往煉鋼廠的轉爐煉鋼製程是利用電腦靜態控制模式 丄來決域鋼過程中的石灰投人量,此—模式必需先接收 前-爐的數據資料’經過計算後才能得到下—爐的石灰投 入量,然而,由於煉鋼廠需快速吹煉生產 次一爐開始吹煉往往只有10〜15分鐘,前 ’前一爐結束至 一爐的分析結果 並無法及時地回饋給下一爐使用。 因此,實際上,石灰用量如果無法及時、迅速地利用 電腦靜態控制模式來計算決定,便會改由技術人員憑藉經 200927944 驗決定之。一旦技術人員經驗不足、拿捏不當’即有相當 可能性會加入過少或過多的石灰’過少的石灰會使得煉鋼 過程中的脫磷、脫硫的效率較差、鋼液合格率降低,過多 的石灰卻會增加爐渣、浪費石灰原料成本。 據上所述’如何建立一種新的轉爐煉鋼製程,其係採 用制式化的石灰用量標準,不需依靠技術人員的經驗,不 會產生人為誤差’便成為轉爐煉鋼業者所亟需努力研究發 展的方向。 © 【發明内容】 因此,本發明之目的,即在提供一種可以訂定出石灰 用量標準的轉爐煉鋼製程,能夠有效避免人為誤差產生。 於是,本發明轉爐煉鋼製程,包含一填入步驟、一吹 煉步驟,及一出鋼步驟,該填入步驟是將鐵水與廢鋼填入 一轉爐中,接著進行該吹煉步驟,將一預定用量的石灰 (wCa0)加入該轉爐中,再將氧氣吹入該轉爐中,進行吹氧精 煉,此時,石灰是用來產生未溶於鋼液中的爐渣,最後則 疋進行該出鋼步驟,將該轉爐傾斜使未含有爐渣的鋼液流 出,以產出目標鋼種。 其中’該吹煉步驟中所添加的石灰的預定用量(wCa0)是 經由下列次步驟決定之:—總合次步驟、一換算次步驟、 一選擇次步驟、一相乘次步驟,及一計算次步驟。 於該總合次步驟中,是將加入轉爐内吹練的原料中所 含有的矽元素重量,予以加總,而得出一純矽重量指標 (wsi) ’然後進行該換算次步驟,利用㈣與二氧化妙兩者 6 200927944 分子量的數值換算,而得出一爐 通屋一氧化梦指找 (w譲HWsi)x60/28,料進行該選擇次㈣,隨著目標^ 種的硫含量上限⑻而選擇不同數值的鹽基度指標(b) ^鹽 基度指標(B)是氧化鈣(Ca0)/二氧化矽(Si〇2)的重量比其範 圍在1·5〜1()之間’再進行該相乘次步驟,將該選擇次步驟& 所得到的鹽基度指標(B),乘以該換算次步驟所得到的爐渣 二氧化矽指標(wSi〇2),即得到爐渣中的氧化鈣重量(Ws), 最後再進行該計算次步驟,將爐渣中的氧化鈣重量(Ws)除以 〇 石灰中的氧化鈣重量百分比,即獲得該吹煉步驟中所添加 的石灰的預定用量(wCaC))。 本發明之功效在於,藉由該吹煉步驟中所添加的石灰 的預定用量(WCa0)是是利用目標鋼種的硫含量上限規範而訂 定鹽基度指標(B),來計算出爐渣中的氧化鈣重量(Ws),再 將ws除以石灰中的氧化鈣重量百分比(Eca〇),方能得到整 體煉鋼製程所添加的石灰的預定用量(Wca〇)。因此,對於純 粹依靠技術人員的經驗而投入石灰所產生的誤差,可以有 © 效避免’同時也能使石灰用量標準化,進而避免石灰原料 成本的浪費,降低爐渣量,確保鋼液品質。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之兩個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明中,類似的元件是以相同的編號來表示。 200927944 參閱圖1,本發明轉爐煉鋼製程1的第-較佳實施例, 包含-填入㈣u、一吹煉步驟12,及一出鋼步驟η,該 填入步驟11是將鐵水與廢鋼填人一轉爐中,接著進行該吹 煉步驟12’將-預定用量的石灰(Wca0)加入該轉爐中,再 將氧氣吹入該轉爐中,進行吹氧精煉,此時,石灰是用來 產生未溶於鋼液中的爐溲,最後則是進行該出鋼步驟13, 將該轉爐傾斜使未含有爐㈣鋼液流出,以產出目標鋼種 0 其中,該吹煉步驟12中所添加的石灰的預定用量 (wCa0)是經由下列次步驟決定之:一總合次步驟121、一換 算次步驟122、一選擇次步驟123、一相乘次步驟124,及 一計算次步驟125。 於該總合次步驟121中,是將加入轉爐内吹煉的原料 中所含有的梦元素重量,予以加總,而得出一純梦重量指 標(WSi),其中’加入轉爐内吹煉的含矽原料包括有鐵水、 廢鋼、回爐鋼、矽鐵及碳化矽,該純矽重量指標(Wsi)是將 上述各種含石夕原料的碎元素重量,予以加總,如下列方程 式所載: WSi=(WHMxHMSi) + (WscxSCsi) + (WRexReSi) + (WFeSix EFeSi)+ (WsicXEsic)..........................................單位:Kg WHM :鐵水量(Kg) HMSi :鐵水的矽元素重量百分比(%)In the blast furnace ironmaking process, cokes such as coke and stone (for example, limestone and serpentine) are first added, and the sintered iron ore particles are heated and melted into molten iron, and then sent to a steelmaking plant for steel making. Then it will enter the converter steelmaking process. First, the scrap steel will be placed in the bottom of a converter, and the molten iron transported from the molten iron container by the blast furnace ironmaking will be poured into the milling barrel and filled in beforehand. Into the converter for oxygen blowing refining. In order to meet the customer's requirements for the quality of the steel components of the steel, the appropriate amount of lime, dolomite light burnt dolomite, fluorite, manganese alloy iron and bismuth alloy iron will be added together before blowing, and the molten steel composition will be added. After quenching and tempering to meet the specifications, the molten steel is produced for subsequent operation procedures. As for the impurity elements phosphorus and sulfur in the molten steel, it is removed by lime and produces slag which is not dissolved in the molten steel. In the past, the converter steelmaking process of the steelmaking plant was to use the computer static control mode to reduce the amount of lime in the process of the steel. This mode must first receive the data of the front-furnace before the calculation. The amount of lime input, however, is due to the need for the rapid melting of the steel mill to produce the next furnace. The blowing is often only 10 to 15 minutes. The analysis results from the end of the previous furnace to the furnace cannot be promptly returned to the next furnace. . Therefore, in fact, if the amount of lime cannot be calculated in a timely and rapid manner using the computer static control mode, it will be decided by the technicians through the 200927944 test. Once the technicians are inexperienced and improperly handled, there is a high probability that too little or too much lime will be added. Too little lime will make the dephosphorization and desulfurization efficiency in the steel making process worse, the molten steel pass rate will decrease, and too much lime. It will increase the cost of slag and waste lime raw materials. According to the above, 'how to establish a new converter steelmaking process, which adopts the standardized lime dosage standard, does not rely on the experience of technicians, and does not cause human error.' It has become an urgent need for the converter steel industry to study hard. The direction of development. © SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a converter steelmaking process in which a lime dosage standard can be set, which can effectively avoid human error. Therefore, the converter steelmaking process of the present invention comprises a filling step, a blowing step, and a tapping step, the filling step is to fill the molten iron and the scrap into a converter, and then the blowing step is performed. A predetermined amount of lime (wCa0) is added to the converter, and oxygen is blown into the converter for oxygen refining. At this time, lime is used to produce slag which is not dissolved in the molten steel, and finally, the slag is discharged. In the steel step, the converter is tilted to allow molten steel that does not contain slag to flow out to produce the target steel grade. Wherein the predetermined amount (wCa0) of lime added in the blowing step is determined by the following substeps: a total sub-step, a sub-step, a sub-step, a multi-step, and a calculation The next step. In the total mixing step, the weight of the lanthanum element contained in the raw material blown into the converter is added, and a pure 矽 weight index (wsi) is obtained, and then the conversion step is performed, and (4) With the numerical conversion of the two molecular weights of 200927944, it is concluded that a furnace is used to find (w譲HWsi)x60/28, and the selection is made (4), with the upper limit of sulfur content of the target species. (8) Select the salt base index of different values (b) ^ Salt base index (B) is the weight ratio of calcium oxide (Ca0) / cerium oxide (Si 〇 2) in the range of 1. 5~1 () Then, the phase multiplication step is performed, and the salt basicity index (B) obtained by the selection substep & is multiplied by the slag ceria index (wSi〇2) obtained by the conversion substep, that is, The weight of calcium oxide (Ws) in the slag, and finally the calculation step, the weight of calcium oxide (Ws) in the slag is divided by the weight percentage of calcium oxide in the slaked lime, that is, the lime added in the blowing step is obtained. The predetermined amount (wCaC)). The effect of the present invention is that the predetermined amount (WCa0) of lime added in the blowing step is determined by using the upper limit specification of the sulfur content of the target steel to determine the salt basicity index (B), thereby calculating the slag. The weight of calcium oxide (Ws) is divided by the weight percentage of calcium oxide in the lime (Eca〇) to obtain the predetermined amount of lime (Wca〇) added to the overall steelmaking process. Therefore, for the error caused by the purely relying on the experience of the technicians, it is possible to avoid the use of lime, and to avoid the waste of lime raw materials, reduce the amount of slag, and ensure the quality of the molten steel. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. Before the present invention is described in detail, it is noted that in the following description, like elements are denoted by the same reference numerals. 200927944 Referring to Figure 1, a first preferred embodiment of the converter steelmaking process 1 of the present invention comprises -filling (iv) u, a blowing step 12, and a tapping step η, the filling step 11 is to treat molten iron and scrap steel Filling a converter, followed by the blowing step 12', adding a predetermined amount of lime (Wca0) to the converter, and then blowing oxygen into the converter for oxygen refining, at which time lime is used to produce The furnace which is not dissolved in the molten steel is finally subjected to the tapping step 13, and the converter is inclined so that the molten steel not containing the furnace (4) flows out to produce the target steel grade 0 wherein the blowing step 12 is added The predetermined amount of lime (wCa0) is determined by the following substeps: a total number of steps 121, a conversion step 122, a selection step 123, a multiplication step 124, and a calculation step 125. In the total mixing step 121, the weight of the dream element contained in the raw material blown into the converter is added, and a pure dream weight index (WSi) is obtained, wherein 'added to the converter for blowing The ruthenium-containing raw materials include molten iron, scrap steel, reclaimed steel, strontium iron and tantalum carbide. The pure ruthenium weight index (Wsi) is the sum of the weights of the various elements of the above-mentioned shixi raw materials, as shown in the following equation: WSi=(WHMxHMSi) + (WscxSCsi) + (WRexReSi) + (WFeSix EFeSi)+ (WsicXEsic)............................ ..............Unit: Kg WHM: Amount of molten iron (Kg) HMSi: Weight percentage of cerium in molten iron (%)
Wsc :廢鋼量(Kg) SCsi :廢鋼的矽元素重量百分比(%) WRe :回爐鋼量(Kg) Resi :回爐鏑的矽元素重量百分比(%)Wsc : scrap volume (Kg) SCsi : weight percent of niobium in scrap (%) WRe : amount of quenched steel (Kg) Resi : percent by weight of niobium in the furnace (%)
WfeSi :砍鐵量(Kg) EFeSi :梦鐵的*夕元素重量百分比(%) WSiC ;碳化發量(Kg) ESic :碳化矽的矽元素重量百分比(%) 其中,當鐵水的矽元素重量百分比(HMSi)> 0.90%時, 200927944 疋以0.90%计算該純石夕重量指襟^),當鐵水的梦元素重 量百刀比(HMSi)<〇.25%時,是^ 〇25%計算該純碎重量指 標(wSi)’當鐵水㈣元素重量百分比_si)介於〇25%〜 0·90%之間時’則是以_si)的實際值計算該㈣重量指標 (WSi)。 、 當能夠測得廢鋼的矽元素重量百分比(SCs〇時,是以 (scSi)的實際值計算該純碎重量指標(Wsi),當無法測得廢鋼 ㈣元素重量百分比(Scsi)時’則是以預設值㈣%計算該 〇 純矽重量指標(wSip 當能夠測得回爐鋼的矽元素重量百分比⑽…時,是以 (RESi)的實際值計算該純石夕重量指標(D,當無法測得回爐 鋼的石夕7L素重量百分比(REsi)時,収以預設值G跳計算 該純矽重量指標(wsi)。 當上述總合次步驟121結束之後,便會獲得該純矽重 量指標(Wsi),然後進行該換算次步驟122,利用純碎與二氧 化矽兩者分子量的數值換算,而得出一爐渣二氧化矽指標 〇 (Wsi〇2)=(Wsi)x60/28,其中,所採用的數值60即為二氧化 發(Si02)的分子* ’數值28即為秒⑻的分子量;也就是說 ’利用比例觀念,將原本Wsi02: Wsi=6〇: 28的比例關係, 換算成該爐渣二氧化矽指標(Wsi〇2)的計算公式,其單位為 Kg。 、. 另外進行該選擇次步驟123,隨著目標鋼種的硫含量上 限(S)而選擇不同數值的鹽基度指標(B),該鹽基度指標 是氧化鈣(Ca〇)/二氧化矽(Si〇2)的重量比,其範圍在i 5〜1〇 200927944 之間;較佳的是,當目標鋼種的硫含量上限(S)S 60ppm時 ,鹽基度指標(B)=5,當 60ppm<S<80ppm 時,B=4.5,當 S 2 80ppm 時,B=4。 再進行該相乘次步驟124,將該選擇次步驟123所得到 的鹽基度指標(B),乘以該換算次步驟122所得到的爐渣二 氧化矽指標(Wsi02),即得到爐渣中的氧化鈣重量(Ws);亦 即,爐渣中的氧化鈣重量(Ws)= (B)x(WSi02),其單位為Kg 〇 〇 最後再進行該計算次步驟125,將爐渣中的氧化鈣重量 (Ws)除以石灰中的氧化鈣重量百.分比(以ECa〇表示),即獲 得該吹煉步驟12中所添加的石灰的預定用量(WCa0);亦即 ,石灰的預定用量(WCa〇)= (Ws)/(ECa〇),其單位為Kg。 , 據上所述,下列表一即為依照該實施例所界定的各項 步驟,而得到的石灰預定用量(WCa0): 實施樣本1_中磷鋼 硫含量上限(S)為50ppm 實施樣本2—高磷鋼 硫含量上限(S)為80ppm 鐵水的梦元素重量 (WHMxHMsi) (WHMxHMsi) 265000x0.0026=689 260000x0.0025=650 廢鋼的梦元素重量 (WscxSCsi) (WscxSCsi) 20000x0.0010=20 30000x0.0010=30 回爐鋼的碎元素重 (WReXResi) (WRexResi) 量 0x0.0010=0 0x0.0010=0 矽鐵的矽元素重量 (WpeSiXEFeSi) (WpeSiXEreSi) 20x0.75=15 0x0.75 = 0 碳化矽的矽元素重 (WsicxEsic) (WsicxEsic) 量 0x0.49 =0 50x0.49 =25 wSi (上述總和) 689+20+0+15+0=724 650+30+0+0+25=705 Wsi〇2 = Wsix60/28 724x60/28=1551 705x60/28=1511 10 200927944 B 5 4 Ws=BxWSi〇2 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 WcaO=Ws/EcaO 7755/0.9=8617 6044/0.9=6716 表一 本發明轉爐煉鋼製程1的第二較佳實施例,大致類似 於前述第一較佳實施例,同樣包含有圖丨所示主要步驟( 填入步驟11、吹煉步驟12,及出鋼步驟13)與次步驟(總 合次步驟121、換算次步驟122、選擇次步驟123、相乘次WfeSi: amount of cut iron (Kg) EFeSi: weight percentage of night metal (%) WSiC; carbonization amount (Kg) ESic: weight percentage of niobium element (%) of niobium carbide Percentage (HMSi)> 0.90%, 200927944 计算 Calculate the pure stone 重量 weight index 襟^) at 0.90%, when the molten iron dream element weight hundred knives ratio (HMSi) < 〇.25%, is ^ 〇 25% to calculate the pure broken weight index (wSi) 'When the molten iron (four) element weight percentage _si) is between 〇25%~ 0.90% 'is the actual value of _si) to calculate the (four) weight index (WSi). When the weight percentage of niobium in scrap steel can be measured (SCs〇, the pure shred weight index (Wsi) is calculated based on the actual value of (scSi), when the scrap (four) element weight percentage (Scsi) cannot be measured, 'is Calculate the 矽 pure weight index by the preset value (four)% (wSip When the weight percentage of bismuth element of the blastback steel can be measured (10)..., the pure stone eve weight index is calculated based on the actual value of (RESi) (D, when When the weight percentage (REsi) of the steel of the furnace steel is measured, the pure weight index (wsi) is calculated by the preset value G hop. When the above-mentioned total mixing step 121 ends, the pure weight is obtained. The index (Wsi) is then subjected to the conversion sub-step 122, using a numerical value of the molecular weight of both pure and cerium oxide to obtain a slag cerium oxide index W (Wsi 〇 2) = (Wsi) x 60 / 28, Among them, the value 60 used is the molecule of the oxidized hair (SiO 2 ) * 'the value 28 is the molecular weight of the second (8); that is to say, 'using the proportional concept, the original Wsi02: Wsi=6〇: 28 ratio relationship, Calculated into the calculation of the slag cerium oxide index (Wsi 〇 2) The unit is Kg. In addition, the selection step 123 is performed, and a salt base index (B) of different values is selected according to the upper limit (S) of the sulfur content of the target steel, and the salt index is calcium oxide (Ca).重量) / cerium oxide (Si 〇 2) weight ratio, the range is between i 5~1 〇 200927944; preferably, when the target steel species has an upper limit of sulfur content (S) S 60ppm, the salt base index (B) = 5, when 60 ppm < S < 80 ppm, B = 4.5, and when S 2 80 ppm, B = 4. Further, the multiplication step 124 is performed, and the salt basis index obtained by the sub-step 123 is selected. (B) multiplying the slag cerium oxide index (Wsi02) obtained in the conversion step 122 to obtain the weight of the calcium oxide (Ws) in the slag; that is, the weight of the calcium oxide in the slag (Ws) = (B) x (WSi02), the unit of which is Kg 〇〇 and finally the calculation step 125, dividing the weight of calcium oxide (Ws) in the slag by the weight percentage of calcium oxide in the lime (indicated by ECa〇), That is, the predetermined amount (WCa0) of the lime added in the blowing step 12 is obtained; that is, the predetermined amount of lime (WCa〇)=(Ws)/(ECa〇), which is The position is Kg. According to the above, the following list 1 is the predetermined amount of lime obtained according to the steps defined in the embodiment (WCa0): The upper limit (S) of the phosphorus content of the phosphorus steel in the sample 1_ is 50ppm Implementation Sample 2—High Limit of Sulfur Content of High Phosphorus Steel (S) is 80ppm Dream Element Weight of Hot Metal (WHMxHMsi) (WHMxHMsi) 265000x0.0026=689 260000x0.0025=650 Dream Element Weight of Scrap (WscxSCsi) (WscxSCsi) 20000x0 .0010=20 30000x0.0010=30 Breaking element weight of refurbished steel (WReXResi) (WRexResi) Quantity 0x0.0010=0 0x0.0010=0 Weight of niobium element of niobium iron (WpeSiXEFeSi) (WpeSiXEreSi) 20x0.75=15 0x0 .75 = 0 矽 矽 重 ( (WsicxEsic) (WsicxEsic) Quantities 0x0.49 =0 50x0.49 =25 wSi (sum of the above) 689+20+0+15+0=724 650+30+0+0 +25=705 Wsi〇2 = Wsix60/28 724x60/28=1551 705x60/28=1511 10 200927944 B 5 4 Ws=BxWSi〇2 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 WcaO=Ws/EcaO 7755/0.9=8617 6044/0.9=6716 Table 1 A second preferred embodiment of the converter steelmaking process 1 of the present invention is substantially similar to the first preferred embodiment described above, and also includes the main Step (step 11 filled, the blowing step 12, step 13, and tapping) and secondary steps (step 121 times the sum of, in terms of times step 122, select the next step 123, is multiplied times
步驟124 ’及計算次步驟125),故不再另外繪製圖式,而 該第二較佳實施例相較於第一較佳實施例,不同的地方在 於: 本實施例於煉鋼過程中除了添加石灰之外,還另外添 加有白雲石與輕燒白雲石,因此,於該計算次步驟125中 ’爐渣中的氧化#5重量(Ws)還要再扣除白雲石中的氧化約重 量,以及輕燒白雲石中的氧化㈣量,才會除以石灰中的 氧化約重量百分比(以ECa。表示)’而獲得該吹煉步驟12 中所添加的石灰的敎用量(w⑽),如下列方程式所載:Step 124' and calculation sub-step 125), so the drawing is not further drawn, and the second preferred embodiment is different from the first preferred embodiment in that: this embodiment is in addition to the steel making process. In addition to the addition of lime, dolomite and light burnt dolomite are additionally added. Therefore, in the calculation step 125, the oxidation #5 weight (Ws) in the slag is further subtracted from the oxidation weight in the dolomite, and The amount of oxidation (four) in the lightly burned dolomite is divided by the oxidation weight percentage in lime (expressed as ECa) to obtain the amount of niobium (w(10)) of the lime added in the blowing step 12, as in the following equation Contained:
Wca〇=[(Ws)- (WDolXEDol)- (Wb.d〇ixEb D〇l)]/Eca〇 單位:Kg :S : Ecao: g中的氧減重量(Kg)^灰中的氧㈣重量百分比(%) it重卿 S'雲石中的氧谢量百分比(%) ut。 EB.D〇l : 白雲石重量(Kg)輕燒白雲石中的氧化转重量百分比(0/〇) 下列表二即為前述實施樣本1—中仙、實施樣本2— 高碟鋼,於煉鋼過程中,—併加人白雲石與輕燒白雲石的 200927944 狀況’並以此計算出石灰預定用量(wCa0): 實施樣本1 一中磷鋼 實施樣本2 —高填鋼 Ws = BxWsi〇2 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 白雲石中的氧化鈣 重量 Wd〇ixEd〇i 600 600 輕燒白雲石中的氧 化鈣重量 Wb.Do1XEb.Do1 0 0 Wca〇 = (ws —上述兩項總 和)/EcaO (7755 — 600 — 0)/0.9= 7950 (6044— 600- 0)/0.9= 6048 表二 綜上所述,本發明轉爐煉鋼製程丨,是以目標鋼種的硫 含量上限規範而訂定鹽基度指標(B),來計算出爐渣中的氧 化鈣重量(ws),再除以石灰中的氧化鈣重量百分比(Eca〇)( 右煉鋼過程中還有白雲石與輕燒白雲石的添加還要將兩 者所含有的氧化鈣重量予以列入計算),方能得到該吹煉步 〇 驟12中所添加的石灰的預定用量(Wca〇);因此,對於純粹 依靠技術人員的經驗而投入石灰所產生的誤差,可以有效 避免,同時也能使石灰用量標準化,進而避免石灰原料成 本的/良費,降低爐渣量,確保鋼液品質,所以確實能達到 本發明之目的。 准以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 12 200927944 ❹Wca〇=[(Ws)- (WDolXEDol)- (Wb.d〇ixEb D〇l)]/Eca〇 Unit: Kg :S : Ecao: Oxygen weight loss in g (Kg)^Oxygen in the ash (IV) Weight Percentage (%) It is the percentage of oxygen in the S's marble (%) ut. EB.D〇l : Dolomite weight (Kg) oxidized weight percent in light burned dolomite (0/〇) The following is the first example of the implementation of sample 1 - Zhongxian, implementation sample 2 - high disc steel, Yu Lian In the steel process, the state of 200927944 of dolomite and light burnt dolomite is added and the predetermined amount of lime (wCa0) is calculated: Example 1 is implemented. Sample 1 of the medium-phosphorus steel is implemented. 2 - High-filled steel Ws = BxWsi〇2 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 Weight of calcium oxide in dolomite Wd〇ixEd〇i 600 600 Weight of calcium oxide in light burned dolomite Wb.Do1XEb.Do1 0 0 Wca〇= (ws — the sum of the above two) /EcaO (7755 — 600 — 0)/0.9= 7950 (6044— 600- 0)/0.9= 6048 Table 2 In summary, the converter steelmaking process of the present invention is based on the upper limit specification of the sulfur content of the target steel grade. Determine the salt weight index (B) to calculate the weight of calcium oxide (ws) in the slag, and then divide by the weight percentage of calcium oxide in the lime (Eca〇) (there are also dolomite and light burnt white clouds in the right steelmaking process) The addition of stone should also be included in the calculation of the weight of calcium oxide contained in both). The predetermined amount of lime added in step 12 (Wca〇); therefore, the error caused by the input of lime by purely relying on the experience of the technician can be effectively avoided, and the amount of lime can be standardized, thereby avoiding the lime raw material. The cost/good cost, the amount of slag is reduced, and the quality of the molten steel is ensured, so that the object of the present invention can be achieved. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. 12 200927944 ❹
【圖式簡單說明】 圖1是一方塊流程圖,說明本發明轉爐煉鋼製程之第 一較佳實施例,其中的主要步驟,包含有填入步驟、吹煉 步驟,及出鋼步驟,而該吹煉步驟中所添加的石灰的預定 用量(wCa0),是由多個次步驟推導而來,包含有總合次步驟 、換算次步驟、選擇次步驟、相乘次步驟,及計算次步驟 13 200927944 【主要元件符號說明】 1 轉爐煉鋼製程 WSi 純矽重量指標 11 填入步驟 Wsi〇2 爐谨二氧化梦指 12 吹煉步驟 標 121 總合次步驟 B 鹽基度指標 122 換算次步驟 Ws 爐潰中的氧化妈 123 選擇次步驟 重量 124 相乘次步驟 E〇aO 石灰中的氧化鈣 125 計算次步驟 重量百分比 13 出鋼步驟 WcaO 石灰的預定用量 ❹ 14BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first preferred embodiment of a converter steelmaking process of the present invention, wherein the main steps include a filling step, a blowing step, and a tapping step, and The predetermined amount (wCa0) of the lime added in the blowing step is derived from a plurality of sub-steps, including a sub-step, a sub-step, a sub-step, a multi-step, and a sub-step. 13 200927944 [Explanation of main component symbols] 1 Converter steelmaking process WSi pure weight index 11 Filling step Wsi〇2 Furnace dioxide dream finger 12 Blowing step mark 121 Total combination step B Salt basis index 122 Conversion step Oxidation in the Ws furnace. Select the next step Weight 124 Multiply the next step E〇aO Calcium oxide in the lime 125 Calculate the second step Weight percentage 13 The tapping step WcaO The predetermined amount of lime ❹ 14