TW200924639A - Edible, biodegradable pet food container and packaging method - Google Patents

Edible, biodegradable pet food container and packaging method Download PDF

Info

Publication number
TW200924639A
TW200924639A TW097140420A TW97140420A TW200924639A TW 200924639 A TW200924639 A TW 200924639A TW 097140420 A TW097140420 A TW 097140420A TW 97140420 A TW97140420 A TW 97140420A TW 200924639 A TW200924639 A TW 200924639A
Authority
TW
Taiwan
Prior art keywords
container
human animal
animal food
starch
fiber
Prior art date
Application number
TW097140420A
Other languages
Chinese (zh)
Inventor
David A Dellinger
Elie Helou Jr
Original Assignee
Biosphere Ind Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosphere Ind Llc filed Critical Biosphere Ind Llc
Publication of TW200924639A publication Critical patent/TW200924639A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • A23K50/42Dry feed
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/40Products characterised by the type, form or use
    • A21D13/48Products with an additional function other than for eating, e.g. toys or cutlery

Abstract

One embodiment of the present invention is an edible non-human animal container or pet food container comprising water, pregelatinized and native starch, a cross-linker natural fibers, a wax emulsion, a mold release agent, a flavoring agent, and a coloring agent, food grade materials, and wherein the container is of a shape that is attractive to non-human animals.

Description

200924639 六、發明說明: 【發明所屬之技術領域】 本發明係有關於供食餐具,特別係有關於用以製作可 食用、生物可分解(biodegradable)、及可堆肥(compostable) 的食品包裝及供食用具之混合配方以及該配方之使用方 法。 【先前技術】 習知免洗式(disposable)供食餐具一般以紙、或紙板(通 φ 常表面塗布或浸滲聚合防水材質如蠟或聚乙烯)、或多種塑 膠中之一種(最常見者為聚苯乙烯)所製成。此外,烤箱可 用型免洗餐具則由鋁或晶質聚對苯二曱酸乙二酯(CPET, * Crystalline Polyethylene Terephthalate)所製成,上述 CPET 一般已知為雙重烤箱可用塑膠(dual ovenable plastic)。 當介紹Biosphere生物可分解之產品時,可發現孩子 們通常表現出想吃掉展示物品之欲望。而當成人們被問及 時’亦表現出對可食用包裝或可食用供食餐具之興趣。可 〇 食用、以澱粉為基底之供食餐具在1994冬季挪威利勒哈麥 (Lillehammer,Norway)奥運推出時即受到廣大群眾之熱烈 關注;在使用後,那些產品即餵食家畜,而免於製造大量 垃圾。家庭及產業烘焙者皆表示希望能使用可食用之模具 以製作蛋糕、小蛋糕、瑪芬鬆糕、塔、派、及類似物,如 此即可取代現行之金屬及紙製品。 可食用包裝材質除了本身即對孩子們和其他顧客具有 吸引力外,現在大眾更逐漸體認到使用「便宜」的塑膠來 3 200924639 包裝對環境所造成之代價可能相當之高。例如,聚苯乙歸 (保利龍,polystyrene)杯之預估生命期約為五百年,且每 美國人母年平均約吾棄一百個杯子。苯及乙稀經過化學 處理而製成聚苯乙稀,二者皆為石油工業之副產品,因此 二者皆非可再生之能源。雖然自二十世紀中以來由石油工 業之環境紀錄可知提煉及處理石油之技術已有顯著進步, 但提煉石油以供燃料及化學製造之用仍舊存在既定之環境 問題。關於使用有限自然資源(化石碳氫化合物存料)的智 ❹慧,大眾亦質疑利用有限自然資源製造免洗式產品(其惡化 垃圾處理之問題)而非保留資源以製造耐久產品之議題。 美國政府資料來源顯示包裝(所有型式的)佔了都市的 固體廢棄物處理流(waste stream)中32〇/〇之重量百分比。而 食品包裝佔了廢棄物處理流中9%之比例。都市廢棄物處 理花費很可能隨著掩埋場法規日趨嚴格而隨之增加,現在 掩埋場已填滿而(通常)由較偏遠地點取而代之,因此運輸 ❹廢棄物之費用將增加(燃料之價格亦逐漸增加中)。 寵物食品之包裝亦佔了廢棄物處理流中可觀之分量。 寵物食品包裝估計每年超過五億之全球市場,而較小包裝 之需求亦與日俱增,包括以一份大小為尺寸之包裝。在戶^ 有工業中’每單位賣出之產品量愈小,則包裝體積與產品 體積之比值愈大;因此,用於寵物食品之包裝量以高於寵 物食品本身之量的成長速率在增加。 對溼氣不透水且對氧氣及其他氣體不透氣之材質包括 塑膠、金屬、玻璃、及塑膠塗層之紙或紙板。這些材質中, 4 200924639 金屬、玻璃、紙板、及成型塑膠一般可提供包裝產品之結 構保護以及不透性,其中塑膠薄膜及塑膠塗層之紙包裝主 要提供不透性保護而非結構性保護。一般而言,相較於僅 需達到適當之不透性保護,為了達到結構剛性需要更多質 量之包裝。上述材料中沒有任何為生物可分解 (biodegradable,亦稱為生物可降解)或可堆肥(c〇mp〇staMe) 式材料。進入廢棄物處理流後(亦即未被回收),這些材質 將一直存在,它們將持續留在掩埋場中即使氧氣及水分皆 ❹ 已促進生物分解。 除了廢棄物處理之憂慮外,一些近代研究顯示,某些 用以製造塑膠之化學物質(苯二甲酸鹽類及其他塑化劑)即 使在極低之濃度下亦可能對環境及人類生殖系統有害其 可對人類及其他許多動物之内分泌(荷爾蒙)系統造成影 響。由觀察指出在人類及野生動物中,非常低濃度之上述 化合物即可模擬或干擾在胚胎發育中擔任重要角色之荷爾 ❹蒙’此將導致之後果如腹足動物(gastropods)之雌雄同體; 魚類、美洲鱷、及一些哺乳類動物之雌性化;兩棲類、魚 類、及鳥類之畸形或死亡;以及各種人類發育及生殖生物 學之影響。雖然上述研究及許多由其引申之結論具有爭議 性’但美國食品藥物管理局(FDA,Food and Drug Administration)及一些曰本和歐洲管制機關正在考慮禁止 或以額外法規管制某些苯二曱酸鹽類(phthalates)。不管未 來34些爭議將如何得到解答,現下大眾確實對塑膠及用以 改良其物理性質之塑化劑(plastieizers)的安全性之關注與 5 200924639 曰俱增。 在過去十年間期望能使用生物可分解及可堆肥式免洗 包裝材料之訴求逐年增加。正如2003年3月,臺灣已立法 禁止使用聚苯乙婦發泡體(P〇lyStyrene f〇am)於免洗包裝。 中國大陸之主要城市(如北京及上海)亦立法禁止使用聚苯 乙烯發泡體於免洗包裝。關於美國固體廢棄物政策之評 奋’美國土木工程師學會(American Society of Civil Engineers)之網站係指出「應該處理過度消費之問題,以減 〇 少非必需物品、包裝、及拋棄式產品之製造及消費為目標。 用於產品及包裝之有毒材質以及產生之副產品為有毒材質 之製程皆應降至最低。」 不同於塑膠,紙和紙板皆由木質紙漿(woodpulp)所製 成,此為可再生材質。然而,以木頭纖維之再生時間而言— 一棵樹成長所需之時間一係為冗長,而用以製造白(「漂白」) 纖維之化學處理已發現對環境有害。未漂白纖 0維之使用可幫助減緩上述對環境有害之行為,但是 農業副產品來源係為可用時,使用成長緩慢之樹木作為纖 維來源本身即成問題。 此外,在現行技術中,以澱粉為基底(starch based)之 供食餐具(food service articles) _般包含二或三主要相 (majorphases): —基質(matrix)材料(主要為澱粉),包含無 機填充材料及/或纖維材料。上述澱粉基質材料之機械性質' 對於這些產品之表現而言係為關鍵。供烤過之未修都殿粉 (unmodified starch)在乾燥時一般係為易碎且脆,但在澱粉 6 200924639 含有5%〜1〇%的水分時’則相對較軟且具延展性。在最近 的使用中,當殿粉之含水量”低時,時常添加纖維至配 方中以增加澱粉基產品之撓曲強度(fle順i伽响)及破 裂能(fracture energy),尤其是緊接在脱模(dem〇iding)後之 時期。然^即使添加顯著分量(1〇%或更多)之纖維,殿粉 基(starch-based)產品通常在脱模後非常脆或在乾燥環境下 (冬天有暖氣之建築物、夏天開空調之建築物、沙漠環境全 年)存放延長時間後非常脆。因此,殿粉基產品之脆性損毀 ❹(brittle failure)持續在製程中出現問題(特別在塗層前或應 用到積層膜(laminated films)時),或當物品在乾燥環境 使用時出現問題。 再者,現行技術中,用以製造澱粉為基底之生物可分 解供食餐具的配方中通常包含無機礦物填料⑽隨^ fillersU如碳酸妈、氧化硬(silica)、硫酸鈣、硫酸鈣水合 物、矽酸鎂(magnesium siHcate)、雲母礦物⑽⑽_ ❹mmerals)、黏土礦物(clay如㈣⑻、二氧化欽)。秋而, 上述填料並非為生物可分解之材料。使用上述材料為填充 物之產品在行銷宣傳時指出這些材料為天然、可再生、且 對環境為良性之材料。然而,採礦(或合成)以及所有無機 填充材料之處理本身即帶來環境成本。 μ 最後,在現行技術中,燬粉基供食餐具最常用之纖維 為木質紙聚纖維(與紙類產品相似)。木質紙聚纖維係為紙 工業主要之來源材料,其易於取得,品質及材料特性亦相 符’且具有供食餐具成品之結構元素中所必須的主要性 7 200924639 質。然而,當許多農業副產品來源係為可用時,如前所述, 使用成長緩慢之樹木作為纖維來源本身即成問題。 因此’ 一種用以製造可食用、生物可分解、及可堆肥 的免洗用具之改良系統係為必需,其中上述免洗用具可涵 蓋所有範圍之使用包括容器、盤子、托盤、及碗。消費者 很清楚地將從引進新的可食用供食餐具及包裝材料中獲 益。整體社會很清楚地將從都市固體廢棄物處理流中食品 包裝材料之總量減少而獲益。 ❹ 此外,從都市廢棄物處理流中減少永久性非生物可分 解食品包裝之比例係為必需。結合可食用、可堆肥、及生 物可分解材料且達到結構剛性,並使用最小量之塑膠膜或 塑膠塗層紙但可隔絕水分、水氣、氧氣、及汙染物的包裝 糸統之發展將極有助益。 再者’不管最終會發生何種程度之影響,包裝材料全 部由天然、可食用之成分所製成將減少塑化劑對環境及人 ❹類健康所帶來之影響。對於憂慮之消費者而言,可食 裝材料可作為塑膠之替代品直到此議題之爭論得到解欠。 現行技術亦需進步以使得礦物填料可使用_ :而完全生物可分解、亦可再生之有機材料來取二基 農業材料時之副產品將c料為製造另- 太始f後’亦需製造方法與配方’其摻入來自一年生非太 物之纖維材料’特別當材料為現行製造中之商品:: 8 200924639 【發明内容】 在某些實施例中’本發明係提供一種混合配方用以製 造可食用、生物可分解(biodegradable)、及可堆肥 (compostable)之寵物食品包裝及食具產品以及該配方之使 用方法。在某些實施例中,本發明係提供一種可食用的非 人動物食品之容器,包含澱粉、水、及已加工纖維材料。 在一實施例中,該澱粉可為預糊化澱粉(pregelatinized starch)、未烹煮澱粉(unc〇〇ked starch)、天然澱粉、防水澱 ❹ ❹ 粉(water-resistant starch)、或其中之組合。在另一實施例 中’已加X纖維材料可包含長度大於約4公厘(mm)至約25 公厘長之纖維、長度介於約〇5公厘至約5公厘之纖維、 及/或長度小於約0.5公厘之纖維。另一實施例中該可食 用的非人動物食品之容器還可包含一蛋白質或一聚合物: 其中該蛋白質或聚合物可減少該可食用寵物食品容器之脆 性(bn^leness)。又有一實施例中,該可食用的非人動物食 品之容Hit可包含€、蠓乳液(職⑽咖㈣、脫模劑 ㈣ld^easing agent)、著色劑、調味劑、有害生物防治劑 ΓΓΓΓ1 agent)、維他命、或其中之組合。可食用的非 ^動^食品之容器可為任何所欲之形狀,例如,類似於骨 頭、”、、、或齧齒動物之形狀。 在本發明之某些實施例中,一 非人動物之供食用具,包含.⑴3先包裝用以㈣ 其包含殿粉、水、及已加工纖維树料;^ 疋量之非人動物食品裝於該可食用的非人動物食品之容器 9 200924639 中;以及(3)還可選擇性地提供包裝材料。 ❹ 本發明亦提供一種用以製作供烤物品之 提供-模型裝置,其中包含—形狀為烘烤物品所欲=之 模槽以及-縫隙以從該模型裝置釋出氣體或蒸汽;^ 質或半流質混合物至該模型裝置;以及加熱該模型裝置? 在該流質或半流質混合物與該模型裝置表面間之介面形成 -外皮(skin)’其中該外皮係對於在該加熱過程中所來成之 該,體絲汽為可透或半透性,其中該外皮及該縫隙使得 蒸或軋體可自該模槽排出至該模型裝置之外部。 後述之詳細内容將更加彰顯本發明之其他特性及優 點。然而’應理解者為本說明書中之詳細描述及特定實例 雖為本發明之較佳實施例,但僅為示例之用,對熟悉此領 域技者在不脫離本發明之精神與範_内所作之各種變 化與修改,將因為本說明書之詳細描述而清楚明白。 【實施方式】200924639 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the provision of tableware, in particular to the production of edible, biodegradable, and compostable food packaging and The mixed formula of the edible utensils and the method of using the formula. [Prior Art] Conventional disposable disposable tableware is generally one of paper, or paperboard (normally surface coated or impregnated polymeric waterproof material such as wax or polyethylene), or a variety of plastics (most common) Made of polystyrene). In addition, oven-used disposable tableware is made of aluminum or crystalline polyethylene terephthalate (CPET, * Crystalline Polyethylene Terephthalate), which is generally known as dual ovenable plastic. . When introducing Biosphere biodegradable products, it can be seen that children often express a desire to eat the displayed items. And when adults were asked, they also showed interest in edible packaging or edible tableware. The edible, starch-based serving tableware was warmly received by the masses during the launch of the Lillehammer (Norway) Olympics in Norway in the winter of 1994. After use, those products were fed livestock and were free of manufacturing. A lot of garbage. Household and industrial bakers have expressed the desire to use edible molds to make cakes, cakes, muffins, towers, pies, and the like, thus replacing current metal and paper products. In addition to being appealing to children and other customers, the edible packaging materials are now increasingly recognizing the use of “cheap” plastics. 3 200924639 The cost of packaging for the environment may be quite high. For example, the estimated lifespan of a polystyrene cup is about five hundred years, and an average of one hundred cups per year for each American mother. Benzene and ethylene are chemically treated to form polystyrene, both of which are by-products of the petroleum industry, so neither is a renewable energy source. Although there have been significant advances in the technology for refining and processing oil from the environmental records of the petroleum industry since the mid-20th century, there are still established environmental problems in refining petroleum for fuel and chemical manufacturing. Regarding the use of limited natural resources (fossil hydrocarbon stocks), Volkswagen also questioned the use of limited natural resources to create disposable products that exacerbate the problem of waste disposal rather than retaining resources to manufacture durable products. US government sources indicate that the packaging (all types) accounts for 32%/〇 of the weight of the city's solid waste treatment stream. Food packaging accounts for 9% of the waste treatment stream. The cost of municipal waste disposal is likely to increase as landfill regulations become more stringent, and now the landfill is filled and (usually) replaced by more remote locations, so the cost of transporting waste will increase (the price of fuel is also gradually Increased). The packaging of pet food also accounts for a considerable portion of the waste treatment stream. Pet food packaging is estimated to exceed 500 million global markets per year, and the demand for smaller packaging is increasing, including packaging in one size. In the household industry, the smaller the amount of product sold per unit, the greater the ratio of packaging volume to product volume; therefore, the packaging rate for pet food is increasing at a higher rate than the amount of pet food itself. . Materials that are impervious to moisture and that are impermeable to oxygen and other gases include plastic, metal, glass, and plastic coated paper or cardboard. Among these materials, 4 200924639 metal, glass, paperboard, and molded plastics generally provide structural protection and impermeability to packaging products. Plastic film and plastic coated paper packaging mainly provide impervious protection rather than structural protection. In general, more quality packaging is required to achieve structural rigidity than is only necessary to achieve adequate impermeability protection. None of the above materials are biodegradable (also known as biodegradable) or compostable (c〇mp〇staMe) materials. After entering the waste treatment stream (ie, not recycled), these materials will persist and they will remain in the landfill even if both oxygen and moisture have promoted biodegradation. In addition to concerns about waste disposal, some modern studies have shown that certain chemicals used to make plastics (phthalates and other plasticizers) can be harmful to the environment and the human reproductive system even at very low concentrations. It can affect the endocrine (hormonal) system of humans and many other animals. It has been observed that in humans and wild animals, very low concentrations of these compounds can mimic or interfere with the hormones that play an important role in embryonic development. This will lead to the hermaphrodites such as gastropods; fish Females of American crocodiles and some mammals; malformations or deaths of amphibians, fish, and birds; and various human developmental and reproductive biology effects. Although the above studies and many of the conclusions derived therefrom are controversial, 'the Food and Drug Administration (FDA) and some transcripts and European regulatory agencies are considering prohibiting or restricting certain benzoic acid with additional regulations. Phthalates. Regardless of how the disputes will be answered in the future, the public is now paying more attention to the safety of plastics and plastieizers used to improve their physical properties. The demand for biodegradable and compostable disposable packaging materials has increased over the past decade. As in March 2003, Taiwan has enacted legislation prohibiting the use of polystyrene foam (P〇lyStyrene f〇am) in disposable packaging. Major cities in mainland China (such as Beijing and Shanghai) also legislate to ban the use of polystyrene foam in disposable packaging. Regarding the US Solid Waste Policy, the website of the American Society of Civil Engineers states that “the problem of over-consumption should be addressed to reduce the manufacturing of non-essential items, packaging, and disposable products. Consumption is the goal. The toxic materials used in products and packaging and the by-products produced as toxic materials should be minimized.” Unlike plastic, paper and paperboard are made of wood pulp, which is renewable. Material. However, in terms of the regeneration time of wood fibers - the time required for a tree to grow is lengthy, and the chemical treatment used to make white ("bleached") fibers has been found to be harmful to the environment. Unbleached fiber 0-dimensional use can help alleviate these environmentally harmful behaviors, but when agricultural by-product sources are available, the use of slow-growing trees as a source of fiber is itself a problem. Further, in the prior art, starch-based food service articles generally contain two or three major phases: - matrix materials (mainly starch), including inorganic Filling material and / or fiber material. The mechanical properties of the above starch matrix materials are critical to the performance of these products. Unmodified starch, which is roasted, is generally brittle and brittle when dried, but is relatively soft and malleable when starch 6 200924639 contains 5% to 1% moisture. In recent use, when the water content of the powder is "low", fibers are often added to the formulation to increase the flexural strength (fle) and fracture energy of the starch-based product, especially immediately. In the period after dem〇iding. Even if a significant component (1% or more) of fiber is added, the starch-based product is usually very brittle or in a dry environment after demolding. (heating buildings in winter, air-conditioned buildings in summer, year-round desert environment) are very brittle after extended storage. Therefore, the brittle failure of the powder-based products continues to cause problems in the process (especially in Pre-coating or when applied to laminated films, or when the article is used in a dry environment. Furthermore, in the prior art, the recipe for making starch-based biodegradable tableware is usually Contains inorganic mineral fillers (10) with ^fillsU such as carbonic acid mom, silica, calcium sulfate, calcium sulfate hydrate, magnesium siHcate, mica minerals (10) (10) _ ❹mmerals, clay mines (clay such as (4) (8), dioxin.) In the autumn, the above fillers are not biodegradable materials. Products using the above materials as fillers indicate that these materials are natural, renewable, and benign to the environment. However, the treatment of mining (or synthesis) and all inorganic filler materials in itself brings environmental costs. μ Finally, in the current technology, the most commonly used fiber for the destruction of powder-based tableware is wood fiber polyfiber (with paper). The similar products are similar.) Wood fiber poly fiber is the main source material of the paper industry, which is easy to obtain, and the quality and material properties are also consistent with the main elements of the structural elements of the finished tableware. When many sources of agricultural by-products are available, as mentioned earlier, the use of slow-growing trees as a source of fiber is itself a problem. Therefore, an improvement in the manufacture of edible, biodegradable, and compostable disposable utensils A system is required, wherein the above-mentioned disposable utensils can cover all ranges of use including containers, plates, trays, and Consumers will clearly benefit from the introduction of new edible tableware and packaging materials. The society as a whole will clearly benefit from the reduction in the total amount of food packaging materials in the municipal solid waste treatment stream. Reducing the proportion of permanent non-biodegradable food packaging from municipal waste streams is essential. Combines edible, compostable, and biodegradable materials to achieve structural rigidity and is coated with a minimum amount of plastic film or plastic. Layered paper, but the development of packaging systems that can block moisture, moisture, oxygen, and contaminants will be extremely helpful. In addition, no matter how much the final effect will occur, the packaging materials are all natural and edible ingredients. It will reduce the impact of plasticizers on the environment and human health. For consumers who are worried, the edible materials can be used as a substitute for plastic until the debate on this topic is waived. The current technology also needs to be improved so that the mineral filler can be used _: and the biodegradable or recyclable organic material can be used as a by-product of the second-based agricultural material, and the c-material is manufactured as another - after the start of the process And the formulation 'incorporating fiber material from annual non-materials', especially when the material is in the current manufacture: 8 200924639 [Summary of the Invention] In certain embodiments, the present invention provides a mixed formulation for manufacturing Edible, biodegradable, and compostable pet food packaging and food products and methods of using the formula. In certain embodiments, the present invention provides a container for an edible non-human animal food comprising starch, water, and processed fibrous material. In one embodiment, the starch may be pregelatinized starch, unc〇〇ked starch, natural starch, water-resistant starch, or a combination thereof. . In another embodiment, the 'added X fiber material can comprise fibers having a length greater than about 4 mm (mm) to about 25 mm long, fibers having a length between about 5 mm and about 5 mm, and/or Or fibers having a length of less than about 0.5 mm. In another embodiment, the edible non-human animal food container may further comprise a protein or a polymer: wherein the protein or polymer reduces the brilliance of the edible pet food container. In another embodiment, the edible non-human animal food capacity Hit may comprise €, 蠓 emulsion (career (10) coffee (four), release agent (four) ld ^ easing agent), coloring agent, flavoring agent, pest control agent ΓΓΓΓ 1 agent ), vitamins, or a combination thereof. The edible container of food may be of any desired shape, for example, similar to the shape of a bone, ",", or rodent. In certain embodiments of the invention, a non-human animal is provided. An edible utensil comprising: (1) 3 first packaged for (d) containing a powder, water, and processed fibrous tree material; and a quantity of non-human animal food contained in the edible non-human animal food container 9 200924639; (3) A packaging material may also be selectively provided. ❹ The present invention also provides a provisioning-modeling device for making a baked goods, comprising: a cavity in which the shape of the baked article is desired and a slit to The model device releases a gas or vapor; a mass or semi-liquid mixture to the model device; and heating the model device? Forming a skin between the fluid or semi-liquid mixture and the surface of the model device - wherein the skin For the purpose of the heating process, the body wire is permeable or semi-permeable, wherein the outer skin and the gap allow the steaming or rolling body to be discharged from the cavity to the outside of the model device. detailed The detailed description and specific examples of the present invention are intended to be a preferred embodiment of the present invention, but are merely illustrative, and are familiar to those skilled in the art. Various changes and modifications may be made without departing from the spirit and scope of the invention.

為使上述之細節及本發明之其他優點與目的得以完全 理解,更詳盡之敘述將藉由本發明中特定之實施例加以闞 明。文中之明確描述僅為說明本發明之各式實施例。誠如 所述’本發明中所討論之特定修改並非用以限制本發明之 範_。習知此技藝者將可明顯看出,在不脫離本發明之精 神與範圍内所作之各種等同之變化、改變、及修改,應理 解為包含於本發明之等同實施例。 本說明書中所使用之專業術語應以其最寬廣合理之方 式解讀’即使其用於本發明中某些特定實施例之詳述。某 200924639 以任何限定方式解讀 於詳述說明本身之部 些術語可能於後述中被強調;然而, 之任何術語係明顯地及特別地定義 分0 ❹ 若前後文允許之條件下,單數或複數形 可分別包括其各自之複數或單數形。此外,除非 係用以明白限^其僅指向單—物件而排除包含二❹(=」 件之表卓中之其他物件,否則在如此之表單中「或 之使用係解讀為包含⑷表單中之任何單-物件,⑻表單」中 之所有物件,或(c)表單中物件之任何組合。 本發明之-實施例係提供可食用且較—般冰漠淋甜筒 :構之配方更_許多之包裝材料,其於烤箱及微波環境 中尚能保持其功能性。本實施财所預設之典型應用包括 更強韌之冰淇淋甜筒、派皮、瑪芬鬆糕之外杯加 hays)、盛裝熱狗之用具(h〇lders)、糖果外包裝、盛裝冰淇 淋之容器、餅乾外包裝、及盛裝點心之容器。可藉由包覆 可食用又防潮之膜衣(coating)於容器上以提升產品之防潮 ,。食品之長期保存需要一密封之阻隔⑯以隔絕水氣及氧 氣,習知的包膜紙或塑膠膜材料可用以作為阻隔物之材 質’而可食用、可堆肥、且生物可分解之硬質内裝(insert) 則用以維持及保護食品。 寵物食品之容器亦可依據本發明而製造。這些容器不 僅可食用,而且(不同於許多習知的包襞材料)對寵物之牙 齒亦為安全。此種新穎之寵物可食用包裝可加以調味而當 寵物食用完畢時作為一種「獎賞」,或作為一餐之部分。攝 11 200924639 食寵物食品包裝將提供寵物額外來源之膳食纖維,亦減少 寵物食品包裝在現行廢棄物處理流中運往掩埋場之垃圾 置,另透過除去拋棄式包裝材料以增加寵物食品運送之整 體效率。 正 根據本發明之一種配方可生產之食用包裝物件(容 盗、盤子、托盤、碗、甜筒、及杯子,以及其他新I員形式 之用具),包含水、澱粉;可選擇性地包含數種天然纖維材 料之組合以作為烘烤物品中之結構要素(具有數種尺寸大 〇小)’卩及作為取代無機填充物之不昂貴有機替代品;可選 擇性地包含蛋白質及天然共聚化合物以減少所製物品之脆 度以利使用於乾燥環境,以及當物件本身即乾燥時可防止 其於形成後斷裂;可選擇性地包含蠛或壤乳 品物件之防水性;可選擇性地包含脫模劑―二二 agent)以減少烘烤過部分及模組系統間之附著力;以及可 選擇性地包含食品級色素及/或調味劑以增加該物件對感 Ο 官之吸引力。 澱粉成分有數種可取得之來源。澱粉來源可包括,但 不限於’植物來源,如塊莖、根、種子、及/或植物之果實, 以及特定植物來源可包括玉米、馬铃薯、樹著、稻米、或 小麥、或其類似物、或動物來源,如肝醣(glyc〇gen)。一些 實施例中,澱粉為預糊化及未烹煮或天㈣粉二者之組 合。-些實施例中,預糊化殿粉在所述配方中總殿粉之重 量百分率漠度約為0%到30%之間,其於配方中總殿粉之 重量百分率以多於〇%而少於3〇%、或3%至大約2〇%、或 12 200924639 多於5%而少於或約等於20%、或多於7%而少於15°/〇、或 多於5%而少於15%為較佳。上述澱粉可包含經由交聯 (cross-linking)、安定、或添加脂溶性官能基所修飾過之食 品級澱粉(預糊化或未烹煮)以增加產品當接觸液體食物時 對於軟化之抵抗性(resistance)。 一些實施例中,上述澱粉可為一種防水澱粉,且這些 殿粉可為修飾澱粉、具有高直鏈澱粉(high-amylose starch) 之未修飾澱粉、或其中之組合。某些實施例中,防水澱粉 〇 可為,例如化學修飾之殿粉,如稀基琥站酸Sf (alkenyl succinic anhydride)修飾澱粉、醋酸酐(acetic anhydride)修 飾澱粉、乙酸乙烯酯(vinyl acetate)修飾殿粉、丙稀搭 (acrolein)修飾澱粉、環氧氯丙烧(epichlorohydrin)修飾澱 粉、三氣一氧化構(phosphorus oxychloride)修飾澱粉、三 偏礙酸鈉(sodium trimetaphosphate)修飾殿粉、或環氧丙烧 (propylene oxide)修飾殿粉、或其類似物;一未修飾;殿粉, 如高直鏈澱粉;習知技術中任何其他已知具有防水性質之 澱粉;或其中之組合。舉例而言,澱粉成分可包含天然澱 粉、預糊化殿粉、高直鏈澱粉、或其中之組合。一些實施 例中,至少一部分之澱粉成分可由一或多種防水澱粉所構 成。上述防水澱粉可為化學修飾以達到防水之一般澱粉, 例如,烯基琥珀酸酐修飾澱粉、醋酸酐修飾澱粉、乙酸乙 烯酯修飾澱粉、丙烯醛修飾澱粉、環氧氯丙烷修飾澱粉、 三氣一氧化磷修飾澱粉、三偏磷酸鈉修飾澱粉、或環氧丙 烧修飾殿粉、或其類似物,或未經修飾本身即天然防水之 13 200924639 澱粉,例如,高直鏈澱粉;或習知技術中任何其他已知具 有防水性質之澱粉;或其中之組合。某些實施例中,上述 澱粉成分中之防水部分可包括化學修飾之防水澱粉、天然 防水之高直鏈澱粉、或其t之組合。上述澱粉成分中之一 部分使用防水殿粉係增加成品之防潮性(moisture resistance) ° 造紙工業中,而十水化合物(insolubilizing compound) (或交聯劑,cross-linking agents)用於製造包覆在紙上之防 ❹ 水包膜以增加其可印刷性及降低其對於水氣之敏感性 (susceptibility)。可用於本發明之耐水化劑(insolubilizer) 包括,但非限於,一水溶液其中包含修飾乙二醛 (ethanedial)、乙二酸基(glyoxal-based)試劑、碳酸錄敍 (ammonium zirconium carbonate)、碳酸錯斜(potassium zirconium carbonate)、及聚酿胺-環氧氯丙烧 (polyamide-epichlorohydrin)化合物。所用之耐水化劑中活 性成分之含量高達上述澱粉(包含天然澱粉及預糊化澱粉 〇 二者)重量百分率之20%,且以約0.1%至約20%澱粉重量 百分率之範圍為較佳,與所用之交聯系統及其特定應用相 關。 已發現在某些實例中,為了使所用之耐水化劑的效率 最大化,在加入耐水化合物前調整配方之pH值係為必須。 亦發現對於特定混合物之配方而言,一些耐水化劑與混合 物於低溫時發生反應造成該混合物在模塑成型前變得太濃 稠。在這些實例中,應選擇一種具有期望性質之耐水化劑。 200924639 蛋白質及天然共聚化合物可包括,但非限於,來自赂 蛋白(casein)、大豆蛋白分離物或濃縮物之製品、或其類似 之製品。上述製品中之一種可由下列三步驟所製備:〇烹 煮酪蛋白或大豆蛋白分離物(重量百分率約為1〇0/〇)之水溶 液,正如通常製造者之建議(一般而言,藉由浸泡以水合蛋 白質’之後逐漸提高溶液之溫度及pH值至180 〇F及pH = 9〜9.5 ’接著維持溫度於18〇叩至15分鐘);2)冷卻上述 製備品至室溫;以及可選擇性施行之步驟3)添加一防腐 ❹劑且混合均勻。防腐劑在上述製備品中之較佳濃度為〇 1〇/〇 或更低,此係依照蛋白質溶液所需之保存期限(shelfnfe)、 最後完成品中所需之蛋白質濃度、及政府制定之食品法規 中防腐劑含量之規範而決定。某些實施例中,尚添加膠乳 (latex),且膠乳與酪蛋白在製備品中之較佳比例係介於 至2:1 (固體:固體)之間,而更佳之比例係介於約】至 約1_8:1之間,而最佳之比例約為i 48·〗。然而,膠乳與酪 ❹蛋白之比例可根據容器之特定需求而製造。 ” 其他蛋白質亦可與路蛋白(casein)或大豆蛋白質之製 備品組合或分開使用,以增進容器之防水性。例如,上述 蛋白質可包括蛋白(albumen)、明膠(gelatin)、或其類似物。 數種天然纖維材料可組合使用以同時作為烘烤過物品 中之結構要素(具有數種尺寸大小),以及作為不昂貴之有 機填充物。纖維要素用以同時控制濕麵糊(wet baUer)之模 塑成型特性以及增強供食餐具成品之結構穩定性。雖然用 於配方中之纖維長度與纖維之長徑比(aspect rad〇)具有連 15 200924639 續性(⑽tinuum),㈣己方中之纖維部分在一般冑況下可分 為三種等級(依照纖維長度)以適合不同功用。長或非常長 之纖維(4〜25公厘或更長)或複合纖維(Co—*行㈣要 素係用以形成網狀物(meshw〇rk)幫助防止其於麵糊模製膨 脹時成缺1½。中等長度之纖維(〇 5〜5公厘)亦可幫助控制 濕麵糊之流體特性,且適合用以增加供食餐具成品之勒度 (toughness),防止其於操作或正常使用時斷裂。短纖維(小 於0.5公厘)主要係作為一種工具以引入生物可分解材料至 ❹配方中’亦即填充材料,其中此填充材料較包含該填充材 料,瓜粉基質更防水。(所有形式之纖維皆提供此功能,但 中等、長、及非常長纖維所提供之特性對於模製、操作及 使用而言係為必需,短纖維要素主要係貢獻其所帶來之防 水性。)製作容器之組成物中,殿粉基質中之纖維若分散 至每一纖維皆充分與其他纖維分開則為較佳。 較短之纖維可選擇性地一同使用,或由其他具有與短 ❹纖維相同優點之填充材料取代。舉例而言,此種填充材料 可包括有機及無機聚集體(aggregates)二者,如碳酸鈣、氧 化矽(SiliCa)、硫酸鈣、硫酸鈣水合物、矽酸鎂(magnesium silicate)、雲母礦物(micace〇us minerais)、黏 土碌物 mmeralS)、二氧化鈦、滑石(talc)等。聚集體及/或短纖維之 濃度可介於配方總乾重之〇%至约25%之間、介於配方總 乾重之約2.至約20%之間、介於配方總乾重之約5%至 約15%之間、介於配方總乾重之大於5%至約2〇%之間、 或介於配方總乾重之約7%至約17%之間、或介於配方總 16 200924639 乾重之大於7%至約17%之間。 本發明之一觀點中,有機填充材料(filler material)可 包括’例如’研磨之堅果殼如核桃殼;研磨之木材如木粉; 研磨之纖維素如研磨之竹漿;或任何其中之組合。有機填 充材料可使纖維質包含短纖維。有機填充材料可單獨作為 填充材料或可與其它填充材料組合使用。當有機填充材料 單獨使用時,其較佳濃度以研磨之核桃殼為例說明,約佔 乾重之8%。 Ο ❹ 上述配方一般皆包含來自數種來源之纖維。來自草或 蘆葦(reed)品種之較高品質纖維係提供中等長度之纖維此 種纖維對成品之結構穩定性及彈性貢獻最多。長度為長至 非常長之纖維或複合纖維可來自稍經加工之農業副產品, 如剁碎、碼細、或研磨至適當大小之莖稈或穀殼材料,或 可來自傳統長纖維素纖維之來源,如棉花或短棉賊(c〇_ linters)。在適當之處理條件下(如以鐵槌或刀具研磨),這 些材料亦可提供可觀分量之非常短纖維,用以取代殿粉及 增加成品之防水性。研磨過之木㈣式之纖維材料,如木 粉’研磨纖維素,如研磨竹漿;研磨堅果殼(或其他报硬、 木質素豐富之植物材料);或任何其中之組合,亦可供作有 機、較防水、生物可分解纖維以取代習知填充材料。 再者,這些適合在殿粉基供食餐具中作為結構要素之The detailed description is to be considered in all respect The explicit description herein is merely illustrative of various embodiments of the invention. The specific modifications discussed herein are not intended to limit the scope of the invention. It is apparent that those skilled in the art will recognize that various changes, modifications, and alterations may be made in the equivalents of the invention. The terminology used in the specification is to be construed in the Some terms that are interpreted in any limited way by the detailed description itself may be emphasized in the following description; however, any term is clearly and specifically defined as 0 ❹ if the context allows, singular or plural They may each include their respective plural or singular forms. In addition, unless it is used to understand that it only points to a single object and excludes other objects in the form containing the two (=) pieces, in the form "or the use is interpreted as containing (4) in the form. Any of the items in any single item, (8) form, or (c) any combination of items in the form. Embodiments of the present invention provide an edible and relatively ice-cold cone: the formula is more The packaging material, which maintains its functionality in the oven and microwave environment. Typical applications for this implementation include a tougher ice cream cone, pie, muffin cake and hays). Contains hot dog utensils (h〇lders), candy wrappers, ice cream containers, biscuit wrappers, and containers for snacks. The product can be protected from moisture by coating an edible and moisture-proof coating on the container. The long-term preservation of food requires a sealed barrier 16 to insulate moisture and oxygen. Conventional coated paper or plastic film materials can be used as a material for barriers. Edible, compostable, and biodegradable hard interiors. (insert) is used to maintain and protect food. Containers for pet food can also be made in accordance with the present invention. These containers are not only edible, but (unlike many conventional packaging materials) are also safe for pet teeth. This novel pet edible package can be seasoned and used as a "reward" when the pet is finished, or as part of a meal. Photo 11 200924639 Pet food packaging will provide dietary fiber from extra sources of pets, reduce the amount of pet food packaging that is transported to the landfill in the current waste treatment stream, and increase the overall efficiency of pet food delivery by removing disposable packaging materials. . Edible packaging items (tolerances, plates, trays, bowls, cones, and cups, and other new forms of utensils) that can be produced in accordance with one of the formulations of the present invention, comprising water, starch; optionally containing A combination of natural fiber materials to serve as a structural element in a baked article (having a number of sizes large and small) '卩 and as an inexpensive organic substitute for replacing the inorganic filler; optionally comprising a protein and a natural copolymer compound Reducing the brittleness of the articles to be used in a dry environment, and preventing the articles from breaking after formation when the article itself is dry; optionally containing the water repellency of the enamel or loam dairy articles; optionally including demolding Agent - 22 agents to reduce adhesion between the baked portion and the module system; and optionally include food grade pigments and/or flavoring agents to increase the appeal of the article to the sensation. There are several sources of starch that can be obtained. Sources of starch may include, but are not limited to, 'plant sources, such as tubers, roots, seeds, and/or fruits of plants, and specific plant sources may include corn, potato, tree, rice, or wheat, or the like. Or animal sources, such as glycogen (glyc〇gen). In some embodiments, the starch is a combination of pre-gelatinized and uncooked or daily (four) powder. In some embodiments, the pre-gelatinized powder in the formula has a weight percentage deviation of about 0% to 30%, and the weight percentage of the total powder in the formula is more than 〇%. Less than 3〇%, or 3% to about 2〇%, or 12 200924639 more than 5% and less than or about equal to 20%, or more than 7% and less than 15°/〇, or more than 5% Less than 15% is preferred. The above starch may comprise food grade starch (pre-gelatinized or uncooked) modified by cross-linking, stabilization, or addition of a fat-soluble functional group to increase the resistance of the product to softening when exposed to liquid foods. (resistance). In some embodiments, the starch may be a waterproof starch, and the powder may be a modified starch, an unmodified starch having a high-amylose starch, or a combination thereof. In some embodiments, the waterproof starch mash may be, for example, a chemically modified temple powder, such as an alkenyl succinic anhydride modified starch, an acetic anhydride modified starch, or a vinyl acetate. Modified temple powder, acrolein modified starch, epichlorohydrin modified starch, phosphorous oxychloride modified starch, sodium trimetaphosphate modified temple powder, or A propylene oxide modified temple powder, or an analogue thereof; an unmodified; a temple powder, such as a high amylose starch; any other starch known in the prior art to have a water-repellent property; or a combination thereof. For example, the starch component can comprise natural starch, pre-gelatinized powder, high amylose, or a combination thereof. In some embodiments, at least a portion of the starch component can be comprised of one or more water repellent starches. The above waterproof starch may be a general starch chemically modified to achieve waterproofing, for example, alkenyl succinic anhydride modified starch, acetic anhydride modified starch, vinyl acetate modified starch, acrolein modified starch, epichlorohydrin modified starch, trigas monooxide Phosphorus modified starch, sodium trimetaphosphate modified starch, or propylene acrylate modified temple powder, or an analogue thereof, or unrefined by itself, natural waterproofing 13 200924639 starch, for example, high amylose starch; or any other in the prior art Starches having waterproof properties are known; or combinations thereof. In some embodiments, the water-repellent portion of the above starch component may comprise a chemically modified waterproof starch, a natural water-repellent high amylose starch, or a combination thereof. One of the above starch components uses a water-repellent powder system to increase the moisture resistance of the finished product. ° In the paper industry, insolubilizing compounds (or cross-linking agents) are used to make the coating. A water-repellent coating on paper to increase its printability and reduce its susceptibility to moisture. An insolubilizer useful in the present invention includes, but is not limited to, an aqueous solution comprising a modified ethanedial, a glyoxal-based reagent, an ammonium zirconium carbonate, a carbonated carbonic acid. Potassium zirconium carbonate, and polyamide-epichlorohydrin compounds. The content of the active ingredient in the hydrating agent used is up to 20% by weight of the above starch (including both natural starch and pregelatinized starch mash), and preferably in the range of from about 0.1% to about 20% by weight of the starch. It is related to the cross-linking system used and its specific application. It has been found that in some instances, in order to maximize the efficiency of the hydrating agent used, it is necessary to adjust the pH of the formulation prior to the addition of the water resistant compound. It has also been found that for certain formulation formulations, some of the water resistant agent reacts with the mixture at low temperatures to cause the mixture to become too thick prior to molding. In these examples, a water resistant agent having the desired properties should be selected. 200924639 Proteins and natural copolymeric compounds can include, but are not limited to, articles derived from casein, soy protein isolates or concentrates, or the like. One of the above products can be prepared by the following three steps: cooking an aqueous solution of casein or soy protein isolate (weight percent about 1 〇 0 / 〇), as recommended by the usual manufacturer (generally by soaking) After hydrating the protein', gradually increase the temperature and pH of the solution to 180 〇F and pH = 9~9.5 ' and then maintain the temperature at 18 〇叩 to 15 minutes); 2) cool the above preparation to room temperature; Step 3) Add an antiseptic agent and mix well. The preferred concentration of the preservative in the above preparation is 〇1〇/〇 or lower, depending on the shelf life required for the protein solution, the protein concentration required in the final product, and the government-developed food. It is determined by the specification of the preservative content in the regulations. In some embodiments, a latex is added, and a preferred ratio of latex to casein in the preparation is between 2:1 (solid: solid), and a better ratio is between about 】 To about 1_8:1, and the best ratio is about i 48·〗. However, the ratio of latex to casein can be made according to the specific needs of the container. Other proteins may also be used in combination or separately with the preparation of casein or soy protein to enhance the water repellency of the container. For example, the above proteins may include an albumen, gelatin, or the like. Several natural fiber materials can be used in combination to simultaneously serve as structural elements in the baked article (having several sizes) and as an inexpensive organic filler. The fiber element is used to simultaneously control the wet baUer mold. Molding characteristics and structural stability of the finished tableware. Although the aspect ratio of the fiber length to the fiber used in the formulation has a continuity of (2009), (10) tinuum, (4) the fiber portion of the Under normal conditions, it can be divided into three grades (according to the length of the fiber) to suit different functions. Long or very long fibers (4 to 25 mm or longer) or composite fibers (Co-* rows (4) are used to form the mesh. The meshw〇rk helps prevent it from becoming a defect when the batter is molded and expanded. Medium-length fibers (〇5 to 5 mm) can also help control the wet batter. Fluid characteristics, and is suitable for increasing the toughness of the finished tableware to prevent it from breaking during handling or normal use. Short fibers (less than 0.5 mm) are mainly used as a tool to introduce biodegradable materials into the crucible. In the formulation, the filler material, wherein the filler material is more water-repellent than the filler material, the melon powder matrix is more waterproof. (All forms of fiber provide this function, but the properties provided by medium, long, and very long fibers are molded. It is necessary for operation and use. The short fiber elements mainly contribute to the waterproofness brought by it.) In the composition of the production container, the fibers in the matrix powder are dispersed to each fiber and are separated from other fibers. Preferably, the shorter fibers may be used together selectively or by other filler materials having the same advantages as the short fibers. For example, such fillers may include organic and inorganic aggregates (aggregates) Such as calcium carbonate, strontium oxide (SiliCa), calcium sulfate, calcium sulfate hydrate, magnesium silicate, mica mineral (micace〇us Minerais), clay mmeralS), titanium dioxide, talc, etc. The concentration of aggregates and / or short fibers may range from 〇% to about 25% of the total dry weight of the formula, between the total dry weight of the formula Between about 2. to about 20%, between about 5% to about 15% of the total dry weight of the formulation, between 5% and about 2% of the total dry weight of the formulation, or between the total formulation The dry weight is between about 7% and about 17%, or between about 7% and about 17% of the total dry weight of the formulation 16 200924639. In one aspect of the invention, the organic filler material can include ' For example, 'grinded nut shells such as walnut shells; ground wood such as wood flour; ground cellulose such as ground bamboo pulp; or any combination thereof. The organic filler material allows the fibrous material to comprise short fibers. The organic filler material can be used alone as a filler material or in combination with other filler materials. When the organic filler material is used alone, its preferred concentration is exemplified by a ground walnut shell, which accounts for about 8% of the dry weight. Ο ❹ The above formulations generally contain fibers from several sources. Higher quality fibers from grass or reed varieties provide medium length fibers which contribute most to the structural stability and elasticity of the finished product. Fibers or composite fibers of lengths up to very long may be derived from slightly processed agricultural by-products such as mashed, finely sized, or ground to a suitably sized stem or chaff material, or from sources of traditional long cellulose fibers. Such as cotton or short cotton thieves (c〇_ linters). Under appropriate processing conditions (such as grinding with a shovel or a knife), these materials can also provide a very short amount of fiber that can be used to replace the powder and increase the water resistance of the finished product. Grinded wood (four) type of fiber material, such as wood powder 'ground cellulose, such as ground bamboo pulp; ground nut shell (or other hard, lignin-rich plant material); or any combination thereof, also available Organic, relatively water-repellent, biodegradable fibers to replace conventional filler materials. Moreover, these are suitable as structural elements in the temple-based serving tableware.

其他來源纖維係為現成可得。 K ,± 風了付上述中之—些纖維係來自成 長快速之植物,廣義而曰‘ 取 、義而5為具有如草或蘆葦之特色,例如 洋麻(kenaf)及竹子,斗磁成、広^上 匕種來源所提供的纖維較取自樹木的 17 200924639 纖維所帶來之相關環境成本為小。纖維工業中正在成長之 部分係利用上述植物以取得纖維。許多實例中,取自上 植物之纖維品質及-致性(加工處理後)與木激I業所供應 者並駕齊驅。此外,纖維為農業數程中之副產物亦為唾: 可得。舉例而言,#、莖、及穀殼皆為纖維材料之現成來 f ’雖然無法與取自木材或較好品種草類之纖維品質一樣 同’但其非常便宜’且其為副產物,因此基本上不會帶來 額外之環境成本(不會超過任何生產主要作物所 〇 境成本)。 ^ 在此所描述之包含於配方中之纖維材料在纖維長度及 纖維長徑比(aspect ratio)二者皆可能差異極大。然而,整 體而言,材料具有小於2公厘(mm)之平均纖維長度及介於 5:1至25:1之平均纖維長徑比為較佳。 、 配方中較適合用以增加防水性之蠟或蠟乳液…狀 emulsions)係為一安定之水性乳液,通常由(巴西)棕櫚蠟 ❹(car議ba wax)、小燭樹蠟(candelilla wax)、米糠蠟(rice bran wax)、石蝶(paraffin)、或任何其他食品級之蟻所製成:植 物躐較動物躐及礦物蠘為佳,此外天然躐較各式合成蠘為 佳。蠟種類之選擇係根據成品特定之應用及所欲之性質。 乳狀液(emulsion)之製備通常係藉由乳化劑(emulsifying agents)與機械性攪動而完成。適合用於本配方中之蠟乳液 (wax emulsions)之實例包括乳化(巴西)棕櫊蠟(carnauba wax)及乳化小燭樹躐(candelilla wax)。所有核准使用於食 品之乳化劑(emulsiHers)皆可應用於此,包括(但非限於) 18 200924639 去水山梨醇單硬脂酸g旨(sorbitan monostearate)、聚山梨醇 酉旨 60 (Polysorbate 60)、聚山梨醇醋 65 (Polysorbate 65)、 聚山梨醇醋80 (Polysorbate 80)、食品級膠(gums)(例如, 阿拉伯聚半乳糖(arabinogalactan)、鹿角菜膠 (carrageenan)、富塞蘭藻膠(furcelleran/furcellaran)、三仙 膠(xanthan))、硬脂酿單甘油檸1檬酸醋(stearyl monoglyceridyl citrate)、琥 ί白酸硬脂酸酉旨(succistearin)、經 化卵破脂(hydroxylated lecithin)、及許多其他化合物。關 〇 於蠟替代品之使用,一添加成分或其乳狀液之乾重濃度範 圍可為大於0%至約15%或約0.5%至約10%。添加成分可 包括環氧化(epoxidized)植物油、氫化三酸甘油S旨 (hydrogenated triglyceride)、聚乙酸乙稀 g旨(PVAc,polyvinyl acetate)、 聚乙酸乙烯酯-乙烯共聚物(VAE , poly(vinylacetate-ethylene) copolymer)、聚乙稀-乙酸乙烯 酯共聚物(EVA,poly(ethylene-vinyl acetate) copolymer)、 ^ 或其中之組合。 一脫模劑(mold release agent),或防黏著劑 (abherent),係用以減少烘烤過部分及模組系統間之附著 力。適合用於本配方中之特定脫模劑之實例包括,但非限 於’金屬硬脂酸(metal stearate)化合物(例如,硬脂酸紹、 鎂、鈣、鉀、鈉、或鋅之硬脂酸鹽類)、脂肪酸(例如,油 酸(oleic acid)、亞麻油酸(linoleic acid))、脂肪、油類、或 類似之物質、或前述中之任何組合。用於本配方中之著色 劑(coloring agent)以難溶於水且可安全用於食品中之色素 19 200924639 種類為較佳(例如,鐵氧化物、群青色素(ultramarines)、鉻 銘-I呂氧化物(chromium-cobalt-aluminum oxides)、亞鐵氰 化鐵敍(ferric ammonium ferrocyanide)、亞鐵氰化鐵/普魯 士藍(ferric ferrocyanide)、猛紫(manganese violet)、味 口坐紫 (carbazole violet))。另者,銘色殿(aluminum lake)著色劑、 水溶性食物染料、及色素之組合、或於一些應用中可使用 色素與色澱及/或染料之組合。 某些實施例中,提供了用以製造生物可分解、澱粉基、 ❹ 防水物品之新穎成分及生產方法。一些實施例中,一種包 含生物可分解纖維成分之組成物,其纖維成分之乾重含量 約介於5%至40%之間,澱粉成分之乾重含量約介於40% 至94.5%之間,以及一添加物成分之乾重含量約介在大於 0%至15%之間。上述添加物成分可包括環氧化植物油、氣 化三酸甘油酯、聚乙酸乙烯酯(PVAc)、聚乙酸乙烯酯-乙烯 共聚物(VAE)、聚乙烯-乙酸乙烯酯共聚物(EVA)、或其中 之組合。在某些實施例中,上述添加物成分可能存在之乾 ® 重含量約介於0.5%至10%之間。 一些實施例中,上述生物可分解纖維成分包括天然纖 維,而天然纖維可包括木質纖維、非木質纖維、或動物織 維。一些實施例中,生物可分解纖維成分包括生物可分解 之合成纖維。 一些實施例中,上述澱粉成分可包括有機填充材料, 其澱粉與填料之比例約介於10:1至1:1之間,而通常典型 的澱粉與填料之比例約為3:1。 200924639 :些了施例中,上述添加物可存在之含量約介於 、卜一些實施例中,上述添加物成分為氫化三酸 甘油曰⑥氧化植物油、或聚合物,聚合物為選自聚乙酸 乙烯酉旨(PVAc)、聚乙酸乙稀醋_乙稀共聚物(vae)、及聚乙 烯-乙酸乙_®旨共聚物(EVA)所組成之聚合物家族。 -些實施例中’―種包含在此所描述之組成物之水性 混合物’其中該混合物可包含足以使該組成物在加执至足 夠溫度及足夠時間後得以模塑成型之含水量,以形成生物 ©可分解、免洗式、且防水之製品。一些實施例中,上述含 水量介於約40%至約80%之間。一些實施例中,上述殺粉 成分包括天然殿粉及預糊化殿粉之組合,而纖維與預糊化 澱粉之比例介於約至約3:1之間。上述組成物尚可包 含硬脂酸鎂、蟻、交聯劑、或任何其中之組合。 些實施例係用以描述一種製造生物可分解、殿粉 基、防水物品之生產方法。上述方法包括添加一種包含在 ❹此所描述之組成物之水溶液混合物至一具有一模槽之造模 裝置(mold apparatus)。上述混合物係於造模裝置中加熱, 以足夠溫度加熱且加熱至足夠時間使該混合物形成一穩定 形式且在其外表面形成一外皮(skin),其中該混合物在加熱 時與上述模槽之表面接觸。上述造模裝置包含至少一縫隙 使蒸氣可從該縫隙排出上述造模裝置之模槽,而不會從該 縫隙損失顯著之上述混合物。一些實施例中,上述混合物 材料藉由加熱時之膨脹而填滿該模槽。 一些實施例係用以描述一種包含本說明書中所述組成 21 200924639 物之製σσ,其中該製品為生物可分解且防水之物品,而在 一些實施例中,上述製品為可堆肥式物品。一些實施例中, 上述製品為供食餐具、包裝材料、或其中之組合。一些實 施例中,上述製品為核准之可食用食品。 一些實施例係用以描述一種方法以製造生物可分解、 澱粉基、且防水之製品。上述方法包括製備一混合物,該 混合物包含生物可分解之纖維成分及澱粉成分。上述生物 可刀解纖維成分之乾重基(dry weight basis)含量可介於約 © 5%至約40%之間,而上述澱粉成分之乾重基含量可介於約 40/〇至約94.5%之間。加入上述混合物之添加物成分之乾 重基含量可介於約0.5%至約1〇%之間。此外,上述添加物 成分可包括聚乙酸乙烯酯(PVAc)、聚乙酸乙烯酯-乙烯共聚 物(VAE)、聚乙烯-乙酸乙烯酯共聚物(EVA)、或其中之組 合。一水性成分係加入上述混合物以產生一水性組成物, 其中該水性成分包含充足含量之水使該組成物得以形成一 ^ 期望之外型。上述具有期望外型之組成物係以足夠溫度加 熱至足夠時間以產生一生物可分解、免洗式、且防水之製 品(article of manufacture)。 一些實施例係用以描述一種方法以製造具有增進強度 而生物可分解、澱粉為基底、且防水之製品。此方法包括 製備一混合物,該混合物包含生物可分解之纖維成分及澱 粉成分,其中上述生物可分解纖維成分之乾重基(dry weight basis)含量可介於約5%至約40%之間,而上述澱粉 成分之乾重基含量可介於約40%至約94.5%之間。加入上 22 200924639 述混合物之添加物成分之乾重基含量可介於約0.5%至約 10%之間,其中該添加物成分包括環氧化植物油、聚乙酸 乙烯酯(PVAc)、聚乙酸乙烯酯-乙烯共聚物(VAE)、聚乙烯-乙酸乙烯酯共聚物(EVA)、或其中之組合。一水性成分係 加入上述混合物以產生一水性組成物,其中該水性成分包 含充足含量之水使該組成物得以形成一期望之外型。上述 具有期望外型之組成物係以足夠溫度加熱至足夠時間以產 生一生物可分解、免洗式、又防水之製品。 ❹ 一些實施例係用以描述一種包含一生物可分解之纖維 成分及一防水澱粉成分之組成物,其中上述生物可分解纖 維成分之乾重基含量介於約5%至約40%之間,而上述防 水澱粉成分之乾重基含量介於約40%至約94.5%之間。在 這些實施例中,上述防水澱粉可為,例如,化學修飾澱粉, 如,烯基琥珀酸gf (alkenyl succinic anhydride)修飾殿粉、 醋酸酐(acetic anhydride)修飾殿粉、乙酸乙稀酯(vinyl acetate)修飾澱粉、丙烯醛(acrolein)修飾澱粉、環氧氣丙烷 (epichlorohydrin)修飾澱粉、三氯一氧化磷(phosphorus oxychloride)修飾澱粉、三偏璘酸鈉(sodium trimetaphosphate)修飾澱粉、或環氧丙院(pr〇pyiene oxide) 修飾澱粉、或其類似物;未經修飾之殿粉,如,高直鏈澱 粉(high-amylose starch);或其中之組合;或習知技術中任 何其他已知具有防水性質之澱粉。一些實施例中,上述組 成物還包含一添加物成分,其乾重基含量介於約〇. 5 %至約 10%之間,其中該添加物成分包括環氧化植物油、氫化三 23 200924639 酸甘油酯、聚乙酸乙烯酯(PVAc)、聚乙酸乙烯酯-乙烯共聚 物(VAE)、聚乙烯-乙酸乙烯酯共聚物(EVA)、或其中之組 ^ ° 、 、、 某些實施例中’組成物可為生物可分解、可堆肥式、 或其中之組合,且可用於製造以相同方式分解之物品。一 些實施例中,一生物可分解材質可分解至單純化合物 (simple compounds) ’如二氧化碳、甲烷、水、無機化合°物、 及生物質(biomass),其中主要機制為微生物之酵素作用 ❹(enzymatic action)。一些實施例中,一生物可分解材質可 在自然條件下由微生物迅速分解,例如,在有氧及/或益氧 條件下。一些實施例中,當一生物可分解材質接觸微生物、 水解、及/或化學反應時可降解至單體成分。在有氧條件 下,生物分解可將物質轉化為最終產物,包括二氧化碳及 水。在無氧條件T,生4勿分解可將物質轉化為最終產物, 包括二氧化碳、水、及曱烧。一些實施例中,生物分解係 ^ 為礦物化作用(mineralization)。 ’、 一些實施例中,生物分解與可堆肥性之差異為一生物 可分解之材質係單純由生物活性(bi〇1〇gical㈣吻)所分 解’特別指酵素作用,此材質會在無時間限制下產生顯著 之化學結構改變。另者’可堆肥性(eQmp_bility)可為一 生物可分解材質之特性。-些實施例中,一可堆肥之材料 可在一堆肥系統中被生物分解,而在其作為堆肥之最終用 途時完成其生物分解。判斷是否為有效堆肥之標準包括, 例如,非常低的重金屬含量、無生態毒性、且無明顯可辨 24 200924639 認之殘餘物。 數種測試可決定一組成物是否為生物可分解、可堆 肥、或兼具生物可分解及可堆肥二者特性之材料。美國材 料及試驗協會(ASTM,American Society for Testing and Materials)之定義為,例如,一可堆肥材質係為一種「可經 由堆肥處所進行之生物分解以使得此材料分解為無法以肉 眼辨識之材料,且降解為二氧化碳、水、無機化合物、及 生物質,其分解速率與已知可堆肥之材料相當」。一些實施 〇 例中’可堆肥性可經由美國材料及試驗協會標準測試法 D5338 (ASTM D5338)所量測,而ASTM D5338係利用美國 材料及試驗協會標準規格D6400 (ASTM D6400)之第二層 級測試(Tier Two Level testing)為根據。相較之下,歐洲對 於可堆肥材質之定義為,例如,一種可於六個月内在家庭 或工業堆肥堆(compost heap)中降解約90%之材料,而符合 此等標準之材料即可依據歐洲標準(European Standard) EN 13432 (西元2000年)認定為「可堆肥(compostable)」。 ® 生物分解測試根據特定測試條件、評估方法、及期望 標準而有所不同。因此,測試大部分材料時,不同實驗方 法可產生一合理之收歛值而導向類似結論。例如,美國材 料及試驗學會(ASTM)已建立ASTM D5338-92來測量有氧 生物分解性(aerobic biodegradability)。ASTM D5338-92 測 量所測物質礦物化之百分率對時間之函數。此測試可監視 在58 °C下嗜熱微生物存在於活性堆肥中進行同化作用 (assimilation)所釋出二氧化碳之量。二氧化碳產氣量之測 25 200924639 試可利用電解呼吸測定法(electrolytic respirometry)而決 定。其它標準實驗方法,如經濟合作暨發展組織(OECD, Organization for Economic Cooperation and Development) 所制定之301B亦可用於測試。一些實施例中,如果一材 料可於28天内分解掉60%或更多則可稱之為生物可分解 (biodegradable)。請參照 OECD 301D 之「密閉瓶測試(closed bottle test)」(經濟合作暨發展組織,法國)。在沒有氧氣下 之標準生物分解測試係描述於各種實驗方法中,如ASTM 〇 D5511-94。這些測試可用以模擬材料在無氧固體廢料處理 設施或衛生掩埋場之生物可分解性。 生物可分解產品學會(BPI,Biodegradable Products Institute)及美國堆肥委員會(USCC,US Composting Council)使用美國材料及試驗協會規格(ASTM Specifications)以核准產品之「可堆肥標章(Compostable Logo)」。這些規格係用以鑑定塑膠及紙類產品,當堆肥於 公立或商業堆肥場時可完全且安全地分化及進行生物分 ❹ 解,如同牛皮紙、庭院修枝及食物殘渣一樣。「可堆肥標章」 則根據核可之獨立實驗室所進行之測試頒予任何符合 ASTM D6400或D6868標準之產品。例如,生物可分解產 品學會認證(BPI certification)代表一種符合ASTM D6868 規格之材料,且將於公立、商業、或家用堆肥時迅速安全 地進行生物分解。 舉例而言,美國材料及試驗協會(ASTM)發展出可堆肥 性之測試方法及規格,測量三項特徵:生物可分解性、分 26 200924639 化、以及無生態毒性(ecotoxicity)。為了符合可堆肥性之生 物可分解性標準,此材料需於40天内達到至少約60%轉 換為二氧化碳,且少於10%之受測材料以丟棄產品之實際 形體及厚度留在2公厘(mm)之篩網上,以此作為分化之量 測。為了量測無生態毒性,生物分解之副產物對種子發芽 及植物生長必不可產生負面影響,此可經由OECD 208中 詳述之測試而得知。例如,請參照 http://www.oecd.org/dataoecd/l 1/3 1/33653757.pdf 〇 國際生 ❹ 物可分解產品學會(International Biodegradable Products Institute)將公告一標章以認證可堆肥性,例如,一旦一產 品經證實符合ASTMD6400-99規格即可頒予該標章。上述 實驗方法係遵照德國標準學會(DIN,Deutsches Institut fiir Normung eV) 54900,在一堆肥循環(composting cycle)中完 全分解所允許之最大厚度值。 一些實施例中,上述材料可在60天内被生物完全分 解,或50天内、40天内、30天内、20天内、10天内、或 〇 任何其中之範圍内被生物完全分解。一些實施例中,上述 材料在30天内、28天内、25天内、20天内、或任何其中 之範圍内被生物分解之百分率可高達75%、80%、85%、 90%、95%、98%、99%、或任何其中之範圍。一些實施例 中,由本說明書中所描述之組成物所製作之產品符合 ASTM D6868對於生物可分解性之規格。 某些實施例中,本說明書所描述之一種組成物包含一 生物可分解之纖維成分,其乾重基(dry weight basis)含量 27 200924639 介於約5%至約40%之間,以約15%至約30%之間為較佳; 一澱粉成分,其乾重基含量介於約40%至約94.5%之間, 以約45%至約75%之間為較佳;及一或多種添加成分,其 乾重基含量介在大於0%至約15%之間,以約0.5%至10% 之間為較佳。某些實施例中,上述添加成分之乾重基含量 可介於約1.5%至約7%之間。某些實施例中,上述添加成 分之乾重基含量可介於約2%至約5%之間。 上述生物可分解纖維成分可包括天然纖維,而天然纖 ❹ 維可包括木質纖維、非木質纖維、或動物纖維如羊毛。木 質纖維可來自如樹木,且其為主要纖維素纖維(cellulosic fiber)之來源。非木質纖維(Non-woody fibers)包括,但非限 於,嚴潰(bagasse)、竹子、及禾稈(straw)。天然纖維之實 例可包括,但非限於,羊毛、棉花、木質紙裝(wood pulp)、 竹子、洋麻(kenaf)、亞麻(flax)、黃麻(jute)、麻(hemp)、 馬尼拉麻(abaca)、草、蘆葦(reeds)、及其類似物。纖維成 分亦可包括本說明書所描述之任何纖維之混合物。 習知此藝者所知悉任何生物可分解之合成纖維亦可應 用於本發明之一些實施例中。合成纖維之實例可包括,但 非限於,聚浠烴(polyolefin)、聚S旨(polyester)、聚醯胺 (polyamide)、丙烯酸類(acrylic)、嫘奮(rayon)、醋酸織維 素(cellulose acetate)、聚乳酸交醋(polylactide)、聚經基烧 酸(polyhydroxyalkanoates)、熱塑性多成分纖維 (thermoplastic multicomponent fibers)(如習知的勒芯型複 合纖維(sheath-core composite fiber),例如聚乙浠鞘-聚酉旨 28 200924639 芯複合纖維)、及其類似物及其中之混合物。許多實施例 中,若以ASTMD6400之定義為準,上述合成纖維係具有 部分或完全之生物可分解性。 數種天然纖維材料可組合使用以同時作為烘烤過物品 中之結構要素(具有數種尺寸大小),以及作為不昂貴之有 機填充物。纖維要素用以同時控制濕麵糊(wet batter)之模 塑成型特性以及增強供食餐具與包裝成品之結構穩定性。 雖然可能用於配方中之纖維之纖維長度與纖維之長徑比 ❹(aspect ratlos)具有連續性,但配方中之纖維部分在一般情 況下可分為三種等級(依照纖維長度)以適合不同功用:長 或非常長之纖維(4〜25公厘或更長)或複合纖維(c〇mp〇site fiber)要素係用以形成纖維網狀物(mesh),幫助防止其麵糊 於模製膨脹時形成缺陷;中等長度之纖維(0.5〜5公厘)亦可 幫助控制濕麵糊之流體特性,且適合用以增加供食餐具成 口口之韌度,防止其於操作或正常使用時斷裂;短纖維(小於 ❾0.5么厘)主要係作為—種卫具以引人生物可易於分解之材 '斗-方中整體而言,因為纖維長度通常較纖維直徑變 =更大,所以較長纖維之長徑比較短纖維之為高。長或非 常長纖維之平均長徑比可介於約40:1至大於1〇〇〇:1。中等 長度纖維之平均長徑比可介於約5:1至約200:1。短纖維之 長徑比通常皆小於約5〇:1。舉例而言,一些填充材質 可,包含該填充材質之澱粉基質更防水。(數種形式之纖維 可提i、此功月匕性,但中等、長、及非常長之纖維所提供之 特! 生對於模製、操作及使用而言係為必需,而在一些實施 29 200924639 例中氣纖維要素主要係貢獻其所帶來之防水性。) 之纖t說來明Λ所描述之許多組成物中可包含來自數種來源 箄县声Λ 盧葦(職°品種之較高品㈣⑽提供中 所貢二此種纖維可對成品之結構穩定性及彈性有 ❹ ❹ 加工之農鞏至非常長之纖維或複合纖維可來自猶經 -辉或麫二2品’如剥碎、碾細、或研磨至適當大小之 =。在適當之處理條件下,例如以鐵槌或刀 π:些材料亦可提供可觀分量之非常短纖維,用以 =一_ 取代部分㈣,及增力—水性。此 1研=之木材形式之纖維材料,如木粉韻維素, ::何研 可八解殖Μ 作有機、較防水之生物 刀解填充物以取代習知無機填充材料。 -些纖維可自成長快速之植物巾取得,如 包==麻(―竹子。而另_些纖維為農業製 皆為亦為唾手可得’例如’禾稈'莖、及穀殼 白為現成中等長度纖維之來源。 纖2料在纖維長度及纖維長徑比二者皆可能差異極 長戶中,材料可具有約小於2公厘之平均纖維 及至25G:1、約⑴至125:卜約⑷ 7〇:1、或約1.5:1至30:1之平均纖維長捏比。 :粉:分有數種可取得之來源。殿粉來源可包括,但 物之义果實物來源,如塊莖⑽ers)、根、種子、及/或植 物之果實,以及料植物來源可包括玉米、馬鈴薯樹箸、 200924639 稻米、或小麥、或其類似物、或動物來源,如肝醣 (glycogen)。一些實施例中,澱粉為預糊化及未烹煮或天然 澱粉二者之組合。一些實施例中,預糊化澱粉在所述配方 中總殿粉之重量百分率濃度約為〇%至約3〇%之間,且以 3%至20%為較佳,而以5%至15%為最佳。可包含經由交 聯(cross-linking)、安定、或添加脂溶性官能基所修飾過之 食品級澱粉(預糊化或未烹煮)以增加產品當接觸液體食物 時對於軟化之抵抗性(resistance)。 〇 一些實施例中,上述澱粉可為一種防水澱粉,如一修 飾澱粉,例如化學修飾之澱粉,如烯基琥珀酸酐(alkenyl succinic anhydride)修飾澱粉、醋酸酐(acetic anhydride)修 飾殿粉、乙酸乙烯酯(vinyl acetate)修飾澱粉、丙烯醛 (acrolein)修飾澱粉、環氧氣丙烷(epichl〇r〇hydrin)修飾澱 粉、三氯一氧化磷(phosphorus oxychloride)修飾澱粉、三 偏磷酸鈉(sodium trimetaphosphate)修飾澱粉、或環氧丙烧 ❾ (Propylene oxide)修飾澱粉、或其類似物;一未修飾澱粉, 如高直鏈澱粉;或其中之組合;或習知技術中任何其他已 知具有防水性質之殿粉。一些實施例中,殿粉成分可包含 尚直鏈澱粉。舉例而言’上述殿粉成分可包含天然殿粉、 預糊化澱粉、高直鏈殿粉、或其中之組合。一些實施例中, 至少一部分之澱粉成分可由一或多種防水澱粉所構成。上 述防水澱粉可為化學修飾以達到防水之一般殿粉,例如, 烯基琥珀酸酐修飾澱粉、醋酸酐修飾殿粉、乙酸乙稀醋修 飾澱粉、丙烯醛修飾澱粉 '環氧氯丙烷修飾澱粉、三氯一 31 200924639 2鄉飾;殿粉、二偏磷酸納修飾丨㈣、或環氧丙烧修飾 叙粉、或其類㈣,或未經修飾本身即天諸水之殿粉, 例如,向直鏈㈣;或其中之組合,飞習知技術中任何其 :已知具有防水性質之澱粉。這些實施例中,上述澱粉成 分中之防水澱粉部分可包括化學修飾之防水澱粉、天然防 水之高直鏈澱粉、或其中之組合。上述澱粉成分中之一部 刀使用防水澱粉係增加成品之防潮性。 Ο ❹ 些實施例中,上述澱粉成分包含一有機填充材料, 其中澱粉與填料之比例介於約10:1至約1:1之間。一些實 施例中,上述澱粉成分可包含一填充材料,最常使用者為 有機填料’而其中典型的澱粉與填料之比例約為3:1。 許多實施例中,填料係為有機填料。上述有機填充材 料可包括,例如’研磨之堅果殼如核桃殼;研磨之木材如 木粉;研磨之纖維素如研磨之竹漿;或任何其中之組合。 有機填充材料可使纖維質包含短或非常短之纖維,且有機 填料可單獨作為填充材料或可與其它填充材料組合使用。 一些實施例中’有機填料在所述組成物中之乾重重量百分 率濃度約在大於0〇/〇到約30%之間,或約5%到約30%間之 乾重百分率。有機填料可單獨作為填充材料或可與其它填 充材料組合使用。一些實施例中,有機填充材料在所述產 品中之乾重重量百分率濃度約介於10%至25%之間,或約 15%至21%之間。 一些實施例中,短纖維可一同摻入組成物中,或由其 他具有與短纖維相同優點之填充材料取代。舉例而言,此 32 200924639 種填充材料可包括有機及無機聚集體(aggregates)二者’如 碳酸妈、氧化梦(silica)、硫酸鈣、硫酸鈣水合物、矽酸鎂 (magnesium silicate)、雲母礦物(micace〇us minerais)、黏土 礦物(clay minerals)、二氧化鈦、滑石(talc)等。聚集體及/ 或短纖維之重量百分率濃度可介於配方總乾重之〇%至約 30%之間、約2.5%至約25%之間、約5%至約20%之間、 約5%至約25%之間、或約7%至約21%之間。 添加成分可增加所生產成品之防水性、強度、或防水 〇 性與強度之組合,而此生產成品係由生物可分解、澱粉為 基底之組成物所製成。一些實施例中,上述添加成分包括 環氧化植物油、氫化三酸甘油醋(hydrogenated triglyceride)、聚乙酸乙烯酯(PVAc)、聚乙酸乙烯酯-乙烯 共聚物(VAE)、聚乙烯-乙酸乙烯酯共聚物(EVA)、或其中 之組合。一些實施例中,上述添加成分之含量介於約2% 至約5%之間。 某些實施例中,上述添加成分包括環氧化三酸甘油酯 (epoxidized triglycerides)。雖然傳統上習慣使用其為塑化 劑,特別應用於聚氣乙烯(PVC,polyvinyl chloride)及聚二 氣亞乙烯(PVDC,polyvinylidene dichloride),但澱粉基複 合物(composite)中之環氧化植物油很驚人地可使得利用加 熱以模塑成型之製品具有較廣之密度範圍。當使用環氧化 植物油時,令人驚訝者為密度較大物品之製造並不需要較 長之加熱時間。再者,密度較大之物品較堅固且相較於較 厚之物品而言製作上更省成本,因為較厚之物品一般需要 33 200924639 較長之加熱時間。環氧化三酸甘油酯可經由將動物或植物 來源之不飽和脂肪酸中之三酸甘油酯環氧化而得到。適合 的環氧化植物油之實例包括環氧化亞麻仁(linseed)油、環 氧化大豆油、環氧化玉米油、環氧化棉花籽油、環氧化紫 蘇(perilla)油、環氧化紅花(safflower)油、或其類似物。一 些實施例中,上述環氧化植物油可包括環氧化亞麻仁油 (ELO)及環氧化大豆油(ESO)。為了符合美國食品藥物管理 局(FDA)對於食品接觸之要求,環氧化亞麻仁油(ELO)之碘 〇 價(iodine number)—般約需小於5,且環氧乙烧(oxirane) 氧含量之最小值約為9%,而環氧化大豆油(ESO)之碘價一 般約需小於6,且環氧乙烷氧含量之最小值約為6%。 各種各樣的環氧化植物油皆可使用於此。一些實施例 中,上述環氧化植物油之環氧當量(epoxide equivalent)約 為400至約475。部分環氧化之植物油可用於一些實施例 中。一些實施例中,上述應用於本發明之環氧化植物油具 有約小於225之環氧當量。例如,環氧化亞麻仁油之環氧 當量178可與單叛酸(monocarboxylic acid)或一元盼 (monohydric phenol)反應以提升其當量至400〜475 〇 一些實施例中,上述添加物成分包括氫化三酸甘油酯 (hydrogenated triglyceride)。殿粉基生物可分解之組成物可 使用蠛以增加防水性’例如,(巴西)棕櫚蠛(carnauba wax)、小濁樹蠛(candelilla wax)、石躐(paraffin)、褐碳躐 (montan wax)、聚乙稀蠛、及其類似物。舉例而言,(巴西) 棕櫚蠟相當昂貴且其乾重含量之限制為不大於3%,因為 34 200924639 其於模塑成型時會蒸餾出蒸氣而塞住用以將組合物製成製 品之造模裝置之管線。一些實施例中,可使用熔點介於約 54 °C至85 °C之氫化植物油以取代蠟來增進配方之防潮性 (moisture resistance)。適合的氫化三酸甘油酯可由動物脂 肪或植物油製備而來,例如,牛脂(tallow)、豬油、花生油、 大豆油、菜籽(canola)油、玉米油、及其類似物。適合的氫 化植物油包括可自EvCo Research有限公司取得之氫化植 物油,商標名為 EVCOPEL EVCORR及 EVCOPEL 0 EVCEAL。一些實施例中,氫化三酸甘油酯所使用之濃度 可高達5%。配方中可加入固體粉狀、熔融狀態、或乳狀 之氩化三酸甘油酯。 添加成分可為一聚合物。一些實施例中,上述添加成 分係選自一聚合物家族,該聚合物家族由聚乙酸乙烯酯 (P VAc或P VA)、聚乙酸乙烯酯-乙烯共聚物(VAE)、聚乙烯 -乙酸乙烯酯共聚物(EVA)所組成。當PVAc、VAE、及EVA 加入澱粉基複合物時,係可增加組成物之防潮性。EVA為 乙烯(ethylene)及乙酸乙烯醋(vinyl acetate)的共聚物,其中 乙酸乙烯酯所佔的重量百分率小於50% ;另者,VAE為乙 烯及乙酸乙烯酯的共聚物,其中乙酸乙烯酯所佔的重量百 分率大於50%。乙烯-乙酸乙烯酯共聚物(EVA’s)典型為半 晶(semicrystalline)共聚物,其熔點約介於60 °C至110 °C 之間,其玻璃轉換溫度(Tg,glass transition temperatures) 類似於聚乙烯。另者,乙酸乙烯酯-乙烯共聚物(VAE’s)典 型為非晶形(amorphous)聚合物(無定義之、熔點),其玻璃轉 35 200924639 換溫度(Tg,s)約介於至約3〇〇c之間。為使上述聚合 物易於加入水性配方中,所用之聚合物以乳狀液或膠: (latices)態為較佳。 上述組成物可為水性混合物,其中該混合物包含足以 使該組成物在加熱至足夠溫度及足夠時間後得以成型之含 水量,以形成生物可分解、免洗式、且防水之製品。習知 此藝者將可理解使一物品成型有各種各樣之製程可行,例 如’模塑成型、射出成型、膨脹成型、壓製❻咖㈣、模 ❹鍛(Ramping)、及類似之製程,其中每-製程將需要不同含 水置,或稠度(consistency),之組成物以成型。一些實施 例中,上述水性混合物含水量之重量百分率可約介於㈣ 至約80%之間、約45%至約75%之間、、約50%至約7〇%之 間、約55/〇至約65%之間、或任何其中之範圍。此外,習 知此藝者將可理解在-些實施例中,上述混合物可為水基 (washed)、部分水基、亦可為有㈣劑基(〇rganic ❹S〇1Vent_baSed)混合K朴’此種混合物可為醇類基或盆 -些實施例中’水性混合物之殿粉成分可包含天秋殿 粉及預糊化殿粉之組合。舉例而言,纖維與預糊化澱粉之 比例可介於約L5:1至約3:1之間、約1:1至約Μ之間、 約2:1至約5··1之間、或任何其中之範圍。 罐❖ L丨施例中’上述Hi合物尚可包含硬脂酸鎮、 、、聯劑、或其中之組合。硬脂酸錤係為—種可 水性之脫_。-賴劑,或㈣㈣Uabh_),係用以 36 200924639 減少烘烤過部分及模組系統間之附著力。其他可應用於此 之脫模劑包括,但非限於,金屬硬脂酸(metal stearate)化合 物,例如,硬脂酸鋁、鎂、鈣、鉀、鈉、或鋅之硬脂酸鹽 類;脂肪酸,例如,油酸(oleic acid)、亞麻油酸(linoleic acid) 等;脂肪;油類;及任何其中之組合。 各種各樣的蠟皆可能適合應用於一些實施例中。蠟的 實例包括,但非限於,(巴西)棕櫚蠟、小燭樹蠟、米糠蠟、 石蠟、或任何其他食品級蠟。一些實施例中,植物蠟可較 © 動物蠟或礦物蠟表現更佳。一些實施例中,天然蠟可較各 式合成蠟表現更佳。乳狀液之製備可藉由乳化劑與機械性 擾動而完成。適合用於本配方中之蝶乳液(wax emulsions) 之實例包括乳化(巴西)棕櫊蠟及乳化小燭樹蠟。所有核准 使用於食品之乳化劑(emulsifiers)皆可應用於此,包括,但 非限於,去水山梨醇單硬脂酸S旨(sorbitan monostearate)、 聚山梨醇S旨60 (Polysorbate 60)、聚山梨醇醋 65 (Polysorbate 65)、聚山梨醇酯 80 (Polysorbate 80)、硬脂酸 鈉、硬脂酸鉀、食品級膠(gums)(例如,阿拉伯聚半乳糖 (arabinogalactan)、鹿角菜膠(carrageenan)、富塞蘭藻膠 (furcelleran/furcellaran)、三仙膠(xanthan))、硬脂酿單甘油 擰檬酸醋(stearyl monoglyceridyl citrate)、琥拍酸硬脂酸酉旨 (succistearin)、經化卵填脂(hydroxylated lecithin)、及許多 其他類似之化合物。 各種各樣的交聯劑可在一些實施例中用以交聯澱粉及 纖維。上述交聯劑包括,但非限於,甲胺(methylamine)類 37 200924639 化合物、多價(polyvalent/multivalent)酸、多價酸鹵化物 (halogenides)、多價酸 if (anhydrides)、聚酿 (polyaldehydes)、環氧聚合物(polyepoxides)、聚異氰酸酯 (polyisocyanates)、1,4-丁二醇二環氧丙基醚(1,4-butanediol diglycidyl ether)、環氧氯丙院樹脂類(epichlorohydrin resins)、乙二搭(glyoxal)、碳酸鍅銨(ammonium zirconium carbonate)、碳酸锆奸(potassium zirconium carbonate)、及 聚醯胺-環氧氯丙烧(polyamide-epichlorohydrin)樹脂、聚胺 ❹ 環氧氣丙烧(polyamine-epichlorohydrin)樹脂、及其類似 物。 其他亦可添加至上述組成物之成分為蛋白質及天然化 合物、天然橡膠乳膠(rubber latex)、及纖維上膠劑(fiber sizing agents)。舉例而言,纖維上膠劑包括松香(rosin)、 松香酯、雙烧基乙稀酿I (AKD,Alkyl Ketene Dimer)、及烯 基琥珀酸Sf(AS A,alkenyl succinic anhydride)。其他成分 可包括,但非限於,來自路蛋白(casein)、大豆蛋白分離物 〇 或濃縮物之製品、或其類似之製品。上述製品中之一種可 由下列三步驟所製備: 1) 烹煮酪蛋白或大豆蛋白分離物(重量百分率約為 10%)之水溶液,正如一般製造者之建議(大體而言,藉由浸 泡來水合蛋白質,之後逐漸提高溶液之溫度及pH值至180 °F及pH = 9〜9.5,接著維持溫度於180 °F至15分鐘); 2) 冷卻上述製備品至室溫;以及可選擇性施行之步驟 3) 添加一防腐劑且混合均勻。防腐劑在上述製備品中 38 200924639 之較佳濃度約為0.1%或更低’此係依照蛋白質溶液所需之 保存期限(shelf life)、最後成品中所需之蛋白質濃度、及政 府制定之食品法規中防腐劑含量之規範而決定。 其他蛋白質亦可與上述酿蛋白或大豆蛋白製備品一同 使用或分開使用以增加容器之防水性。例如,上述蛋白質 可包括蛋白(albumen)、明膠(gelatin)、或其類似物。 一些實施例中,本發明包括一種用以製造生物可分 解’殿粉基、防水物品之生產方法。上述方法包括填入一 ©種在此所描述之組成物至一具有一模槽之造模裝置(m〇ld apparatus)。上述組成物可為水性混合物,係於造模裝置中 加熱,以足夠溫度加熱至足夠時間使該混合物形成一穩定 形式且在其外表面形成一外皮(skin),其中該混合物在加熱 時與上述模槽之表面接觸。上述造模裝置包含至少一縫隙 使蒸氣可從該縫隙排出上述造模裝置之模槽,而不會從該 縫隙損失顯著之上述混合物。 ❹、一些實施例中,本發明包括利用在此所描述之組成物 以生產一製品,其中此製品係為生物可分解且具有防水 性。習知此藝者將可理解本發明中所述之組成物可用以製 作幾乎無限制用途種類之材料。一些實施例中,上述產品 可用於食品工業。食品工業產品可包括,但非限於,單— 格或多重隔間之餐盤(餐盒)、碗、冷飲杯、熱飲杯及杯蓋、 盤子、烘烤盤、瑪芬鬆糕外杯(muffin trays)、及餐廳外帶 食品之容器及蓋子。一些實施例中,所述材料可用以製作 -般包裝產品,如電子產品之包裝、電池包裝、及其類似 39 200924639 物許夕實施例中,用所述材料製作之產品可用以填充、 盛裝食物、甚至可拿來食用、亦可經過冷;東、運送、供烤、 及微波。-些實施例中,上述產品係完全可微波、可供烤、 可隔絕、及/或可食用亦無害。一些實施例中,上述產品可 加以調味及增加香氣。—些實施财,上述製品係為可堆 肥。一些實施例中,上述製品係為核准可食用之食品。 一些實施例中,本發明包括一種方法以製造生物可分 解、澱粉為基底、且防水之製品。此方法包括製備一混合 ❹物,該混合物包含生物可分解之纖維成分及澱粉成分。上 述生物可分解纖維成分之乾重基含量係介於約5%至約 40%之間,而上述澱粉成分之乾重基含量係介於約4〇%至 約94.5%之間。加入上述混合物之添加成分之乾重基含量 係介於約0.5%至約10%之間。上述添加物成分可包括氫化 三酸甘油酯、聚乙酸乙烯酯(PVAc)、聚乙酸乙烯酯_乙烯共 聚物(VAE)、聚乙烯,乙酸乙烯酯共聚物(EVA)、或任何其 ❹中之組合。一水性成分係加入上述混合物以產生一水性組 成物’其中該水性成分包含充足含量之水使該組成物得以 形成一期望之形體。 其他可添入上述水性成分之添加物如鹽、緩衝劑 (buffers)、著色劑、維他命、營養素、藥品、機能性食品 (nutraceuticals)、有機填充材料、及其類似物。上述具有 期望形體之組成物係以足夠溫度加熱至足夠時間以產生一 生物可分解、免洗式、又防水之製品。 一些實施例中,本發明包括一種方法以製造具有增進 40 200924639 強度而生物可分解、殿粉為基底、且防水之製品。此方法 包括製備一混合物’該混合物包含生物可分解之纖維成分 及殺粉成分’其中上述生物可分解纖維成分之乾重基(dry weight basis)含量可介於約5%至約40%之間,而上述殿粉 成分之乾重基含量可介於約40%至約94.5%之間。加入上 述合物之添加物成分之乾重基含量可介於約0.5 %至約 10%之間,其中該添加物成分包括環氧化植物油、聚乙酸 乙烯醋(PVAc)、聚乙酸乙烯酯·乙烯共聚物(VAE)、聚乙婦_ Ο 乙酸乙烯酯共聚物(eVA)、或其中之組合。一水性成分係 加入上述混合物以產生一水性組成物,其中該水性成分包 含充足含量之水使該組成物得以形成一期望之形體。上述 期望形體之組成物係以足夠溫度加熱且加熱至足夠時間以 產生一生物可分解、免洗式、又防水之製品。 實例一:一組成物之製備 表一提供了應用於本發明之一些實施例中的成分及組 成物之含量範圍。 表一 材料 含量範面 (重量百分率%) 較佳範園 (重量百分率%) 水分 40-80 55 - 65 纖維 2 — 15* 6 - 12* 41 200924639 填料 2-16* — 4-12* 天然澱粉 8 - 30* 14 - 25* 預糊化澱粉 ----— 1-10* 2-6* 硬脂酸鎂 --__ 0-4* 0.4-2* 蛾 --------- 交聯劑 0-3* 0.4 - 1.2* 0-2* 0.2 - 0.6* 環氧化植物油 --—-~-— 〇 - 3.2* 0.2 - 2.4* 聚合物(PVAc)、 共聚物(VAE)等 * tv r\ λ .μ 0 — 4* 0.8 - 2.5* *除以0,4以得到乾重基之含量。 本實例之組成物中應使用表一令至少一種材料、硬脂 酸鎂、環氧化植物油、或蟻(包括氫化三酸甘㈣),而在 -些實施例中’其所使用於組成物中之乾重基重量百分率 係介於1.0〜3.5%之間。一些實施例中,總殿粉與填料之比 例應為3:1左右。纖維與預糊化澱粉之比例係介於約m 至3:1之間,而在一些實施例中,其比例係介於約m 至2.5:1之間。其他亦可選擇性添加至上述組成物中之成 刀包括蛋白f、天然橡膝乳膠、著色劑、及纖維上膠劑。 實例二:由上述組成物製備一物品 上述水性組成物經由可加熱排氣型造模裝置而製作成 物品。許多類型之拌合設備(batch)及連續型密閉混合機 (internal mixers)皆適合用以製備本配方,如行星式混合機 42 200924639 (planetary mixers)、σ 型雙臂混合機(D〇uble Arm Mixers)、和擠壓機(extruders)。一些實施例中,上述混合 物可經由相對較低剪力之混合機如行星式混合機於室:^Other sources of fiber are readily available. K, ± wind has paid for the above - some of the fibers are from fast-growing plants, broadly 曰' take, right and 5 are characterized by grasses or reeds, such as kenaf and bamboo, The fiber supplied by the 広^ 匕 source is smaller than the environmental cost of the 17 200924639 fiber taken from the tree. The growing part of the fiber industry utilizes the above plants to obtain fibers. In many instances, the quality and consistency of the fiber from the plant (after processing) is in line with the supply of the company. In addition, the fiber is a by-product of the agricultural process and is also saliva: available. For example, #, stem, and chaff are ready-made for fiber materials, although they are not as good as the fiber quality of wood or better varieties of grass, but they are by-products, so There is basically no additional environmental cost (no more than the cost of producing the main crop). ^ The fiber materials described herein as included in the formulation may vary greatly in fiber length and fiber aspect ratio. However, as a whole, it is preferred that the material has an average fiber length of less than 2 mm and an average fiber aspect ratio of from 5:1 to 25:1. The wax or wax emulsion suitable for increasing water repellency in the formulation is a stable aqueous emulsion, usually from (Brazil) palm wax (car wax), candelilla wax (candelilla wax) Made from rice bran wax, paraffin, or any other food-grade ant: plant mites are better than animal mites and mineral mites, and natural mites are better than various synthetic mites. The choice of wax type is based on the specific application of the finished product and the nature of the desired product. The preparation of emulsions is usually accomplished by emulsifying agents and mechanical agitation. Examples of wax emulsions suitable for use in the present formulation include emulsified (Brazil) carnauba wax and candelilla wax. All emulsifiers approved for use in foods (emulsiHers) can be used here, including (but not limited to) 18 200924639 sorbitan monostearate, polysorbate 60 , Polysorbate 65, Polysorbate 80, food grade gums (eg, arabinogalactan, carrageenan, Fucelin) (furcelleran/furcellaran), xanthan), stear monoglyceridyl citrate, succistearin, hydroxylated Lecithin), and many other compounds.关 In the use of a wax substitute, the dry weight concentration of an added component or an emulsion thereof may range from greater than 0% to about 15% or about 0. 5% to about 10%. The additive component may include epoxidized vegetable oil, hydrogenated triglyceride, PVAc, polyvinyl acetate, polyvinyl acetate-ethylene copolymer (VAE, poly(vinylacetate-) Ethylene) copolymer), poly(ethylene-vinyl acetate copolymer) (EVA), ^ or a combination thereof. A mold release agent, or abherent, is used to reduce the adhesion between the baked portion and the module system. Examples of particular release agents suitable for use in the present formulation include, but are not limited to, 'metal stearate compounds (eg, stearic acid, magnesium, calcium, potassium, sodium, or zinc stearic acid) Salts, fatty acids (eg, oleic acid, linoleic acid), fats, oils, or the like, or any combination of the foregoing. The coloring agent used in the present formulation is preferably a pigment which is hardly soluble in water and can be safely used in foods. 19 200924639 is preferred (for example, iron oxide, ultramarine, chrome-Ilu Oxidation (chromium-cobalt-aluminum oxides), ferric ammonium ferrocyanide, ferric ferrocyanide, manganese violet, carbazole violet )). Alternatively, a combination of a color lake colorant, a water soluble food dye, and a pigment, or a combination of a pigment and a lake and/or a dye may be used in some applications. In certain embodiments, novel compositions and methods of manufacture for making biodegradable, starch based, hydrophobic articles are provided. In some embodiments, a composition comprising a biodegradable fiber component has a fiber component having a dry weight content of between about 5% and 40% and a starch component having a dry weight content of between about 40% and about 94. Between 5%, and the dry weight content of an additive component is between about 0% and 15%. The above additive components may include epoxidized vegetable oil, gasified triglyceride, polyvinyl acetate (PVAc), polyvinyl acetate-ethylene copolymer (VAE), polyethylene-vinyl acetate copolymer (EVA), or A combination of them. In certain embodiments, the above additive component may have a dry weight content of about 0. Between 5% and 10%. In some embodiments, the biodegradable fiber component described above comprises natural fibers, and the natural fibers may comprise wood fibers, non-wood fibers, or animal weaves. In some embodiments, the biodegradable fiber component comprises a biodegradable synthetic fiber. In some embodiments, the starch component described above may comprise an organic filler material having a starch to filler ratio of between about 10:1 and 1:1, and typically a typical starch to filler ratio of about 3:1. 200924639: In some embodiments, the above additives may be present in an amount of about, in some embodiments, the additive component is hydrogenated triglyceride 6 oxidized vegetable oil, or a polymer, and the polymer is selected from polyacetic acid. A family of polymers consisting of PVAc, polyethylene acetate vinegar copolymer (vae), and polyethylene-acetate copolymer (EVA). - In some embodiments, 'an aqueous mixture comprising a composition as described herein' wherein the mixture may comprise a water content sufficient to allow the composition to be molded after sufficient temperature and sufficient time to form Bio © Decomposable, disposable, and waterproof articles. In some embodiments, the water content is between about 40% and about 80%. In some embodiments, the above-mentioned powder-killing component comprises a combination of natural temple powder and pre-gelatinized meal, and the ratio of fiber to pre-gelatinized starch is between about 3:1. The above composition may further comprise magnesium stearate, an ant, a crosslinking agent, or any combination thereof. These embodiments are intended to describe a method of making a biodegradable, temple based, waterproof article. The above method comprises the addition of an aqueous solution mixture comprising the composition described herein to a mold apparatus having a cavity. The above mixture is heated in a molding apparatus, heated at a sufficient temperature and heated for a time sufficient to form the mixture into a stable form and form a skin on the outer surface thereof, wherein the mixture is heated with the surface of the cavity contact. The molding apparatus includes at least one slit for allowing vapor to be discharged from the slit into the cavity of the molding apparatus without losing significant of the mixture from the gap. In some embodiments, the above mixture material fills the cavity by expansion upon heating. Some embodiments are used to describe a sigma sigma comprising the composition 21 200924639 described herein, wherein the article is a biodegradable and waterproof article, and in some embodiments, the article is a compostable article. In some embodiments, the article of manufacture is a tableware, a packaging material, or a combination thereof. In some embodiments, the above product is an approved edible food. Some embodiments are used to describe a method for making biodegradable, starch based, and waterproof articles. The above method comprises preparing a mixture comprising a biodegradable fiber component and a starch component. The above bio-cleavable fiber component may have a dry weight basis content of between about 5% and about 40%, and the starch component may have a dry weight basis of from about 40/Torr to about 94. . Between 5%. The dry weight component of the additive component added to the above mixture may be between about 0. Between 5% and about 1%. Further, the above additive component may include polyvinyl acetate (PVAc), polyvinyl acetate-ethylene copolymer (VAE), polyethylene-vinyl acetate copolymer (EVA), or a combination thereof. An aqueous component is added to the above mixture to produce an aqueous composition wherein the aqueous component comprises sufficient levels of water to form the composition into a desired form. The above composition having the desired appearance is heated at a sufficient temperature for a sufficient period of time to produce a biodegradable, leave-on, and waterproof article of manufacture. Some embodiments are used to describe a method for making articles that have enhanced strength while being biodegradable, starch-based, and waterproof. The method comprises preparing a mixture comprising a biodegradable fiber component and a starch component, wherein the biodegradable fiber component has a dry weight basis content of between about 5% and about 40%, The starch component may have a dry weight basis content of from about 40% to about 94. Between 5%. Adding the amount of the dry weight of the additive component of the mixture of 22 200924639 may be about 0. Between 5% and about 10%, wherein the additive component comprises epoxidized vegetable oil, polyvinyl acetate (PVAc), polyvinyl acetate-ethylene copolymer (VAE), polyethylene-vinyl acetate copolymer (EVA) , or a combination thereof. An aqueous component is added to the above mixture to produce an aqueous composition wherein the aqueous component contains sufficient levels of water to allow the composition to form a desired profile. The above composition having the desired appearance is heated at a sufficient temperature for a sufficient period of time to produce a biodegradable, leave-up, and water repellent article. ❹ Some embodiments are used to describe a composition comprising a biodegradable fiber component and a water-repellent starch component, wherein the biodegradable fiber component has a dry weight basis content of between about 5% and about 40%, The water-repellent starch component has a dry weight basis content of from about 40% to about 94. Between 5%. In these embodiments, the water-repellent starch may be, for example, a chemically modified starch, such as alkenyl succinic anhydride gf (alkenyl succinic anhydride) modified temple powder, acetic anhydride modified temple powder, vinyl acetate (vinyl) Acetate) modified starch, acrolein modified starch, epichlorohydrin modified starch, phosphorous oxychloride modified starch, sodium trimetaphosphate modified starch, or propylene oxide (pr〇pyiene oxide) modified starch, or an analogue thereof; unmodified temple powder, such as high-amylose starch; or a combination thereof; or any other known in the prior art having water-repellent properties Starch. In some embodiments, the composition further comprises an additive component having a dry weight basis content of about 〇.  Between 5 % and about 10%, wherein the additive component comprises epoxidized vegetable oil, hydrogenated tri 23 200924639 glyceride, polyvinyl acetate (PVAc), polyvinyl acetate-ethylene copolymer (VAE), polyethylene - Vinyl acetate copolymer (EVA), or a combination thereof, may be biodegradable, compostable, or a combination thereof, and may be used in the manufacture to disintegrate in the same manner. article. In some embodiments, a biodegradable material can be broken down into simple compounds such as carbon dioxide, methane, water, inorganic compounds, and biomass, the main mechanism of which is the enzyme action of microorganisms (enzymatic) Action). In some embodiments, a biodegradable material can be rapidly decomposed by microorganisms under natural conditions, for example, under aerobic and/or oxidizing conditions. In some embodiments, a biodegradable material can degrade to monomeric components upon contact with microorganisms, hydrolysis, and/or chemical reactions. Under aerobic conditions, biodegradation converts materials into final products, including carbon dioxide and water. In the anaerobic condition T, the decomposition of the substance can convert the substance into the final product, including carbon dioxide, water, and sputum. In some embodiments, the biodegradation system is mineralization. 'In some embodiments, the difference between biodegradation and compostability is that a biodegradable material is simply decomposed by biological activity (bi〇1〇gical), especially the enzyme function. This material will have no time limit. Significant chemical structural changes occur. The other 'eQmp_bility' can be a biodegradable material. In some embodiments, a compostable material can be biodegraded in a composting system and its biodegradation is completed as it is used in the final use of compost. The criteria for determining whether it is effective composting include, for example, very low levels of heavy metals, no ecotoxicity, and no apparent identifiable residue. Several tests determine whether a composition is biodegradable, compostable, or a material that combines both biodegradable and compostable properties. The American Society for Testing and Materials (ASTM) is defined as, for example, a compostable material that is "a biodegradable material that can be broken down into a material that cannot be visually recognized by a biodegradable space. It is also degraded to carbon dioxide, water, inorganic compounds, and biomass, and its decomposition rate is comparable to that of known compostable materials. In some implementations, 'compostability can be measured by the American Society for Testing and Materials Standard Test Method D5338 (ASTM D5338), while ASTM D5338 utilizes the second level test of the American Society for Testing and Materials Standard Specification D6400 (ASTM D6400). (Tier Two Level testing) is based. In contrast, Europe's definition of compostable material is, for example, a material that can degrade about 90% in a home or industrial compost heap within six months, and materials that meet these criteria can be relied upon. European Standard (European Standard) EN 13432 (2000) is considered "compostable". ® Biodegradation tests vary based on specific test conditions, evaluation methods, and expectations. Therefore, when testing most materials, different experimental methods can produce a reasonable convergence value and lead to similar conclusions. For example, the American Society for Testing and Materials (ASTM) has established ASTM D5338-92 to measure aerobic biodegradability. ASTM D5338-92 measures the percentage of mineralization of a measured substance as a function of time. This test monitors the amount of carbon dioxide released by the assimilation of thermophilic microorganisms present in the active compost at 58 °C. Measurement of CO2 gas production 25 200924639 The test can be determined by electrolytic respirometry. Other standard experimental methods, such as the 301B developed by the Organization for Economic Cooperation and Development (OECD), can also be used for testing. In some embodiments, a material can be said to be biodegradable if it can be broken down by 60% or more within 28 days. Please refer to OECD 301D, "closed bottle test" (Economic Cooperation and Development Organization, France). Standard biodegradation tests in the absence of oxygen are described in various experimental methods, such as ASTM 〇 D5511-94. These tests can be used to simulate the biodegradability of materials in an anaerobic solid waste treatment facility or sanitary landfill. The Biodegradable Products Institute (BPI) and the US Composting Council (USCC) use the American Society for Testing and Materials (ASTM Specifications) to approve the "Compostable Logo". These specifications are used to identify plastic and paper products that can be fully and safely differentiated and bio-decomposed when composted in public or commercial composting sites, like kraft paper, garden pruning and food debris. The Compostable Marks are awarded to any product that complies with ASTM D6400 or D6868 standards based on tests performed by approved independent laboratories. For example, the BPI certification represents a material that meets ASTM D6868 specifications and will be biodegraded quickly and safely when composted in public, commercial, or household use. For example, the American Society for Testing and Materials (ASTM) developed test methods and specifications for compostability, measuring three characteristics: biodegradability, and the absence of ecotoxicity. In order to meet compostable biodegradability standards, this material needs to be converted to carbon dioxide by at least about 60% in 40 days, and less than 10% of the tested material is left in the actual shape and thickness of the discarded product at 2 mm ( Mm) on the screen, as a measure of differentiation. In order to measure no ecotoxicity, by-products of biodegradation must not have a negative impact on seed germination and plant growth, as can be seen by the tests detailed in OECD 208. For example, please refer to http://www. Oecd. Org/dataoecd/l 1/3 1/33653757. Pdf International The International Biodegradable Products Institute will publish a label to certify compostability, for example, once a product has been certified to meet ASTM D6400-99 specifications. The above experimental method is in accordance with the German Standards Institute (DIN, Deutsches Institut fiir Normung eV) 54900, the maximum thickness allowed for complete decomposition in a composting cycle. In some embodiments, the above materials may be completely biodegraded within 60 days, or fully biodegraded within 50 days, 40 days, 30 days, 20 days, 10 days, or any of them. In some embodiments, the percentage of biodegradation of the above materials within 30 days, 28 days, 25 days, 20 days, or any of them may be as high as 75%, 80%, 85%, 90%, 95%, 98%. , 99%, or any range of them. In some embodiments, the products made from the compositions described in this specification conform to ASTM D6868 specifications for biodegradability. In certain embodiments, a composition described in the present specification comprises a biodegradable fiber component having a dry weight basis content of 27 200924639 of between about 5% and about 40%, of about 15 Between about % and about 30% is preferred; a starch component having a dry weight basis content of from about 40% to about 94. Between 5%, preferably between about 45% and about 75%; and one or more additional ingredients having a dry weight basis content of between greater than 0% and about 15%, with a ratio of about 0. Between 5% and 10% is preferred. In some embodiments, the dry weight of the added component may be between about 1. Between 5% and about 7%. In certain embodiments, the dry weight content of the above added components can range from about 2% to about 5%. The above biodegradable fiber component may include natural fibers, and the natural fiber may include wood fibers, non-wood fibers, or animal fibers such as wool. Wood fibers can be derived from, for example, trees and are sources of primary cellulosic fibers. Non-woody fibers include, but are not limited to, bagasse, bamboo, and straw. Examples of natural fibers may include, but are not limited to, wool, cotton, wood pulp, bamboo, kenaf, flax, jute, hemp, manila hemp ( Abaca), grass, reeds, and the like. The fiber component can also include a mixture of any of the fibers described herein. It is well known to those skilled in the art that any biodegradable synthetic fiber can be used in some embodiments of the invention. Examples of synthetic fibers may include, but are not limited to, polyolefins, polyesters, polyamides, acrylics, rayons, cellulose acetates (cellulose). Acetate), polylactide, polyhydroxyalkanoates, thermoplastic multicomponent fibers (such as conventional sheath-core composite fibers, such as polyethylidene) Tannin-polyethylene 28 200924639 core composite fiber), and the like and mixtures thereof. In many embodiments, the synthetic fibers described above have partial or complete biodegradability, as defined by ASTM D6400. Several natural fiber materials can be used in combination to simultaneously serve as a structural element in the baked article (having several sizes) and as an inexpensive organic filler. The fiber element is used to simultaneously control the molding properties of the wet batter and to enhance the structural stability of the serving tableware and the finished package. Although the fiber length of the fiber that may be used in the formulation is continuous with the aspect ratio of the fiber, the fiber portion of the formulation can be generally classified into three grades (according to the fiber length) to suit different functions. : Long or very long fibers (4 to 25 mm or longer) or composite fiber (c〇mp〇site fiber) elements are used to form a fibrous mesh to help prevent its batter from being molded and expanded. Forming defects; medium length fibers (0. 5~5 mm) can also help control the fluid properties of the wet batter, and is suitable for increasing the toughness of the serving tableware to prevent it from breaking during handling or normal use; short fibers (less than ❾0. 5%) is mainly used as a kind of sanitary ware to attract organisms that can be easily decomposed. The overall length of the longer fibers is shorter because the fiber length is generally larger than the fiber diameter = larger. The fiber is high. The average aspect ratio of long or very long fibers can range from about 40:1 to greater than 1 〇〇〇:1. The average length to diameter ratio of the medium length fibers can range from about 5:1 to about 200:1. The aspect ratio of short fibers is typically less than about 5 〇:1. For example, some filler materials may be used, and the starch matrix containing the filler material is more waterproof. (Several types of fibers can provide i, this work is sturdy, but medium, long, and very long fibers provide the special! Life is necessary for molding, operation and use, and in some implementations 29 200924639 The gas fiber elements in the case mainly contribute to the water resistance brought by it.) The fiber t said that many of the compositions described in the Ming can contain several sources of Λ Λ Λ Λ 苇 苇High-grade (4) (10) provides Zhongzhigong II. This fiber can be used for the structural stability and elasticity of the finished product. 农 Processing of the cultivar to very long fiber or composite fiber can come from the uranium-hui or 麫2 2 product such as shredded , milled, or ground to an appropriate size = under appropriate processing conditions, such as with iron shovel or knife π: some materials can also provide a very small amount of a very short fiber, for = _ substituted part (four), and increase Force-water-based. This 1 research = the fiber material in the form of wood, such as wood powder, vitamins, :: He Yan Ke eight 解 Μ Μ as an organic, more waterproof bio-knife filling to replace the traditional inorganic filling materials. - Some fibers can be obtained from growing fast plant towels, such as package = = hemp ("bamboo. And other _ some fibers are also available at the agricultural system" such as 'grass stem' and stem white is the source of ready-made medium-length fibers. Fiber length and fiber length-to-diameter ratio Both may vary widely in the household, the material may have an average fiber of less than 2 mm and to 25G: 1, about (1) to 125: bb (4) 7 〇: 1, or about 1. The average fiber length ratio of 5:1 to 30:1. : Powder: There are several sources available. The source of the powder may include, but the source of the fruit, such as the tuber (10) ers), the roots, the seeds, and/or the fruit of the plant, and the source of the plant may include corn, potato tree stalk, 200924639 rice, or wheat, or An analog, or animal source, such as glycogen. In some embodiments, the starch is a combination of both pre-gelatinized and uncooked or natural starch. In some embodiments, the pre-gelatinized starch has a weight percent concentration of from about 〇% to about 3% by weight of the total powder in the formulation, and preferably from 3% to 20%, and from 5% to 15%. % is the best. Food grade starch (pre-gelatinized or uncooked) modified via cross-linking, stabilization, or addition of a fat-soluble functional group may be included to increase the resistance of the product to softening when exposed to liquid foods (resistance) ). In some embodiments, the starch may be a waterproof starch, such as a modified starch, such as a chemically modified starch, such as an alkenyl succinic anhydride modified starch, an acetic anhydride modified temple powder, vinyl acetate. Vinyl acetate modified starch, acrolein modified starch, epichl〇r〇hydrin modified starch, phosphorous oxychloride modified starch, sodium trimetaphosphate Starch, or Propylene oxide modified starch, or an analogue thereof; an unmodified starch, such as high amylose; or a combination thereof; or any other powder known in the art to have water repellent properties. In some embodiments, the powder component may comprise amylose. For example, the above-mentioned temple powder component may comprise a natural temple powder, a pre-gelatinized starch, a high linear chain powder, or a combination thereof. In some embodiments, at least a portion of the starch component can be comprised of one or more water resistant starches. The above waterproof starch may be chemically modified to achieve general waterproofing of the temple powder, for example, alkenyl succinic anhydride modified starch, acetic anhydride modified temple powder, acetic acid modified starch, acrolein modified starch 'epoxychloropropane modified starch, three Chlorine 31 200924639 2 Township decoration; temple powder, sodium trimetaphosphate modified 丨 (four), or propylene-acrylic modified powder, or its class (four), or unmodified itself, the Tianshui Temple powder, for example, straight Chain (4); or a combination thereof, any of which is known in the art: starch having a waterproof property is known. In these embodiments, the water-repellent starch portion of the above starch component may comprise chemically modified waterproof starch, natural water-resistant high amylose starch, or a combination thereof. One of the above starch components uses a waterproof starch to increase the moisture resistance of the finished product. In some embodiments, the starch component comprises an organic filler material wherein the ratio of starch to filler is between about 10:1 and about 1:1. In some embodiments, the starch component may comprise a filler material, most commonly an organic filler' wherein a typical ratio of starch to filler is about 3:1. In many embodiments, the filler is an organic filler. The above organic filler material may include, for example, a 'grinded nut shell such as a walnut shell; ground wood such as wood flour; ground cellulose such as ground bamboo pulp; or any combination thereof. The organic filler material allows the fibrous material to contain short or very short fibers, and the organic filler can be used alone as a filler material or can be used in combination with other filler materials. In some embodiments, the dry weight percent concentration of the organic filler in the composition is between about 0 Torr/〇 and about 30%, or a dry weight percentage between about 5% and about 30%. The organic filler can be used alone as a filler or in combination with other filler materials. In some embodiments, the organic filler material has a dry weight percent concentration in the product of between about 10% and 25%, or between about 15% and 21%. In some embodiments, the staple fibers can be incorporated into the composition together or replaced by other filler materials having the same advantages as staple fibers. For example, the 32 200924639 filler materials may include both organic and inorganic aggregates such as carbonic acid mom, silica, calcium sulfate, calcium sulfate hydrate, magnesium silicate, mica. Minerals (micace〇us minerais), clay minerals, titanium dioxide, talc, etc. The weight percent concentration of aggregates and/or staple fibers may range from 〇% to about 30% of the total dry weight of the formulation, about 2. Between 5% and about 25%, between about 5% and about 20%, between about 5% and about 25%, or between about 7% and about 21%. The addition of ingredients increases the combination of water repellency, strength, or water repellency and strength of the finished product, which is made from a biodegradable, starch-based composition. In some embodiments, the above-mentioned additional components include epoxidized vegetable oil, hydrogenated triglyceride, polyvinyl acetate (PVAc), polyvinyl acetate-ethylene copolymer (VAE), polyethylene-vinyl acetate copolymerization. (EVA), or a combination thereof. In some embodiments, the additive component is present in an amount between about 2% and about 5%. In certain embodiments, the above additional ingredients include epoxidized triglycerides. Although it is customary to use it as a plasticizer, especially for polyvinyl chloride (polyvinyl chloride) and polyvinylidene dichloride (PVDC), the epoxidized vegetable oil in the starch-based composite is very Surprisingly, articles that are molded by heating can be made to have a wide range of densities. When epoxidized vegetable oil is used, it is surprising that the manufacture of denser articles does not require longer heating times. Furthermore, items with higher densities are stronger and more cost effective to manufacture than thicker items, as thicker items generally require 33 200924639 longer heating times. The epoxidized triglyceride can be obtained by epoxidizing triglyceride in an unsaturated fatty acid of animal or vegetable origin. Examples of suitable epoxidized vegetable oils include epoxidized linseed oil, epoxidized soybean oil, epoxidized corn oil, epoxidized cotton seed oil, epoxidized perilla oil, epoxidized safflower oil, or Its analogues. In some embodiments, the epoxidized vegetable oils may include epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO). In order to comply with the requirements of the US Food and Drug Administration (FDA) for food contact, the iodine number of epoxidized linseed oil (ELO) generally needs to be less than 5, and the oxygen content of oxirane is The minimum value is about 9%, while the iodine value of epoxidized soybean oil (ESO) generally needs to be less than about 6, and the minimum oxygen content of oxirane is about 6%. A wide variety of epoxidized vegetable oils can be used herein. In some embodiments, the epoxidized vegetable oil has an epoxide equivalent of from about 400 to about 475. Partially epoxidized vegetable oils can be used in some embodiments. In some embodiments, the epoxidized vegetable oils described above for use in the present invention have an epoxy equivalent weight of less than about 225. For example, the epoxy equivalent 178 of the epoxidized linseed oil can be reacted with a monocarboxylic acid or a monohydric phenol to increase its equivalent weight to 400 to 475. In some embodiments, the above additive components include hydrogenation. Hydrogenated triglyceride. The powder-based biodecomposable composition can be used to increase water repellency, for example, (Brazil) carnauba wax, candelilla wax, paraffin, brown carbon (montan wax) ), polyethylene sulphate, and the like. For example, (Brazil) palm wax is quite expensive and its dry weight content is limited to no more than 3% because 34 200924639 it will distill off steam during molding and plug it into a product for making the composition into a product. The pipeline of the mold device. In some embodiments, a hydrogenated vegetable oil having a melting point between about 54 ° C and 85 ° C can be used in place of the wax to enhance the moisture resistance of the formulation. Suitable hydrogenated triglycerides can be prepared from animal fats or vegetable oils, for example, tallow, lard, peanut oil, soybean oil, canola oil, corn oil, and the like. Suitable hydrogenated vegetable oils include hydrogenated vegetable oils available from EvCo Research, Inc. under the trade names EVCOPEL EVCORR and EVCOPEL 0 EVCEAL. In some embodiments, the hydrogenated triglyceride can be used in concentrations up to 5%. A solid powdered, molten, or milky argon triglyceride may be added to the formulation. The added component can be a polymer. In some embodiments, the additional component is selected from the group consisting of polyvinyl acetate (P VAc or P VA), polyvinyl acetate-ethylene copolymer (VAE), polyethylene-vinyl acetate. Composition of ester copolymer (EVA). When PVAc, VAE, and EVA are added to the starch-based composite, the moisture resistance of the composition can be increased. EVA is a copolymer of ethylene and vinyl acetate, wherein the weight percentage of vinyl acetate is less than 50%; in addition, VAE is a copolymer of ethylene and vinyl acetate, of which vinyl acetate The weight percentage is greater than 50%. Ethylene-vinyl acetate copolymers (EVA's) are typically semicrystalline copolymers having a melting point between about 60 ° C and 110 ° C and a glass transition temperature (Tg, glass transition temperatures) similar to polyethylene. . In addition, vinyl acetate-ethylene copolymer (VAE's) is typically an amorphous polymer (undefined, melting point), and its glass transition 35 200924639 temperature (Tg, s) is about to about 3 〇〇. Between c. In order to facilitate the above-mentioned polymer to be added to the aqueous formulation, the polymer used is preferably in the form of an emulsion or a latices. The above composition may be an aqueous mixture, wherein the mixture contains a water content sufficient to allow the composition to be formed after heating to a sufficient temperature and for a sufficient period of time to form a biodegradable, leave-on, and water-repellent article. It will be understood by those skilled in the art that a variety of processes can be formed by molding an article, such as 'molding, injection molding, expansion molding, pressing coffee (4), die forging (Ramping), and the like, wherein Each process will require a different aqueous, or consistency, composition to form. In some embodiments, the weight percentage of the aqueous mixture may be from about (four) to about 80%, between about 45% to about 75%, between about 50% to about 7%, and about 55/. 〇 to about 65%, or any range of them. Moreover, it will be understood by those skilled in the art that in some embodiments, the above mixture may be water-washed, partially water-based, or may have a (four) agent base (〇rganic ❹S〇1Vent_baSed) mixed with K' The mixture may be an alcohol base or a pot - in some embodiments, the 'aqueous mixture of the powder component may comprise a combination of Tianqiudian powder and pre-gelatinized powder. For example, the ratio of fiber to pregelatinized starch can be between about L5:1 to about 3:1, between about 1:1 to about Μ, between about 2:1 and about 5.6, Or any range of them. The above Hi compound may further comprise a stearic acid town, a crosslinking agent, or a combination thereof. Barium stearate is a kind of water-soluble _. - Releasing agent, or (4) (4) Uabh_), used 36 200924639 to reduce the adhesion between the baked part and the module system. Other release agents useful herein include, but are not limited to, metal stearate compounds such as, for example, aluminum stearate, magnesium, calcium, potassium, sodium, or zinc stearates; fatty acids For example, oleic acid, linoleic acid, etc.; fats; oils; and any combination thereof. A wide variety of waxes may be suitable for use in some embodiments. Examples of waxes include, but are not limited to, (Brazil) palm wax, candelilla wax, rice bran wax, paraffin wax, or any other food grade wax. In some embodiments, the vegetable wax can perform better than the animal wax or mineral wax. In some embodiments, natural waxes perform better than various synthetic waxes. The preparation of the emulsion can be accomplished by emulsifiers and mechanical disturbances. Examples of wax emulsions suitable for use in the present formulation include emulsified (Brazil) palm wax and emulsified candelilla wax. All emulsifiers approved for use in foods can be used, including, but not limited to, sorbitan monostearate, polysorbate 60, poly Polysorbate 65, Polysorbate 80, sodium stearate, potassium stearate, food grade gums (eg, arabinogalactan, carrageenan) Carrageenan), furcelleran/furcellaran, xanthan, stearyl monoglyceridyl citrate, succistearin, succistearin Hydrolyzed lecithin, and many other similar compounds. A wide variety of crosslinkers can be used to crosslink starch and fibers in some embodiments. The above cross-linking agents include, but are not limited to, methylamines 37 200924639 compounds, polyvalent/multivalent acids, halogenates, polyvalent acid (anhydrides), polyaldehydes ), polyepoxides, polyisocyanates, 1,4-butanediol diglycidyl ether, epichlorohydrin resins , glyoxal, ammonium zirconium carbonate, potassium zirconium carbonate, and polyamide-epichlorohydrin resin, polyamine oxime (polyamine-epichlorohydrin) resin, and the like. Other ingredients which may be added to the above composition are proteins and natural compounds, rubber latex, and fiber sizing agents. For example, fibrous sizing agents include rosin, rosin ester, AKD, Alkyl Ketene Dimer, and alkenyl succinic anhydride (AS A, alkenyl succinic anhydride). Other ingredients may include, but are not limited to, articles derived from casein, soy protein isolates or concentrates, or the like. One of the above products can be prepared by the following three steps: 1) cooking an aqueous solution of casein or soy protein isolate (about 10% by weight), as recommended by the general manufacturer (generally, immersed by soaking) Protein, then gradually increase the temperature and pH of the solution to 180 °F and pH = 9~9. 5, then maintain the temperature at 180 °F to 15 minutes); 2) Cool the above preparation to room temperature; and optionally perform the steps 3) Add a preservative and mix well. The preferred concentration of the preservative in the above preparation 38 200924639 is about 0. 1% or less' is determined by the shelf life required for the protein solution, the protein concentration required in the final product, and the preservative content of the food regulations established by the government. Other proteins may also be used with or separately from the above-described brewed protein or soy protein preparation to increase the water repellency of the container. For example, the above proteins may include an albumen, gelatin, or the like. In some embodiments, the invention includes a method of making a biodegradable ' powder base, waterproof article. The above method involves filling in a composition as described herein to a molding apparatus having a cavity. The above composition may be an aqueous mixture, heated in a molding apparatus, heated at a sufficient temperature for a time sufficient to form the mixture into a stable form and form a skin on the outer surface thereof, wherein the mixture is heated as described above The surface of the cavity is in contact. The molding apparatus includes at least one slit for allowing vapor to be discharged from the slit into the cavity of the molding apparatus without losing significant of the mixture from the gap. In some embodiments, the invention includes the use of the compositions described herein to produce an article wherein the article is biodegradable and water repellent. It will be understood by those skilled in the art that the compositions described herein can be used to make materials of virtually unlimited use. In some embodiments, the above products are useful in the food industry. Food industry products may include, but are not limited to, single- or multi-compartment plates (meal boxes), bowls, cold drinks cups, hot drink cups and lids, plates, baking trays, muffin cakes (muffin) Trays), and containers and lids for food outside the restaurant. In some embodiments, the materials can be used to make a packaged product, such as an electronic product package, a battery package, and the like. In the embodiment of the invention, the product made of the material can be used to fill and hold food. It can even be eaten or cold; east, transport, roast, and microwave. In some embodiments, the above products are fully microwaveable, roastable, closable, and/or edible and non-hazardous. In some embodiments, the above products may be flavored and flavored. In some cases, the above products are compostable. In some embodiments, the above product is an approved edible food product. In some embodiments, the invention includes a method for making a biodegradable, starch-based, and waterproof article. The method comprises preparing a mixed mash comprising a biodegradable fiber component and a starch component. The biodegradable fiber component has a dry weight basis content of between about 5% and about 40%, and the starch component has a dry weight basis of from about 4% to about 94%. Between 5%. The dry weight content of the added component added to the above mixture is about 0. Between 5% and about 10%. The above additive component may include hydrogenated triglyceride, polyvinyl acetate (PVAc), polyvinyl acetate-ethylene copolymer (VAE), polyethylene, vinyl acetate copolymer (EVA), or any of them. combination. An aqueous component is added to the above mixture to produce an aqueous composition wherein the aqueous component comprises a sufficient amount of water to allow the composition to form a desired shape. Other additives such as salts, buffers, colorants, vitamins, nutrients, pharmaceuticals, nutraceuticals, organic filler materials, and the like which may be added to the above aqueous components. The above composition having the desired shape is heated at a sufficient temperature for a sufficient period of time to produce a biodegradable, leave-up, and water repellent article. In some embodiments, the present invention includes a method for making an article having a strength of 40 200924639 and biodegradable, powdered base, and waterproof. The method comprises preparing a mixture comprising a biodegradable fiber component and a powder activating component, wherein the biodegradable fiber component has a dry weight basis content of between about 5% and about 40%. The dry weight basis content of the above-mentioned powder component may be from about 40% to about 94. Between 5%. The dry weight content of the additive component added to the above compound may be between about 0. Between 5% and about 10%, wherein the additive component comprises epoxidized vegetable oil, polyvinyl acetate vinegar (PVAc), polyvinyl acetate/ethylene copolymer (VAE), polyethylene oxide Ο 乙酸 vinyl acetate copolymer ( eVA), or a combination thereof. An aqueous component is added to the above mixture to produce an aqueous composition wherein the aqueous component contains sufficient levels of water to form the composition into a desired shape. The composition of the desired form described above is heated at a sufficient temperature and heated for a time sufficient to produce a biodegradable, leave-up, and water repellent article. Example 1: Preparation of a Composition Table 1 provides a range of ingredients and compositions for use in some embodiments of the present invention. Table 1 Material content standard (% by weight) Preferred range (% by weight) Moisture 40-80 55 - 65 Fiber 2 — 15* 6 - 12* 41 200924639 Filler 2-16* — 4-12* Natural starch 8 - 30* 14 - 25* Pre-gelatinized starch----- 1-10* 2-6* Magnesium stearate--__ 0-4* 0. 4-2* moth --------- crosslinker 0-3* 0. 4 - 1. 2* 0-2* 0. 2 - 0. 6* Epoxidized vegetable oil ----~-- 〇 - 3. 2* 0. twenty two. 4* polymer (PVAc), copolymer (VAE), etc. * tv r\ λ . μ 0 — 4* 0. 8 - 2. 5* * Divide by 0, 4 to get the content of dry weight. The composition of this example should use at least one material, magnesium stearate, epoxidized vegetable oil, or ant (including hydrogenated tris(4)), and in some embodiments, The dry weight basis weight percentage is between 1. 0~3. Between 5%. In some embodiments, the ratio of total powder to filler should be about 3:1. The ratio of fiber to pregelatinized starch is between about m and 3:1, and in some embodiments, the ratio is between about m and 2. Between 5:1. Other molds which may optionally be added to the above composition include protein f, natural rubber knee latex, colorant, and fiber sizing agent. Example 2: Preparation of an article from the above composition The above aqueous composition was produced into an article via a heat-discharge type molding device. Many types of batches and continuous mixers are suitable for the preparation of this formulation, such as planetary mixers 42 200924639 (planetary mixers), σ-type dual-arm mixers (D〇uble Arm) Mixers), and extruders (extruders). In some embodiments, the above mixture may be passed through a relatively low shear mixer such as a planetary mixer: ^

為了製備上述配方,纖維(通常將薄板存料剪切為長條 狀)及約40%之總填料與約30〜4〇%之總水量在行星式混合 機中混合約5分鐘以達到粗橡皮擦屑之黏稠度。接著加I 預糊化澱粉混合約6〜9分鐘以更進一步解聚(disaggregate) 纖維。隨後加入其餘成分至上述混合物中混合約2~3分鐘 直到該混合物無可見之乾硬團塊。所需之混合時間將隨著 混合的規模與速度而有所不同。 為了形成-物品’具有所期望成品形狀之模槽的加埶 造模裝置侧以形成小料。在此製程中,上述造模裝置 包含至少-縫隙使加熱或烘烤時所產生之蒸氣可從該縫隙 排出。-流質或半流質之混合物係填入上述造模裝置之模 槽中,接著闔起該造模裝置,而上述混合物則在加敎時產 生水氣或蒸汽。在此實施例中’填入上述模槽中混合物之 體積係顯著小於該制之體積,但隨著加熱時内部水氣或 蒸汽壓之上升,上述混合物在加熱時亦會膨脹直到填滿該 模在此實施射,填人上述模射流f或半 之體積與該模槽之體積比介於1:4至1:2 5之間,或亦可介 =:3署7至…之間。由於上述混合物在加熱時與上述造 模裝置充分接觸’而使該混合物之外表面形成 ⑽η)。此外皮對於水氣或蒸汽係為可透或半透性 43 200924639 皮與上述縫隙之組合使水氣或蒸汽得以自該縫隙排出上述 f模裝置之模槽。而上述水氣或蒸汽之排出將不會從該縫 U貝失任何顯著分量之上述混合物。顯著分量之混合物損 失將導致原始材料之浪費,及加熱額外損失材料所需能量 之浪費’亦須額外清理過剩之材料及任何堵塞排氣縫隙之 材料。 上述蒸汽排出時,前述混合物仍保留在上述模槽中, 因為上述縫隙具有足夠大小,例如,形成於上述混合物表 ❹面之外皮使得該混合物與加熱之模具表面有所接觸,當上 述混合物在%熱時所產生之氣體或蒸汽壓足夠日寺,則水氣 或蒸汽得以自外皮及縫隙排出上述造模裝置而不會造成外 皮破裂。因為此外皮對於上述混合物係為不渗透性,而此 混合物在加熱完成前可能仍為流質或半流質,但此混合物 不會自上述造模裝置之模槽流失。 加熱或烘烤之溫度及時間將隨著特定混合物而有所不 ❹同,對於習知此藝者而言幾乎無須實驗即可輕易選定溫度 及時間。可用於此實施例之一模具實例為美國專利申請公 開號20_265453中所述之模具,特此將其整體内容列入 本說明書之參考文獻。 典型造模溫度係介於16 〇至2 4 0。c之間,在一些實施 例中,約介们80至220。(:之間。加熱或烘烤之㈣將會 隨著物品之尺寸及厚度而有所不同,一般物品約介於4〇 至450秒之間、介於約40至約8〇秒之間、介於約5〇至約 3〇〇秒之間、介於約60至約25〇秒之間、介於約7〇至約 44 200924639 150秒之間、或任何其中之範圍。一此 Μ Λ. ίτ pq 二霄施例中’上述材 料在打開杈具則需烘烤至 2〇/〇) θιί _ ^ F常低之3水量(可能需低於 之t :將會破裂。—些實施例中,增加上述材 杨物可縮短最賴料間,g為本㈣度即較 強之材料可耐較高之内部蒸汽壓。 實例二:生物可分解及可堆肥之物品 生物分解及可堆肥性係由本發明中所述之生物可分解 ❹殿粉基組成物所製物品之樣品所測試。這些樣品並不包含 -些實施例中所使用之聚乙酸乙烯醋(pvA)、聚乙酸乙烯 I乙稀共聚物(VAE)、聚乙稀.乙酸乙烯醋共聚物(eva)、 環氧化植物油、或氫化三酸甘油酯,但習知此藝者將可理 解這些添加物將不會影響上述組成物之生物分解及可堆肥 f生所有成分之漢度皆介於前述表一中所列之範圍内,此 外未列於表一中而添加至上述混合物之一組添加物其總 ❹含量為0.5%。(此組添加物中之約9〇〇/0由天然材料組成— 蛋白質及其他天然聚合物—因為其天然之來源本身即視為 生物可分解。習知此藝者將可理解添加這些微量之天然材 料至組成物中,如表一中所述之,將不會影響所量測之上 述組成物之生物分解及可堆肥性。) 根據ASTM D5338,上述組成物在% ± 3 °C下經由與 堆肥培養基接觸而進行有氧堆肥(Aerobic Composting)(生 物分解’ Biodegradation)。此結果係與纖維素正控制組之 生物分解率相比較。 45 200924639 樣品識別· A. 9P006 — U (平均值) C.纖維素正控制組(平均值) 根據ASTM D5338,上述測試樣品在58 ± 3 0C下進行 有氧生物分解(Aerobic Biodegradation)所產生之破轉化率 (carbon conversion,%)詳列於表二中: 表二 樣品 描述 碳轉化率(%) (根據所產生之二氧化碳) A 9P006 — U (平均值) 79.26 C 纖維素正控制組(平均值) 98.37 失重百分率(weight loss,%)詳列於表三中: 樣品 描述 失重百分率(%) A 9P006 — U (平均值) 100.00 C 纖維素正控制組(平均值) 100.00 根據上述樣品與纖維素控制組之總失重及碳轉化率, 依照ASTM D533 8及D6400,將視樣品A為可堆肥。 樣品之評估皆根據ASTM D5338在58 ± 3 0C下所測 試,而D5338係依照以ASTM D6400為依歸之第二層級測 46 200924639 試(Tier Two Leve丨testing)來進行。重量介於〇 6〇〇〇〜〇⑽⑼ 公克之樣品係置放於150公克之堆肥培養基中。上述堆肥 培養基之碳氮比為31:1,此值亦包含於此測試之說明書 中。樣品在65天後分解為堆肥,亦無法自堆肥生物質中辨 識或偵測出來。所測樣品之失重數據及所產生二氧化碳間 之不同係指出當材料於堆肥時所發生之物理性分化。 纖維素控制組會進行完全的生物分解。纖維素之碳轉 化率(%)在此測試中係為正常,亦藉此確認可行有效之堆肥 ❾混合物。而在此測試中,樣品A + 79 26%之總碳含量轉 化為二氧化碳。 對樣品A而言,由於樣品被完全分解,所產生之二氧 化碳與應該產生之二氧化碳理論計算最大值相比之效率為 79.26%。 根據上述總失重及碳轉化率,這些材料將視為具有卓 越可堆肥性/生物可分解性。依照ASTM D5338及D64⑼, Q完全可堆肥之材料在此測試中需超過60%之失重(樣品確 有達到)及超過60%之有效總碳含量轉化為二氧化碳(樣品 確有達到),因此可視為完全可堆肥之材料。 在下述之實例中,樣品♦一或多項添加成分之含量可 介在大於0%至約15%之間。在某些樣品之實施例中,添 加成分之含量可介於約〇.5%至約1〇%之間。在某些樣品之 實施例中,添加成分之含量可介於約15%至約7%之間。 在某些樣品之實施例中,添加成分之含量可介於約2%至 約5%之間。特定樣品,包括添加成分之含量介於上述範 47 200924639 圍中之實施例,係詳述於後。除非另行標示,否則所有後 述各種成分之百分率含量皆指稱基於乾重基之重量百分 率〇 實例四:增進物品密度與防水性之添加物 數種添加物已發現可改良配方之韌度以及增進其防潮 性。添加聚乙酸乙稀酯(PVAc)及/或聚乙酸乙烯酯_乙晞共 聚物(VAE)乳狀液至生物可分解之澱粉基組成物中可增進 © 該配方之防潮性,此係由Cobb值(公克/平方公尺)(c〇bb value ’ g/m2)所量測得知。Cobb值係為一標準紙工業測試 法(ASTM D3285)以決定一定尺寸之紙及紙板之防潮性。此 測試法係於一定時間内,一固定表面積(平方公尺)所吸收 之水量(樣品所增加之公克數)。標準條件使用一金屬環, 其内徑為11.28公分(截面積或表面積為1〇〇平方公分),鉗 緊至樣品上以盛裝1〇〇毫升之水並且與水接觸2分鐘。其 ❹後,將水自金屬環排掉且使用吸墨紙將多餘之水吸掉。為 了控制所吸掉之水量,一 10公斤重之金屬滾輪在鋪於樣品 上之吸墨紙上滾兩次。此種方法可能發生之變異包括對於 較小之樣品(表面積25或1〇平方公分,所使用之水量亦相 對減少)使用不同直徑的金屬環、使用較短(1分鐘)或較長 (18小時)之與水接觸時間、以及使用其他測試液體。 測試係於23 °C使用50%相對濕度(RH)之樣品條件及吸墨 紙(ASTMD685)。除了防潮性,添加物PVAc及VAE亦發 現可維持或改良其他重要之物理性f,如抗拉強度⑽仙 48 200924639 strength)、桓數/模量(m〇dulus)、及衝擊。 亦lx現添加環氧化植物油,如環氧化亞麻仁油及環氧 化大豆油至生物可分解之殿粉基組成物尹,可使製品於前 述加熱模製成型時具有較廣之密度範圍。當使用環氧化油 類時,令人驚訝者為密度較大物品之製造並不需要較長之 加熱時間。再者,密度較大之物品較堅固且相較於較厚之 物品而言製作上更省成本,因為較厚之物品一般需要較 之加熱時間。 由表四可知,一組成物包含15%之竹子纖維,一給定 體積為59.8 CC之餐盤模型,其最大充填麵糊重為36公克 (40%為固體),而最短烘烤時間為65秒。表四中除非另 行標示,否則所有15%之「標準」纖維樣品亦包含4%之 硬脂酸鎂(MgSt)及2%之(巴西)棕櫚蠟。表四中29%之「高」 纖維樣品包含3.5%之硬脂酸鎂(MgSt)& 3%之(巴西)棕^ 蠟。除非另行標示,否則所有樣品名義上之厚度皆模製為 80密耳(mil,千分之一英寸)厚。 表四 樣品 最大 填充 重(g) 最小 烘烤 時間 (sec) 製作 填充 重(g) Cobb值卞 (g/m2) 141030 15%纖維控制 36 65 34 65.6 49 200924639 組 141032標準纖維+ 5% PVAcl 36 60 34 56.7 141051標準纖維+ 2% EL01 42 65 34 67.9 141159標準纖維+ 3% MgSt + 1.5% EL01 40 73 39 70.7 141172標準纖維+ 3% MgSt + 1.5 ELOl (厚 度:105 mils) 50 145 48 70.7 141102 29%纖維控制 組 48 68 46 54.7 141069高纖維+ 5% PVAc2 48 65 44 46.7 141074高纖維+ 5% VAE5 49 70 48 49.3 141098高纖維+ 5% PVAc2 + 2% ELOl 50 73 48 62.7 141100高纖維+ 5% PVAc2 + 2% ES01 54 65 48 50.7 141096高纖維+ 5% PVAcl + 2% 玉米 油 55 65 48 50.7 50 200924639To prepare the above formulation, the fibers (usually sheared into thin strips) and about 40% of the total filler and about 30 to 4% of the total water are mixed in a planetary mixer for about 5 minutes to reach the coarse rubber. The consistency of the rubbings. The pregelatinized starch is then added for about 6 to 9 minutes to further disaggregate the fibers. The remaining ingredients are then added to the above mixture for about 2 to 3 minutes until the mixture has no visible dry hard mass. The mixing time required will vary with the size and speed of the mix. In order to form an article, the side of the creping device having the desired finished shape of the cavity is formed to form a small material. In this process, the above-described molding apparatus includes at least a slit through which vapor generated during heating or baking can be discharged. - A mixture of liquid or semi-liquid is filled into the mold of the above-mentioned molding apparatus, and then the molding apparatus is picked up, and the above mixture generates moisture or steam upon twisting. In this embodiment, the volume of the mixture filled in the above-mentioned cavity is significantly smaller than the volume of the process, but as the internal moisture or vapor pressure rises during heating, the mixture expands upon heating until the mold is filled. In this case, the volume ratio of the volume of the above-mentioned molding stream f or half to the cavity is between 1:4 and 1:25, or may be between:3 and 7 to. Since the above mixture is in sufficient contact with the above-mentioned molding apparatus upon heating, the outer surface of the mixture is formed (10)?). In addition, the skin is permeable or semi-permeable to moisture or steam. 43 200924639 The combination of the skin and the gap allows water vapor or steam to escape from the gap of the f-mold device. The above water vapor or steam discharge will not lose any significant component of the above mixture from the seam. Loss of a significant component mixture will result in waste of the original material and a waste of energy required to heat the additional material lost. Additional material must be removed and any material that blocks the venting gap. When the steam is discharged, the mixture remains in the above-mentioned cavity because the slit has a sufficient size, for example, formed on the outer surface of the surface of the mixture to bring the mixture into contact with the surface of the heated mold, when the mixture is in % When the gas or vapor pressure generated during the heat is sufficient for the Japanese temple, the water vapor or steam can be discharged from the outer skin and the slit to the above-mentioned molding device without causing the outer skin to be broken. Since the skin is impervious to the above mixture, and the mixture may still be liquid or semi-fluid until the heating is completed, the mixture is not lost from the cavity of the molding apparatus. The temperature and time of heating or baking will vary depending on the particular mixture. For those skilled in the art, temperature and time can be easily selected without experimentation. An example of a mold that can be used in this embodiment is the mold described in U.S. Patent Application Serial No. 20-265, the entire disclosure of which is hereby incorporated by reference. Typical molding temperatures range from 16 2 to 240. Between c, in some embodiments, the mediators are 80 to 220. (: Between. Heating or baking (4) will vary with the size and thickness of the item, the general item is between 4 〇 and 450 seconds, between about 40 to about 8 〇, Between about 5 〇 to about 3 〇〇 seconds, between about 60 to about 25 〇 seconds, between about 7 〇 to about 44 2009 24 639 150 seconds, or any range thereof. Ίτ pq 二霄In the case of the above materials, the above materials need to be baked to 2〇/〇 when opening the cookware. θιί _ ^ F is usually low 3 water (may need to be lower than t: it will break.) In addition, the increase of the above-mentioned material can shorten the most between the materials, g is the (four) degree, that is, the stronger material can withstand the higher internal vapor pressure. Example 2: Biodegradable and compostable materials biodegradable and compostable It is tested by the samples of the articles prepared by the biodegradable enamel powder-based composition of the present invention. These samples do not contain the polyvinyl acetate vinegar (pvA), polyvinyl acetate I B used in some of the examples. Dilute copolymer (VAE), polyethylene, vinyl acetate copolymer (eva), epoxidized vegetable oil, or hydrogenated triglyceride, but Those skilled in the art will understand that these additives will not affect the biodegradation of the above composition and the compostability of all components are within the ranges listed in Table 1 above, and are not listed in Table 1. The additive added to one of the above mixtures has a total cerium content of 0.5%. (Approximately 9 〇〇/0 of this group of additives consists of natural materials - proteins and other natural polymers - because its natural source itself is It is considered to be biodegradable. It is understood that those skilled in the art will appreciate that the addition of these trace amounts of natural materials to the composition, as described in Table 1, will not affect the biodegradation and compostability of the above-described compositions measured. According to ASTM D5338, the above composition was subjected to Aerobic Composting (Biodegradation) via contact with compost medium at % ± 3 ° C. This result is related to the biodegradation of the cellulose positive control group. 45 200924639 Sample identification · A. 9P006 — U (average value) C. Cellulose positive control group (average value) According to ASTM D5338, the above test sample is aerobic at 58 ± 30 °C The carbon conversion (%) produced by Aerobic Biodegradation is detailed in Table 2: Table 2 Samples describe carbon conversion (%) (based on carbon dioxide produced) A 9P006 — U (average value) 79.26 C Cellulose positive control group (average value) 98.37 Weight loss (%) is detailed in Table 3: Sample description Weight loss percentage (%) A 9P006 — U (average value) 100.00 C Cellulose positive control group (average Value) 100.00 According to ASTM D533 8 and D6400, sample A is compostable according to the total weight loss and carbon conversion of the above sample and cellulose control group. Sample evaluations were performed at 58 ± 30 °C according to ASTM D5338, and D5338 was performed according to ASTM D6400, second level measurement 46 200924639 (Tier Two Leve丨 testing). Samples weighing between 〇 6〇〇〇~〇(10)(9) grams are placed in 150 grams of composting medium. The above composting medium has a carbon to nitrogen ratio of 31:1, and this value is also included in the specification of this test. The sample decomposed into compost after 65 days and could not be identified or detected from the compost biomass. The difference in weight loss data between the samples tested and the carbon dioxide produced indicates the physical differentiation that occurs when the material is composted. The cellulose control group undergoes complete biodegradation. The carbon conversion rate (%) of cellulose was normal in this test, thereby confirming a viable and effective compost mixture. In this test, 26% of the total carbon content of sample A + 79 was converted to carbon dioxide. For sample A, the efficiency of the resulting carbon dioxide compared to the theoretically calculated maximum value of carbon dioxide should be 79.26% due to complete decomposition of the sample. Based on the above total weight loss and carbon conversion, these materials will be considered to have excellent compostability/biodegradability. According to ASTM D5338 and D64 (9), Q fully compostable materials require more than 60% weight loss (samples are achieved) in this test and more than 60% of the effective total carbon content is converted to carbon dioxide (samples are indeed achieved), so it can be considered as Completely compostable material. In the examples below, the amount of one or more additional ingredients of the sample ♦ may range from greater than 0% to about 15%. In some embodiments of the sample, the amount of the added component may range from about 5%.5% to about 〇%. In certain embodiments of the sample, the amount of the added component can range from about 15% to about 7%. In certain embodiments of the sample, the amount of the added component may range from about 2% to about 5%. Specific samples, including those in which the added components are present in the above-mentioned range, are described in detail in the above-mentioned paragraphs. Unless otherwise indicated, all percentages of the various ingredients described below are referred to as weight percent based on dry weight basis. Example 4: Additives for increased material density and water repellency Several additives have been found to improve the toughness of the formulation and enhance its moisture resistance. Sex. Adding polyvinyl acetate (PVAc) and/or polyvinyl acetate _acetamethylene copolymer (VAE) emulsion to biodegradable starch-based composition can improve the moisture resistance of this formula, which is Cobb The value (in grams per square meter) (c〇bb value ' g/m2) is measured. The Cobb value is a standard paper industrial test method (ASTM D3285) to determine the moisture resistance of paper and paperboard of a certain size. This test is the amount of water absorbed by a fixed surface area (millimeters) over a certain period of time (in grams of sample added). Standard conditions used a metal ring having an inner diameter of 11.28 cm (cross-sectional area or surface area of 1 〇〇 square centimeter), clamped onto the sample to hold 1 liter of water and contacted with water for 2 minutes. After that, the water is drained from the metal ring and the excess water is sucked up using blotting paper. In order to control the amount of water sucked, a 10 kg metal roller was rolled twice on the blotter paper laid on the sample. Variations that may occur with this method include the use of metal rings of different diameters for shorter samples (surface area 25 or 1 〇 square centimeter, relative to the amount of water used), shorter (1 minute) or longer (18 hours) The time of contact with water and the use of other test liquids. The test was carried out at 23 °C using sample conditions of 50% relative humidity (RH) and blotting paper (ASTMD685). In addition to moisture resistance, the additions PVAc and VAE have also been found to maintain or improve other important physical properties such as tensile strength (10), stress/modulus (m〇dulus), and impact. It is also possible to add epoxidized vegetable oils, such as epoxidized linseed oil and epoxidized soybean oil, to the biodegradable temple powder-based composition, which allows the product to have a wider density range in the above-described heated molding. When epoxidized oils are used, it is surprising that the manufacture of denser articles does not require longer heating times. Moreover, items with higher densities are stronger and more cost effective to manufacture than thicker items because thicker items generally require less time to heat. As can be seen from Table 4, a composition containing 15% bamboo fiber, a given volume of 59.8 CC plate model, the maximum filling batter weight is 36 grams (40% solid), and the minimum baking time is 65 seconds. . Unless otherwise indicated in Table 4, all 15% of the “standard” fiber samples also contained 4% magnesium stearate (MgSt) and 2% (Brazil) palm wax. The 29% "high" fiber samples in Table 4 contained 3.5% magnesium stearate (MgSt) & 3% (Brazil) brown wax. Unless otherwise indicated, all samples nominally are molded to a thickness of 80 mils (mil, one thousandth of an inch). Table 4 Sample Maximum Fill Weight (g) Minimum Baking Time (sec) Make Fill Weight (g) Cobb Value 卞(g/m2) 141030 15% Fiber Control 36 65 34 65.6 49 200924639 Group 141032 Standard Fiber + 5% PVAcl 36 60 34 56.7 141051 standard fiber + 2% EL01 42 65 34 67.9 141159 standard fiber + 3% MgSt + 1.5% EL01 40 73 39 70.7 141172 standard fiber + 3% MgSt + 1.5 ELOl (thickness: 105 mils) 50 145 48 70.7 141102 29% fiber control group 48 68 46 54.7 141069 high fiber + 5% PVAc2 48 65 44 46.7 141074 high fiber + 5% VAE5 49 70 48 49.3 141098 high fiber + 5% PVAc2 + 2% ELOl 50 73 48 62.7 141100 high fiber + 5% PVAc2 + 2% ES01 54 65 48 50.7 141096 High Fiber + 5% PVAcl + 2% Corn Oil 55 65 48 50.7 50 200924639

圖例說明: 代號 組成物 商標名 供應商 PVAcl 聚乙酸乙烯酯 Vinac 21 Air Products ES01 環氧化大豆油 BioFlex ESBO Blackman Uhler Chemical EL01 壤氧化亞麻仁油 BioFlex ELO Blackman Uhler Chemical VAE5 聚乙酸乙烯酯-乙烯共聚物 Airflex 100HS Air Products PVAc2 聚乙酸乙烯酯 Vinac 828M Air Products VAE7 聚乙酸乙烯酯-乙烯共聚物 Airflex 1082 Air Products 玉米 油 玉米油 Mazola 141081 高纖維+ 5% 54 65 48 50.7 VAE5 + 2% EL01 f 2分鐘後所測得之Cobb值。 舉例說明,由上列數據可知,添加5% PVAcl至15% 纖維之控制組成物可縮短烘烤時間及顯著減少水分之吸收 51 200924639 (c〇bb值較低)。添加2%環氧化亞麻仁油饥 度顯著較高之物品⑷公克vs.36公克最大模具^^乍: 無須延長烘烤時間。將硬脂酸鎂(MgS〇之含 度㈣大填充重,亦會增加烘烤時間= 度可使更多材料加入模具中叫 但會顯著增加烘烤時間亦無益於防水性 Ο 〇。:力纖維含量自15%增加至29%可製作出密度較高之物 扣再加入PVAc或VAE則可改善防水性。環氧化 =或大豆_)之添加可增力,製:物 作,但顯自得㈣ 將畀故樓t 一惑,备/飞排軋官線吹出。此 f、,、導致職管線堵塞及餘巾停工以清尋且。 易見,澱粉基質較適合使用環氧化油類。 . 之物組成物之防潮性,亦使得密度較高 ❹ 度)上的進步不會負面影響製造 時間或降低產品之生物可分解性。 實例五:添加物改良物品之防潮性 增進==改良組成物防潮性之添加物。堰可用以 =防潮:亦可輔助脫模。所使用之壤以生物可分解、可 :但相當昂貴,且其使用量限制為;大=螵= 餾出之蒸汽會堵塞MM $姑 八於3/〇,因為其所 排H已發現熔點介於约54 〇C至 52 200924639 85 °C間之氫化植物油可用以取代(巴西)椋搁蠟,且由所測 得之Cobb值可知其亦可增進配方之防潮性。適合的氫化 植物油可自EvCo Research取得,商標名為EvCopel EvCorr 與EvCopel EvCeal。此外,即使乾重基含量高達3%亦不 會造成材料在造模裝置之排氣管線中堵塞。氫化植物油可 以粉末之形式分散在配方中,以熔融狀態摻入(有或沒有界 面活性劑皆可)或以乳狀液摻入則更佳。 由表五可知,一組成物包含15%之竹子纖維、4%之硬 ❹ 脂酸鎂(MgSt)、及2%之(巴西)棕櫚蠟,而2分鐘Cobb值 約為65〜66公克/平方公尺。硬脂酸鎂及(巴西)棕櫚蠟皆為 昂貴之成分,因此最好限制其用量。然而,當硬脂酸鎂降 低為3%,而(巴西)棕櫚蠟在配方中仍維持2%時,則2分 鐘Cobb值增加至約70〜71公克/平方公尺。一樣品包含 15%之竹子纖維、未添加硬脂酸鎂、(巴西)棕櫚蠟,而2 分鐘Cobb值為88公克/平方公尺。一樣品包含15%之竹 子纖維、未添加硬脂酸鎂、而包含3%之蓖麻籽油(未加巴 ◎ 西棕櫚蠟),其2分鐘Cobb值約為94〜95公克/平方公尺。 表五 最大 最小烘 製作 Cobb 樣品 填充 烤時間 填充 值十 重⑻ (sec) 重(g) (g/m2) 53 200924639 141030 15% 纖維、4% MgSt、2%棕櫚蠟一控制 組 36 65 34 65.6 141159 15% 纖維、3% MgSt + 1.5% ELOl 40 73 39 70.7 141120 15% 纖維、0% MgSt + 1.5% ESOl + 3%棕櫚蠟 45 63 44 88.0 141139 15% 纖維、0% MgSt + 3°/。蓖麻籽油+ 1.5% EL01 36 58 36 94.7 141174 15% 纖維、3% MgSt + 1.5% ELOl + 2% EvCol 40 73 38 65.3 141178 15% 纖維、3% MgSt + 2% EvCol 36 65 35 58.7 141182 15% 纖維、3% MgSt + 2% EmulOl 37 68 36 57.3 141187 15% 纖維、3% MgSt + 2% Emul02 38 70 37 60.0 141192 29% 纖維、3.5% MgSt + 2% Emul03 44 63 42 48.0 54 200924639 ❹ 圖例說明:(亦請參照表四之圖例說明) 代號 组成物 商標名 供應商 蓖麻籽 油 氫化蓖麻軒油 Castor Wax MP80 Vertellus EvCol 氫化植物油 EvCopel EvCeal EvCo Research 有限公司 EmulOl 氫化植物油之 乳狀液 EvCopel EvCeal之乳 狀液 EvCo Research 有限公司 Emul02 氬化植物油之 乳狀液 EvCopel EvCorr之乳 狀液 EvCo Research 有限公司 Emul03 氫化植物油之 較低固體含量 乳狀液 EvCopel EvCorr之乳 狀液 EvCo Research 有限公司 141197 29% 纖維、3,5% MgSt + 3% Emul04 44 73 43 44.0 150803 15% 纖維、3% MgSt + 3% Emul05 41 73 40 57.3 150805 29% 纖維、3.5% MgSt + 5% PVAc2 + 3% Emul05 43 60 40 41.3 55 200924639Legend: Code Composition Trademark Supplier PVAcl Polyvinyl Acetate Vinac 21 Air Products ES01 Epoxidized Soybean Oil BioFlex ESBO Blackman Uhler Chemical EL01 Soil Oxidized Linoleum Oil BioFlex ELO Blackman Uhler Chemical VAE5 Polyvinyl Acetate-Ethylene Copolymer Airflex 100HS Air Products PVAc2 Vinacetate Vinac 828M Air Products VAE7 Polyvinyl Acetate-Ethylene Copolymer Airflex 1082 Air Products Corn Oil Corn Oil Mazola 141081 High Fiber + 5% 54 65 48 50.7 VAE5 + 2% EL01 f 2 minutes later The measured Cobb value. For example, from the above data, the addition of 5% PVAcl to 15% fiber control composition can shorten the baking time and significantly reduce the absorption of water 51 200924639 (lower c〇bb value). Add 2% epoxidized linseed oil to a significantly higher hunger (4) g gram vs. 36 gram maximum mold ^^ 乍: no need to extend the baking time. The magnesium stearate (MgS〇 content (4) large filling weight will also increase the baking time = degree to allow more materials to be added to the mold, but it will significantly increase the baking time and is not beneficial to the waterproofing Ο. The fiber content can be increased from 15% to 29% to produce a higher density buckle. Add PVAc or VAE to improve water repellency. The addition of epoxidation = or soy _) can increase the strength, make: (4) Confusing the old building t, and preparing/flying the official line to blow out. This f,,, caused the pipeline to be blocked and the remaining towels to be shut down for clear search. It is easy to see that the starch matrix is more suitable for the use of epoxidized oils. The moisture resistance of the composition of the material also results in a higher density of enthalpy) which does not adversely affect manufacturing time or reduce the biodegradability of the product. Example 5: Moisture resistance of the additive-improved article Promotion == Additive for improving the moisture resistance of the composition.堰 can be used to = moisture-proof: can also assist in demoulding. The soil used is biodegradable, but it can be: but it is quite expensive, and its use is limited to; large = 螵 = distilled steam will block MM $ 八八3 / 〇, because it has been found in the melting point Hydrogenated vegetable oils between about 54 〇C and 52 200924639 85 °C can be used to replace the (Brazil) wax, and the measured Cobb value can also improve the moisture resistance of the formulation. Suitable hydrogenated vegetable oils are available from EvCo Research under the trade names EvCopel EvCorr and EvCopel EvCeal. In addition, even a dry weight basis content of up to 3% does not cause clogging of the material in the exhaust line of the molding apparatus. The hydrogenated vegetable oil may be dispersed in the form of a powder, incorporated in a molten state (with or without an interface agent) or more preferably in an emulsion. As can be seen from Table 5, a composition contains 15% bamboo fiber, 4% magnesium hard magnesium (MgSt), and 2% (Brazil) palm wax, and the Cobb value of about 2 to 65 g/square in 2 minutes. meter. Magnesium stearate and (Brazil) palm wax are expensive ingredients, so it is best to limit their use. However, when magnesium stearate was reduced to 3% and (Brazil) palm wax remained 2% in the formulation, the Cobb value increased to about 70 to 71 g/m 2 in 2 minutes. One sample contained 15% bamboo fiber, no magnesium stearate, (Brazil) palm wax, and a 2-minute Cobb value of 88 grams per square meter. One sample contains 15% bamboo fiber, no magnesium stearate added, and contains 3% castor seed oil (not added aba xi sangha wax), and its 2-minute Cobb value is about 94~95 g/m2. . Table 5 Maximum and minimum baking production Cobb sample filling time filling value Ten weight (8) (sec) Weight (g) (g/m2) 53 200924639 141030 15% fiber, 4% MgSt, 2% palm wax one control group 36 65 34 65.6 141159 15% fiber, 3% MgSt + 1.5% ELOl 40 73 39 70.7 141120 15% fiber, 0% MgSt + 1.5% ESOl + 3% palm wax 45 63 44 88.0 141139 15% fiber, 0% MgSt + 3°/. Castor seed oil + 1.5% EL01 36 58 36 94.7 141174 15% fiber, 3% MgSt + 1.5% ELOl + 2% EvCol 40 73 38 65.3 141178 15% fiber, 3% MgSt + 2% EvCol 36 65 35 58.7 141182 15 % fiber, 3% MgSt + 2% EmulOl 37 68 36 57.3 141187 15% fiber, 3% MgSt + 2% Emul02 38 70 37 60.0 141192 29% fiber, 3.5% MgSt + 2% Emul03 44 63 42 48.0 54 200924639 ❹ Legend Description: (Please also refer to the legend in Table 4) Code Composition Supplier Name Castor Seed Oil Hydrogenated Castor Wax MP80 Vertellus EvCol Hydrogenated Vegetable Oil EvCopel EvCeal EvCo Research EmulOl Hydrogenated Vegetable Oil Emulsion EvCopel EvCeal EvCo Research EmCo Research Co., Ltd. Emul02 Emulsified Vegetable Oil Emulsion EvCopel EvCorr Emulsion EvCo Research Co., Ltd. Emul03 Hydrogenated Vegetable Oil Lower Solids Emulsion EvCopel EvCorr Emulsion EvCo Research Ltd. 141197 29% Fiber, 3,5% MgSt + 3% Emul04 44 73 43 44.0 150803 15% fiber, 3% MgSt + 3% Emul05 41 73 40 57.3 150805 29% fiber, 3.5% MgSt + 5% PVAc2 + 3% Emul05 43 60 40 41.3 55 200924639

Emul04 氫化植物油之 乳狀液 EvCopel EvCeal之乳 狀液 EvCo Research 有限公司 Emul05 氫化植物油及 ELOl之乳狀 液 EvCopel EvCeal 及 BioFlex ELO 之乳狀液 EvCo Research 有限公司及 Blackman Uhler Chemical ❹ 由表五中之其餘數據玎知,以EvCorr或EvCeal取代 (巴西)棕搁蠟,即使硬脂酸鎂(MgSt)含量較低亦可顯著減 少水分之吸收(Cobb值較低)。利用氫化植物油之乳狀液可 達到更進一步之改良,該乳狀液與界面活性劑及乳狀液之 固體含量皆有某種程度之相依性。利用油類作為乳狀液使 得其他防水性成分易於摻入,如環氧化植物油、松香等。 PVAc或VAE之添加更增進了防潮性,且在防潮性增加的 同時亦維持或改良其他物理性質。再者,這些添加物在防 潮性上的進步不會負面影響烘烤時間、或製造週期時間、 或降低產品之生物可分解性。這些添加物在使用上明顯比 (巴西)棕櫊蠟更經濟且比較不會造成造模裝置的排氣管線 積垢堵塞。 實例六:改良物品強度之添加物 撓曲模數/抗彎模數(Flexural modulus)係利用DMA儀 56 200924639 器進行三點彎曲試驗(3-point bend test)。基本上,支撐住 樣本的一端,中央以測力器(load cell)壓住。然後監視力量 相對於位移之變化直到測試樣本折斷。不同於衝擊測試, 此折斷之速率緩慢。上述方法在參考文獻ASTM D790、 D5023、及D5934中有詳盡說明。三點彎曲試驗之數據可 用以計算折斷測試樣本所需之能量或功,由下列方程式可 得: 力量(折斷時)X位移(折斷時)=功(或折斷測試樣本 〇 所需之能量)。在上述三點彎曲試驗之前,平衡測試樣本之 相對濕度(RH,relative humidity)至 0%、20%、50%、或 80%達至少24小時。 利用Dynatup儀器進行高速衝擊測試,該儀器具有一 「落錄球(falling tup)」及半球形頂部。此測試方法在參考 文獻ASTMD3763中有詳盡說明。這些測試中,上述落鎚 球之速度約為12英尺/秒。伸張性(tensile)及伸長率 (elongation)則由相對濕度平衡至50%之樣本來決定。 ❹ 表六 三點 彎曲 試驗 T (伸張性)& E (伸長率) Dynatup衝擊數據 樣本 —曲 伸張 伸長 最大 最大撓 總能 模量@ 性 率(%) 荷重 曲(in·) 量 57 200924639Emul04 Hydrogenated Vegetable Oil Emulsion EvCopel EvCeal Emulsion EvCo Research Emul05 Hydrogenated Vegetable Oil and ELOl Emulsion EvCopel EvCeal and BioFlex ELO Emulsion EvCo Research Ltd. and Blackman Uhler Chemical ❹ From Table 5 The data knows that EvCorr or EvCeal replaces (Brazil) brown wax, even if the magnesium stearate (MgSt) content is low, it can significantly reduce the absorption of water (low Cobb value). A further improvement can be achieved by using an emulsion of hydrogenated vegetable oil which has a certain degree of dependence on the solids content of the surfactant and emulsion. The use of oils as emulsions allows for the incorporation of other water-repellent components such as epoxidized vegetable oils, rosins, and the like. The addition of PVAc or VAE enhances moisture resistance and maintains or improves other physical properties while increasing moisture resistance. Moreover, the advancement of these additives in moisture resistance does not adversely affect the baking time, or the manufacturing cycle time, or reduce the biodegradability of the product. These additives are significantly more economical to use than the (Brazil) palm wax and do not cause fouling of the exhaust line of the molding apparatus. Example 6: Additives for improved article strength The flexural modulus/flexural modulus was measured using a DMA instrument 56 200924639 for a 3-point bend test. Basically, one end of the sample is supported and the center is pressed by a load cell. The force is then monitored relative to the change in displacement until the test sample breaks. Unlike the impact test, the rate of this break is slow. The above methods are described in detail in the references ASTM D790, D5023, and D5934. The data from the three-point bending test can be used to calculate the energy or work required to break the test sample. The following equations are available: Force (when broken) X-displacement (when broken) = work (or energy required to break test sample 〇). Before the above three-point bending test, the relative humidity (RH) of the test sample was balanced to 0%, 20%, 50%, or 80% for at least 24 hours. The Dynatup instrument was used for high-speed impact testing with a "falling tup" and a hemispherical top. This test method is described in detail in the reference ASTM D3763. In these tests, the speed of the drop ball described above was approximately 12 feet per second. Tensile and elongation are determined by samples with a relative humidity balance of 50%. ❹ Table 6 Three-point bending test T (stretching) & E (elongation) Dynatup impact data Sample - curve extension elongation maximum maximum deflection total energy modulus @ sex rate (%) load weight (in ·) amount 57 200924639

Yield (Mpa) (PSI) (lb.) (ft.lbf ) 141030 15%纖維 控制組 703 265 1.2 7.15 0.211 0.159 141032 15%纖維 + 5% PVAcl 626 — — — — — 141102 29%纖維 控制組 883 597 1.8 12.69 0.252 0.309 141028 29%纖維 + 5% PVAcl 1273 489 1.5 11.96 0.197 0.238 141069 29%纖維 + 5% PVAc2 1121 570 1.6 12.52 0.209 0.282 58 200924639Yield (Mpa) (PSI) (lb.) (ft.lbf ) 141030 15% Fiber Control Group 703 265 1.2 7.15 0.211 0.159 141032 15% Fiber + 5% PVAcl 626 — — — — — 141102 29% Fiber Control Group 883 597 1.8 12.69 0.252 0.309 141028 29% fiber + 5% PVAcl 1273 489 1.5 11.96 0.197 0.238 141069 29% fiber + 5% PVAc2 1121 570 1.6 12.52 0.209 0.282 58 200924639

141047 29%纖維 + 5% PVAcl + 1.1% ELOl 1168 564 1.5 14.04 0.214 0.292 141049 29%纖維 + 5% PVAcl + 2.0% ELOl 1058 571 1.7 13.8 0.219 0.319 141074 29%纖維 + 5% VAE5 870 646 1.9 13.19 0.214 0.296 141076 29%纖維 + 5% VAE7 1151 533 1.8 12.98 0.181 0.263 表六中之數據係為在50%相對濕度下所測得之物理性 質數據,當纖維之含量為29%,PVAc及VAE改善了高速 衝擊性質且增加了模量而幾乎不影響伸張性(tensile)或伸 59 200924639 長率。由數據亦可得知,EL01之添加可更進一步提升衝 擊強度。 表七 折斷測試樣本所需之能量(mJ) 樣本 相對濕度 20% 相對濕度 50% 相對濕度 80% 141030 15%纖維控制 組 27.3 50.2 50.1 141159 15% 纖維 + 1.5% ELOl 56.8 49.0 46.4 141089 15% 纖維 + PVAc2 26.7 42.5 51.7 141102 29%纖維控制 組 73.6 83.4 130.0 141069 29% 纖維 + 5% PVAc2 65.4 70.8 93.1 141044 29% 纖維 + VAE2 70.5 64.0 116.8 141074 29% 纖維 + 5% VAE5 68.4 74.1 118.1 141076 29% 纖維 + 5% VAE7 62.9 69.0 119.6 60 200924639 141100 29% 纖維 + 5% PVAc2 + 2% ES01 69.1 63.1 93.0 141098 29% 纖維 + 5% PVAc2 + 2% EL01 64.5 66.9 88.9 表七係描述在各種相對濕度下「折斷測試樣本所需之 能量」。由表七之數據可知,ELO添加至15%纖維之配方 中可顯著增加折斷材料所需之能量。可增進防潮性之PVAc ❹ 及VAE不會負面影響折斷所需之能量。 表八 樣本 模量 @屈服 (yield) 模量 @折 斷 折斷測試樣本 所需之能董 (mJ) 141159 15% 纖 維 + 1.5% EL01 725 676 10.66 141182 15% 纖 維 + 2% EmulOl 512 403 7.1 141069 29% 纖 維 + 5% PVAc2 1256 951 21.07 61 200924639 141197 29% 纖 — "-η 維 1421 717 13.1 + 3% Emul04 ---~~--. 表八中,折斷測試樣本所需之能量為餐盤經過額外烘 烤後所得之數據。其中上述餐盤在193 °C下烤40分鐘, 然後存放於乾燥器中,從而得知何種配方為烘烤後脆性最 低的配方。由15%纖維之配方中可見,EL〇係增加折斷測 ❹試樣本所需之能量,因此脆性將較低。由29%纖維之配方 中可見,PVAc係增加折斷測試樣本所需之能量,因此這 些配方為烘烤後脆性較低之配方。 某些實施例中,上述配方可用以製造非人類之動物或 寵物可食用的寵物食品容器及包裝。此種非人動物可食用 之容器係作成可吸引非人動物之形狀,且包含可吸引非人 動物或龍物之調味劑為較佳。在該實施例中,亦可添加有 ❹益的添加物以增加味道、香氣、及營養價值,包括:蛋白 質或其他營養素以幫助平衡該包裝之成分,且有助於調整 其成為狗的不同生活階段中之食品;添加物如大蒜及類似 物可幫助攝食該食品之狗防治有害生物,如蜱(ucks)及壁 蝨(mites);可添加以吸引狗之香氣如雞肉、肝臟、或魚的 氣味;可添加之調味劑如雞肉、肉汁醬、肝臟、魚類、或 即使酸敗脂肪皆對狗有極大的吸引力;以及可耐受產品製 程之營養素維他命。 使用上述配方所製成之物品容器具有增進強度之材 62 200924639 ({ 烤及了微波之特性,可盛裝濕性食品 (moist f0〇d)、乾性合σ +甘r丄 中 f去 Γ玍食0口、或甚至未烤過之食物至此容器 ’逑未烤過之食物可洗模成型亦或擠出至此容器中,141047 29% fiber + 5% PVAcl + 1.1% ELOl 1168 564 1.5 14.04 0.214 0.292 141049 29% fiber + 5% PVAcl + 2.0% ELOl 1058 571 1.7 13.8 0.219 0.319 141074 29% fiber + 5% VAE5 870 646 1.9 13.19 0.214 0.296 141076 29% fiber + 5% VAE7 1151 533 1.8 12.98 0.181 0.263 The data in Table 6 is the physical property data measured at 50% relative humidity. When the fiber content is 29%, PVAc and VAE improve the high-speed impact. The nature and the modulus are increased without affecting the tensile or stretching rate of 200924639. It can also be seen from the data that the addition of EL01 can further enhance the impact strength. Table 7 Energy required to break the test sample (mJ) Relative humidity 20% Relative humidity 50% Relative humidity 80% 141030 15% fiber control group 27.3 50.2 50.1 141159 15% fiber + 1.5% ELOl 56.8 49.0 46.4 141089 15% fiber + PVAc2 26.7 42.5 51.7 141102 29% fiber control group 73.6 83.4 130.0 141069 29% fiber + 5% PVAc2 65.4 70.8 93.1 141044 29% fiber + VAE2 70.5 64.0 116.8 141074 29% fiber + 5% VAE5 68.4 74.1 118.1 141076 29% fiber + 5 % VAE7 62.9 69.0 119.6 60 200924639 141100 29% fiber + 5% PVAc2 + 2% ES01 69.1 63.1 93.0 141098 29% fiber + 5% PVAc2 + 2% EL01 64.5 66.9 88.9 Table 7 describes "breaking test samples at various relative humidity" The energy needed." From the data in Table 7, it can be seen that the addition of ELO to the formulation of 15% fiber can significantly increase the energy required to break the material. PVAc ❹ and VAE, which increase moisture resistance, do not negatively affect the energy required to break. Table 8 Sample Modulus @ Yield (Modular) Modulus @Fracture Breaking Test Specimen Required Energy (mJ) 141159 15% Fiber + 1.5% EL01 725 676 10.66 141182 15% Fiber + 2% EmulOl 512 403 7.1 141069 29% Fiber + 5% PVAc2 1256 951 21.07 61 200924639 141197 29% fiber - "-η dimension 1421 717 13.1 + 3% Emul04 ---~~--. In Table 8, the energy required to break the test sample is the plate Data obtained after additional baking. The above trays were baked at 193 ° C for 40 minutes and then stored in a desiccator to determine which formulation was the least brittle after baking. As can be seen from the formulation of 15% fiber, the EL(R) system increases the energy required to break the sample and therefore the brittleness will be lower. As seen from the formulation of 29% fiber, PVAc increases the energy required to break the test sample, so these formulations are less brittle after baking. In certain embodiments, the above formulations may be used to make non-human animal or pet edible pet food containers and packages. Such non-human animal edible containers are preferably formed to attract the shape of a non-human animal, and include a flavoring agent which can attract non-human animals or dragons. In this embodiment, beneficial additives may also be added to increase the taste, aroma, and nutritional value, including: proteins or other nutrients to help balance the ingredients of the package, and help to adjust to the different lives of the dog. Foods in the stage; additives such as garlic and the like can help dogs that eat the food to control pests such as ucks and mites; can be added to attract the smell of dogs such as chicken, liver, or fish. Flavoring agents such as chicken, gravy, liver, fish, or even rancid fats are extremely attractive to dogs; and nutrient vitamins that can tolerate product processes. The container made of the above formula has a material for improving strength 62 200924639 ({Bake and microwave characteristics, can hold wet food (moist f0〇d), dry σ + 甘r丄 f to forage 0, or even unbaked food to this container 'Un-baked food can be washed or extruded into this container,

^再送人烤料烤。為了盛裝濕性食品,可塗布食用障 壁塗膜如咖ting)_賴 Z ❹ ❹ 確保持久,之後置放料層為紙 夕匕裝系統。因為上述容器的強度及耐久性,消費 可選擇加熱水以還原食品亦或加自來水然 器及食品。 〜似戍谷 本發明中之實施例使得食品製造商在製備及包裝寵物 食品時有很大的彈性。例如’可提供一餐份量之單獨包裝 (:亦即直接在餐盤中烹煮然後裝入塑膠袋中,因此可直接滅 菌及封口)’藉由可食用之外餐盤減少包裝材料,且避免寵 物飼養者在人類洗碗盤處清洗寵物餐盤所帶來之汙染。寵 物可攝食食品及外餐盤二者。圖一為單一份寵物食品包裝 之流程圖概觀。在步驟一中(5),根據上述實施例提供一容 =在步驟二中(10)’已烹煮或未烹煮之寵物食品裳入該 容在選擇性實施的步驟三中(15),盛裝寵物食品^ 該容器經過烹煮或進一步處理;在步驟四中(2〇),包裝該 處理過之容器及寵物食品;以及在步驟五中(25),多重勹 裝及處理過之谷器及寵物食品再經過包裝以銷售與 者〇 〇… 舉例而言,已發現狗比較喜歡骨頭形狀之容器。同理, 此容器可依照特定寵物之喜好及應用而為任何所欲之形 63 200924639 狀’包括骨頭形狀。上述容器可為數種尺寸之單一份量盤 以,供小到大的寵物使用。請參考圖二,提供了三種尺寸 之容器:0.5杯(30)、1杯(35)、及2杯(4〇)。 實施财’根據本發明之混合配方所製造之容器 w U 康期望之成品用途而有各種形狀、厚度、及特性。例 如,容器可製作為開放式容器如盤子、甜筒、派盤、杯子、 或碗,或任何習知技術中其他有用的構形。 ㈣’上述容器中任何部分之厚度以介於約〇 5公厘 至約3.2公厘為較佳’而以介於約。公厘至約3 〇公厘為 ,佳,且以介於約1>6公厘至約2 5公厘為最佳。容器之 厚度亦可能沿著容器之截面而有所不同。 ,本發明之另-實施例中,可使用一種生物可分解之材 料如:艮用塗料及/或封口劑(sealant)於上述混合配方所製 作之容器中。可應用該生物可分解之材料以滲透上述容器 之内=面及/或外表面,從而增進該容器之防水性及耐熱 ❹=田使用δ亥生物可分解之材料作為塗料時,該材料可部 、刀或7G王參透上述容器基質或形成一塗層且部分或完全滲 透上述谷器基質而成為一種結合。 本發明又有一實施例,提供一種製造用以盛裝食物或 $料之容器或其他物品之方法。該方法包括提供前述之混 在期望开》狀之模具中加熱該混合物以形成所述 期望形狀之容器。該方法尚可包括美國專利申請序號 1〇/608,441 ’申請日:西元2003年6月27日,中所述之 步驟,爰將此案整體列入參考文獻中。 64 200924639 根據某一實施例之另一種方法中,其包括下列步驟, 提供一造模裝置’其具有所期望成品形狀之模槽及至少一 縫隙使加熱或烘烤時所產生之蒸汽可從該縫隙排出上述造 模裴置,加熱或烘烤該造模裝置,在闔上該造模裝置前, 注入液體或半流質混合物至該造模裝置之模槽中,隨後闔 上該造模裝置,其中加熱或烘烤時在模槽中會產生氣體或 蒸汽,上述混合物則被氣體或蒸汽所產生之壓力推擠而填 滿整個模槽,以及在上述混合物與上述加熱造模裝置之充 ©分接觸下在混合物之外表面形成一外皮(skin),此外皮對於 氣體或蒸汽係為可透或半透性,而該外皮及該縫隙在組合 下,可使得蒸汽或氣體自該模槽排出至該造模裝置外部, 但不會從该縫隙損失任何顯著之上述混合物。「任何顯著之 上述混合物」在此意味著任何具有意義之損失量,將使其 成為習知技術令之任一缺點,如原始材料之浪費、加熱額 外知失材料所需能量之浪費、亦須額外清理過剩之材料及 ^ 任何堵塞排氣縫隙之材料。 當加熱或烘烤上述混合物時所產生之蒸汽或氣體造成 足夠壓力之情況下,上述氣體可自該模槽排出而上述混合 物則留在模槽中,因為該縫隙之尺寸夠小以致於在上述混 合物表面與上述加熱模具之接觸下所形成之外皮可使墓汽 或氣體得以自外皮然後經由縫隙排出上述造模裝置而^會 造成外皮破裂。因為此外皮對於上述混合物係為不渗透 性’而此混合物在加熱完成前可能仍為流質或半流質,但 此混合物不會自上述造模裝置之模槽流失。 65 200924639 前述方法可使烘烤時所產生之氣體得以排出但不會損 失顯著之上述混合物,亦不會導致上述損失所連帶產生之 缺點如原始材料之浪費、加熱額外損失材料所需能量之 浪費、亦須額外清理成品完成後過剩之材料及任何堵塞排 氣縫隙之材料。 則述方法可同時用以製造可食用烘烤產品及其他烘烤 產品、,如澱粉基材料用以製造食品容器及其類似物。用於 ❹ 及方法中之混合物一般為水性且包含本說明書中所描述之 混合物。然而,習知此藝者將可理解上述混合物無須為水 性,如醇類為基底之混合物或其他非水性混合物。習知此 藝者應該對可用於該方法中之混合物之特定實例甚為清楚 明白,此合物之實例亦包括,但非限於常見之供烤混合 物如鬆餅、餅乾麵糰、或冰淇淋甜筒麵糊,由派粉、水、 及混合物所構成之殿粉基混合物包含與樹脂混合的複 ^二形成對加熱或烘烤時所產生之氣體仍可滲透的混合 、此外特定烘烤方式如加熱溫度及時間將會隨著 所欲加熱或烘烤之特定 者 藝者所熟知。特又I物而有所不同,此亦為習知此 life雖然本發明以特定實施例及實例闡明如上n對 熟心、此領域技術者而古 之精神及範嘴下亦可化在不偏離本發明 於後述之「申此’本發明之範疇僅受限 傻述之申睛專利範圍」及其等同。 【圖式簡單說明】 圖-係為本發明之實施例中,單一份寵物食品包裝之 66 200924639 代表性包裝方法流程圖; 圖二係為本發明之實施例中,三種不同尺寸之寵物食 品容器之透視圖; 圖三係為本發明之實施例中,一種可食用且形狀為唐 的龍物食品容器之二透視圖;以及 圖四係為本發明之實施例中,一種可食用且形狀 鼠的寵物食品容器之二透視圖。 … 【主要元件符號說明】 〇 5步驟 10步驟 15步驟 20步驟 25步驟 30容器(0.5杯大) 35容器(1杯大) 40容器(2杯大) 67^ Then send the grilled meat to the grill. In order to hold wet food, it can be coated with a food barrier film such as coffee ting) _ La Z ❹ ❹ to ensure long-lasting, after the release layer is a paper 匕 匕 system. Because of the strength and durability of the above-mentioned containers, it is possible to consume heated water to reduce the food or to add water and food. ~ Like Shibuya The embodiments of the present invention allow food manufacturers to have great flexibility in preparing and packaging pet food. For example, 'a single package can be provided for one serving (ie, it is cooked directly in the plate and then placed in a plastic bag, so it can be directly sterilized and sealed). 'Reducing packaging materials by eating an edible plate and avoiding The pet breeder cleans the pet tray at the human dishwashing table. The pet can feed both the food and the outer plate. Figure 1 is an overview of the flow chart for a single pet food package. In the first step (5), according to the above embodiment, a volume = in the second step (10) 'cooked or uncooked pet food is put into the capacity in the third step (15) of the selective implementation, Containing pet food^ The container is cooked or further processed; in step 4 (2〇), the treated container and pet food are packaged; and in step 5 (25), the multiple armored and treated barn And pet foods are packaged for sale and... For example, dogs have been found to prefer bone-shaped containers. Similarly, the container can be shaped according to the preferences and application of the particular pet. 63 200924639 The shape includes the shape of the bone. The above containers may be a single size plate of several sizes for use by small to large pets. Referring to Figure 2, three sizes of containers are available: 0.5 cup (30), 1 cup (35), and 2 cups (4 inches). The container manufactured by the mixed formulation according to the present invention has various shapes, thicknesses, and characteristics for the intended use of the product. For example, the container can be fabricated as an open container such as a plate, cone, tray, cup, or bowl, or any other useful configuration in the prior art. (d) The thickness of any portion of the above container is preferably between about 5 mm and about 3.2 mm. It is preferably from about 3 mm to about 3 mm, and preferably from about 1 > 6 mm to about 25 mm. The thickness of the container may also vary along the cross section of the container. In another embodiment of the invention, a biodegradable material such as a coating and/or a sealant may be used in a container made from the above mixed formulation. The biodegradable material may be applied to penetrate the inner surface and/or the outer surface of the container to improve the waterproofness and heat resistance of the container. When the material is used as a coating material, the material may be partially The knife or 7G ginseng penetrates the container substrate or forms a coating and partially or completely penetrates the above-described granule matrix to form a bond. Yet another embodiment of the present invention provides a method of making a container or other item for holding food or beverage. The method includes providing a container of the foregoing in a mold that is desired to be heated to form the desired shape. The method may further include the steps described in U.S. Patent Application Serial No. 1/608,441, filed on Jun. 27, 2003, the entire disclosure of which is incorporated herein by reference. 64 200924639 According to another method of an embodiment, the method comprises the steps of: providing a molding device having a mold groove having a desired finished shape and at least one slit for allowing steam generated during heating or baking to be removed from the mold Dissipating the above-mentioned molding device, heating or baking the molding device, injecting a liquid or semi-liquid mixture into the cavity of the molding device before pressing the molding device, and then splicing the molding device, Wherein heating or baking generates gas or steam in the cavity, and the mixture is pushed by the pressure generated by the gas or steam to fill the entire cavity, and the mixture is mixed with the above heating molding device. Forming a skin on the outer surface of the mixture under contact, and the skin is permeable or semi-permeable to gas or steam, and the outer skin and the gap are combined to allow steam or gas to be discharged from the cavity to The molding device is external, but does not lose any significant mixture of the above from the gap. “Any significant combination of the above” means any meaningful loss, which would make it a disadvantage of the prior art, such as waste of the original material, waste of energy required to heat the additional lost material, Additional cleaning of excess material and any material that blocks the venting gap. When the steam or gas generated when heating or baking the above mixture causes sufficient pressure, the gas can be discharged from the cavity and the mixture remains in the cavity because the size of the gap is small enough to be The outer skin formed by the contact of the surface of the mixture with the above-mentioned heating mold allows the tomb or gas to be discharged from the outer skin and then discharged through the slit to the above-mentioned molding device to cause the outer skin to rupture. Since the skin is impervious to the above mixture and the mixture may still be liquid or semi-fluid before the heating is completed, the mixture is not lost from the cavity of the molding apparatus. 65 200924639 The foregoing method allows the gas generated during baking to be discharged without losing the significant mixture described above, and does not cause the disadvantages associated with the above losses, such as waste of the original material, waste of energy required to heat the additional loss of material. Additional material must be removed from the finished product and any material that blocks the venting gap. The method can be used to manufacture edible baked products and other baked products, such as starch-based materials for the manufacture of food containers and the like. The mixtures used in the oxime and process are generally aqueous and comprise the mixtures described in this specification. However, it will be understood by those skilled in the art that the above mixture need not be aqueous, such as a mixture of alcohols as a substrate or other non-aqueous mixture. It will be apparent to those skilled in the art that specific examples of the mixtures that can be used in the process are also apparent, and examples of such compositions include, but are not limited to, common bake mixtures such as muffins, biscuit dough, or ice cream cone batter. a powder-based mixture comprising a powder, a water, and a mixture comprising a mixture of a resin and a resin which is still permeable to the gas generated during heating or baking, and further a specific baking method such as heating temperature and The time will be familiar to the particular artist who wants to heat or bake. The present invention is also known to be a life. Although the present invention has been exemplified by specific embodiments and examples, the above-mentioned n is familiar, the spirit of the art and the spirit of the field can be deviated without deviation. The present invention will be described hereinafter as "the scope of the present invention is limited only to the scope of the patent application" and its equivalent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a flow chart of a representative packaging method for a single pet food package 66 200924639; FIG. 2 is a pet food container of three different sizes in an embodiment of the present invention. Figure 3 is a perspective view of an edible and shaped Tang food container in accordance with an embodiment of the present invention; and Figure 4 is an edible and shaped rat in an embodiment of the present invention. A perspective view of the pet food container. ... [Main component symbol description] 〇 5 steps 10 steps 15 steps 20 steps 25 steps 30 containers (0.5 cups large) 35 containers (1 cup large) 40 containers (2 cups large) 67

Claims (1)

200924639 七、申請專利範圍: 1. 一種可食用的非人動物食品之容器,包含: 水; 澱粉,其中該澱粉包含預糊化澱粉及天然澱粉,其中該 容器的該總澱粉中,該預糊化澱粉之重量百分率範圍介 在大於0%而小於30%之間; 纖維,其中該纖維散布於該容器中,且遍及於該澱粉基 質中之該纖維分散至每一該纖維皆充分與其他該纖維 ❹ 分開; 其中該可食用的非人動物食品之容器係作成可吸引非 人動物之形狀,還包含可吸引非人動物之調味劑。 2. 如請求項1所述之可食用的非人動物食品之容器,其中 該容器的該總澱粉中,該預糊化澱粉之重量百分率範圍 介在大於5%而小於20%之間。 ® 3.如請求項1所述之可食用的非人動物食品之容器,還包 含财水化合物,其中該耐水化合物包括,一水溶液其中 包含修飾乙二酸(ethanedial)、乙二搭基(glyoxal-based) 試劑、碳酸錯錢(ammonium zirconium carbonate)、碳酸 錯卸(potassium zirconium carbonate)、或聚醯胺-環氧氯 丙烧(polyamide-epichlorohydrin)化合物。 4.如請求項3所述之可食用的非人動物食品之容器,其中 68 200924639 /今器的該〜炎粉中,該耐水化合物之重量百分率濃度 範圍介於約〇.1%至約2〇%之間。 5. 如明求項1所述之可食用的非人動物食品之容器還包 含路蛋白、膠乳、或大豆蛋白。 6. 如明求項5所述之可食用的非人動物食品之容器,其中 β膠乳m體與該路蛋白固體之比例介於約μ至約h © 間之範圍。 7’如叫求項1所述之可食用的非人動物食品之容器,其中 °亥纖維包含長度大於4公厘之長纖維、長度介於0.5公 4 Α厘之中等長度纖維、及長度小於0.5公厘之短 纖維。 〇 8.,叫求項1所述之可食用的非人動物食品之容器,其中 及纖維具有平均纖維長度約小於2公厘。 9.如明求項1所述之可食用的非人動物食品之容器’其中 该纖維具有平均長徑比介於5:1至25:1間之範圍。 ι〇.如明求項1所述之可食用的非人動物食品之容器,還包 含填充材料。 69 200924639 /求項ίο所述之可食用的非人動物食品之容器,其 =錢充材料包括碳酸約、氧化石夕⑽㈣、硫酸每、硫 :反5物、石夕酸鎖(magnesium silicate)、雲母礦物 (micace〇us minerals)、黏 土礦物⑷叮論erals)、二氧化 鈦、或滑石(talc)。 12.如請求項10所述之可食用的非人動物食品之容器還 ^ 3 m維’其巾該填充材料及/或該短纖維之組合濃 Ό 度小於該容器乾重之25〇/〇。 13·如請求項1所述之可食用 含蠟或蠟乳液。 的非人動物食品之容器,還包 人二求員1所述之可食用的非人動物食品之容器,還包 二維上膠劑’其中該纖維上膠劑形成-膜衣包覆至少 ❹ “亥纖維之至少-部分表面以作為助黏劑 於on promoter) ’保護該纖維之該表面免於受損以 ΙίΓ時之辅助’為纖維增加強度或不屈性、或減少 吸收率。 15t=項14所述之可食用的非人動物食品之容器,其 ^纖維上膠劑包括雙烧基乙_ (AKD,Alkyl Ketene im:)礼狀液、烯基琥珀酸酐… 紐丫她)、苯乙婦·丙婦酸醋共聚物(styrene acrylate 200924639 copolymer)、或院化三聚氰胺(alkylated melamine) 〇 16. 如請求項丨所述之可食用的非人動物食品之容器還包 含脫模劑。 17. 如請求項16所述之可食用的非人動物食品之容器其 中該脫模劑包括硬脂酸鎂、滑石、脂肪、或油類。 〇 I8.如請求項1所述之可食用的非人動物食品之容器,還包 含蛋白質或聚合物,其中該蛋白質或聚合物係降低該可 食用的非人動物食品之容器的脆性。 19.如請求項1所述之可食用的非人動物食品之容器,還包 含第二蛋白質以增強該可食用的非人動物食品之容器 乾燥時的機械性質。 20·如請求項19所述之可食用的非人動物食品之容器,其 中°亥第二蛋白質係為蛋白(albumen)或明膠(gelatin)。 21.如έ青求項1所述之可食用的非人動物食品之容器,還包 S著色劑、加香劑、調味劑、有害生物防治劑、維他命、 食品級材料、或其中之組合。 22’如5青求項1所述之可食用的非人動物食品之容器,還包 71 200924639 含蛋白質或營養素以調整成為非人動物的特定生活階 段中之食品。 23. 如請求項22所述之可食用的非人動物食品之容器,其 中該非人動物係為狗。 24. 如請求項1所述之可食用的非人動物食品之容器,其中 該可食用的非人動物食品之容器之形狀為骨頭、魚、或 〇 齧齒動物之形狀。 25. 如請求項1所述之可食用的非人動物食品之容器,其中 該澱粉係為防水澱粉。 26. 如請求項25所述之可食用的非人動物食品之容器,其 中該防水殿粉包括高直鏈;殿粉(high-amylose starch)、婦 基破拍酸酐(alkenyl succinic anhydride)修飾殿粉、醋酸 ❹ 軒(acetic anhydride)修飾殿粉、乙酸乙烯醋(vinyl acetate) 修飾殿粉、丙稀酸(acrolein)修飾澱粉、環氧氯丙烧 (epichlorohydrin)修飾殿粉、三氯一氧化麟(phosphorus oxychloride)修飾澱粉、三偏磷酸鈉(sodium trimetaphosphate)修飾澱粉、或環氧丙烧(propylene oxide)修飾殿粉、或其中之組合。 27. —種製備已預先包裝内有食物之非人動物供食用具之 72 200924639 方法,包含: ==、一織吻之可食用的非人 ^了定分量的已烹煮或未烹煮之寵物食品裝入該容器 一起袁調或加工該寵物食品及該容器;以及 ❹ Ο = ί = :寵物食品及該容器包裳於塑膠袋内,並滅 囷及在封該谷器與該寵物食品二者以避免污染。 如叫求項27所述之製備已預先包 物供食用衣円有食物之非人動 模劑、it ’其中該容器還包含壤、躐乳液、脫 他命、=、加香劑、調味劑、有害生物防治劑、維 4丹十之組合。 US:方述之製備已預先包裝内有食物之非人動 餐齒動物之法,其中該容器之形狀為骨頭、魚、或 3〇·如請求項27所 物供食用具夕士 匕襄内有食物之非人動 以調整其成IT法’其中該容器還包含蛋白質或營養素 為非人動物的特定生活階段中之食品。 31,如請求項2 物供食用具之大述之製備已預先包農内有食物 之非人動 ”方法’其中該非人動物係為狗。 73 200924639 32. 如請求項27所述之方法所製備之已預先包裝之非人動 物供食用具,包含一定分量的非人動物食品裝在該可食 用的非人動物食品之容器中;以及包裝材料。 33. —種可食用的非人動物食品之容器,包含: 生物可分解之纖維成分,其中該生物可分解纖維成分之 乾重基含量介於約5%至約40%之間; 澱粉成分,其中該澱粉成分之乾重基含量介於約40%至 ❹ 約94.5%之間;以及 添加成分,其中該添加成分之乾重基含量介在大於0% 至約15%之間,其中該添加成分包括環氧化(epoxidized) 植物油、氫化三酸甘油醋(hydrogenated triglyceride)、 聚乙酸乙烯醋(PVAc ’ polyvinyl acetate)、聚乙酸乙浠酉旨 -乙稀共聚物(VAE ,poly(vinylacetate-ethylene) copolymer)、聚乙烯-乙酸乙烯酯共聚物(EVA, ❹ p〇ly(ethylene-vinyl acetate) copolymer)、或其中之組合; 其中該可食用的非人動物食品之容器係作成可吸引非 人動物之形狀,還包含可吸引非人動物之調味劑。 34. 如請求項33所述之可食用的非人動物食品之容器,其 中該生物可分解之纖維成分包括天然纖維,而該天然纖 維包括木質纖維、非木質纖維、或動物纖維。 35. 如請求項33所述之可食用的非人動物食品之容器,其 74 200924639 , ♦ 中該生物可分解之纖維成分包括生物可分解之合成纖 維。 36. 如清求項33所述之可食用的非人動物食品之容器,其 中該;殿粉成分包含有機填充材料,其中該澱粉與該有機 填充材料之比例介於約10:1至約1:1間之範圍。 37. 如清求項33所述之可食用的非人動物食品之容器其 〇 中該添加物成分之含量介於約2%至約5%之間。 如。青求項33所述之可食用的非人動物食品之容器其 中垓^、、加物成分係選自一聚合物家族該聚合物家族由 聚乙酸乙烯醋(PVAc)、聚乙酸乙烯醋·乙烯共聚物 (VAE)、及聚乙烯_乙酸乙烯酯共聚物(eva)所組成。 ❹39. *性混合物用以製作如請求項η所述之可食用的非 人動物食品之容器’其中該混合物包含足以使該混合物 f加熱至賴溫度及足夠時間後得以模塑成型之含水 量,以形成生物可分解、m且防水之製品。 4求項39所述之用以製作可食用的非人動物食品之 谷器之水性混合物,其中該含水量介於約儀至約80% 75 200924639 41. 如請求項39所述之用以製作可食用的非人動物食品之 容器之水性混合物,其中該澱粉成分包含天然澱粉及預 糊化澱粉之組合,其中該纖維與該預糊化澱粉之比例介 於約1.5:1至約3:1間之範圍。 42. 如請求項40所述之用以製作可食用的非人動物食品之 容器之水性混合物,還包含硬脂酸鎂、蠟、交聯劑、或 其中之組合。 ❹ 43. 如請求項33所述之可食用的非人動物食品之容器,其 中該澱粉成分之至少一部分可由一或多種防水澱粉所 構成。 44. 如請求項43所述之可食用的非人動物食品之容器,其 中該防水澱粉成分包括高直鏈澱粉、烯基琥珀酸酐 (alkenyl succinic anhydride)修飾殿粉、醋酸酐(acetic anhydride)修飾殿粉、乙酸乙稀醋(vinyl acetate)修飾澱 粉、丙烯酸 (acrolein)修飾澱粉、環氧氣丙烧 (epichlorohydrin)修飾殿粉、三氯一氧化鱗(phosphorus oxychloride)修飾澱粉、三偏填酸納(sodium trimetaphosphate)修飾殿粉、或環氧丙烧(propylene oxide)修飾殿粉、或其中之組合。 45. 如請求項33所述之可食用的非人動物食品之容器,其 76 200924639 中該添加成分之含量介於約〗5%至約7%之間。 6 求項33所述之可食用的非人動物食品之容器,還 蛋白貝或聚合物,其中該蛋白質或聚合物係降低該 可食用的非人動物食品之容器的脆性。 月长項33所述之可食用的非人動物食品之容器,還 〇 包^、液、脫模劑、著色劑、加香劑、調味劑、 有害生物防治劑、維他命、或其中之組合。 48. 如請求項33所述之可食用的非人動物食品之容器還 匕s蛋白質或營養素以調整其成為非人動物的 活階段中之食品。 、 49. 如請求項48所述之可食用的非人動物食品之容器其 〇 中該非人動物係為狗。 /、 0.如明求項33所述之可食用的非人動物食品之容器,其 中該可食用的非人動物食品之容器之形狀為骨頭、备〃、 或®齒動物之形狀。 77200924639 VII. Patent application scope: 1. A container for edible non-human animal food, comprising: water; starch, wherein the starch comprises pre-gelatinized starch and natural starch, wherein the pre-paste of the total starch of the container The weight percentage of the starch ranges from greater than 0% to less than 30%; the fibers, wherein the fibers are dispersed in the container, and the fibers are dispersed throughout the starch matrix to each of the fibers sufficiently complementary to the other fibers分开 Separate; wherein the edible non-human animal food container is shaped to attract non-human animals, and further comprises a flavoring agent that attracts non-human animals. 2. The edible non-human animal food container of claim 1, wherein the pre-gelatinized starch has a weight percentage ranging from greater than 5% to less than 20% of the total starch of the container. 3. The edible non-human animal food container of claim 1, further comprising a water-saturated compound, wherein the water-resistant compound comprises an aqueous solution comprising a modified ethanedial, glyoxal -based) a reagent, ammonium zirconium carbonate, potassium zirconium carbonate, or a polyamide-epichlorohydrin compound. 4. The edible non-human animal food container according to claim 3, wherein the water-resistant compound has a weight percentage concentration ranging from about 〇.1% to about 2 in the inflammatory powder of 68 200924639 / 今〇% between. 5. The edible non-human animal food container of claim 1 further comprising a road protein, a latex, or a soy protein. 6. The edible non-human animal food container of claim 5, wherein the ratio of the beta latex m body to the road protein solid is in the range of from about μ to about h © . The container of edible non-human animal food according to claim 1, wherein the nanofiber comprises a long fiber having a length of more than 4 mm, a length of 0.5 mm and 4 cm, and a length of less than 0.5 mm short fiber. 8. The container of edible non-human animal food of claim 1, wherein the fibers have an average fiber length of less than about 2 mm. 9. The container of edible non-human animal food according to claim 1, wherein the fiber has an average aspect ratio ranging from 5:1 to 25:1. Ι〇. The edible non-human animal food container of claim 1, further comprising a filling material. 69 200924639 / Claim ίο The edible non-human animal food container, wherein the money filling material comprises carbonic acid, oxidized stone eve (10) (four), sulfuric acid per sulphur: anti-5 substance, magesium silicate , micace〇us minerals, clay minerals (4) erals), titanium dioxide, or talc. 12. The container of edible non-human animal food according to claim 10, further comprising a filling material and/or a combination of the short fibers having a concentration less than 25 〇/〇 of the dry weight of the container. . 13. An edible waxy or waxy emulsion as claimed in claim 1. The container of the non-human animal food, the container of the edible non-human animal food described in claim 2, and the two-dimensional sizing agent, wherein the fiber sizing agent is formed - the film coating is coated at least ❹ "At least part of the surface of the fiber is used as a co-adhesive on the promoter" 'Protect the surface of the fiber from damage to aid the fiber's strength or inflexibility, or reduce the absorption rate. 15t = item The edible non-human animal food container of 14 described above, wherein the fiber sizing agent comprises a bismuth (AKD, Alkyl Ketene im:) ritual liquid, an alkenyl succinic anhydride... 17. Styrene acrylate 200924639 copolymer, or alkylated melamine 〇 16. The container of edible non-human animal food as described in claim 1-3 further comprises a release agent. The container of the edible non-human animal food of claim 16, wherein the release agent comprises magnesium stearate, talc, fat, or oil. 〇I8. Edible non-human according to claim 1. Animal food container, which also contains protein Or a polymer, wherein the protein or polymer is used to reduce the fragility of the container of the edible non-human animal food. The container of the edible non-human animal food of claim 1 further comprising a second protein The container for the edible non-human animal food according to claim 19, wherein the second protein is an album or gelatin. (gelatin) 21. A container for edible non-human animal food as described in Inventive Item 1, further comprising a S coloring agent, a flavoring agent, a flavoring agent, a pest control agent, a vitamin, a food grade material, or The combination of 22', such as the container of edible non-human animal food as described in 5, claim 71, 200924639 contains protein or nutrients to adjust to food in a specific life stage of a non-human animal. The container of the edible non-human animal food of claim 22, wherein the non-human animal is a dog. 24. The edible non-human animal food container of claim 1, wherein the edible The container of the human animal food is in the shape of a bone, a fish, or a rodent. 25. The edible non-human animal food container of claim 1, wherein the starch is a waterproof starch. The edible non-human animal food container according to Item 25, wherein the waterproof temple powder comprises a high straight chain; a high-amylose starch, an alkenyl succinic anhydride modified temple powder, and an acetic acid 轩 ( ( Acetic anhydride) modified palace powder, vinyl acetate modified temple powder, acrolein modified starch, epichlorohydrin modified temple powder, phosphorous oxychloride modified starch , sodium trimetaphosphate modified starch, or propylene oxide modified temple powder, or a combination thereof. 27. A method for preparing a non-human animal that has been pre-packaged with food for use. The method of 200924639 includes: ==, an edible non-human, a fixed amount of cooked or uncooked Putting the pet food into the container together to adjust or process the pet food and the container; and ❹ Ο = ί = : the pet food and the container bag are in the plastic bag, and the cockroach is sealed and the pet food is sealed with the pet food Both to avoid pollution. The preparation of the pre-packaged material for foodstuffs, wherein the container further comprises a soil, a lotion, a detoxification, a flavoring agent, a flavoring agent, as described in claim 27. , a combination of pest control agents, Wei 4 Dan 10 . US: The method of preparing a non-human tooth-toothed animal having food in advance, wherein the shape of the container is bone, fish, or 3 〇· There is a non-human food to adjust its IT method. The container also contains protein or nutrients for the food in a specific life stage of non-human animals. 31. The preparation of the item 2 for the preparation of the food item has been pre-packaged with the non-human movement method of the food in the farm. The non-human animal is a dog. 73 200924639 32. The method according to claim 27 A pre-packaged non-human animal food preparation device comprising a certain amount of non-human animal food contained in a container of the edible non-human animal food; and a packaging material. 33. An edible non-human animal food The container comprises: a biodegradable fiber component, wherein the biodegradable fiber component has a dry weight basis content of between about 5% and about 40%; a starch component, wherein the starch component has a dry weight basis content of between Between about 40% and about 94.5%; and an additive component, wherein the dry weight of the added component is between greater than 0% and about 15%, wherein the added component comprises an epoxidized vegetable oil, a hydrogenated triacid Hydrogenated triglyceride, polyvinyl acetate (PVAc 'polyvinyl acetate), poly(vinylacetate-ethylene) copolymer, polyethylene- An ethylene-vinyl acetate copolymer (EVA), or a combination thereof; wherein the edible non-human animal food container is shaped to attract a non-human animal, and further comprises A container for attracting a non-human animal. The container of edible non-human animal food according to claim 33, wherein the biodegradable fiber component comprises natural fiber, and the natural fiber comprises wood fiber, non-wood fiber Or animal fiber. 35. The edible non-human animal food container of claim 33, wherein the biodegradable fiber component comprises biodegradable synthetic fiber. The edible non-human animal food container according to Item 33, wherein the powder component comprises an organic filling material, wherein the ratio of the starch to the organic filling material is in a range of about 10:1 to about 1:1. 37. The container of edible non-human animal food of claim 33, wherein the content of the additive component is between about 2% and about 5%, as described in claim 33. can The non-human animal food container used therein, wherein the additive component is selected from a polymer family, the polymer family is made of polyvinyl acetate vinegar (PVAc), polyvinyl acetate vinegar ethylene copolymer (VAE), and poly Composition of ethylene-vinyl acetate copolymer (eva). 39. * Sexual mixture for making a container for edible non-human animal food as described in claim η, wherein the mixture contains sufficient salt to heat the mixture f The moisture content is molded after the temperature and sufficient time to form a biodegradable, m- and water-repellent article. The aqueous mixture for use in the preparation of an edible non-human animal food product according to claim 39, wherein the water content is from about 约 to about 80% 75 200924639 41. as described in claim 39 An aqueous mixture of edible non-human animal food containers, wherein the starch component comprises a combination of natural starch and pre-gelatinized starch, wherein the ratio of the fiber to the pre-gelatinized starch is between about 1.5:1 and about 3:1. The range between the two. 42. The aqueous mixture of a container for making an edible non-human animal food according to claim 40, further comprising magnesium stearate, a wax, a crosslinking agent, or a combination thereof. 43. The edible non-human animal food container of claim 33, wherein at least a portion of the starch component is comprised of one or more water resistant starches. 44. The edible non-human animal food container of claim 43, wherein the waterproof starch component comprises high amylose, alkenyl succinic anhydride modified temple powder, acetic anhydride modified temple powder , vinyl acetate modified starch, acrylic acid (acrolein) modified starch, epichlorohydrin modified temple powder, phosphorus oxychloride modified starch, sodium trimetaphosphate ) modified temple powder, or propylene oxide modified temple powder, or a combination thereof. 45. The container of edible non-human animal food of claim 33, wherein the amount of the added ingredient in 76 200924639 is between about 5% and about 7%. The container of edible non-human animal food according to item 33, which is also a protein shell or a polymer, wherein the protein or polymer lowers the brittleness of the container of the edible non-human animal food. The container of the edible non-human animal food described in the item of item 33, further comprising a package, a liquid, a release agent, a coloring agent, a flavoring agent, a flavoring agent, a pest controlling agent, a vitamin, or a combination thereof. 48. The edible non-human animal food container of claim 33, further comprising protein or nutrients to adjust the food in the living stage of the non-human animal. 49. The container of edible non-human animal food of claim 48, wherein the non-human animal is a dog. The container of edible non-human animal food according to the item 33, wherein the container of the edible non-human animal food is in the shape of a bone, a preparation, or a toothed animal. 77
TW097140420A 2007-10-24 2008-10-22 Edible, biodegradable pet food container and packaging method TW200924639A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US98234507P 2007-10-24 2007-10-24

Publications (1)

Publication Number Publication Date
TW200924639A true TW200924639A (en) 2009-06-16

Family

ID=40580012

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097140420A TW200924639A (en) 2007-10-24 2008-10-22 Edible, biodegradable pet food container and packaging method

Country Status (4)

Country Link
EP (1) EP2214499A4 (en)
CN (1) CN101917860A (en)
TW (1) TW200924639A (en)
WO (1) WO2009055583A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200904365A (en) * 2007-07-03 2009-02-01 Biosphere Ind Llc Biodegradable and compostable composition having improved physical and chemical properties
MX2011003549A (en) 2008-10-03 2011-05-25 Georgia Pacific Corrugated Llc Corrugating linerboard, corrugated board, and methods of making the same.
US20120315362A1 (en) * 2010-11-10 2012-12-13 Golden Nutrition, LLC. Biodegradable, edible, weather resistant container for livestock feed supplement block
EP3260292A1 (en) 2016-06-23 2017-12-27 Tetra Laval Holdings & Finance S.A. A method of producing a packaging material for a retortable package
EP3284773A1 (en) * 2016-08-15 2018-02-21 Aaron & Roman Ltd. A process method for preparation of bio-renewable, biodegradable, biocompostable and biodigestible agricultural vegetal waste-peptide-polyolefin polymer composite
CN107027682B (en) * 2017-06-19 2022-06-24 福州高科新技术开发有限公司 Automatic fishpond feeding device, automatic fishpond feeding method and oxygenation method
WO2020035462A1 (en) * 2018-08-13 2020-02-20 Do Eat S.A. Biodegradable appliance for containing food
CN110250039A (en) * 2019-07-12 2019-09-20 东阳市吴宁珑腾宠物用品厂 A kind of preparation method of birds dish leaf feeder and its birds dish leaf feeder
CN112982026B (en) * 2021-02-05 2023-04-11 西藏俊富环境恢复有限公司 Plant fiber-based controllable water permeable material and preparation method thereof
CN115340695A (en) * 2021-04-27 2022-11-15 金树科技股份有限公司 Starch container structure with high-hardness silica gel layer and easy demoulding
CN113261448A (en) * 2021-05-21 2021-08-17 江西省林业科学院 Tea-oil tree fruit shell degradable seedling culture container and preparation method thereof
CN113173310B (en) * 2021-05-24 2022-12-16 湖北联玉新材料科技有限公司 Degradable disposable food preservation tray
CN114164704B (en) * 2021-11-25 2023-03-03 中国制浆造纸研究院有限公司 Fluoride-free waterproof and oil-proof agent for pulp molding pulp and use method thereof
CN115160658B (en) * 2022-08-22 2023-11-03 东莞市丞冠运动用品科技有限公司 Biodegradable foaming shoe material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1476764A (en) * 1974-05-30 1977-06-16 Skogsaegarnas Ind Ab Packages for the feeding of livestock
US6337097B1 (en) * 1999-09-29 2002-01-08 Kansas State University Research Foundation Biodegradable and edible feed packaging materials
CA2317023A1 (en) * 1999-11-16 2001-05-16 Kelly D. Coover Edible animal feed containers
KR20030061675A (en) * 2002-01-11 2003-07-22 뉴 아이스 리미티드 Biodegradable or compostable containers
GB2398055A (en) * 2003-02-04 2004-08-11 Debbie Manson Edible wrapping paper for gifts to pets
US8382888B2 (en) * 2003-08-27 2013-02-26 Biosphere Industries, Llc Composition for use in edible biodegradable articles and method of use
WO2005021633A2 (en) * 2003-08-27 2005-03-10 Biosphere Industries Corporation Composition for use in biodegradable articles and method of use
WO2006102710A1 (en) * 2005-03-30 2006-10-05 Kieron Dowd Edible pet food composition and various packaging arrangements
US20070234965A1 (en) * 2006-04-07 2007-10-11 Aguilar Teresa A Edible pet container

Also Published As

Publication number Publication date
WO2009055583A1 (en) 2009-04-30
EP2214499A1 (en) 2010-08-11
CN101917860A (en) 2010-12-15
EP2214499A4 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
TW200924639A (en) Edible, biodegradable pet food container and packaging method
US20090104314A1 (en) Edible, biodegradable pet food container and packaging method
US8927622B2 (en) Biodegradable and compostable composition having improved physical and chemical properties
EP1951056B1 (en) Composition for use in edible biodegradable articles and method of use
JP2007517919A (en) Composition for use in biodegradable articles and method of use
US7067651B2 (en) Non-synthetic biodegradable starch-based composition for production of shaped bodies
CN111011874A (en) Natural biodegradable composite edible tubular product and preparation method thereof
AU3522199A (en) Biodegradable packaging material, method for producing same and its use
CN100393809C (en) Green environmental protection disposable dinner ware made of plant fiber and its preparation method
US8658714B2 (en) Ecologically friendly composition containing beneficial additives
AU2021270978A1 (en) Granulate of only natural constitutions; granulate for the manufacture of composable products and method for manufacturing the granulate and the products obtained therefrom
JP4128612B1 (en) Biodegradable composition, biodegradable processed product such as strength member, and manufacturing method thereof
US20090155421A1 (en) Edible livestock feeding container
US20230189861A1 (en) Granulate of only natural constitutions; granulate for the manufacture of composable products and method for manufacturing the granulate and the products obtained therefrom
KR100768067B1 (en) Method for preparing natural antibacterial container made by foaming
US20220325079A1 (en) Compostable aids for eating or drinking made of vegetable starch and vegetable thickener or gelling agent and methods for producing same
KR20060094644A (en) Method for preparing natural container made by forming