TW200925291A - Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder - Google Patents

Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder Download PDF

Info

Publication number
TW200925291A
TW200925291A TW96147445A TW96147445A TW200925291A TW 200925291 A TW200925291 A TW 200925291A TW 96147445 A TW96147445 A TW 96147445A TW 96147445 A TW96147445 A TW 96147445A TW 200925291 A TW200925291 A TW 200925291A
Authority
TW
Taiwan
Prior art keywords
silver
metal salt
copper
copper alloy
nano silver
Prior art date
Application number
TW96147445A
Other languages
Chinese (zh)
Inventor
Qi-Lian Lin
Yun-Zhang Ceng
sheng-liang Wang
Ming-Xiong Wei
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW96147445A priority Critical patent/TW200925291A/en
Publication of TW200925291A publication Critical patent/TW200925291A/en

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to a method for preparing a copper-silver alloy nanoslurry and a copper-silver alloy nanopowder. The method for preparing the copper-silver alloy nanoslurry includes the following steps: adding silver metal salts and copper metal salts into deionized water and uniformly mixing them to form a metal salt aqueous solution; adding a polymer protecting agent into the metal salt aqueous solution and uniformly mixing them; and adding a reducing agent for reaction at room temperature and obtaining the copper-silver alloy nanoslurry. The method for preparing the copper-silver alloy nanopowder includes the following step of centrifuging, rinsing and drying the copper-silver alloy nanoslurry to obtain the copper-silver alloy nanopowder. The method for preparing the copper-silver alloy nanoslurry and copper-silver alloy nanopowder can be performed under room temperature so as to reduce the energy consumption during mass preparation.

Description

200925291 九、發明說明: 【發明所屬之技術領域】 本發明侧於-種合金綠及合錄末之製備方法,尤其係指一種奈 米銀銅合金聚液及奈米銀銅合金粉末之製備方法,其係應用於抗菌、抗靜 電及電磁干擾(EMI)防護之領域。 【先前技術】 奈米金屬微粒的製作有許多方法,主要分成氣相凝結法與液相化學合 ❺ 成法。通常氣相凝結法所需設備昂貴且成本高,而液相化學合成法,相對 來說所需設備簡單且易操作。液相化學合成法又可區分為沉戮 法、溶膠-凝膠(sol-gel)法、水熱(hydrothermal)法(hydrothermal)及電化學 (electrochemical)法等。使用還原沉澱法製作奈米級金屬微粒,其溶液相可 為多元醇或水溶液。 奈米銀的製備已發展多年,也有許多文獻與專利報導,但少有相關奈 米銀銅合金漿液與粉末的製作。EP0937398專利是將奈米銀及奈米銅負载 在二氧化鈦微粒(titanium oxide particle)的表面,作為抗菌及除臭材料。其製 作方法是將銀或銅的氨鹽錯合物加入懸浮有二氧化鈦微粒的水溶液中,再 Q 加入還原劑’使奈米銀及奈米銅沉澱在二氧化鈦微粒表面❶使用的還原劑 為葡萄糖(glucose)及聯胺(hydrazine)。 W02005101427 專利有關應用於印刷電路板(printed circuit board, PCB) 導電奈米金屬墨水(conductingnano-metal ink)的製作,奈米金屬是由金屬的 鹽類與作為還原劑的有機酸混合加熱製得。使用的金屬鹽類包含至少一種 下列金屬鹽:銀、銅、金、白金、鈀等的硝酸鹽、醋酸鹽或氣化物等。 WO200631229專利是製作含有金屬的微米或奈米粒子的製作方法,這 些粒子具有抗黴菌(anti-fimgal)、抗靜電(anti-static)或電磁干擾(EMI)防護 (electromagnetic interference shielding)等性能。製作方法為在銀、銅、錄、 辞或鋁的金屬鹽溶液中或前述鹽類的混合液中,加入驗性液製得含金屬的 200925291 沉澱物,再經分離乾燥後得到含有金屬的粒子。使用的鹼性液為氫氧化納 (sodium hydroxide)溶液、氨水(ammonium hydroxide)溶液或其混合溶液 〇 但上述習知技術的製造方法需要加熱的步驟或使用氫氧化鈉強鹼,如 此於大量製備時較浪費能源且氫氧化鈉強鹼具有腐蝕性,易危害操作人員 之安全。本發明人鑒於習知技術之可改善,提供一種奈米銀銅合金漿液及 奈米銀銅合金粉末之製備方法,其能在室溫下進行,且不需使用氫氧化鈉 強鹼,以維護操作人員之安全。 【發明内容】 ® 本發明之主要目的在於提供一種奈米銀銅合金漿液及奈米銀銅合金粉 末之製備方法,其能在室溫下進行,故能減少大量製備時能源之浪費。 本發明之次要目的在於提供一種奈米銀銅合金漿液及奈米銀銅合金粉 末之製備方法,其不需使用氫氧化鈉強鹼,以維護操作人員之安全。 本發明關於一種奈米銀銅合金漿液及奈米銀銅合金粉末之製備方法, 該奈米銀銅合金漿液之製備方法,其步驟包括:將銀金屬鹽、銅金屬鹽加 入去離子水中混合均勻,形成金屬鹽水溶液;加入高分子保護劑至該金屬 鹽水溶液並混合均勻;及於室溫下加入還原劑反應後,得到奈米銀銅合金 ⑩ 漿液。該奈米銀銅合金粉末之製備方法,其步驟包括:將銀金屬鹽、銅金 屬鹽加入去離子水中混合均勻,形成金屬鹽水溶液;加入高分子保護劑至 該金屬鹽水溶液並混合均勻;於室溫下加入還原劑反應後,得到奈米銀銅 CT金漿液’及離〜、H及乾燥該奈米銀銅合金漿液後得到該奈米銀銅 合金粉末。 Μ ' 【實施方式】 茲為使貴審查委員對本發明之特徵及方法步驟有更進 認識,現將詳細設計之原理及本發明之較佳實施例說明如後。 、 本發明奈米銀銅合金漿液之製備方法,其步驟包括(如第一圖所示): 6 200925291 SI 1將銀金屬鹽、銅金屬鹽加入去離子水中混合均勻 S12加入高分子保護劑至該金屬鹽水溶液並混合均句;及成屬鹽水/合夜’ S13於室溫下加入還原劑反應後,得到奈米銀銅合金漿液。 本發明奈米銀銅合金粉末之製備方法,其^包括(如第二圖所示): S21將銀金屬鹽、銅金屬鹽加入去離子水中混合均勻, S22加入高分子保護劑至該金屬鹽水溶液並混合均勻; 屬 ,200925291 IX. Description of the invention: [Technical field of the invention] The invention relates to a method for preparing alloy green and the end of the recording, in particular to a method for preparing a nano silver copper alloy poly liquid and a nano silver copper alloy powder. It is used in the field of antibacterial, antistatic and electromagnetic interference (EMI) protection. [Prior Art] There are many methods for producing nano metal particles, which are mainly classified into a gas phase condensation method and a liquid phase chemical combination method. In general, the equipment required for gas phase condensation is expensive and costly, while liquid phase chemical synthesis requires relatively simple equipment and is easy to handle. The liquid phase chemical synthesis method can be further classified into a sinking method, a sol-gel method, a hydrothermal method, and an electrochemical method. The nano-sized metal particles are produced by a reduction precipitation method, and the solution phase may be a polyol or an aqueous solution. The preparation of nano-silver has been developed for many years, and there are many reports and patents, but there are few related nano-silver-copper alloy slurries and powders. In the EP 0 937 398 patent, nano silver and nano copper are supported on the surface of titanium oxide particles as an antibacterial and deodorizing material. The preparation method comprises the steps of: adding a silver or copper ammonia salt complex to an aqueous solution in which titanium dioxide particles are suspended, and then adding a reducing agent to precipitate nano silver and nano copper on the surface of the titanium dioxide particles, and the reducing agent used is glucose ( Glucose) and hydrazine. W02005101427 The patent relates to the production of a conductive nano-metal ink for printed circuit board (PCB), which is prepared by mixing and heating a metal salt with an organic acid as a reducing agent. The metal salts used include at least one of the following metal salts: nitrates, acetates or vapors of silver, copper, gold, platinum, palladium, and the like. The WO200631229 patent is a process for making micro or nano particles containing metals which have anti-fimgal, anti-static or electromagnetic interference shielding properties. The method comprises the steps of: adding a metal-containing 200925291 precipitate to a metal salt solution of silver, copper, lanthanum or aluminum or a mixture of the foregoing salts, and separating and drying to obtain a metal-containing particle. . The alkaline liquid used is a sodium hydroxide solution, an ammonia hydroxide solution or a mixed solution thereof. However, the above-mentioned conventional manufacturing method requires a heating step or a sodium hydroxide strong base, so that it is prepared in a large amount. It is more wasteful of energy and the alkalinity of sodium hydroxide is corrosive and is likely to endanger the safety of operators. The inventors of the present invention can improve the conventional technology, and provide a method for preparing a nano silver copper alloy slurry and a nano silver copper alloy powder, which can be carried out at room temperature without using sodium hydroxide and alkali to maintain Operator safety. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for preparing a nano silver copper alloy slurry and a nano silver copper alloy powder which can be carried out at room temperature, thereby reducing waste of energy in a large amount of preparation. A secondary object of the present invention is to provide a method for preparing a nano silver copper alloy slurry and a nano silver copper alloy powder which does not require the use of a strong alkali sodium hydroxide to maintain the safety of the operator. The invention relates to a method for preparing a nano silver copper alloy slurry and a nano silver copper alloy powder. The method for preparing the nano silver copper alloy slurry comprises the steps of: adding silver metal salt and copper metal salt to deionized water and mixing uniformly. Forming a metal salt aqueous solution; adding a polymer protective agent to the metal salt aqueous solution and mixing uniformly; and adding a reducing agent at room temperature to obtain a nano silver copper alloy 10 slurry. The method for preparing the nano silver-copper alloy powder comprises the steps of: adding a silver metal salt and a copper metal salt to deionized water to form a metal salt aqueous solution; adding a polymer protective agent to the metal salt aqueous solution and uniformly mixing; After adding a reducing agent at room temperature, a nano silver copper CT gold slurry is obtained, and the nano silver copper alloy powder is obtained by separating ~, H and drying the nano silver copper alloy slurry. [Embodiment] For a better understanding of the features and method steps of the present invention, the principles of the detailed design and the preferred embodiments of the present invention are described below. The preparation method of the nano silver-copper alloy slurry of the invention comprises the following steps (as shown in the first figure): 6 200925291 SI 1 adding silver metal salt and copper metal salt to deionized water and mixing uniformly S12 to add polymer protective agent to The aqueous solution of the metal salt is mixed with the same sentence; and the salt water/summary' S13 is added to the reducing agent at room temperature to obtain a nano silver copper alloy slurry. The preparation method of the nano silver-copper alloy powder of the invention comprises: (as shown in the second figure): S21 is mixed with silver metal salt and copper metal salt in deionized water, and S22 is added with a polymer protective agent to the metal salt. Aqueous solution and mixed evenly;

❹ S23於室溫下加入還原劑反應後,得到奈米銀鋼合金漿液;及 S24離心、清洗及乾燥該奈米銀銅合金漿液後,得到該奈米銀銅合金粉末。 步驟11及21巾,該銀金屬鹽係選自硝酸銀及賭酸銀之群組之其中之 -者,該銅金屬鹽__,且該銀金屬鹽於該去離子水中之浪度為 0. 005〜0. G5M及該銅金屬鹽於該去離子水中之濃度為G⑼5 〇 〇5M。 步驟12及22巾,該高分子保護劑於該去離子水中之濃度為 〇. 005〜0. 05的%,且該高分子保護劑係選自聚乙烯吡咯酮、聚乙烯醇及聚乙 稀乙二醇之群組之其中之一者。 步驟13及23中,該還原劑係選自聯胺及甲醛之群組之其中之一者, 且該奈米銀銅合金漿液中懸浮之銀銅合金粒子之粒徑為3 3〇nm。 步驟24中,該清洗步驟使用丙酮進行清洗,且該乾燥步驟之溫度為 60〜80〇〇 實施例一 於室溫下’在6〇〇cc去離子水中,加入〇 5g硝酸銀和〇 5g醋酸銅並 混合均勻形成金屬鹽水溶液,之後加入6.4g的水溶性高分子保護劑聚乙烯 吡咯_並混合均勻。之後溶液於室溫下攪拌均勻,再緩緩加入還原劑聯胺, 可獲得墨綠色的奈米銀銅合金漿液。經離心、丙鲷清洗,以60〜80°C乾燥後, 可得銀銅合金粉末。 實施例二 於室溫下’在600cc去離子水中,加入〇· 5g醋酸銀和〇. 5g醋酸銅並 混合均勻形成金屬鹽水溶液,之後加入6.4g的水溶性高分子保護劑聚乙烯 200925291 轉嗣並混合均勻。之後溶液於室溫下挽拌均勻,再緩緩加人還原劑聯胺, 可獲得墨綠色的奈米銀銅合金漿液。經離心、丙酮清洗,以6〇~8〇<t乾燥後, 可得銀銅合金粉末β ' 本發明是在水溶液中以化學還原沉澱法製作奈米級的銀銅合金漿液與 粉末。使用在水溶液中可溶解的含銀及含銅之金屬鹽類作為起始原料(包括 硝酸鹽類及醋酸鹽類等),配製含銀與含銅的金屬鹽類水溶液。在金屬鹽水 溶液中加入高分子保護劑,如水溶性聚乙烯η比略酮,其分子鏈上具有_c=〇 基上的氧原子及-C-N基上的氮原子所擁有的未配位電子對,與銀銅金屬離 子產生吸附作用而避免銀銅金屬離子團聚,故於後續步驟後,能製作出奈 ^ 米級的銀銅合金漿液及粉末。將銀、銅的金屬鹽類及高分子保護劑於水溶 液中攪伴均勻,再於室溫下加入還原劑使金屬離子還原,而製得奈米銀銅 合金漿液’經離心、清洗及乾燥該奈米銀銅合金漿液後,得到該奈米銀銅 合金粉末。還原劑可為甲搭(formaldehyde)或聯胺,甲路與金屬離子反應 可氧化成曱酸(formic acid)而釋出電子而將銀、銅金屬離子還原;聯胺與 金屬離子反應可氧化成水及氮氣,可釋出電子而將銀、銅金屬離子還原。 實施例一及實施例二所製作的奈米銀銅合金漿液樣品(此時奈米銀銅 合金粒子懸浮於奈米銀銅合金漿液中),使用Malvern雷射粒徑分析儀分 0 析’分析結果樣品的奈米銀銅合金粒子之粒徑波峰在約5咖的位置,99 ν〇ι% 的樣品集中在20 ran以下,奈米銀銅合金粒子之粒徑範圍約3-30 nm,如第 三圖所示。將上述奈米銀銅合金漿液經離心'丙嗣清洗,再乾燥後,可得 奈米銀銅合金粉末《另以相同條件製備純奈米銀與純奈米銅的粉末,分別 使用X-射線光電子能譜儀(EXCA)分析純奈米奈米銀、純奈米銅粉末及奈米 銀銅合金粉末的binding energy,結果如第四圖至第六圖所示。exca分析 圖譜顯示奈米銀銅合金粉末中銀3d5軌域的特性波峰,與銀粉末樣品比&, 偏移+4ev,如第七圖及第八圖所示。奈米銀銅合金粉末樣品中銅2P3軌域 的特性波峰,與純銅粉末樣品比較,偏移+〇· lev,如第九圏及第十圖所示。 上述結果顯示奈米銀銅合金粉末樣品中的銀與銅和純奈米銀粉末樣品及純 8 200925291 奈米銅粉末樣品中的銀與銅表面能有差異’即奈米銀銅合金粉末的銀與銅 有交互作用(interaction)產生,即銀與銅相互結合。 本發明之奈米銀銅合金漿液及奈米銀銅合金粉末之製備方法,其能在 室溫下進行,故能減少大量製備時能源之浪費,且不需使用氫氧化納強驗, 以維護操作人員之安全。 惟以上所述者’僅為本發明之較佳實施例而已,並非用來限定本發明 實施之範圍,舉凡依本發明申請專利範圍所述之構造、特徵及精神所為之 均等變化與修飾,均應包括於本發明之申請專利範圍内。 ❹ 【圖式簡單說明】 第一圖為本發明奈米銀銅合金漿液之製備方法之步驟流程圖。 第二圖為本發明奈米銀銅合金粉末之製備方法之步驟流程圖。 第三圖為本發明奈米銀銅合金漿液中懸浮之奈米銀銅合金粒子之粒徑分 布曲線圖。 第四圖為奈米銀粉末樣品之EXCA分析圖。 第五圖為奈米銅粉末樣品之EXCA分析圖。 第六圖為本發明奈米銀銅合金粉末樣品之EXCA分析圖。 Ο 第七圖為奈米銀粉末樣品之EXCA分析Ag3d5軌域特性波峰區域放大圖。 第八囷為本發明奈米銀銅合金粉末樣品之EXCA分析Ag3d5轨域特性波峰 區域放大圖。 第九圓為奈米銅粉末樣品之EXCA分析Cu2p3軌域特性波峰區域放大圖。 第十圖為本發明奈米銀銅合金粉末樣品之EXCA分析Cu2p3軌域特性波峰 區域放大圖。 【主要元件符號說明】❹ S23 is added to the reducing agent at room temperature to obtain a nano silver steel alloy slurry; and S24 is centrifuged, washed and dried to obtain the nano silver copper alloy powder. In steps 11 and 21, the silver metal salt is selected from the group consisting of silver nitrate and silver sulphuric acid, the copper metal salt __, and the silver metal salt has a wave length of 0 in the deionized water. 005~0. The concentration of G5M and the copper metal salt in the deionized water is G(9) 5 〇〇 5M. Steps 12 and 22, the concentration of the polymer protective agent in the deionized water is 〇. 005~0. 05%, and the polymer protective agent is selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol and polyethylene. One of the groups of ethylene glycol. In the steps 13 and 23, the reducing agent is one selected from the group consisting of hydrazine and formaldehyde, and the particle size of the silver-copper alloy particles suspended in the nano-silver-copper alloy slurry is 33 〇 nm. In step 24, the washing step is performed using acetone, and the temperature of the drying step is 60 to 80. Example 1 at room temperature in 6 cc of deionized water, adding 5 g of silver nitrate and 5 g of copper acetate. The mixture was uniformly mixed to form a metal salt aqueous solution, and then 6.4 g of a water-soluble polymer protective agent polyvinylpyrrole was added and uniformly mixed. After that, the solution was uniformly stirred at room temperature, and then the reducing agent hydrazine was gradually added to obtain a dark green nano silver copper alloy slurry. After centrifugation, washing with propylene, and drying at 60 to 80 ° C, a silver-copper alloy powder can be obtained. Example 2 at room temperature 'in 600 cc of deionized water, adding 〇·5g of silver acetate and 〇. 5g of copper acetate and mixing to form a metal salt aqueous solution, and then adding 6.4g of water-soluble polymer protective agent polyethylene 200925291 And mix well. Then, the solution is uniformly mixed at room temperature, and then the reducing agent hydrazine is gradually added to obtain a dark green nano silver copper alloy slurry. After centrifugation, acetone washing, and drying at 6 〇 to 8 〇 < t, silver-aluminum alloy powder β ' can be obtained. The present invention is a nano-sized silver-copper alloy slurry and powder produced by chemical reduction precipitation in an aqueous solution. A silver-containing and copper-containing metal salt aqueous solution is prepared by using a silver-containing and copper-containing metal salt which is soluble in an aqueous solution as a starting material (including nitrates and acetates). A polymer protective agent such as a water-soluble polyethylene η-p-ketone is added to the aqueous metal salt solution, and has an uncoordinated electron pair possessed by an oxygen atom on the _c=fluorenyl group and a nitrogen atom on the -CN group in the molecular chain. The silver-copper metal ions are adsorbed to avoid agglomeration of the silver-copper metal ions, so after the subsequent steps, the silver-copper alloy slurry and powder of the nanometer grade can be produced. The silver and copper metal salts and the polymer protective agent are uniformly mixed in the aqueous solution, and then the reducing agent is added at room temperature to reduce the metal ions, thereby preparing the nano silver copper alloy slurry by centrifugation, washing and drying. After the nano silver-copper alloy slurry, the nano silver-copper alloy powder was obtained. The reducing agent may be a formaldehyde or a hydrazine. The reaction of the roadway with the metal ion may be oxidized to a formic acid to release electrons to reduce silver and copper metal ions; and the hydrazine may be oxidized by reacting with a metal ion. Water and nitrogen release electrons and reduce silver and copper metal ions. Samples of the nano silver-copper alloy slurry prepared in the first embodiment and the second embodiment (in this case, the nano-silver-copper alloy particles are suspended in the nano-silver-copper alloy slurry), and analyzed by the Malvern laser particle size analyzer. As a result, the particle size peak of the nano silver-copper alloy particles is about 5 kPa, the sample of 99 ν〇ι% is concentrated below 20 ran, and the particle size of the nano silver-copper alloy particles is about 3-30 nm, such as The third picture shows. The above-mentioned nano silver-copper alloy slurry is washed by centrifugation and then dried to obtain nano-silver-copper alloy powder. The powder of pure nano-silver and pure nano-copper is prepared under the same conditions, and X-ray is used respectively. The photoelectron spectrometer (EXCA) analyzes the binding energy of pure nano-nano silver, pure nano-copper powder and nano-silver-copper alloy powder, and the results are shown in the fourth to sixth figures. The exca analysis shows the characteristic peaks of the silver 3d5 orbital domain in the nano-silver-copper alloy powder, compared with the silver powder sample &, offset +4ev, as shown in the seventh and eighth figures. The characteristic peak of the copper 2P3 orbital in the nano-silver-copper powder sample is offset + 〇· lev compared to the pure copper powder sample, as shown in the ninth and tenth figures. The above results show that the silver and copper and pure nano-silver powder samples in the nano-silver-copper alloy powder sample and the pure 8 200925291 nano-copper powder sample have different silver-copper surface energy's, that is, the silver of the nano-silver-copper alloy powder. Interaction with copper occurs, that is, silver and copper are combined with each other. The preparation method of the nano silver-copper alloy slurry and the nano silver-copper alloy powder of the invention can be carried out at room temperature, so that the waste of energy in a large amount of preparation can be reduced, and the use of the sodium hydroxide strong test is not required to maintain Operator safety. However, the above-mentioned embodiments are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention, and the equivalents and modifications of the structures, features, and spirits described in the claims of the present invention are It should be included in the scope of the patent application of the present invention. ❹ [Simplified description of the drawings] The first figure is a flow chart of the steps of the preparation method of the nano silver-copper alloy slurry of the present invention. The second figure is a flow chart of the steps of the preparation method of the nano silver copper alloy powder of the present invention. The third graph is a particle size distribution curve of the nano silver-copper alloy particles suspended in the nano silver-copper alloy slurry of the present invention. The fourth graph is an EXCA analysis of the nanosilver powder sample. The fifth graph is an EXCA analysis of the nano copper powder sample. The sixth figure is an EXCA analysis chart of the nano silver-copper alloy powder sample of the present invention.第七 The seventh figure is an enlarged view of the peak region of the Ag3d5 orbital characteristic of the EXCA analysis of the nanosilver powder sample. The eighth is an enlarged view of the peak region of the Ag3d5 orbital characteristic peak of the sample of the nano-silver-copper alloy powder of the present invention. The ninth circle is an enlarged view of the peak region of the Cu2p3 orbital characteristic of the EXCA analysis of the nano copper powder sample. The tenth graph is an enlarged view of the peak region of the Cu2p3 orbital characteristic of the EXCA analysis of the nano silver-copper alloy powder sample of the present invention. [Main component symbol description]

Claims (1)

200925291 十、申請專利範園: 1. 一種奈米銀銅合金漿液之製備方法,其步驟包括: 將銀金屬鹽、銅金屬鹽加入去離子水中混合均勻,形成金屬鹽水溶液; 加入兩分子保護劑至該金屬鹽水溶液並混合均勻;及 於室溫下加入還原劑反應後,得到奈米銀銅合金漿液。 2. 如申请專利範圍第!項所述之奈米銀銅合金聚液之製備方法,其中將該 銀金屬鹽、該銅金屬鹽加入該去離子水中混合均句,形成該金屬鹽水溶 液之步驟中,該銀金屬鹽係選自猶銀及酷酸銀之群組之其中之一者。 ❹ 3·如申請專利範圍第1項所述之奈米銀銅合金漿液之製備方法,其中將該 銀金屬鹽、細祕H加域去料树齡均自,臟該金屬鹽水溶 液之步驟中,該銅金屬鹽為醋酸銅。 4. 如申請專利範圍第1項所述之奈米銀銅合金漿液之製備方法,其中將該 銀金屬鹽、細金屬鹽加域去離子水巾混合均自,形成該金屬鹽水溶 液之步驟巾,祕金>1胁該絲子水巾之濃度為GiO 〇5M。 5. 如申請專利範圍第1項所述之奈米銀銅合金衆液之製備方法,其中將該 銀金雜、細金輕加域絲祕均自,碱該金屬鹽水溶 液之步驟中,細金屬鹽於該去離子水中之濃度為請5〜〇5Μβ Ο 6.如申請專利範圍第1項所述之奈米銀銅合金漿液之製備方法,其中加入 該高分伟魏姻财驗觀合均自之轉巾,额分子保護 劑於該去離子水中之濃度為0. 〇〇5~〇.的的%。 7.如申請專利範圍第1項所述之奈米銀銅合金聚液之製備方法其中加入 « 合均勻之㈣巾,該高分子保護 劑係選自聚乙稀财酮、聚乙_及聚乙稀乙二醇之群組之其中之一 者。 8·如申請專利範圍第1項所述之奈来銀錦合金聚液之製備方法其中於室 溫下加入該還原劑反應後’得到該奈米銀銅合金装液之步称中,該還原 劑係選自聯胺及甲醛之群組之其中之一者。 200925291 9. 如申請專利範圍第1項所述之奈米銀銅合金漿液之製備方法,其中於室 溫下加入該還原劑反應後,得到該奈米銀銅合金聚液之步驟中該奈米 銀銅合金衆液中懸浮之銀銅合金粒子之粒徑為咖。 10. —種奈米銀銅合金粉末之製備方法,其步驟包括: 將銀^屬鹽、銅金屬鹽加入去離子水中混合均勻,形成金屬鹽水溶液; 加入高分子保護劑至該金屬鹽水溶液並混合均勻; 於室溫下加入還原劑反應後,得到奈米銀銅合金漿液;及 離心、清洗及乾燥該奈米銀銅合金衆祕,得到該奈米銀銅合金粉末。 η·如申請專利範圍第10項所述之奈米銀銅合金衆液之製備方法,其中將 鵁銀金屬鹽、該銅金脣壅加入該去離子水中混合均^形成該金屬鹽水 溶液之步驟中,該銀金屬鹽係選自猶銀及醋酸銀之群組之其中之一 者。 12. 如申請專利範圍第1〇項所述之奈米銀銅合金漿液之製備方法,其中將 該銀金屬鹽、該銅金屬鹽加入該去離子水中混合均句,形成該金屬鹽水 溶液之步驟中,該銅金屬鹽為醋酸銅。 13. 如申請專利範圍第1〇項所述之奈米銀銅合金漿液之製備方法其中將 該銀金>1鹽、該銅金屬11加人該去離子水巾混合㈣,形成該金屬鹽水 ❹ 溶液之步驟中’該銀金屬鹽於該去離子水中之濃度為〇. 〇〇5〜〇. 05Μ。 14. 如申請專利範圍第10項所述之奈米銀銅合金漿液之製備方法其中將 該銀金屬鹽、該銅金屬發加入該去離子水中混合均勻,形成該金屬鹽水 溶液之步驟中’該銅金屬鹽於該去離子水中之濃度為請〇5μ。 15. 如申請專利範圍第1〇項所述之奈米銀銅合金漿液之製備方法,其中加 入該高分子保護劑至該金屬鹽水溶液並混合均勻之步驟中,該高分子保 護劑於該去離子水中之濃度為〇. 〇05〜〇. 05wt%。 16. 如申請專利範圍第1〇項所述之奈米銀銅合金裝液之製備方法,其中加 入該高分子保護劑至該金屬鹽水溶液並混合均勻之步驟中,該高分子保 護劑係選自聚乙烯吡咯酮、聚乙烯醇及聚乙烯乙二醇之群組之其中之一 200925291 者。 17.如申請專利範圍帛10項所述之奈米銀鋼合金聚液之製備方法,其中於 室溫下加入該還原劑反應後,得到該奈米銀銅合金衆液之步驟中,該還 原劑係選自聯胺及甲醛之群組之其中之一者。 18·如申請專利範Μ 10項所述之奈米銀銅合金漿液之製備方法,其中於 窒溫下加人該還原劑反應後’得到該奈米銀銅合金聚液之步驟中,該奈 練銅合金漿液中懸浮之銀銅合金粒子之粒徑為3〜3〇nm。 0.如申請專利範圍第1〇項所述之奈米銀钢合金漿液之製備方法,其中離 心、清洗及乾_奈綠銅合錢概,制該奈練齡金粉末之步 棘中’該清洗步驟使甩丙綱進行清洗。 2〇.如申請專利範圍第10項所述之奈米銀鋼合金聚液之製備方法,其中離 “、洗及乾縣奈米銀銅合金漿液後,得到該奈米銀銅合金粉末之步 騍中,該乾燥步驟之溫度為60〜80°c。200925291 X. Application for Patent Park: 1. A method for preparing nano silver-copper alloy slurry, the steps comprising: adding silver metal salt and copper metal salt to deionized water to form a metal salt aqueous solution; adding two molecules of protective agent The metal salt aqueous solution is uniformly mixed; and after adding a reducing agent at room temperature, a nano silver copper alloy slurry is obtained. 2. If you apply for a patent scope! The method for preparing a nano silver-copper alloy poly liquid, wherein the silver metal salt and the copper metal salt are added to the deionized water to form a mixed solution of the metal salt, and the silver metal salt is selected. One of the groups of Jubilee and Sour Silver. ❹ 3· The preparation method of the nano silver-copper alloy slurry according to claim 1, wherein the silver metal salt and the fine-grained H-added seed are all aged, and the step of sterilizing the metal salt aqueous solution is The copper metal salt is copper acetate. 4. The method for preparing a nano silver-copper alloy slurry according to claim 1, wherein the silver metal salt, the fine metal salt and the deionized water towel are mixed, and the step of forming the metal salt aqueous solution is , secret gold > 1 threatening the concentration of the silk water towel is GiO 〇 5M. 5. The method for preparing a nano silver-copper alloy liquid as described in claim 1, wherein the silver gold and fine gold are lightly added to the domain, and the alkali metal salt aqueous solution is fine. The concentration of the metal salt in the deionized water is 5~〇5Μβ Ο 6. The preparation method of the nano silver-copper alloy slurry as described in claim 1 of the patent application, wherein the high score Wei Wei marriage is observed The concentration of the molecular protection agent in the deionized water is 0. 〇〇5~〇.%. 7. The method for preparing a nano silver-copper alloy poly liquid according to claim 1, wherein a uniform (four) towel is added, and the polymer protective agent is selected from the group consisting of polyacetone, poly-b, and poly One of the groups of ethylene glycol. 8. The preparation method of the Naiyin silver alloy alloy poly liquid as described in claim 1, wherein the reducing agent is added at room temperature to react to obtain the nano silver-copper alloy liquid filling step, the reduction The agent is one selected from the group consisting of hydrazine and formaldehyde. 200925291 9. The method for preparing a nano silver-copper alloy slurry according to claim 1, wherein the nano-silver-copper alloy is obtained by adding the reducing agent at room temperature to obtain the nano silver-copper alloy poly-liquid step. The particle size of the silver-copper alloy particles suspended in the silver-copper alloy liquid is coffee. 10. A method for preparing a nano silver-copper alloy powder, the method comprising the steps of: adding a silver salt and a copper metal salt to deionized water to form a metal salt aqueous solution; adding a polymer protective agent to the metal salt aqueous solution; The mixture is uniformly mixed; after adding a reducing agent at room temperature, a nano silver copper alloy slurry is obtained; and the nano silver copper alloy is secreted by centrifugation, washing and drying to obtain the nano silver copper alloy powder. The method for preparing a nano silver-copper alloy liquid as described in claim 10, wherein the step of forming the metal salt aqueous solution by adding the silver metal salt and the copper gold lip to the deionized water The silver metal salt is selected from the group consisting of silver and silver acetate. 12. The method for preparing a nano silver-copper alloy slurry according to the first aspect of the invention, wherein the step of forming the metal salt aqueous solution by adding the silver metal salt and the copper metal salt to the deionized water The copper metal salt is copper acetate. 13. The method according to claim 1, wherein the silver gold > ❹ In the step of the solution, the concentration of the silver metal salt in the deionized water is 〇. 〇〇5~〇. 05Μ. 14. The method for preparing a nano silver-copper alloy slurry according to claim 10, wherein the silver metal salt and the copper metal are added to the deionized water and uniformly mixed to form the aqueous metal salt solution. The concentration of the copper metal salt in the deionized water is 〇5μ. 15. The method for preparing a nano silver-copper alloy slurry according to the first aspect of the invention, wherein the polymer protective agent is added to the metal salt aqueous solution and mixed uniformly, the polymer protective agent is disposed thereon The concentration in the ionic water is 〇. 〇05~〇. 05wt%. 16. The method for preparing a nano silver-copper alloy liquid as described in claim 1, wherein the polymer protective agent is selected by adding the polymer protective agent to the aqueous metal salt solution and mixing uniformly. One of the groups of 200925291 from the group of polyvinylpyrrolidone, polyvinyl alcohol and polyethylene glycol. 17. The method for preparing a nano silver steel alloy poly liquid according to claim 10, wherein in the step of adding the reducing agent at room temperature to obtain the nano silver copper alloy liquid, the reduction The agent is one selected from the group consisting of hydrazine and formaldehyde. 18. The method for preparing a nano silver-copper alloy slurry according to claim 10, wherein the step of obtaining the nano silver-copper alloy poly-liquid after the reaction of the reducing agent is added at a temperature of the enthalpy The particle size of the silver-copper alloy particles suspended in the copper alloy slurry is 3 to 3 〇 nm. 0. The preparation method of the nano silver steel alloy slurry according to the first aspect of the patent application, wherein the centrifugation, the cleaning and the drying of the nano-copper and copper are performed in the step of preparing the nano-aged gold powder. The cleaning step allows the cockroach to clean. 2〇. The preparation method of the nano silver steel alloy poly liquid described in claim 10, wherein the step of obtaining the nano silver copper alloy powder after the “washing and dry county nano silver alloy slurry” In the crucible, the temperature of the drying step is 60 to 80 ° C.
TW96147445A 2007-12-12 2007-12-12 Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder TW200925291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96147445A TW200925291A (en) 2007-12-12 2007-12-12 Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96147445A TW200925291A (en) 2007-12-12 2007-12-12 Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder

Publications (1)

Publication Number Publication Date
TW200925291A true TW200925291A (en) 2009-06-16

Family

ID=44729323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96147445A TW200925291A (en) 2007-12-12 2007-12-12 Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder

Country Status (1)

Country Link
TW (1) TW200925291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026567A (en) * 2019-04-24 2019-07-19 昶联金属材料应用制品(广州)有限公司 Silver-copper nano particle and its preparation method and application
CN113828789A (en) * 2021-08-05 2021-12-24 北京工业大学 Synthesis device and method of silver-copper alloy nanofluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026567A (en) * 2019-04-24 2019-07-19 昶联金属材料应用制品(广州)有限公司 Silver-copper nano particle and its preparation method and application
CN113828789A (en) * 2021-08-05 2021-12-24 北京工业大学 Synthesis device and method of silver-copper alloy nanofluid
CN113828789B (en) * 2021-08-05 2023-08-18 北京工业大学 Synthesis device and method of silver-copper alloy nanofluid

Similar Documents

Publication Publication Date Title
EP2394973B1 (en) Method for preparing graphite particle/copper composite material
JP5415708B2 (en) Silver powder manufacturing method
TWI610718B (en) Enhanced dispersion of edge-coated precious metal catalysts
TW200804194A (en) Process for manufacture of silver-based particles and electrical contact materials
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
JP5117420B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
WO2008013199A1 (en) Fine particle dispersion and method for producing fine particle dispersion
JP2013235839A (en) Conductive member
Mao et al. Rod-like β-FeOOH@ poly (dopamine)–Au–poly (dopamine) nanocatalysts with improved recyclable activities
WO2014077043A1 (en) Silver powder
JP2010150619A (en) Method for producing copper nanoparticle
JP6900357B2 (en) Spherical silver powder
JP4257981B2 (en) Method for producing alloy nanoparticles
TW200925291A (en) Method for preparing Copper-silver alloy nanoslurry and copper-silver alloy nanopowder
JP2011136993A (en) Platinum complex, and production method and application thereof
JP4484043B2 (en) Method for producing Ag nanoparticles
CN107138154A (en) A kind of Pt@C nano balls
JP2003013105A (en) Method for manufacturing carrier with metal fine particles
CN115228498A (en) Synthesis method and application of nitrogen-doped carbon wrinkle cage-loaded copper monatomic catalyst
Singh et al. Glycerol mediated low temperature synthesis of nickel nanoparticles by solution reduction method
EP3466564B1 (en) Metal joining material, production method for same, and method for producing metal joined body using same
KR101520733B1 (en) Dispersion solution of metal nano particles and method of preparing thereof
CN113145857B (en) Copper-silver-tin ternary core-shell nano material and preparation method and application thereof
Zhang et al. Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties
TWI356810B (en)