TW200927152A - Sustained release composition and manufacturing method - Google Patents

Sustained release composition and manufacturing method Download PDF

Info

Publication number
TW200927152A
TW200927152A TW97150596A TW97150596A TW200927152A TW 200927152 A TW200927152 A TW 200927152A TW 97150596 A TW97150596 A TW 97150596A TW 97150596 A TW97150596 A TW 97150596A TW 200927152 A TW200927152 A TW 200927152A
Authority
TW
Taiwan
Prior art keywords
sustained release
release composition
agent
acid
composition
Prior art date
Application number
TW97150596A
Other languages
Chinese (zh)
Other versions
TWI367100B (en
Inventor
Jui-Mei Lu
Chia-Wen Liu
Po-Hong Lai
John Jianghann Lin
Chiao-Pin Li
Sung-En Chen
Yo-Wen Lo
Ming-Thau Sheu
Min-Ying Lin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW097150596A priority Critical patent/TWI367100B/en
Publication of TW200927152A publication Critical patent/TW200927152A/en
Application granted granted Critical
Publication of TWI367100B publication Critical patent/TWI367100B/en

Links

Abstract

A sustained release composition comprising a polymer and manufacturing method thereof. The sustained release composition comprises a polymer, a bioactive agent, and a release rate determined agent, wherein the release rate determined agent is dispersed in the sustained release composition to control the release rate of the bioactive agent. The method comprises providing an oil phase comprising a bioactive agent, a polymer, and a release rate determined agent; providing an aqueous phase comprising a surfactant; mixing the oil phase with the aqueous phase to form the sustained release composition having a controlled release effect.

Description

200927152 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種藥物釋放系統,且特別有關於一 種無遲滯時間之持續釋放組成物及其製備方法。 【先前技術】 目前藥物傳輸系統已被廣泛的使用於許多地方,例 ^ 如,外科移植、組織再生或患處的包紮。一般來說,藥物 響 攜帶系統可使藥物或生物活性物質在一特定區域中治療疾 病。例如,藥物攜帶系統可在某一部份區域直接提供抗生 素,以避免其部位的感染,或者可以結合組織再生工程, 提供必要的生長因子等。 因此,需要發展具備安全性及良好的的藥物攜帶系 統。例如,可產生最大的藥物活性及最低的副作用,具有 穩定的釋放速率及不具毒性的生物可分解材料。生物可分 0 解材料目前已被廣泛的使用於藥物釋放系統,且主要應用 於需持續給藥的情況,通常此藥物為化合物、胜肽或蛋白 質。 然而,一般傳統的藥物釋放曲線包含3個時期,分別 為釋放起始期、遲滯期以及第二釋放期,而藥物僅在釋放 起始期與第二釋放期中釋放。因此在遲滯期時,病患必須 合併其他口服或局部給藥來加強治療的效果,但此額外的 給藥會導致治療成本的增加以及不方便。為克服上述缺 點,業界亟需一種新穎之藥物釋放系統及其製備方法。 200927152 【發明内容】 本發明係提供-種無遲滯 括-聚合物、-生物活性劑以及一釋故組成物2 該生物活性劑及轉放速率 :控制劑’其 物中,且該釋放速率控制刀散於該持續釋放組成 率。 1可控制該生物活性劑之釋放速 〇 本發明另提供一種製借 提供一油相,其包含—職組成物之方法,包括 速率控制劑;提供_水相,聚合物以及一釋放 相與水相以形成持續釋玫以;;3 —界面活性劑;混合油 成物。 、成物’以及回收該持續釋放組 本發明更提供一種用於、Λ * 效量之上述持續釋放組成物:療動物之組成物,包括-有 為了讓本發明之上迷 明顯易懂,下謂舉較佳=目的、特徵、和優點能更 細說明如下: 例’並配合所附圖示,作詳 【實施方式】 成物 其包括一聚合物 =發明提供一種持續釋放組 生物活性劑以及一釋欲 ”一川取甘m、 釋放速率控制劑分散於…控制劑’其中生物活性劑及 制劍可控射物活性釋放組成物中’且釋放速率控 釋放速率 200927152 本發明之持續釋放組成物中包含一或複數個生物活性 劑。生物活性劑包括,但不限於,蛋白質、核酸、碳水化 合物、胜肽、免疫原或荷爾蒙。核酸包括,但不限於,DNAs、 RNAs、經化學修飾之dNAs、經化學修飾之RNAs、適性 體(aptamers)、反義募核苷酸、干擾RNA以及小分子干擾 RNAs。碳水化合物包括,但不限於,肝素、小分子肝素及 其類似物。胜肽包括,但不限於,LHRH類似物及合成類 似物、柳培林、生長抑制素類似物、荷爾蒙、奥曲肽、類 〇 高血糖素胜肽、縮宮素或其類似物。蛋白質包括,但不限 於,抗體、治療性蛋白質、人類生長激素(例如,骨塑变蛋 白、TGF-β 1、纖維細胞生長因子、血小板生長因子、或類 胰島素生長因子等)、奧曲肽、促性腺激素釋放荷爾蒙、干 擾素、胰島素、降血鈣素、細胞激素或其類似物。小分子 藥物包括,但不限於,抗感染劑(例如’兩性霉素B)、細胞 抑制劑、抗高血壓劑、抗真菌劑(例如,氟康唑、適撲諾、 酮康唑)、抗精神藥物(例如,克慮平、奥氮平、理思必妥、 Ο 舍e引峰、阿立e坐、齊拉西酮或啥硫平)、抗糖尿病藥劑、免 疫促進劑(例如,β-1,3Μ,6-聚糖)、免疫抑制劑(例如’環孢 靈或強體松)、抗生素(例如’盤尼西林、頭孢菌素、鹽酸 萬古黴素或林可黴素)、抗病毒藥物、抗痙攣藥物、抗組織 胺藥、心金管藥物、抗凝血劑、抗瘧疾藥、止痛劑、麻醉 劑、抗腫瘤藥劑、抗潰殤藥劑、抗癌藥劑、支氣管擴張劑、 血管擴張劑、中樞神經系統藥劑、類固醇、非固醇類抗發 炎藥物以及止吐劑。荷爾蒙包括,但不限於,生長因子、 200927152 退黑激素、血清素、曱狀腺素、三碘曱狀腺原氨酸、腎上 腺素、正腎上腺素、多巴胺、脂肪激素、血管收縮素、膽 囊收縮素、紅血球生成素、胃泌素、升糖素、胰島素、胰 泌素、血小板生成素或醒·固酮等。 本發明之聚合物為一種生物可分解聚合物,例如,磷 脂質、卵磷脂、羥乙酸鹽、聚乳酸、聚乙醇酸、聚乳酸-乙醇酸(PLGA)、聚麩胺酸、聚己内酯多元醇(PCL)、聚胺 基酸、聚對二氧六環酮、聚羥基丁酸酯、聚磷脂、聚酯型 ❹ 聚氨酯、聚羧基苯氧丙烷-癸二酸、聚原酸酯、聚碳酸酯樹 脂、聚酯醯胺、聚酐、聚縮醛、聚氰基丙烯酸酯、聚醚酯、 聚(亞烷基烷基)或上述之組合。本發明之生物可分解聚合 物可在生物體内分解,且不會對此生物體造成傷害。 本發明之“釋放速率控制劑”係指界面活性劑,其可 控制生物活性劑的釋放。 本發明之釋放速率控制劑包括,但不限於,Span® 80、 Span® 85、油酸、PEG-PCL雙團聯共聚物、甘油三辛酸酯、 ❹ Pluronic® (F68)、Tween® 80 或維生素 E-TPGS。 TPGS (d-α-生育醇聚乙烯乙二醇琥珀酸鹽)為一商品化 之產品,又稱為“維生素E-TPGS”。維生素E-TPGS為一 水溶性維生素E衍生物,類似兩性分子。在本發明中,維 生素E-TPGS包括各種的維生素E-TPGS化學衍生物,如 各種化學基團的酯或醚連接。在本發明中,釋放速率控制 劑係分散於持續釋放組成物中以控制生物活性劑的釋放, 使本發明之持續釋放組成物之釋放曲線並無遲滯時間(lag 200927152 phase),可持續地釋放生物活性劑,以免除額外的口服給 予。在本發明中,釋放速率控制劑佔該持續釋放組成物全 部重量的1-50% ’較佳為4_15〇/〇。 在一實施例中’本發明之持續釋放組成物可為一微球 體、微粒體或微膠囊。微膠囊包括一中心部份以及一外膜 部份。本發明之微球體、微粒體或微膠囊可交互替代使用。 在另一實施例中,本發明之持續釋放組成物之藥物包覆率 大於70% ’較佳為70%至99.9%,其直徑大於5 μιη,較佳 ❹為5μπι-200 μιη,最佳為30μιη_1〇〇μιη,且可在生物體内 持續釋放藥物(生物活性劑),並無遲滯時間。 本發明之持續釋放組成物可局部性給予或全身性給 予。例如,持續釋放組成物可以肌肉、腹腔、靜脈或皮下 注射的方式給予。此外,持續釋放組成物亦可製備成任何 的劑型,例如,塗劑、軟膏、乳膏、凝膠、滴劑、懸浮劑、 霧劑、水劑或粉末,並可與傳統的藥學載體合併使用。 ❹ 本發明更提供-種製備持續釋放組成物之方法,此方 ^包括提供-油相,其包含—生物活性劑、—聚合物以及 -釋放速率控制劑;提供—水相,其包含—界面活性劑; 混合該油相與該水相以形成該持_放組成物,㈠ 分比 雜劑可佔油相的0.Μ0%重量百分比,較佳為2%重量百 本發明所述之“油相’,係指包含溶劑、聚合物、生物 ΓΓί及釋放速率控制劑之溶液,其可與—水相乳化以產 發明之持續釋放組成物。油相中的溶劑包括,但不限 10 200927152 於,二氯甲烷、乙酸乙酯、苯甲醇、丙酮、醋酸、丙醯碳 酸酯、氣仿、1,4_二氧陸園、二曱基甲醯胺(DMF)、二曱基 亞礙(DMSO)、甲苯或四氳吱喃(thf)。 如上所述,本發明之釋放速率控制劑包括,但不限於,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drug delivery system, and more particularly to a sustained release composition without hysteresis time and a method of preparing the same. [Prior Art] Currently, drug delivery systems have been widely used in many places, such as surgical transplantation, tissue regeneration, or dressing of affected areas. In general, a drug carrying system allows a drug or biologically active substance to treat a disease in a particular area. For example, a drug-carrying system can provide antibiotics directly in a certain part of the area to avoid infection at its site, or it can be combined with tissue regeneration engineering to provide the necessary growth factors. Therefore, there is a need to develop a safe and good drug carrying system. For example, it produces the greatest pharmaceutically active and minimal side effects, a stable release rate and a non-toxic biodegradable material. Biodegradable materials have been widely used in drug delivery systems and are mainly used in applications where continuous administration is required. Usually the drug is a compound, peptide or protein. However, the conventional conventional drug release profile contains three periods, a release initiation period, a lag phase, and a second release period, and the drug is released only during the release initiation period and the second release period. Therefore, during the lag phase, the patient must be combined with other oral or topical administration to enhance the therapeutic effect, but this additional administration may result in increased treatment costs and inconvenience. In order to overcome the above drawbacks, there is a need in the industry for a novel drug delivery system and method for its preparation. 200927152 SUMMARY OF THE INVENTION The present invention provides a hysteresis-free polymer, a bioactive agent, and a release component 2, the bioactive agent and a transfer rate: a control agent, and the release rate is controlled. The knife is scattered in the sustained release composition rate. 1 can control the release rate of the bioactive agent. The present invention further provides a method for providing an oil phase, comprising a composition, including a rate controlling agent; providing an aqueous phase, a polymer, and a release phase and water The phase is formed to form a sustained release; 3 - a surfactant; a mixed oil product. And the recovery of the sustained release group. The present invention further provides a sustained release composition for use in a therapeutic effect: a composition of a therapeutic animal, including - in order to make the invention clear and easy to understand, Preferably, the purpose, the features, and the advantages can be further described as follows: Example 'and with the accompanying drawings, the detailed description [embodiment] The composition includes a polymer = the invention provides a sustained release group of bioactive agents and A release of the drug, a release rate controlling agent dispersed in a ... control agent 'where the bioactive agent and the sword controllable active release composition' and release rate controlled release rate 200927152 sustained release composition of the present invention One or more bioactive agents are included in the composition. Bioactive agents include, but are not limited to, proteins, nucleic acids, carbohydrates, peptides, immunogens or hormones. Nucleic acids include, but are not limited to, DNAs, RNAs, chemically modified dNAs, chemically modified RNAs, aptamers, antisense nucleotides, interfering RNA, and small interfering RNAs. Carbohydrates include, but are not limited to, Heparin, small molecular heparin and its analogues. Competitors include, but are not limited to, LHRH analogues and synthetic analogs, salicin, somatostatin analogues, hormones, octreotide, glucagon-like peptides, oxytocin or Analogs. Proteins include, but are not limited to, antibodies, therapeutic proteins, human growth hormone (eg, bone plasticizer, TGF-β 1, fibroblast growth factor, platelet growth factor, or insulin-like growth factor, etc.), Octreotide, gonadotropin-releasing hormone, interferon, insulin, calcitonin, cytokines, or the like. Small molecule drugs include, but are not limited to, anti-infective agents (eg, 'amphotericin B), cytostatics, Antihypertensive agents, antifungal agents (eg, fluconazole, ciprofloxacin, ketoconazole), antipsychotic drugs (eg, kepipine, olanzapine, risperidone, 舍舍e peak, A E-sit, ziprasidone or thiophene), anti-diabetic agents, immunostimulants (eg, beta-1,3Μ,6-glycan), immunosuppressants (eg 'cyclosporine or prednisone') ,antibiotic( Such as 'penicillin, cephalosporin, vancomycin hydrochloride or lincomycin), antiviral drugs, antispasmodic drugs, antihistamines, heart tube drugs, anticoagulants, antimalarials, analgesics, anesthetics, Antineoplastic agents, anti-cure agents, anti-cancer agents, bronchodilators, vasodilators, central nervous system agents, steroids, non-steroidal anti-inflammatory drugs, and antiemetics. Hormones include, but are not limited to, growth factors, 200927152 Melatonin, serotonin, sputum, triiodothyronine, epinephrine, norepinephrine, dopamine, adipokines, angiotensin, cholecystokinin, erythropoietin, gastrin, Glycosin, insulin, secretin, thrombopoietin or ketone, etc. The polymer of the present invention is a biodegradable polymer, for example, phospholipid, lecithin, glycolate, polylactic acid, polyethanol Acid, polylactic acid-glycolic acid (PLGA), polyglutamic acid, polycaprolactone polyol (PCL), polyamino acid, poly-p-dioxanone, polyhydroxybutyrate, polyphospholipid, polyester Type 聚氨酯 Polyurethane, polycarboxyphenoxypropane-sebacic acid, polyorthoester, polycarbonate resin, polyester decylamine, polyanhydride, polyacetal, polycyanoacrylate, polyether ester, poly(alkylene) Alkyl) or a combination of the above. The biodegradable polymer of the present invention can be decomposed in a living body without causing damage to the living body. The "release rate controlling agent" of the present invention means a surfactant which controls the release of the bioactive agent. Release rate controlling agents of the present invention include, but are not limited to, Span® 80, Span® 85, oleic acid, PEG-PCL double-copolymer, glyceryl tricaprylate, ❹Pluronic® (F68), Tween® 80 or Vitamin E-TPGS. TPGS (d-α-tocopherol polyethylene glycol succinate) is a commercial product, also known as "vitamin E-TPGS". Vitamin E-TPGS is a water-soluble vitamin E derivative similar to amphiphiles. In the present invention, vitamin E-TPGS includes various chemical derivatives of vitamin E-TPGS, such as ester or ether linkages of various chemical groups. In the present invention, the release rate controlling agent is dispersed in the sustained release composition to control the release of the bioactive agent, so that the release profile of the sustained release composition of the present invention has no lag time (lag 200927152 phase), and can be continuously released. Bioactive agent to avoid additional oral administration. In the present invention, the release rate controlling agent accounts for 1 to 50% by weight of the total weight of the sustained release composition, preferably 4 to 15 Å. In one embodiment, the sustained release composition of the present invention may be a microsphere, microsome or microcapsule. The microcapsule includes a central portion and an outer membrane portion. The microspheres, microsomes or microcapsules of the invention can be used interchangeably. In another embodiment, the sustained release composition of the present invention has a drug coverage of more than 70%', preferably 70% to 99.9%, and a diameter of more than 5 μm, preferably 5 μm to 200 μmη, most preferably 30μιη_1〇〇μιη, and can continuously release drugs (bioactive agents) in the body without lag time. The sustained release composition of the present invention can be administered locally or systemically. For example, the sustained release composition can be administered by intramuscular, intraperitoneal, intravenous or subcutaneous injection. In addition, the sustained release composition can also be prepared into any dosage form, for example, a coating, an ointment, a cream, a gel, a drop, a suspension, an aerosol, a liquid or a powder, and can be combined with a conventional pharmaceutical carrier. . The present invention further provides a method of preparing a sustained release composition, the method comprising: providing an oil phase comprising a bioactive agent, a polymer, and a release rate controlling agent; providing an aqueous phase comprising an interface An active agent; mixing the oil phase with the aqueous phase to form the holding composition, (1) the proportioning agent may comprise 0. Μ 0% by weight of the oil phase, preferably 2% by weight of the invention. "Oil phase" means a solution comprising a solvent, a polymer, a biological agent, and a release rate controlling agent, which can be emulsified with an aqueous phase to produce a sustained release composition of the invention. The solvent in the oil phase includes, but is not limited to, 10 200927152 , dichloromethane, ethyl acetate, benzyl alcohol, acetone, acetic acid, propylene carbonate, gas, 1,4-dioxan, dimercaptocaramine (DMF), dimercapto DMSO), toluene or tetraterpene (thf). As described above, the release rate controlling agent of the present invention includes, but is not limited to,

Span® 80、Span® 85、油酸、PEG-PCL·雙團聯共聚物、甘 油三辛酸酯、Pluronic® (F68)、Tween® 80或維生素 E-TPGS。在本發明中,釋放速率控制劑佔油相的重 量百分比,較佳為4-15 %重量百分比。 本發明所述之“水相”係指水及界面活性劑之溶液, 其可與油相藉由乳化反應產生持續釋放組成物。 本發明之界面活性劑包括’但不限於,聚乙烯醇 (PVA)、NP-5、Triton x-1 〇〇、Tween 80、PEG 200-800、十 二烧基硫酸鈉(SDS)、醇乙氧基化物、烧基苯酚經乙基鹽、 二級醇乙氧基化物、脂肪酸酯或烧基聚醣苷。本發明之界 面活性劑佔水相之〇.1%_10%重量百分比,例如可為 0.1%-5%重量百分比。 在一實施例中,油相與水相混合後產生一乳化物,此 乳化合物包括滴狀之油相分散於水相中,接著將溶劑由乳 化物中移除以形成微粒體。移除溶劑的方法包括真空、過 濾、或萃取至一萃取液中。例如,此萃取液可為水。微粒 體可由水相回收並乾燥。 乳化物可利用攪拌油相及水相來產生。在一實施例 中,可利用攪拌器,如,靜態攪拌器來產生乳化物。在另 一實施例中,可利用激烈的攪動來產生乳化合物。 200927152 乳化合物的製備程序可在滞點及凝固點之間的任何溫 度下進打。在一實施例令,此溫度可在〇。〇至c之 或約5 C至75 C之間或約〗5°c至6yC之間。 此外,也可額夕卜添加共溶劑(c〇s〇ivent)至油相中丘六 劑可促進生物活性劍溶解於油相中。在一實施例中,二 劑包括,但不限於,4基亞石風、二f基甲酿胺、 料酮、REG 200、PEG彻、甲醇、乙醇、異兩醇以及^ ?醇。共溶劑可佔油相溶義U慨重量 油相溶劑的G i5G%重量百分^。生物活性财先容= f當體積中的共溶射,再將共溶獅加至、容 是’此技藝人士可任意地調塾添加量::二序= 至㈣重量百分比。在另—實施例中相的= 可佔油相的0.1至2〇 7刀解I合物 ❹ 百分比。 ’°重置百分比’例如’1至U)%重量 效量續動物之組成物,包括-有 組成物可持續地釋放生物活之持續釋放 他口服及局部給予來促進治療:效:此不娜合併其 液中散純何之溶液或稀釋 劑,黏性促進劑可紐曱二::液可包括-黏性促進 萄糖、漏蘆糖及其他生物可接受之黏性促進劑。 12 200927152 本發明之“動物”係指任何的哺乳動物。本發明之哺 乳動物包括人類或非人類之動物,例如,狗、描、小鼠、 大鼠、牛、綿羊、豬、山羊或靈長類動物以及實驗室動物 或家畜。在一實施例中,此動物可為人類。在另一實施例 中’此動物可為齧齒目動物,例如,小鼠或大鼠。 【實施例】Span® 80, Span® 85, oleic acid, PEG-PCL·biplexed copolymer, glyceryl tricaprylate, Pluronic® (F68), Tween® 80 or vitamin E-TPGS. In the present invention, the release rate controlling agent accounts for a weight percentage of the oil phase, preferably 4 to 15% by weight. By "aqueous phase" as used herein is meant a solution of water and a surfactant which can be reacted with the oil phase to produce a sustained release composition. Surfactants of the present invention include, but are not limited to, polyvinyl alcohol (PVA), NP-5, Triton x-1 oxime, Tween 80, PEG 200-800, sodium dodecyl sulfate (SDS), alcohol B. The oxylate, alkyl phenol is via an ethyl salt, a secondary alcohol ethoxylate, a fatty acid ester or a glycerol glycoside. The surfactant of the present invention accounts for 1% to 10% by weight of the aqueous phase, and may be, for example, 0.1% to 5% by weight. In one embodiment, the oil phase is mixed with the aqueous phase to produce an emulsion comprising a droplet of the oil phase dispersed in the aqueous phase, followed by removal of the solvent from the emulsion to form microsomes. The method of removing the solvent includes vacuuming, filtering, or extracting into an extract. For example, the extract can be water. The microparticles can be recovered from the aqueous phase and dried. The emulsion can be produced by stirring the oil phase and the aqueous phase. In one embodiment, an agitator, such as a static agitator, can be utilized to produce the emulsion. In another embodiment, intense agitation can be utilized to produce a milk compound. 200927152 The preparation of the milk compound can be performed at any temperature between the stagnation point and the freezing point. In an embodiment, this temperature can be at 〇. 〇 to c or between about 5 C and 75 C or between about 5 ° C and 6 yC. In addition, it is also possible to add a cosolvent (c〇s〇ivent) to the oil phase in the middle of the mound to promote the dissolution of the biologically active sword in the oil phase. In one embodiment, the two agents include, but are not limited to, 4 kibolite, bis-furylamine, ketone, REG 200, PEG, methanol, ethanol, isoamyl alcohol, and alcohol. The co-solvent can account for the oil phase solubilization U weight weight of the oil phase solvent G i5G% by weight ^. Bio-active wealth introduction = f When the co-solubilization in the volume, then add the co-solvent lion to the capacity of the person. This artist can arbitrarily adjust the amount of addition:: second order = to (four) weight percentage. In another embodiment, the phase = 0.1 to 2 〇 7 knives of the oil phase. '°Reset percentage' such as '1 to U)% Weight Effectiveness Continued animal composition, including - sustained release of the composition to release the biological activity. His oral and topical administration to promote treatment: efficacy: this is not Combine the solution or diluent in the liquid, and the viscosity promoter may be: New Zealand: The liquid may include - viscous sugar, sucrose and other biologically acceptable viscosity promoters. 12 200927152 "Animal" as used in the present invention refers to any mammal. The mammals of the present invention include human or non-human animals such as dogs, tracing, mice, rats, cows, sheep, pigs, goats or primates, and laboratory animals or livestock. In an embodiment, the animal can be a human. In another embodiment, the animal can be a rodent, such as a mouse or a rat. [Examples]

1. 含 0、7、26 及 42%維生素-E TPGS 之 50/50 PLGA ® 將 80 mg 的 olanzapine、200 mg 的 PLGA (LA/GA ratio -50/50, M.W. = 43000)以及不同量的維生素 e-TPGS (0, 7, 26, 42%重量百分比)一起溶於5 mL的二氯甲烷中以形成油 相。將油相滴加至1〇〇〇 mL之冰水相中,水相含有〇1%之 聚乙稀醇(PVA);並於1〇〇〇 rpm下進行乳化。將所獲得之 o/w乳化物於室溫下持續授動3小時,離心收集微球體, 以F68及清水清洗,並凍乾。分別以Multisizer及高效能 液相層析儀(HPLC)分析微球體的粒徑及藥物包覆率。結果 ® 顯示含〇、7、26及42%(w/w)之維生素E-TPGS的微球體 粒徑分別為68.4士28.3、71.6土27.3、91.0士35.8、101.9±42.8 μιη ’且其藥物包覆率分別為77.7、83 5、85 9、85.2〇/。。 2. 含 0、4、15 及 26%維生素 E-TPGS 之 85/15 PLGA 微球 體 320 mg 的 olanzapine、800 mg 的 PLGA (LA/GA ratio = 85/15, M.W. = 53000)以及不同量的維生素 E-TPGS(0、4、 200927152 15、26%重量百分比)一起溶於15 mL的二氯甲烷中以形成 油相。將油相滴加至2000 mL的冰水相中,其中水相含有 0.1 °/〇之聚乙烯醇(pvA),並於1〇〇〇rpm下進行乳化。本實 施例之擾掉、收集及分析方法與實施例1相同。結果顯示 含〇、4、15及26%(w/w)維生素E_TpGS之微球體粒徑分 別為 40.0±21.3、58 8±28.4、47.4±21.4 及 62.9±25·9 μιη, 且其藥物包覆率分別為77.2、74.7、87.6及83.7%。 © 3.含不同水相之50/50 PLGA微球體 80 mg 的 〇ianzapine、2〇〇 mg 的 PLGA (LA/GA ratio = 50/50, M.W. = 43000)以及 42 % (w/w)的維生素 E-TPGS — 起溶於5 mL的二氯甲烷以形成油相。將油相滴加至1000 mL的冰水相中,並於1 〇〇〇 rpm下進行乳化;其中此冰水 相分別含有〇.〇5 %之PVA,或含有0.5%明膠之0.05% PVA。將所獲得之〇/w乳化物於室溫下持續攪拌3小時, 離心收集微球體,以F68及水清洗,並冷凍乾燥。本實施 ® 例之粒徑及藥物包覆率的分析方法與上述相同。結果顯示 不含明膠及含0.5%明膠之微球體的粒徑分別為108.7士37.3 及85.5±31.4 μιη,且其藥物包覆率分別為分別為74.1及 73.1%。 4.含不同油相之85/15 PLGA微球體 320 mg 的 olanzapine、800 mg 的 PLGA (LA/GA ratio = 85/15, M.W. = 53000)以及 15 w/w%的維生素 E-TPGS —起 14 200927152 溶於15 mL的二氣曱烷以形成油相。在此實施例中,二氯 曱烷分別為純二氯甲烷(配方#1)、含乙醇之二氯甲烷(DCM : 乙醇=2 : 1,配方#2)、以及含丙酮之二氯曱烷(DCM :丙 酮=2 : 1,配方#3)。將油相滴加至2000 mL之冰水相, 其中水相含有0.1 % PVA,並於1000 rpm下進行乳化。本 實施例之粒徑及藥物包覆率的分析方法與上述相同。結果 顯示含配方#1、#2、#3之微球體的粒徑分別為76.2±31,4、 70.6±31.8及70.6士31.8 μιη,且其藥物包覆率分別為86.8、 © 89.7 及 88.5%。 5. 含不同LA/GA比例之85八5 PLGA微球體 320 mg 的 olanzapine、800 mg 的 PLGA 以及 15 % (w/w) 維生素E-TPGS —起溶於15 mL的二氣甲烷以形成油相, 其中PLGA具有不同的LA/GA比例,其分別為85/15 : 50/50 =3 : 1 (配方#4)、85/15 : 50/50 = 1 : 3 (配方#5)及 75/20 ·· 50/50 = 4 : 1 (配方#6)。將上述油相滴加至2000 mL的冰水 ❹ 相中,其中水相含有0.1 % PVA,並於1000 rpm下進行乳 化。本實施例之粒徑及藥物包覆率的分析方法與上述相 同。結果顯示含配方料、#5及#6之微球體的粒徑分別為 62.2±32.0、59.1±24.9 及 41.1±19.1 μιη,且其藥物包覆率分 別為 84.9、84.2 及 83.2%。 6. 75/25 PLGA 微球體 320 mg 的 olanzapine、800 mg PLGA (LA/GA ratio = 15 200927152 75/25)及4 % (w/w)的維生素e-TPGS —起溶於15 mL的二 氣曱烷以形成油相。在此實施例中’ PLGA的分子量分別 為30000 Da及21000 Da。將油相滴加至2000 mL的冰水 相,其中水相含有0.1% PVA,並於1000 rpm下進行乳化。 本實施例之粒徑及藥物包覆率的分析方法與上述相同。結 果顯示含30000及21000 Da PLGA微球體的粒徑分別為 43.5±18.8及37.4±20.2 μπι’且其藥物包覆率分別為80.8 及 77.6%。 鲁 7. 85/15 PLGA 微球體 320 mg 的 olanzapine、800 mg PLGA (LA/GA ratio = 85/15)及4 % (w/w)的維生素E-TPGS —起溶於15 mL的二 氣曱烧以形成油相。在此實施例中,PLGA的分子量分別 為53000及27〇00 Da。將油相滴加至2000 mL的冰水相, 其中水相含有0.1% PVA,並於1000 rpm下進行乳化。本 . 實施例之粒徑及藥物包覆率的分析方法與上述相同。結果 顯示含53000及27000 Da之微球體的粒徑分別為 58.8±28·4及43.9±20.6 μηι,且其藥物包覆率分別為74.7 及 77.0%。 8.不同釋放速率控制劑之配方 320 mg 的 olanzapine、800 mg 的 PLGA (LA/GA ratio = 85/15, M.W. = 53000)及不同的釋放速率控制劑(span* 80、1. 50/50 PLGA ® with 0, 7, 26 and 42% Vitamin-E TPGS 80 mg of olanzapine, 200 mg of PLGA (LA/GA ratio -50/50, MW = 43000) and different amounts of vitamins e-TPGS (0, 7, 26, 42% by weight) was dissolved together in 5 mL of dichloromethane to form an oil phase. The oil phase was added dropwise to a 1 mL aqueous ice water phase containing 1% polyethylene glycol (PVA); and emulsified at 1 rpm. The obtained o/w emulsion was continuously allowed to stand at room temperature for 3 hours, and the microspheres were collected by centrifugation, washed with F68 and water, and lyophilized. The particle size and drug coverage of the microspheres were analyzed by Multisizer and high performance liquid chromatography (HPLC), respectively. Results® showed that the microspheres of vitamin E-TPGS containing strontium, 7, 26 and 42% (w/w) were 68.4 ± 28.3, 71.6 ± 27.3, 91.0 ± 35.8, 101.9 ± 42.8 μιη, respectively. The coverage rates are 77.7, 83 5, 85 9 and 85.2 〇/, respectively. . 2. 85/15 PLGA microspheres containing 0, 4, 15 and 26% vitamin E-TPGS 320 mg of olanzapine, 800 mg of PLGA (LA/GA ratio = 85/15, MW = 53000) and varying amounts of vitamins E-TPGS (0, 4, 200927152 15, 26% by weight) was dissolved together in 15 mL of dichloromethane to form an oil phase. The oil phase was added dropwise to 2000 mL of an ice-water phase containing 0.1 °/〇 of polyvinyl alcohol (pvA) and emulsified at 1 rpm. The method of disturbing, collecting and analyzing the present embodiment is the same as that of the first embodiment. The results showed that the microspheres containing 〇, 4, 15 and 26% (w/w) vitamin E_TpGS were 40.0±21.3, 58 8±28.4, 47.4±21.4 and 62.9±25·9 μιη, respectively, and their drug coating The rates were 77.2, 74.7, 87.6 and 83.7%, respectively. © 3. 50/50 PLGA microspheres with different aqueous phases 80 mg of 〇ianzapine, 2 mg of PLGA (LA/GA ratio = 50/50, MW = 43000) and 42% (w/w) of vitamins E-TPGS - dissolved in 5 mL of dichloromethane to form an oil phase. The oil phase was added dropwise to a 1000 mL ice water phase and emulsified at 1 rpm; the ice water phase contained 〇.〇5 % PVA, respectively, or 0.05% PVA containing 0.5% gelatin. The obtained mash/w emulsion was continuously stirred at room temperature for 3 hours, and the microspheres were collected by centrifugation, washed with F68 and water, and lyophilized. The analysis method of the particle size and drug coverage of this example ® example is the same as above. The results showed that the particle diameter of the microspheres containing no gelatin and 0.5% gelatin were 108.7 ± 37.3 and 85.5 ± 31.4 μηη, respectively, and the drug coverage rates were 74.1 and 73.1%, respectively. 4. 85/15 PLGA microspheres with different oil phases 320 mg of olanzapine, 800 mg of PLGA (LA/GA ratio = 85/15, MW = 53000) and 15 w/w% of vitamin E-TPGS - 14 200927152 Dissolved in 15 mL of dioxane to form an oil phase. In this example, the dichloromethane is pure dichloromethane (formulation #1), ethanol-containing dichloromethane (DCM: ethanol = 2:1, formula #2), and acetone-containing dichloromethane ( DCM: Acetone = 2: 1, Formula #3). The oil phase was added dropwise to a 2000 mL ice water phase in which the aqueous phase contained 0.1% PVA and was emulsified at 1000 rpm. The analysis method of the particle size and the drug coverage of the present embodiment is the same as described above. The results showed that the particle sizes of the microspheres containing formula #1, #2, and #3 were 76.2±31, 4, 70.6±31.8, and 70.6±31.8 μηη, respectively, and the drug coverage rates were 86.8, © 89.7, and 88.5%, respectively. . 5. 85 85 PLGA microspheres with different LA/GA ratios 320 mg of olanzapine, 800 mg of PLGA and 15% (w/w) of vitamin E-TPGS - dissolved in 15 mL of di-methane to form an oil phase , where PLGA has different LA/GA ratios, which are 85/15: 50/50 = 3: 1 (formulation #4), 85/15: 50/50 = 1 : 3 (formulation #5) and 75/ 20 ·· 50/50 = 4 : 1 (Recipe #6). The above oil phase was added dropwise to a 2000 mL ice water mash phase in which the aqueous phase contained 0.1% PVA and was emulsified at 1000 rpm. The analysis method of the particle size and the drug coverage of the present embodiment is the same as described above. The results showed that the particle sizes of the microspheres containing the formula, #5 and #6 were 62.2 ± 32.0, 59.1 ± 24.9 and 41.1 ± 19.1 μηη, respectively, and the drug coverage rates were 84.9, 84.2 and 83.2%, respectively. 6. 75/25 PLGA microspheres 320 mg of olanzapine, 800 mg PLGA (LA/GA ratio = 15 200927152 75/25) and 4% (w/w) of vitamin e-TPGS - dissolved in 15 mL of two gases Decane to form an oil phase. In this example, the molecular weights of 'PLGA' were 30,000 Da and 21,000 Da, respectively. The oil phase was added dropwise to a 2000 mL ice water phase in which the aqueous phase contained 0.1% PVA and was emulsified at 1000 rpm. The analysis method of the particle size and the drug coverage of the present embodiment is the same as described above. The results showed that the particle sizes of 30,000 and 21,000 Da PLGA microspheres were 43.5 ± 18.8 and 37.4 ± 20.2 μπι, respectively, and the drug coverage was 80.8 and 77.6%, respectively. Lu 7.85/15 PLGA microspheres 320 mg of olanzapine, 800 mg PLGA (LA/GA ratio = 85/15) and 4% (w/w) of vitamin E-TPGS - soluble in 15 mL of dioxane Burn to form an oil phase. In this embodiment, the molecular weights of PLGA are 53,000 and 27 〇 00 Da, respectively. The oil phase was added dropwise to a 2000 mL ice water phase in which the aqueous phase contained 0.1% PVA and was emulsified at 1000 rpm. The analysis method of the particle size and the drug coverage of the examples is the same as described above. The results showed that the particle diameters of 53000 and 27000 Da microspheres were 58.8±28·4 and 43.9±20.6 μηι, respectively, and the drug coverage was 74.7 and 77.0%, respectively. 8. Formulation of different release rate control agents 320 mg of olanzapine, 800 mg of PLGA (LA/GA ratio = 85/15, M.W. = 53000) and different release rate control agents (span* 80,

SpaiT 85、油酸、PEG-PCL雙團聯共聚物、甘油三辛酸酯 16 200927152 (glyceryl tricaprylate)、Pluronic®及 Tween® 80) — 起溶於 15 mL的二氯曱烷以形成油相。將油相滴加至2000 mL的冰 水相,其中水相含有0.1 % PVA,並於1000 rpm下進行乳 化。本實施例之粒徑及藥物包覆率的分析方法與上述相 同。結果顯示含Span* 80、Span* 85、油酸、PEG-PCL雙團 聯共聚物、甘油三辛酸醋(glyCeryl tricaprylate)、Pluronic* 及Tween* 80之微球體的粒徑分別為46.7±18.6、 40.3±15.5、46.3±22.6、55.7±27.3、49.5±22.0、68.1±30.9、 ❹ 30.1±14.9 μιη,且其藥物包覆率分別為86.9、78.2、79.4、 87.2、69.5、85.2 及 75.5%。 9· k Wvo藥物釋放 評估並篩選適合的Sprague-Dawley大鼠進行後續實 驗。取 250 至 300 g 的 Sprague-Dawley 大鼠,以 20-或 21_ 口徑(gauge)的針頭插至股二頭肌以進行注射。注射的劑量 ❹依不同的配方濃度而有所不同,但原則上每次注射劑量不 超過1 mL。每隻大鼠分別給予4〇 mg之olanzapine/kg體重。 在每個不同的時間點,由尾靜脈抽取Oj mL的血液樣 本至含肝素之收集管(heparanized collection tubes)中。在 主射藥物之前,先抽取一次血液樣本,並在注射之後的 天分別抽取複數次的血液樣本。抽取的時間點分別為注射 後第5分鐘、1〇分鐘、3〇分鐘、1小時、2小時、4小時、 6小時、1天、2天、4天、7天、10天、14天、17天、21 天、24天、28天、31天、35天、38天、42天、45天及 17 200927152 50天’並進一步取得血漿,以HPLC/MS-MS分析血漿中 olanzapine 的濃度 ° 將實施例2之含I5%(w/w)維生素E-TPGS之微球體以 肌肉注射至大鼠體内。以不含TPGS之微球體(僅有 PLGA),或以 Tween 80 取代 TPGS (PLGA/Tween 80)作為 實驗組。參照第1圖,含TPGS之微球體可在大鼠體内持 續地釋放olanzapine,且其藥物適放曲線沒有遲滯期(lag phase) ° 〇 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 200927152SpaiT 85, oleic acid, PEG-PCL di-linked copolymer, glyceryl tricaprylate 16 200927152 (glyceryl tricaprylate), Pluronic® and Tween® 80) — dissolved in 15 mL of dichloromethane to form an oil phase. The oil phase was added dropwise to a 2000 mL ice water phase in which the aqueous phase contained 0.1% PVA and was emulsified at 1000 rpm. The analysis method of the particle size and the drug coverage of the present embodiment is the same as described above. The results showed that the particle diameters of the microspheres containing Span* 80, Span* 85, oleic acid, PEG-PCL double-copolymer, glyCeryl tricaprylate, Pluronic* and Tween* 80 were 46.7±18.6, respectively. 40.3±15.5, 46.3±22.6, 55.7±27.3, 49.5±22.0, 68.1±30.9, ❹30.1±14.9 μιη, and the drug coverage rates were 86.9, 78.2, 79.4, 87.2, 69.5, 85.2 and 75.5%, respectively. 9. k Wvo drug release Assessment and screening of suitable Sprague-Dawley rats for subsequent experiments. Sprague-Dawley rats, 250 to 300 g, were inserted into the biceps femoris with a 20- or 21-gauge needle for injection. The dose to be injected varies depending on the formulation concentration, but in principle the dose is not more than 1 mL per injection. Each rat was given 4 mg of olanzapine/kg body weight. At each different time point, Oj mL blood samples were drawn from the tail vein into heparanized collection tubes. A blood sample is taken once before the main injection of the drug, and a plurality of blood samples are taken separately on the day after the injection. The time points extracted are 5 minutes, 1 minute, 3 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 1 day, 2 days, 4 days, 7 days, 10 days, 14 days after injection, respectively. 17 days, 21 days, 24 days, 28 days, 31 days, 35 days, 38 days, 42 days, 45 days, and 17 200927152 50 days' and further plasma was obtained, and the concentration of olanzapine in plasma was analyzed by HPLC/MS-MS. The microspheres containing 15% (w/w) of vitamin E-TPGS of Example 2 were intramuscularly injected into rats. TPGS-free microspheres (PLGA only) or Tween 80 instead of TPGS (PLGA/Tween 80) were used as experimental groups. Referring to Figure 1, the TPGS-containing microspheres can continuously release olanzapine in the rat, and the drug-adapted curve has no lag phase. Although the present invention has been disclosed in the preferred embodiment as above, It is not intended to limit the invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. Prevail. 200927152

【圖式簡單說明】 第1圖顯示本發明持續放組成物之藥物釋放曲線。 【主要元件符號說明】 無。 19BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the drug release profile of the continuous release composition of the present invention. [Main component symbol description] None. 19

Claims (1)

200927152 十、申請專利範圓: 物、^生一二無Γ二時間之持續釋放組成物,包括一聚合 性劑及該釋放速率控制劑分劑’其中該生物活 該釋放速率控制劑 :,續釋放組成物中’且 2. 如物'魏劑之釋放速率。 放組成物,:中圍第1項所述之無遲滯時間之持續釋 ❹ 合物、胜月~物活性劑包括蛋白質、核酸、碳水化 胜肽、免疫原或荷爾蒙。 3. 如申請專利範圍第丨項所述之無遲滯時間之持續釋 、及成物’其中該生物活性純括小分子藥物、抗腫瘤藥 ,抗組織胺藥劑、抗精神病藥劑、抗潰癌藥劑、抗癌藥 劑、心血管藥劑、支氣管擴張劑、血管擴張劑、中樞神經 系統藥劑或麻醉劑。 4’如申請專利範圍第1項所述之無遲滯時間之持續釋 放組成物’其中該聚合物為一生物可分解聚合物。 ^ 5.如申請專利範圍第1項所述之無遲滯時間之持續釋 放、組成物,其中該聚合物包括磷脂質、卵磷脂、羥乙酸鹽、 聚乳酸、聚乙醇酸、聚乳酸-乙醇酸(PLGA)、聚麩胺酸、聚 己内酯多元醇(pCL)、聚胺基酸、聚對二氧六環酮、聚羥基 丁酸酯、聚磷脂、聚酯塑聚氨酯、聚羧基苯氧丙烷-癸二酸、 聚原酸酯、聚碳酸酯樹脂、聚酯醢胺、聚酐、聚縮醛、聚 氰基丙烯酸酯、聚醚酯、聚(亞烷基烷基)或上述之組合。 6.如申請專利範圍第1項所述之無遲滯時間之持續釋 放組成物,其中該釋放速率控制劑佔該持續釋放組成物全 20 200927152 部重量的1-50%。 7. 如申請專利範圍第1項所述之無遲滯時間之持續釋 放組成物,其中該釋放速率控制劑包括sPan® 80、Span!&amp; 85、油酸、PEG-PCL雙團聯共聚物、甘油三辛酸醋、Pluronic® (F68)、Tween® 80 或維生素 E-TPGS。 8. 如申請專利範圍第1項所述之無遲滯時間之持續釋 放組成物,其中該持續釋放組成物持續地釋放該生物活性 劑。 © 9.如申請專利範圍第1項所述之無遲滯時間之持續釋 放組成物’其中該持續釋放組成物之生物活性劑包覆率大 於 70%。 10.如申請專利範圍第1項所述之無遲滯時間之持續 釋放組成物’其中該持續釋放組成物為一微球體、微粒體 或微膠囊。 11·如申請專利範圍第1項所述之無遲滞時間之持續 ©釋放組成物’其中該持續釋放組成物之直徑大於5 μιη。 1 ^ 2.如申請專利範圍第1項所述之無遲滯時間之持續 釋放組成物’其中該持續釋放組成物用於肌肉注射或皮下 注射。 3. 種製備持續釋放組成物之方法,包括 知1供/由相’包括一生物活性劑、一聚合物以及一釋 放速率控制劑; 水相,包括一界面活性劑; 此合該油相與該水相以形成該持續釋放組成物,以及 21 200927152 回收該持續釋放組成物。 14. 如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該油相更包括一溶劑。 15. 如申請專利範圍第14項所述之製備持續釋放組成 物之方法,其中該溶劑包括二氣甲烷、乙酸乙酯、苯甲醇、 丙酮、醋酸、丙醯碳酸酯、氯仿、1,4-二氧陸圜、二曱基 曱醯胺(DMF)、二甲基亞砜(DMSO)、曱苯或四氳呋喃 (THF)。 ❹ 16.如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該生物活性劑包括蛋白質、核酸、碳水化 合物、胜肽、免疫原或荷爾蒙。 17.如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該生物活性劑包括小分子藥物、抗腫瘤藥 劑、抗組織胺藥劑、抗精神病藥劑、抗潰瘍藥劑、抗癌藥 劑、心血管藥劑、支氣管擴張劑、血管擴張劑、中樞神經 系統藥劑或麻醉劑。 © 18.如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該聚合物為一生物可分解聚合物。 19.如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該聚合物包括磷脂質、卵磷脂、羥乙酸鹽、 聚乳酸、聚乙醇酸、聚乳酸-乙醇酸(PLGA)、聚麵胺酸、聚 己内酯多元醇(PCL)、聚胺基酸、聚對二氧六環酮、聚羥基 丁酸酯、聚磷脂、聚酯型聚氨酯、聚羧基苯氧丙烷-癸二酸、 聚原酸酯、聚碳酸酯樹脂、聚酯醯胺、聚酐、聚縮醛、聚 22 200927152 氰基丙烯酸酯、聚醚酯、聚(亞烷基烷基)或上述之組合。 20. 如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該界面活性劑包括聚乙烯醇(PVA)、NP-5、 Triton x-100、Tween 80、PEG 200-800、十二烧基硫酸納 (SDS)、醇乙氧基化物、炫基苯紛羥乙基鹽、二級醇乙氧基 化物、脂肪酸酯或烷基聚醣苷。 21. 如申請專利範圍第13項所述之製備持續釋放組成 物之方法’其中該釋放速率控制劑包括Span® 8〇、Span® Ο 85、油酸、PEG-PCL雙團聯共聚物、甘油三辛酸酯、plur〇nic® (F68)、Tween® 80 或維生素 E-TPGS。 22. 如申睛專利範圍第13項所述之製備持續釋放組成 物之方法,其中該釋放速率控制劑佔油相的重量百 分比。 23. 如申請專利範圍第13項所述之製備持續釋放組成 物之方法,其中該持續釋放組成物為一微球體、微粒或微 膠囊。 ❹ 24. —種用於治療動物之組成物,包括一有效量之申 請專利範圍第1項之持續釋放组成物。 、25.如中請專利範圍第24項所述之用於治療動物之組 成物’其中該動物為一哺乳動物。 第24 _述之_治療動物之組 成物,其中該動物為一人类頁。 23200927152 X. Patent application: The continuous release composition of the substance, the second time and the second time, including a polymerizing agent and the release rate controlling agent agent, wherein the biological activity release rate controlling agent:, continuous release The rate of release of the 'and 2.' propellant in the composition. The composition of the composition, the continuous release of the stagnation time and the active agent described in the first paragraph of the middle section include proteins, nucleic acids, carbohydrates, immunogens or hormones. 3. The continuous release without delay time as described in the scope of the patent application, and the composition of the biological activity pure small molecule drug, antineoplastic agent, antihistamine agent, antipsychotic agent, anticancer agent , anticancer agents, cardiovascular agents, bronchodilators, vasodilators, central nervous system agents or anesthetics. 4' A sustained release composition of no hysteresis time as described in claim 1 wherein the polymer is a biodegradable polymer. ^ 5. The sustained release, composition without delay time as described in claim 1, wherein the polymer comprises phospholipids, lecithin, glycolate, polylactic acid, polyglycolic acid, polylactic acid-glycolic acid (PLGA), polyglutamic acid, polycaprolactone polyol (pCL), polyamino acid, poly-p-dioxanone, polyhydroxybutyrate, polyphospholipid, polyester polyurethane, polycarboxyphenoxy Propane-sebacic acid, polyorthoester, polycarbonate resin, polyester decylamine, polyanhydride, polyacetal, polycyanoacrylate, polyether ester, poly(alkylene alkyl) or a combination thereof . 6. The sustained release composition without hysteresis time as recited in claim 1, wherein the release rate controlling agent comprises from 1 to 50% by weight of the sustained release composition. 7. The sustained release composition having no lag time as described in claim 1, wherein the release rate controlling agent comprises sPan® 80, Span! &amp; 85, oleic acid, PEG-PCL double-coupling copolymer, Triglyceride, Pluronic® (F68), Tween® 80 or Vitamin E-TPGS. 8. A sustained release composition without lag time as described in claim 1 wherein the sustained release composition continuously releases the bioactive agent. © 9. The sustained release composition without hysteresis as described in claim 1 wherein the sustained release composition has a bioactive agent coverage of greater than 70%. 10. The sustained release composition without hysteresis as described in claim 1 wherein the sustained release composition is a microsphere, microsome or microcapsule. 11. The duration of no lag time as described in claim 1 of the patent application section </ RTI> </ RTI> </ RTI> <RTI ID=0.0>> </ RTI> </ RTI> <RTIgt; 1 ^ 2. The sustained release composition without hysteresis as described in claim 1 wherein the sustained release composition is for intramuscular or subcutaneous injection. 3. A method of preparing a sustained release composition comprising: providing a bioactive agent, a polymer, and a release rate controlling agent; an aqueous phase comprising a surfactant; The aqueous phase forms the sustained release composition, and 21 200927152 recovers the sustained release composition. 14. The method of preparing a sustained release composition according to claim 13, wherein the oil phase further comprises a solvent. 15. The method of preparing a sustained release composition according to claim 14, wherein the solvent comprises dimethane, ethyl acetate, benzyl alcohol, acetone, acetic acid, propylene carbonate, chloroform, 1,4- Dioxane, dimercaptodecylamine (DMF), dimethyl sulfoxide (DMSO), toluene or tetrahydrofuran (THF). The method of preparing a sustained release composition according to claim 13, wherein the bioactive agent comprises a protein, a nucleic acid, a carbohydrate, a peptide, an immunogen or a hormone. 17. The method of preparing a sustained release composition according to claim 13, wherein the bioactive agent comprises a small molecule drug, an antitumor agent, an antihistamine agent, an antipsychotic agent, an antiulcer agent, an anticancer agent. , cardiovascular agents, bronchodilators, vasodilators, central nervous system agents or anesthetics. The method of preparing a sustained release composition according to claim 13, wherein the polymer is a biodegradable polymer. 19. The method of preparing a sustained release composition according to claim 13, wherein the polymer comprises phospholipid, lecithin, glycolate, polylactic acid, polyglycolic acid, polylactic acid-glycolic acid (PLGA). , polyglycolic acid, polycaprolactone polyol (PCL), polyamino acid, poly-p-dioxanone, polyhydroxybutyrate, polyphospholipid, polyester polyurethane, polycarboxyphenoxypropane-oxime Diacid, polyorthoester, polycarbonate resin, polyester decylamine, polyanhydride, polyacetal, poly 22 200927152 cyanoacrylate, polyether ester, poly(alkylene alkyl) or a combination thereof. 20. The method of preparing a sustained release composition according to claim 13, wherein the surfactant comprises polyvinyl alcohol (PVA), NP-5, Triton x-100, Tween 80, PEG 200-800, Sodium dodecyl sulfate (SDS), alcohol ethoxylate, leucoyl hydroxyethyl salt, secondary alcohol ethoxylate, fatty acid ester or alkyl polyglycoside. 21. The method of preparing a sustained release composition according to claim 13, wherein the release rate controlling agent comprises Span® 8®, Span® 85, oleic acid, PEG-PCL double-copolymer, glycerin Tricaprylate, plur〇nic® (F68), Tween® 80 or vitamin E-TPGS. 22. The method of preparing a sustained release composition according to claim 13, wherein the release rate controlling agent comprises a weight percentage of the oil phase. 23. The method of preparing a sustained release composition according to claim 13, wherein the sustained release composition is a microsphere, microparticle or microcapsule. ❹ 24. A composition for treating an animal comprising an effective amount of the sustained release composition of claim 1 of the patent application. 25. The composition for treating an animal as described in claim 24, wherein the animal is a mammal. Item 24 - The composition of a therapeutic animal, wherein the animal is a human page. twenty three
TW097150596A 2007-12-27 2008-12-25 Sustained release composition and manufacturing method TWI367100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097150596A TWI367100B (en) 2007-12-27 2008-12-25 Sustained release composition and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW96150511 2007-12-27
TW097150596A TWI367100B (en) 2007-12-27 2008-12-25 Sustained release composition and manufacturing method

Publications (2)

Publication Number Publication Date
TW200927152A true TW200927152A (en) 2009-07-01
TWI367100B TWI367100B (en) 2012-07-01

Family

ID=44863480

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097150596A TWI367100B (en) 2007-12-27 2008-12-25 Sustained release composition and manufacturing method

Country Status (1)

Country Link
TW (1) TWI367100B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487542B (en) 2012-12-06 2015-06-11 Ind Tech Res Inst Bioresorbable porous film

Also Published As

Publication number Publication date
TWI367100B (en) 2012-07-01

Similar Documents

Publication Publication Date Title
US9161943B2 (en) Sustained release composition and manufacturing method thereof
JP5222550B2 (en) Sustained release composition and method for producing the same
EP0766554B1 (en) Polymer microparticles for drug delivery
Shi et al. Current advances in sustained-release systems for parenteral drug delivery
EP1742616B1 (en) Sustained-release microspheres and methods of making and using same
JP5165239B2 (en) Method for the preparation of controlled release formulations
CN100518828C (en) Prolonged release biodegradable microspheres and method for preparing same
JP2011144208A (en) Controlled release composition
WO2002036169A2 (en) Methods and compositions for enhanced delivery of bioactive molecules
JP2011037882A (en) Method for extracting residual solvent and microparticle produced thereby
WO2006071208A1 (en) Polymeric implants, preferably containing a mixture of peg and plg, for controlled release of a gnrh
WO2000040259A1 (en) Prolonged release microsphere encapsulating luteinizing hormone-releasing hormone analogues and method for preparing the same
CN108434118A (en) Glucagon-like peptide-1 analogs sustained-release micro-spheres and preparation method thereof
JP2016527308A (en) Entecavir microspheres and pharmaceutical composition for parenteral administration containing the same
EP2074988A1 (en) Sustained release composition and manufacturing method thereof
TW200927152A (en) Sustained release composition and manufacturing method
CN109496152A (en) The method of the intramuscular inventory and its prevention and treatment of deccox composition
JPH07278277A (en) Ester at terminal carboxyl group of in-vivo decomposable polymer
JP3026228B2 (en) Sustained-release preparation and method for producing the same
JP3524195B2 (en) Base for sustained release formulation
JP5222917B2 (en) Sustained release composition and method for producing the same
JP6950958B2 (en) Composition for enteral administration containing nucleic acid
Cunningham et al. Formulation of depot delivery systems