TW200925198A - Method of making light metal matrix nanocomposites - Google Patents

Method of making light metal matrix nanocomposites Download PDF

Info

Publication number
TW200925198A
TW200925198A TW96147938A TW96147938A TW200925198A TW 200925198 A TW200925198 A TW 200925198A TW 96147938 A TW96147938 A TW 96147938A TW 96147938 A TW96147938 A TW 96147938A TW 200925198 A TW200925198 A TW 200925198A
Authority
TW
Taiwan
Prior art keywords
light metal
metal base
nano
nano composite
item
Prior art date
Application number
TW96147938A
Other languages
Chinese (zh)
Other versions
TWI452075B (en
Inventor
Nai-Yi Li
Tadayoshi Tsukeda
Kuo-Jung Chung
Kam-Shau Chan
Cheng-Shi Chen
Qing-Chun Du
Wen-Zhen Li
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096147938A priority Critical patent/TWI452075B/en
Publication of TW200925198A publication Critical patent/TW200925198A/en
Application granted granted Critical
Publication of TWI452075B publication Critical patent/TWI452075B/en

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method of making light metal matrix nanocomposite. The method includes the following steps: providing some liquid light metal and a plurality of nano-scale material; mixing the liquid light metal and the nano-scale material to get a mixture and uniformly stirring the mixture by an ultrasonic process; and molding the mixture by injecting the mixture into a die to get the composite.

Description

200925198 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種複合材料的製造方法,尤其涉及〆穆 輕金屬基奈米複合材料的製造方法。 -【先前技術】 輕金屬材料主要包括鎮合金材料及銘合金材料,因為 其具有較低的密度’被廣泛用於銳空航天領域、汽車彳亍業 和資訊產業當中。但,鑄造輕金屬的絕對強度低、錤鐵权 ❿軟、高溫性能較差等弱點,使得輕金屬僅能用來製造毂類 等不能承受較大載荷的零件。而輕金屬基複合材料具有权 高的比強度、比剛度,同時還具有較好的财磨性、对两一 性能’所以’相比輕金屬’輕金屬基複合材料具有更大的 潛在應用前景。 目前’主要係採用向輕金屬複合材料中加入奈米级顆 粒增強體的方式提高輕金屬基複合材料的強度和韌性。奈 •米級增強體係具有奈米級晶體的微細顆粒。奈米級增強體 均勻彌散分佈於輕金屬基體中可以有效細化輕金屬的晶 粒,從而提高合金強度。先前的奈米級增強體包括:奈米 碳管(CNTs)、碳化矽(SiC)、氧化鋁(Al2〇3)、碳化鈦(TiC)、 碳化蝴(B4C)等。 C S Goh等人提出了一種輕金屬基奈米複合材料的方 法(請參見,Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, C S Goh et al.,Nanotechnology,vol 200925198 17,P7(2006))。該方法以夺 人到輕金制合金中形成—種級顆粒增強體加 複合材料的具體製造過程包括==奈=材料。該 成細顆粒狀,同時加入奈米計势、、、土體切削加工 合物顆粒;將混合物顆粒裝二粒’形成混 加熱,當混合物顆粒運動到加:::時=== 具有觸變結構的半固態料;在螺旋體作用下;== ❹ ❹ =定的體積時’再被高速注射到已經被抽空的_】 二中成形。在整個觸變注射成形的過程中,輕金屬基複人 材料可以像熱塑性塑膠一樣流動成形。土 ° 少且製造方法清潔’安全,原材料消耗較 ㈣產生’成形件可達到报高的精度,縮松少, 緻逸度尚。但,採用該方法製造 存在著奈米碳管分散不μ和% ^基奈未複合材料’ 屈甘* 勾的問續’由於奈米碳管在輕金 :基不米複合材料中分散不均勾’從而導致了輕金屬基太 未複合材料在強度和勤性方面沒有達到預期的要求。土不、 五有馨於此,提供—種奈来基增強體分散均勻、強产言 及莉性好的輕金屬基奈米複合材料的製造方法實為必 【發明内容】 —種輕金屬基奈米複合材料的製造方法,其包括以下 .提供一輕金屬炫湯和大量奈米級顆粒增強體;將輕 金屬炫湯和奈米級顆粒增強體混合,通過超聲震蕩授掉得 到-均勻混合漿料;將上述均句混合聚料注人模具中, 到輕金屬基奈米複合材料。 200925198 製:方:則技:相比較,所述之輕金屬級奈米複合材料的 ❹ =。由於超聲震蕩以較高的振幅震蕩輕金屬料^ =顆粒增強體可以在輕金聽湯中㈣分散。因此吏: 所提供的輕金屬基奈米複合材料的製造方法所製 ΐ产二:基奈米複合材料具有強度高和韌性好的優點: 也應祕3C產品、汽車零部件、航天航空零部件 ^…i,本發明所提供的輕金屬基奈米複合材料的製 =法操作@單’成本低廉’適合批量生產輕金 複合材料。 邱土不木 【實施方式】 二面將、σ 口附圖及具體實施例,對本技術方案作進一 步的詳細說明。 明參閱圖1,本技術方案實施例提供了一輕金屬基太 ❹米複合㈣的製造方法,其具體包括以下步驟: - ()提供一輕金屬熔湯和大量奈米級顆粒增強體。 該輕金屬熔湯的製造方法包括以下步驟: 首先,將一定量的輕金屬粉末置於容器中。 έ 、所述輕金屬為鎂、銘、鎂合金或铭合金等。鎮合金的 ,,鎮和鋅、Μ、銘、錯、鉉、裡、銀、舞等元素的— 種2夕種,其中鎂元素的質量百分比濃度大於80%,其他 '、的、’^質里百分比濃度小於。鋁合金的組成為鋁和 辞、錯、ΛΜ.、Αψ Α丨 鉛、鉦、鋰、銀、鈣等元素的一種或多種, 200925198 其中鋁元素的質量百分比濃度大於80%,其他元素的總質 量百分比濃度小於20%。 本實施例中,輕金屬優選為鎮合金,該鎂合金中,金 —屬鎂的質量百分比濃度為85%,金屬鋅的質量百分比濃度 * 為 15%。 所述容器由耐高溫材料組成,本實施例中,容器優選 為掛锅。 其次,將容器放置於加熱爐中進行加熱,並在容器中 ® 充滿保護氣體,以防止輕金屬被氧化或輕金屬熔湯燃燒。 所述保護氣體為氮氣與氣體氟化物的混合物,還可進 一步包括二氧化碳。其中氮氣的體積百分比濃度為 70-99.5%,氣體氟化物的體積百分比濃度為0.5-1.0%,二 氧化碳可取代部分氮氣,其在保護氣體中的體積百分比濃 度為20-25%。本實施例中,保護氣體優選為氮氣和氟化 硫,其中,氮氣的體積百分比濃度為99.3%,氟化硫的體 φ積百分比濃度為0.7%。 最後,當溫度達到540°C時,輕金屬粉末開始熔化, 溫度達到640°C以上時,輕金屬粉末熔化為輕金屬熔湯, 停止加熱,保持該輕金屬熔湯温度處於660-690°C。 所述奈米級顆粒增強體為粉末狀態,包括奈米級的 碳、碳化石夕、氧化铭、竣化鈦、碳化棚或其任意組合的混 合物,奈米級顆粒增強體粉末中顆粒的形態可以為奈米 線、奈米管、奈米棒奈米球或其任意組合的混合物,直徑 為1.0nm-150nm。本實施例中,奈米級顆粒增強體優選為 200925198 奈米奴官’其直彳至為30nm。 (二)將輕金屬熔湯和奈米級顆粒增強體混合,通過 超聲震蕩授择得到一均勻混合襞料。 在上述保護氣體存在的氛圍下,將一定量的奈米級顆 .粒增強體粉末加入到上述輕金屬熔湯中,在容器中得到一 混合物。將此混合物連同容器置於一高能量超聲波震蕩攪 拌裝置中,在一定頻率的超聲波下震蕩一段時間後,得到 一均勻混合裝料。 ❹ 所述混合物中,輕金屬的質量百分比濃度為60_98%, 奈米級顆粒增強體的質量百分比濃度為2_4〇%。本實施例 中,輕金屬的質量百分比濃度優選為8〇%,奈米級增強體 的質量百分比濃度優選為20%。 所述超聲波的頻率為15_20千赫茲,本實施例中超聲 波的頻率優選為15千赫茲。 所述超聲震蕩的時間為5_4〇分鐘,其與混合物的質量 參有關,混合物的質量越大時,超聲震蕩的時間越長。本實 施例中,超聲震蕩的時間優選為3〇分鐘。 本技術方案所採用超聲震蕩的超聲波的頻率選擇為 b-20千赫兹,相對於—般超聲波的頻率48千赫兹而言, 本技術方案所採用的超聲波的頻率較低,而此超 置為-高能量超聲震蕩授拌裝置,因此該超聲震蕩裝=的 振幅較大’因此可以使輕金屬炼湯中的輕金屬微粒發生劇 瓦運動,從而可以使奈米級顆粒增強體在輕金屬炫湯中均 勻分配,得到一均勻混合漿料。 11 200925198 (三)將上述均勻混合漿料注入模具中,得到輕金屬 基奈米複合材料。 待超聲震蕩結束後,將均勻混合漿料注入到模具中, 冷卻凝固成型後,得到固定形狀的輕金屬基奈米複合材 ^ 料。該固定形狀的輕金屬基奈米複合材料可進一步鑄造成 所需產品。 請參閱圖2,本實施例中,將上述均勻混合漿料注入到 扁鑄錠形狀的模具中,形成扁鑄錠形狀的輕金屬基奈米複 ® 合材料10。在該扁鑄錠形狀的輕金屬基奈米複合材料10 中,奈米碳管12均勻分佈於輕金屬14中。 與先前技術相比較,本技術方案所提供的輕金屬基奈 米複合材料的製造方法,將奈米級顆粒增強體與輕金屬的 熔湯混合後,通過超聲震蕩的方式攪拌奈米級增強體和輕 金屬溶湯使其混合,由於超聲震蕩具有較大的振幅,使輕 金屬熔湯中的輕金屬微粒劇烈震動,從而使奈米級顆粒增 @ 強體可以在輕金屬熔湯中均勻分配,因此本技術方案所提 供的輕金屬基奈米複合材料的製造方法所製造的輕金屬基 奈米複合材料具有強度高和韌性好的優點,可廣泛地應用 於3C產品、汽車零部件、航天航空零部件等方面。 综上所述,本發明確已符合發明專利之要件,遂依法提出 專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能 以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依 本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專 利範圍内。 12 200925198 【圖式簡單說明】 圖1係本技術方案輕金屬基奈米複合材料的製造方法 的流程圖。200925198 IX. Description of the Invention: [Technical Field] The present invention relates to a method for producing a composite material, and more particularly to a method for producing a bismuth light metal base nano composite. - [Prior Art] Light metal materials mainly include town alloy materials and alloy materials because of their low density. They are widely used in the sharp space aerospace industry, automotive industry and information industry. However, the low strength of the cast light metal, the softness of the ferritic weight, and the poor high temperature performance make the light metal only available for parts such as hubs that cannot withstand large loads. Light metal matrix composites have higher specific strength and specific stiffness, and also have better grindability, and have a greater potential for application than the light metal 'light metal matrix composites'. At present, the strength and toughness of light metal matrix composites are improved by adding nano-sized particle reinforcements to light metal composites. The nanometer-scale enhancement system has fine particles of nanocrystals. The uniform dispersion of the nano-scale reinforcement in the light metal matrix can effectively refine the crystal grains of the light metal, thereby increasing the strength of the alloy. Previous nanoscale reinforcements include: carbon nanotubes (CNTs), tantalum carbide (SiC), alumina (Al2〇3), titanium carbide (TiC), carbonized butterfly (B4C), and the like. CS Goh et al. proposed a method for light metal ketone composites (see, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, CS Goh et al., Nanotechnology, vol 200925198 17, P7 (2006)). . The specific manufacturing process of the method for forming a seed grade particle reinforcement plus a composite material in a light gold alloy includes == nai = material. The fine particles are formed by adding the nanometer potential, and the soil cutting compound particles; the mixture particles are loaded with two particles to form a mixed heating, and when the mixture particles are moved to the addition::: === having a thixotropic The semi-solid material of the structure; under the action of the spiral; == ❹ ❹ = the volume is 're-injected at high speed to the _ already emptied _】 Formed in the second. Light metal-based composite materials can be flow-formed like thermoplastics throughout the thixotropic injection molding process. The soil ° is small and the manufacturing method is clean. 'Safety, raw material consumption is better. (4) Produce 'formed parts can achieve high accuracy, less shrinkage, and ease of use. However, using this method to manufacture the presence of carbon nanotubes dispersed in μ and % ^ kenazide composites ' 屈 甘 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾 勾'Therefore, the light metal-based tera-composites did not meet the expected requirements in terms of strength and flexibility. The soil is not, the five is fragrant here, providing a kind of light metal nano-composite material with a uniform dispersion of Nylon-based reinforcement, strong production and good quality, and it is necessary to produce a lightweight metal-based composite. a method for producing a material, which comprises the following: providing a light metal broth and a plurality of nano-sized particle reinforcement; mixing the light metal broth and the nano-sized particle reinforcement, and imparting a homogeneous mixing slurry by ultrasonic vibration; The homogenous mixed polymer injection mold, to the light metal base nano composite. 200925198 System: Fang: Zeji: In comparison, the light metal grade nanocomposite described in ❹ =. Due to the ultrasonic oscillation, the light metal material is oscillated at a higher amplitude. ^ = The particle reinforcement can be dispersed in the light gold listening soup (4). Therefore: 所: The production method of the light metal ketone composite material is produced. The second product: the kinami composite material has the advantages of high strength and good toughness: It should also be a secret 3C product, auto parts, aerospace parts ^ ...i, the light metal base nano composite material provided by the invention has the operation of the method of "single cost" and is suitable for mass production of light gold composite materials. [9] The following is a detailed description of the technical solution. Referring to Figure 1, an embodiment of the present technical solution provides a method for fabricating a light metal-based glutinous rice composite (IV), which specifically includes the following steps: - () providing a light metal melt soup and a plurality of nano-sized particle reinforcements. The method for producing the light metal melt soup comprises the following steps: First, a certain amount of light metal powder is placed in a container. 、 The light metal is magnesium, magnesium, magnesium alloy or alloy. Town alloy, town and zinc, bismuth, Ming, wrong, 铉, Li, silver, dance and other elements of the species, the mass concentration of magnesium is greater than 80%, other ', ', quality The percentage concentration is less than. The composition of the aluminum alloy is one or more of aluminum and elements such as lexical, erroneous, ΛΜ., Αψ Α丨 lead, bismuth, lithium, silver, calcium, etc., 200925198 wherein the mass concentration of aluminum is greater than 80%, and the total mass of other elements The percentage concentration is less than 20%. In the present embodiment, the light metal is preferably a town alloy in which the mass percentage concentration of the gold-based magnesium is 85%, and the mass concentration concentration of the metal zinc is 15%. The container is composed of a high temperature resistant material, and in this embodiment, the container is preferably a hanging pot. Secondly, the container is placed in a heating furnace for heating, and in the container, the protective gas is filled to prevent the light metal from being oxidized or the light metal melt burning. The shielding gas is a mixture of nitrogen and gaseous fluoride, and may further include carbon dioxide. Wherein the volume percentage concentration of nitrogen is 70-99.5%, the volume percent concentration of gaseous fluoride is 0.5-1.0%, and the carbon dioxide can replace part of nitrogen, and the volume percentage concentration in the shielding gas is 20-25%. In the present embodiment, the shielding gas is preferably nitrogen gas and sulfur fluoride, wherein the volume percentage concentration of nitrogen gas is 99.3%, and the volume concentration of body φ of sulfur fluoride is 0.7%. Finally, when the temperature reaches 540 ° C, the light metal powder begins to melt. When the temperature reaches 640 ° C or higher, the light metal powder is melted into a light metal melt, and the heating is stopped to keep the light metal melting temperature at 660-690 ° C. The nano-sized particle reinforcement is in a powder state, comprising nano-scale carbon, carbon carbide, oxidized, titanium-titanium, carbonized shed or any combination thereof, and the morphology of the particles in the nano-sized particle reinforcement powder It may be a mixture of a nanowire, a nanotube, a nanorod nanosphere or any combination thereof, having a diameter of 1.0 nm to 150 nm. In the present embodiment, the nano-sized particle reinforcement is preferably from 200925198 to a nanometer of 30 nm. (2) Mixing the light metal melt soup with the nano-sized particle reinforcement, and obtaining a uniform mixed material by ultrasonic vibration. A certain amount of nano-sized particles of the granule reinforcement powder is added to the above-mentioned light metal melt in an atmosphere in which the above protective gas is present, and a mixture is obtained in the container. The mixture is placed in a high-energy ultrasonic oscillating agitation device along with the vessel and shaken for a period of time under ultrasonic waves of a certain frequency to obtain a uniform mixed charge. ❹ In the mixture, the mass percentage concentration of the light metal is 60_98%, and the mass percentage concentration of the nano-sized particle reinforcement is 2_4%. In the present embodiment, the mass percentage concentration of the light metal is preferably 8%, and the mass percentage concentration of the nano-sized reinforcement is preferably 20%. The frequency of the ultrasonic wave is 15-20 kHz, and the frequency of the ultrasonic wave in this embodiment is preferably 15 kHz. The time of the ultrasonic oscillation is 5 to 4 minutes, which is related to the mass of the mixture, and the greater the mass of the mixture, the longer the ultrasonic vibration. In the present embodiment, the time of ultrasonic oscillation is preferably 3 〇 minutes. The frequency of the ultrasonically oscillated ultrasonic wave used in the technical solution is selected to be b-20 kHz, and the frequency of the ultrasonic wave used in the technical solution is lower than the frequency of the general ultrasonic wave of 48 kHz, and the super-input is - High-energy ultrasonic oscillating mixing device, so the ultrasonic oscillating device has a large amplitude. Therefore, the light metal particles in the light metal smelting furnace can be subjected to the movement of the tile, so that the nano-sized particle reinforcement can be evenly distributed in the light metal broth. , a homogeneous mixed slurry is obtained. 11 200925198 (3) The above uniform mixed slurry is injected into a mold to obtain a light metal base nano composite. After the ultrasonic vibration is completed, the uniformly mixed slurry is injected into the mold, and after cooling and solidification molding, a light-weight metal base composite material having a fixed shape is obtained. The fixed shape light metal base nano composite can be further cast into a desired product. Referring to Fig. 2, in the present embodiment, the above uniformly mixed slurry is injected into a mold having a shape of a flat ingot to form a light metal core nanocomposite material 10 in the shape of a flat ingot. In the flat ingot-shaped light metal base nano composite material 10, the carbon nanotubes 12 are uniformly distributed in the light metal 14. Compared with the prior art, the method for manufacturing the light metal base nano composite provided by the technical solution mixes the nano-sized particle reinforcement with the molten material of the light metal, and then stirs the nano-scale reinforcement and the light metal by ultrasonic vibration. Dissolving the soup to make it mix, because the ultrasonic vibration has a large amplitude, the light metal particles in the light metal melting soup are vibrated violently, so that the nano-sized particles can be evenly distributed in the light metal melting soup, so the technical solution provides The light metal base nano composite material produced by the method for manufacturing the light metal ketone composite material has the advantages of high strength and good toughness, and can be widely applied to 3C products, automobile parts, aerospace parts and the like. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the following claims. 12 200925198 [Simple description of the drawings] Fig. 1 is a flow chart showing a manufacturing method of the light metal base nano composite material of the present technical solution.

圖2係本技術方案實施例所製造的駟 材料的結構示意®。 .金屬 【主要元件符號說明】 % 輕金屬基奈米複合材料 10 奈米碳管 12 輕金屬 14 13Fig. 2 is a structural schematic view of a ruthenium material manufactured by an embodiment of the present technical solution. Metal [Main component symbol description] % Light metal ketone composite 10 Carbon nanotube 12 Light metal 14 13

Claims (1)

200925198 十、申請專利範圍 1. 一種輕金屬基奈米複合材料的製造方法,其包括以下步 驟: 7 提供一輕金屬熔湯和大量奈米級顆粒增強體; * 將輕金屬熔湯和奈米級顆粒增強體混合,通過超聲 震蕩授摔得到一均勻混合聚料;以及 將上述均勻混合漿料注入模具中,得到輕金屬基卉 米複合材料。 ’' 2. =申請專㈣圍第1項所述之輕金屬基奈米複合材料的 製造方法’其中’該輕金屬基奈米複合材料的製造過程 ,保護氣料在的情況下騎,料保魏體為氮氣盘 氣體氟化物的混合物。 Μ /、 3. :申請專利範圍第2項所述之輕金屬基奈米複合材料的 法’其中,所述保護氣射,氮氣㈣積百分比 φ /辰又二70-99.5%,氣體氟化物的體積百分比濃度 0.5-1.0%。 又 ^ 利範㈣i項所述之輕金屬基奈米複合材料的 tr中,所述輕金屬材料為鎂、銘、鎂合金或 第4項所述之輕金屬基奈米複合材料的 錯、/ 中’所核合金材料由鎮和鋅、猛、銘、 ό二由、鐘、銀、舞等元素的—種或多種組成。 .製第5項所述之輕金屬基奈米複合材料的 …,其中’所述鎮合金中’鎂的質量百分比濃度 14 200925198 大於80%。 7. :==!第4項所述之輕金屬基奈米複合材料的 八中’所述鋁合金由鋁和辞、錳、鎂、鍅、 .、鋰、銀、鈣等元素的-種或多種組成。 8.如=利:圍第7項所述之輕金屬基奈求複合材料的 其中’軸合金中,銘的質量百分比濃度 =專利範圍第i項所述之輕金屬基奈米複合材料的 法’其中,所述奈求級顆粒增強體包括奈米級的 =、奴化發、氧化銘、碳化鈦、碳化领或其任意组合的 混合物。 10.如申明專利範圍第9項所述之輕金屬基奈米複合材料 的製仏方法,其中,所述奈米級顆粒增強體的形態為奈 米線、奈米管、奈米棒、奈米球或其任意組合的混合物、, 其直徑為1.0-150奈米。 ❹ %中°月專利範圍第1項所述之輕金屬基奈米複合材料 的製造方法’其中,所述混合衆料中輕金屬的質量百分 比濃度為60-98%,奈米級顆粒增強體的質量百分比濃 度為2-40%。 12. 如申請專利範圍第1項所述之輕金屬基奈米複合材料 的製造方法’其中,所述超聲震蕩中超聲波的頻率為 15-20千赫茲。 13. 如申請專利範圍第i項所述之輕金屬基奈米複合材料 的製造方法,其中,所述超聲震蕩攪拌的時間為5_4〇 15 200925198 14.如申請專利範圍第i項所述之輕金屬基奈米複合材料 的製造方法,其中,將均勻混合漿料注入模具中後,進 步包括-冷部混合漿料的過程’直至該混合漿料凝固 成型,形成輕金屬基奈米複合材料。 15·如申請專利範圍 ❿ 的製造方法,其中,^所返之輕金 屬基奈米複合材料 步包栝一鑄造過程Y侍到輕金屬基奈米複合材料後進一200925198 X. Patent application scope 1. A method for manufacturing a light metal base nano composite material, comprising the following steps: 7 providing a light metal melting soup and a large number of nano-sized particle reinforcements; * reinforcing light metal melting soup and nano-sized particles The mixture is mixed, and a uniform mixed polymer is obtained by ultrasonic vibration; and the above uniform mixed slurry is injected into the mold to obtain a light metal-based composite material. '' 2. = Application for special (4) manufacturing method of light metal ketone composite material as described in item 1 'Where 'the light metal ketone composite material manufacturing process, protect the gas material in the case of riding, material Bao Wei The body is a mixture of gas fluorides in a nitrogen disk. Μ /, 3. : The method of applying for the light metal base nano composite according to item 2 of the patent scope, wherein the protective gas jet, the nitrogen (four) product percentage φ / □ two 70-99.5%, the gas fluoride The volume percentage concentration is 0.5-1.0%. Further, in the tr of the light metal base nano composite according to item (4), the light metal material is a fault of the magnesium, the inscription, the magnesium alloy or the light metal base nano composite of the fourth item. The alloy material consists of one or more kinds of elements of the town and elements such as zinc, fierce, inscription, bismuth, bell, silver, and dance. The light metal base nanocomposite according to item 5, wherein the mass concentration of magnesium in the town alloy is greater than 80%. 7. :==! The light metal metal nanocomposite according to item 4 of the eight-in-aluminum alloy is composed of aluminum and elements such as Mn, Manganese, Magnesium, Strontium, Lithium, Silver, Calcium or the like. A variety of components. 8. For example: ============================================================================================== The nano-grained particle reinforcement comprises a mixture of nano-scale, sulphate, oxidized, titanium carbide, carbonized or any combination thereof. 10. The method for preparing a light metal base nano composite according to claim 9, wherein the nano-sized particle reinforcement is in the form of a nanowire, a nanotube, a nanorod, or a nanometer. A mixture of spheres or any combination thereof having a diameter of from 1.0 to 150 nm. ❹ The method for producing a light metal base nano composite according to the first aspect of the invention, wherein the mass concentration of the light metal in the mixed mass is 60-98%, and the quality of the nanoparticle reinforcement The percentage concentration is 2-40%. 12. The method of producing a light metal base nano composite according to claim 1, wherein the ultrasonic wave has a frequency of 15-20 kHz. 13. The method for producing a light metal base nano composite according to claim i, wherein the ultrasonic vibration stirring time is 5_4〇15 200925198. 14. The light metal base according to item i of the patent application scope. In the method for producing a nano composite material, after the uniform mixed slurry is injected into the mold, the process including mixing the slurry with the cold portion is progressed until the mixed slurry is solidified to form a light metal base nano composite. 15. If the patent application scope ❿ is manufactured, in which the light metal is returned to the Kenai composite material, and the casting process Y is applied to the light metal ketone composite material. 1616
TW096147938A 2007-12-14 2007-12-14 Method of making light metal matrix nanocomposites TWI452075B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096147938A TWI452075B (en) 2007-12-14 2007-12-14 Method of making light metal matrix nanocomposites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096147938A TWI452075B (en) 2007-12-14 2007-12-14 Method of making light metal matrix nanocomposites

Publications (2)

Publication Number Publication Date
TW200925198A true TW200925198A (en) 2009-06-16
TWI452075B TWI452075B (en) 2014-09-11

Family

ID=44729303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096147938A TWI452075B (en) 2007-12-14 2007-12-14 Method of making light metal matrix nanocomposites

Country Status (1)

Country Link
TW (1) TWI452075B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414610B (en) * 2010-04-01 2013-11-11 Hon Hai Prec Ind Co Ltd Method for making aluminium-based metal matrix composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414610B (en) * 2010-04-01 2013-11-11 Hon Hai Prec Ind Co Ltd Method for making aluminium-based metal matrix composites

Also Published As

Publication number Publication date
TWI452075B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
Malaki et al. Advanced metal matrix nanocomposites
Azarniya et al. Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites
Khan et al. Polymer nanocomposites–synthesis techniques, classification and properties
Hu et al. Graphene-reinforced metal matrix nanocomposites–a review
KR100675070B1 (en) Composite metal material and process for producing the same, caliper body, bracket, disk rotor, drum and knuckle
Njuguna et al. Health and environmental safety of nanomaterials: polymer nanocomposites and other materials containing nanoparticles
Noguchi et al. Carbon nanotube/aluminium composites with uniform dispersion
Deng et al. Processing and properties of carbon nanotubes reinforced aluminum composites
CN100443620C (en) Composite metal material and method of producing the same, composite metal material and its production method
Zakaria et al. Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system
TWI437100B (en) Method for making magnesium-based metal matrix composites
US20120177905A1 (en) Nanostructured composite reinforced material
Liu et al. Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC
Li et al. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process
JP2010508432A (en) Materials containing carbon nanotubes, methods for producing these materials, and use of these materials
KR20060048081A (en) Metal material and method of producing the same, and carbon fiber composite metal material and method of producing the same
CN101435059A (en) Method for preparing magnesium base-carbon nanotube composite material
TW200925297A (en) Method of making magnesium matrix nanotube composite material
JP2010533786A (en) Aluminum-based two-phase aluminum material having a first phase and a second phase and a method for producing a two-phase aluminum material
CN1724347A (en) Carbon-based material and method of producing the same, and composite material and method of producing the same
CN105568027A (en) Micronano particle hybrid reinforced aluminum-based composite material and preparation method thereof
Gowda et al. Morphology studies on mechanically milled aluminium reinforced with B 4 C and CNTs
Upadhyay et al. A review on the effect of oxide nanoparticles, carbon nanotubes, and their hybrid structure on the toughening of epoxy nanocomposites
TW200925198A (en) Method of making light metal matrix nanocomposites
CN101439407B (en) Method for manufacturing light metal-based nano composite material