TW200924567A - Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same - Google Patents

Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same Download PDF

Info

Publication number
TW200924567A
TW200924567A TW096145053A TW96145053A TW200924567A TW 200924567 A TW200924567 A TW 200924567A TW 096145053 A TW096145053 A TW 096145053A TW 96145053 A TW96145053 A TW 96145053A TW 200924567 A TW200924567 A TW 200924567A
Authority
TW
Taiwan
Prior art keywords
laser
beat
frequency
electron
wave
Prior art date
Application number
TW096145053A
Other languages
Chinese (zh)
Inventor
Yen-Chieh Huang
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW096145053A priority Critical patent/TW200924567A/en
Publication of TW200924567A publication Critical patent/TW200924567A/en

Links

Abstract

An electron radiation apparatus is provided. The electron radiation apparatus includes a beat-wave laser system generating a laser beat wave, an electron emitter emitting a density-modulated electron current induced by the laser beat wave, an electron accelerator accelerating the density-modulated electron current and generating a periodically bunched electron beam, and a radiation device receiving the periodically bunched electron beam and generating an electron radiation with a radiation frequency matched to one of the harmonics of the bunching frequency of the periodically bunched electron beam.

Description

200924567 九、發明說明: 【發明所屬之技術領域】 本案係為一種光陰極電子加速器,尤指一種用於 電子私射設備並以雷射拍波激發的光陰極電子加速 器。 【先前技術】 電子加速器在基礎及應用研究上是一種十分有 用的工具’而其中一種重要的應用即用於電磁輻射的 產生。—個典型的電子輻射設備包含三個主要元件, 即一電子發射器、一電子加速器及一輻射裝置;首 先’電子發射器產生低能量電子,並進一步經由電子 加速器加速而轉為高能量電子,之後這些高能量電子 注入輪射裝置而產生電子輻射。在實際應用上,不同 的輕射裝置係應用於不同的電子輻射設備中。例如: 自由電子雷射(free-electron laser, FEL )裝置的輻射 裝置為增頻磁鐵(undulator);史密斯-柏塞爾 (Smith-Purcell)輻射器的輻射裝置則為光柵;而切 倫科夫(Cherenkov)輻射器的輻射裝置則是介電質; 另,反向波振盡器(backward-wave oscillator)的輻射 裝置是慢波波導器。 電子輻射的效能主要取決於這些驅動電子的特 性,就電子聚束(electron bunch)長度相對於輻射波 波而言,目前已知的電子輻射的機制有兩種。簡而言 200924567 二=子聚束的長度遠大於輻射波長,這些電子 田、置中會產生非相干輻射(incoherent ―),此轄射的光能量是線性 或總電子數,而i古铦北4 、此电于机 ^ , 乂種非相干的輻射通常發生在同步加 ;;;射中。然而’當電子聚束的長度明顯小於輕射 …,這些電子將以一種所 (sup⑽dianee)方式而產生相干輻射,且此=200924567 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a photocathode electron accelerator, and more particularly to a photocathode electron accelerator for use in an electronic private project and excited by a laser beat. [Prior Art] Electron accelerators are a very useful tool for basic and applied research' and one of the important applications is for the generation of electromagnetic radiation. A typical electronic radiation device comprises three main components, namely an electron emitter, an electron accelerator and a radiation device; firstly, the electron emitter generates low-energy electrons and further accelerates into high-energy electrons via an electron accelerator. These high energy electrons are then injected into the firing device to generate electron radiation. In practical applications, different light-emitting devices are used in different electronic radiation devices. For example: the radiation device of a free-electron laser (FEL) device is an undulator; the radiation device of a Smith-Purcell radiator is a grating; and Cherenkov (Cherenkov) The radiation device of the radiator is a dielectric; in addition, the radiation device of the backward-wave oscillator is a slow wave waveguide. The effectiveness of electron radiation depends mainly on the characteristics of these driving electrons. There are two mechanisms for the known electron radiation in terms of the length of the electron bunch relative to the radiated wave. In short, 200924567 two = the length of the sub-bunch is much larger than the wavelength of the radiation, these electron fields, the middle will produce incoherent ―, the light energy of this ray is linear or total electron number, and i Gubei 4, this electricity in the machine ^, a variety of non-coherent radiation usually occurs in synchronous addition;;; shot. However, when the length of the electron bunching is significantly smaller than that of the light beam, these electrons will produce coherent radiation in a manner of (sup(10) dianee), and this =

光能置是正比於電子流或總電子數的平方。 具體來說,赍_ 時,並#勒处旦a 電子由輻射裝置發射出來 先不論該輻射裳置的性。暫且 由一個早一電子所發出的光 戈表 pnercrv、,甘山 „ 、月b 里在度(spectral 八中W為該輻射能量, 率,而下標符號 裝置中’由一串電子流所韓射出的總能量主 ^ 電子聚束時間%相對於輻射 里 卜'、 決於電子聚束長度%相對!:==的關係,或取 L的… 其對電子的賴射波長 m"又政有則固電子平均地 長中’當經由輻射裝置發射出時,這此 〇士的各種可能相位發出子會以介於 可以用下列等式表示:而所得到的光能量 (•V—L=M雜 由於並非所有由電子產生等式⑴ 增加,這樣的β 耵琢都會有建設性地 的幸田射過転是呈現非相干輕射。然而,如 200924567 個電子以時間或Tb〜〇的挪函數的 布’所有由電子產生的輻射場將會同相,並且二 ,的加總’而得到相等於物請 : 這樣的,過程稱之為超輕射發射心:: _S_)或超輻射’即其具有正 輻射光能量。為了說明一右7 卞数十方的 ώ ^兒明有限的電子聚束長度%,來 自一電子聚束所產生的能量可以 CL,/,⑻ 4 式 其:,ω)為具有-單波振輻的電子脈衝波形函數 之傅立茱轉換函數。若~個這樣的電子 ^的速率重複,所輕射出的總光能量則為:- [dW/da)^pb = N;Nlb {dWjdm\ Ml {ω)Μ\ (ω) 其中 Ρ 等式Ο) sin2(〜·〜) N2pb sin2(^/c^) 其為所有微聚束所發出的輻射場之相干總和, 頻率為=丨,2, 3...)的單波振輻。為了得到 高輻射光能量,則可使用短聚束長度(紙^⑷〜丨), 並使其符合該聚束頻率(ω = )的諧波之—的轄射 頻率。當冲且风2(仞)=1時,則輕射光 (,《肩,/Μ,此亦表示了光能量與 間的平方正比關係。在許多應用中,窄線寬的輻射是 十分重要的;對一個短電子聚束而言,Mb2(w)通常是 一個寬頻函數。在ω=^ω坤時,以紙2(岣函數所得= 200924567 的光線寬約為,這對大量的週期電子聚束而 言(wPb很大),可能遠比受(^阶如^所決定的輻射裝 置其本身的光線寬還窄。在此限制下,當輻射頻率等 於時’(册(廉㈣的光線寬近似 於Λ42(ω)或〜ω—/Λ^的光線寬。 言月參閱第1圖,其為先前技術之電子輻射設備的 示心圖。該電子輪射設備1 〇〇包含一脈衝驅動雷射系 統10、一電子發射器13、一電子加速器14及一輻射 裝置17,其中該電子發射器13及該電子加速器14 勺、’且5般統稱為光陰極電子加速器1 2。當來自該 脈衝雷射系統10的一雷射脈衝η入射 器13時,該電子發射器13會發射出一電子;The light energy is proportional to the square of the electron flow or the total number of electrons. Specifically, when 赍_, and #勒处旦, a electron is emitted by the radiation device regardless of the nature of the radiation. For the time being, a light-go table pnercrv, Ganshan „, and month b are in the degree (spectral eight in W for the radiant energy, rate, and in the subscript symbol device) by a string of electrons The total energy emitted by the main ^ electron bunching time % relative to the radiation of the ', depends on the electron bunching length % relative! :== relationship, or take L's ... its electron wavelength of the wavelength m " Then, when the solid electrons are averaged in length, when the light is emitted through the radiation device, the various possible phase emitters of the gentleman can be expressed by the following equation: the obtained light energy (•V-L=M Since not all of them are increased by the equation (1) generated by electrons, such β 耵琢 will be constructively shot by Koda, which is a non-coherent light shot. However, such as 200924567 electrons with time or Tb~〇 The cloth 'all radiation fields generated by the electrons will be in phase, and the sum of the two's will be equal to the object please: such a process, called the ultra-light emission heart:: _S_) or super-radiation' Positive radiation energy. To illustrate a right 7 卞Dozens of squares have a limited electron bunching length %, and the energy generated by an electron bunching can be CL, /, (8) 4 where: ω) is an electronic pulse waveform function with a single wave vibration The Fourier transform function. If the rate of such an electron is repeated, the total light energy that is lightly emitted is: - [dW/da)^pb = N; Nlb {dWjdm\ Ml {ω)Μ\ (ω) Where Ρ equation Ο) sin2(~·~) N2pb sin2(^/c^) which is the sum of the coherence of the radiation fields emitted by all the micro bunches, a single wave with a frequency of =丨, 2, 3...) In order to obtain high radiated light energy, a short bunching length (paper ^(4)~丨) can be used, and it is made to conform to the frequency of the harmonic of the bunching frequency (ω = ). When wind 2 (仞)=1, then light light ("shoulder, /Μ, this also shows the relationship between light energy and squared ratio. In many applications, narrow linewidth radiation is very important; In the case of short electron bunching, Mb2(w) is usually a broadband function. When ω=^ωkun, paper 2 (the function obtained by 岣 function = 200924567 is about the width of the light, which is a large number of periodic electron bunching Words (wPb is very large), may be far narrower than the light width of the radiation device determined by ^^ (which is determined by ^, under this limitation, when the radiation frequency is equal to the same time (the volume of light (four) is similar to Λ42(ω) or ~ω—/Λ^ is wide in light. See Figure 1 for a schematic view of a prior art electronic radiation device. The electronic wheeling device 1 includes a pulse-driven laser system. 10. An electron emitter 13, an electron accelerator 14, and a radiation device 17, wherein the electron emitter 13 and the electron accelerator 14 are ', and are collectively referred to as a photocathode electron accelerator 12. When a laser pulse η from the pulsed laser system 10 is incident on the emitter 13, the electron emitter 13 emits an electron;

且所發射出的該電子脈衝15即立刻被加速而變成一 兩能量電子脈衝151。該電子輻射設備1〇〇更包含一 電子束傳輸系、统16,用以傳遞該高能量電子脈衝 ,並將其射人該輕射裝£ 17以產生—輕射脈衝 以值^子束傳輪系統1 6可更包含聚焦或轉彎'元件 子f電子束,或更可包含加速器以進-步加速電 由於該雷射脈衝U的長度及其所產生 ::15與該高能量電子脈衝151的長 比 衝18的波長還長,因此在-般如同:二 式⑴所示之光能量,或當在具有生=:=等 的1射設備中’該輻射脈衝則能產:如等1 200924567 (2)〜(4)所示大幅增加的光能量。 目別已知攸電子單通道(single-pass )輻射設備 中’有叫·也可以產生電子超輻射,例如Smith-Purcell 幸虽射器、Cherenkov輻射器及增頻磁鐵輻射器。其產 生超輻射的機制為:初始的非相干輻射場會反作用於 電子’而漸漸在轎射設備中形成電子微聚束,當這些 微聚束在該輻射場中形成時,此輻射能量即達到高程 度的飽和;然而’大部分的單通道輻射設備無法得到 足夠的輻射而達到超輻射並使輻射能量飽和。在FEL 振盛器中,當電磁信號漸漸在雷射振盪器中的兩個共 振鏡間產生時,電子亦可形成週期聚束並有效地產生 輻射;可惜的是,:FEL振盪器的構造遠比單通道輻射 設備來得複雜。 為了幫助電子產生自我的聚束,在FEL振盪器 刖有4可裝设有一個§周制增頻磁鐵(modulator undulator)緊接著一段偏移距離(drift distance)及 磁壓縮(magnetic chicane );這個調制增頻磁鐵 (modulator undulator)的裝置通常稱為光學速調管 (optical klystron )’因為一微波放大器的速調管具有 激發電子自我聚束的結構。但是,由於結構短的光學 速調管其自發輻射場較弱’因此對電子束的密度調節 十分有限。為了克服光學速調管的缺點,一種非常長 的增頻磁鐵被提供用以在一高增益的單通道FE]L中 使用,以產生自我增輻的自發性發射(self_ampHfied 200924567 spontaneous emission, SASE)。雖然這種單通道技術 避免了在FEL中使用共振反射鏡,但其增頻磁鐵的 長度相較於傳統增頻磁鐵而言長很多,而且用來驅動 SASEFEL的電子束之品質(出射度、能量散布及電 子流密度)相較於傳統的FEL振盪器而言必須高出 許多;此外,這種單通道FEL會放大電子中的量子 雜訊,因而在時域及頻域上輸出雜亂輻射。 為了解決SASE FEL的雜訊輸出問題,一種裝設 於SASE FEL如的雷射注入調制增頻磁鐵(laser seeded modulator undulator )被用以誘導形成週期性 的聚束電子,而此週期性的聚束電子的聚束頻率與該 SASE FEL輻射頻率的次譜波(sub-harmonics )相同。 但是,這種所謂的高增益諧波產生(HGHG)技術需 使用到調制增頻磁鐵及特定頻率的雷射光源;而為了 使輻射波長遠小於雷射波長,這種HGHG技術需要 大量串聯的調制增頻磁鐵結構。 綜上所述,在先前技術中,所有的相干輕射設備 都是簡單地採用現有電子加速器所形成的電子流,且 必須使用外加於電子加速器的方法使電子聚束而產 生有效的電子輻射;這些方法既複雜又昂貴,也不夠 有效率。因此,業界亟需一種新的電子加速器及新的 相干輻射設備以克服先前技術的缺點。 爰是之故,申請人有鑑於習知技術之缺失,發明 出本案「雷射拍波光陰極電子加速器及其電子輻射設 10 200924567 備」’用以改善上述習用手段之缺失。 【發明内容] 根據本發明之構想,本案係提供一種使用拍波雷 射系統作為電子源的電子輻射設備,其包含一拍波雷 射系、先 龟子發射态、一電子加速器以及一輻射裝 置,其中該拍波雷射系統產生一雷射拍波,該電子發 射器受該雷射拍波誘導而發射一密度調節電子流,該 電2加速器加速該密度調節電子流,並產生一週期聚 束電子束,而該輻射裝置接收該週期聚束電子 生一電子輻射。 1所述之設備,其中該拍波f射系統將·2個 田、場重璺而產生該雷射拍波,在雷 显 間的雷鼾妒目女^ 》日上兩兩相 射拍;:: 的頻率偏移△·,使得該雷 耵拍波具有一拍頻Δω/2π。 田 嗽頻如^述之設備,其中該拍波雷射系統將兩個線性 、(requency chlrped)雷射場重疊而產生古亥 延遲△且爾射場之間具有-相;;時間 整,門…及-爾化率的其中之—而調 ------六丫级%于輻射的 Λ %子束之諳波頻率中的一個相符。 如所述之設借,其中該電子輕射為_電子超 11 200924567 射、,該電子賴射具有_光能量正比於該密度調節電 子流的平方。 、如所述之設備,其中該輻射裝置係選自一增頻磁 鐵、—光栅、一介電質以及一慢波波導器之其中之 —' 0And the emitted electronic pulse 15 is immediately accelerated to become a two-energy electron pulse 151. The electron-emitting device 1 further includes an electron beam transmission system 16 for transmitting the high-energy electron pulse and projecting the light-emitting device to generate a light-pulse pulse with a value of a beam. The wheel system 16 may further include a focus or turn 'element' f-electron beam, or may further include an accelerator to accelerate the electric power due to the length of the laser pulse U and its resulting: 15 and the high-energy electron pulse 151 The long specific impulse 18 has a long wavelength, so it is similar to: the light energy shown by the formula (1), or when it is in a 1-shot device with a raw =:=, etc., the radiation pulse can be produced: 200924567 (2) ~ (4) shows a substantial increase in light energy. It is known that electronic single-pass radiation equipment can also generate electronic super-radiation, such as Smith-Purcell, Cherenkov radiator and up-converter magnet radiator. The mechanism for generating super-radiation is that the initial incoherent radiation field reacts to the electrons and gradually forms electron micro-bundles in the laser device. When these micro-bundles are formed in the radiation field, the radiant energy is reached. High levels of saturation; however, 'most single-channel radiation devices do not get enough radiation to reach super-radiation and saturate the radiant energy. In the FEL oscillator, when the electromagnetic signal is gradually generated between the two resonant mirrors in the laser oscillator, the electrons can also form a periodic bunching and effectively generate radiation; unfortunately, the structure of the FEL oscillator is much longer than that of the FEL oscillator. Single channel radiation equipment is complicated. In order to help the electrons to self-converge, the FEL oscillator can be equipped with a §modulator undulator followed by a drift distance and magnetic chicane; this modulation increases A device for a modulator undulator is often referred to as an optical klystron because a kinematic tube of a microwave amplifier has a structure that excites electrons to self-converge. However, since the optical klystron with a short structure has a weak spontaneous emission field, the density adjustment of the electron beam is very limited. In order to overcome the shortcomings of optical klystrons, a very long frequency-increasing magnet is provided for use in a high-gain single-channel FE]L to generate self-increasing spontaneous emission (self_ampHfied 200924567 spontaneous emission, SASE) . Although this single-channel technology avoids the use of resonant mirrors in FEL, the length of the up-converter magnet is much longer than that of conventional up-converter magnets, and the quality of the electron beam used to drive SASEFEL (emission, energy) Dispersion and electron current density) must be much higher than conventional FEL oscillators; in addition, this single-channel FEL amplifies quantum noise in electrons, thus outputting spurious radiation in the time and frequency domains. In order to solve the noise output problem of SASE FEL, a laser seeded modulator undulator equipped with SASE FEL is used to induce the formation of periodic bunched electrons, and this periodic bunching The beaming frequency of the electrons is the same as the sub-harmonics of the SASE FEL radiation frequency. However, this so-called high gain harmonic generation (HGHG) technique requires the use of modulated upconverting magnets and laser sources of a specific frequency; and in order to make the wavelength of the radiation much smaller than the laser wavelength, this HGHG technique requires a large number of series modulations. Increased frequency magnet structure. In summary, in the prior art, all coherent light-emitting devices simply use the electron flow formed by the existing electron accelerator, and must be concentrated by the electron accelerator to generate effective electron radiation; These methods are complex, expensive, and not efficient enough. Therefore, there is a need in the industry for a new electronic accelerator and a new coherent radiation device to overcome the shortcomings of the prior art. For this reason, the applicant invented the case "Laser Chopper Photoelectrode Accelerator and Its Electron Radiation Equipment" in order to improve the lack of the above-mentioned conventional methods. SUMMARY OF THE INVENTION According to the concept of the present invention, the present invention provides an electronic radiation device using a beat wave laser system as an electron source, comprising a beat wave laser system, a first turtle emission state, an electron accelerator, and a radiation device. Wherein the beat wave laser system generates a laser beat wave, the electron emitter is induced by the laser beat wave to emit a density-regulated electron flow, the electric 2 accelerator accelerates the density-regulated electron flow, and generates a periodic gather An electron beam is bundled, and the radiation device receives the periodic bunched electrons to generate an electron radiation. The device according to 1, wherein the beat wave-shooting system generates the laser beat wave by the two fields and the field, and the two shots are shot on the day of the thunder. The frequency offset of Δ· makes the Thunder beat have a beat frequency Δω/2π. Tian Hao frequency as described in the device, wherein the beat wave laser system overlaps two linear (requency chlrped) laser fields to generate a Guhai delay Δ and has a phase between the fields; time alignment, gate... Among them, the ------ ------ 丫 丫 于 于 于 于 于 辐射 。 。 。 。 。 。 。 。 。 。 。 辐射 辐射 辐射 。 辐射 辐射 。 辐射 辐射As described, wherein the electron light is _Electronics 11 200924567, the electron ray has a _ light energy proportional to the square of the density-adjusted electron current. The apparatus as described, wherein the radiation device is selected from the group consisting of a frequency-increasing magnet, a grating, a dielectric, and a slow wave waveguide - '0

如所述之·:又備,其係選自一自由電子雷射裝置、 Smith-Puixell 輻射n、— cherenkQv _ 射器以及 一反向波振盪器之其中之一。 ^據本發明之構想,本案另提供—種雷射拍波光 陰極電子加魅,其包含—拍波雷㈣統、—電子發 =以及一電子加速器;其中該拍波雷射系統產生一 ^拍波’該電子發射器受到該雷射拍波誘導而發射 調節電子流,而該電子加速器加速該密度調節 電子仙,並產生—週期聚束電子束。 如所述之加速器,其中該電子發射器為一光陰 子錢絲決於該雷 射拍波的強度包絡envelope)。 2本料之構想,本案更提供—種拍波雷射系 在•射頻1重登财個雷射場而產生-雷射拍波; 偏;晋上兩兩相間的雷射場具有—固定的頻率 =’使得該雷射拍波具有-拍頻臟。 季统,構想’本案更提供另—種拍波雷射 兩個線性歌頻雷射場而產生-雷射 拍波’该兩個線性散頻雷射場之間具 12 200924567 【實施方式】 以下針對本案雷射拍波光陰極電子加速器及其 1輪射設備的較佳實施例進行描述,請參考附圖, c 2際之配置及龍行的方法並不必須完全符合所 、田述的内奋’熟習本技藝者當能在不脫離本案之實際 精神及範圍的情況下,做出種種變化及修改。’丁、 &lt;请參閱第2圖’其係本案—較佳實施例之電子輻 射設備的示意圖。該電子輻射設備101包含一輻射裝 置17以及一雷射拍波光陰極電子加速器22,其中該 雷射拍波光陰極電子加速器22包含一拍波雷射系統 及一光陰極電子加速器12;而該光陰極電子加速 ^ 器12具有一電子發射器13及一電子加速器14,其 中該電子發射器13可為一光陰極13。該拍波雷射系 統20提供一雷射拍波2卜並將其射入該光陰極 以產生一密度調節電子流25,該密度調節電子流25 的振輻係取決於該雷射拍波21的強度包絡的週期變 化,其中,該雷射拍波21的載體頻率必須夠高,其 光此量才可克服該電子發射器13之陰極材料的功函 數而產生光發射;而後,該密度調節電子流25立即 在接下來的該電子加速器14中被加速以獲得高能 13 200924567 量,並進㈣轉換為-週期聚束電子束25i。該電子 ::::二1更包含-電子束傳輸系、统16,而該週 幸經由該電子束傳輸系統16射入該 幸田射裝置Π’用以產生具有高亮度的 28。該電子輕射28的頻率與該週期聚束電子束251 2束頻率的諸波之—相符,因此,該電子二28 具有f比於該密度調節電子流25之平㈣光能量。As described, it is further selected from one of a free electron laser device, a Smith-Puixell radiation n, a cherenk Qv ray transmitter, and a reverse wave oscillator. According to the concept of the present invention, the present invention further provides a laser-shooting photocathode electron enchantment, which includes a beat wave (four) system, an electron wave = and an electron accelerator; wherein the beat wave laser system generates a ^ beat The electron emitter is induced by the laser beat wave to emit a regulated electron current, and the electron accelerator accelerates the density adjustment electron fairy and generates a periodic bundled electron beam. An accelerator as described, wherein the electron emitter is a photonic envelope that depends on the intensity envelope of the laser beat. 2 The concept of the material, the case is more provided - the kind of wave-shooting laser system is generated by the radio frequency 1 and the red laser field is generated - the laser beat wave; the partial; the laser field between the two pairs has a fixed frequency = 'Make the laser beat wave - beat frequency dirty. Ji Tong, the concept of 'this case provides another kind of beat wave laser two linear song frequency laser field generated - laser beat wave' between the two linear scattered frequency laser field 12 200924567 [Embodiment] The following is for this case A preferred embodiment of a laser-photographed photocathode electron accelerator and its one-shot apparatus is described. Referring to the drawings, the configuration of the c2 and the method of the dragon line do not have to completely conform to the internal struggle of the school. The skilled person will be able to make various changes and modifications without departing from the actual spirit and scope of the present invention. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> Fig. 2 is a schematic view of an electronic radiation device of the preferred embodiment. The electron radiant device 101 comprises a radiation device 17 and a laser slap photocathode electron accelerator 22, wherein the laser slap photocathode electron accelerator 22 comprises a beat wave laser system and a photocathode electron accelerator 12; and the photocathode The electron accelerometer 12 has an electron emitter 13 and an electron accelerator 14, wherein the electron emitter 13 can be a photocathode 13. The beat laser system 20 provides a laser beat 2 and directs it into the photocathode to produce a density-adjusted electron stream 25 that is dependent on the laser beat 21 a periodic variation of the intensity envelope, wherein the carrier frequency of the laser beat 21 must be sufficiently high that the amount of light can overcome the work function of the cathode material of the electron emitter 13 to produce light emission; and then, the density adjustment The electron stream 25 is immediately accelerated in the next electron accelerator 14 to obtain a high energy 13 200924567 amount, and is further converted into a - period bunched electron beam 25i. The electronic :::: two 1 further includes an electron beam transmission system 16 which is fortunately passed through the electron beam transmission system 16 to the Kosei device Π' for generating 28 having high brightness. The frequency of the electron light beam 28 coincides with the waves of the frequency of the beam of the periodic bunched electron beam 251 2 , and therefore, the electron two 28 has a flat (four) light energy that is f proportional to the density-adjusted electron current 25 .

明參閱第3圖’其係本案一較佳實施例之拍波雷 射糸統所產生之雷射拍波的示意圖,其中該拍波雷射 糸統包含具有—狀解偏移的兩㈣㈣。該拍波 雷射系統2001包含兩個雷射場i和2,其分別具有 2頻率〇)和ω+Δω;在該兩雷射場i和2中得到一均 等的強度時,一雷射拍波211的總瞬間強度為: 7⑽=8/。咖2[(糾专)’+学IW(争+夸) 等式(5) 其中,/〇是每個雷射場的均方根強度,ω+Δω/2是該 雷射拍波211財心頻率或載體頻率,△略△姣該 兩=射場1和2之間的相差(phasedifference),且/ 為呀間蜒1。較快的載體頻率是用以克服第1圖及第 2圖中光陰極13的功函數(w〇rk functi〇n),而以一 拍頻Αω/2π=1/τΐην而重覆的強度包絡可對該光陰極i3 所發射出的光電流提供密度調節,而因此如第2圖所 不之4週期聚束電子束251可由該光陰極13產生。 此外,如第2圖所示之該週期聚束電子束251的聚束 頻率可藉由改變該兩雷射場丨和2之間的頻率差 14 200924567 Αω/2π而進行調整。 請參閱第4圖,其係本案另一 雷射系统所產生之Μ #、士 &amp; 以例之拍波 射έ6人 田射拍波的示意圖,其中該拍波雷 具有—^定頻率及相位偏移的到固雷射 劳(.·-2)。該拍波雷射系統細2包含則固雷射場卜 、#’在雷射頻譜上兩兩相間的#射場具有— 固,率偏移議;在均等的振輻及鎖定相 =雷射場時,該雷射場Μ所形成具有一瞬間拍 波強度的-雷射拍波212之相干總和為:Referring to Figure 3, there is shown a schematic diagram of a laser beat wave generated by a beat wave system of a preferred embodiment of the present invention, wherein the beat wave laser system comprises two (four) (four) having a -like offset. The beat wave laser system 2001 includes two laser fields i and 2 having two frequencies 〇) and ω+Δω, respectively; when an equal intensity is obtained in the two laser fields i and 2, a laser beat 211 The total instantaneous intensity is: 7 (10) = 8 /. Coffee 2 [(correction)' + IW (contention + exaggeration) Equation (5) where /〇 is the root mean square intensity of each laser field, ω+Δω/2 is the laser beat 211 wealth Frequency or carrier frequency, △ slightly △ 姣 the two = phasedifference between the fields 1 and 2, and / is 呀1. The faster carrier frequency is used to overcome the work function (w〇rk functi〇n) of the photocathode 13 in Figs. 1 and 2, and the intensity envelope repeated with a beat frequency Αω/2π=1/τΐην The photocurrent emitted from the photocathode i3 can be adjusted in density, and thus the 4-period bunched electron beam 251 as shown in Fig. 2 can be generated by the photocathode 13. Further, the bunching frequency of the periodic bunched electron beam 251 as shown in Fig. 2 can be adjusted by changing the frequency difference between the two laser fields 丨 and 2, 14 200924567 Α ω / 2π. Please refer to Fig. 4, which is a schematic diagram of a 雷 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 , , , , , , , Offset to solid lightning (..-2). The beat laser system fine 2 includes the solid-field radiation field, #′ in the laser spectrum, the two shots of the #field have a solid-state, rate offset discussion; in the equal vibration and lock phase = laser field, The coherent sum of the laser beat 212 formed by the laser field with a momentary beat strength is:

Ijm -2m ^〇〇〇52[ωί + (Ν-1)(Αωί + Αφ)/2]· 或其時間平均拍脈衝包絡為: .2 Ν(Αωί + Αφ) ^2 ^(Αωί + Αφ) 等式(6) 2Ijm -2m ^〇〇〇52[ωί + (Ν-1)(Αωί + Αφ)/2]· or its time average beat envelope is: .2 Ν(Αωί + Αφ) ^2 ^(Αωί + Αφ) Equation (6) 2

!sin2-^±M 2 2 #2 sin2 (Afijr + Αφ) 2 等式(7) 其中所有的雷射場都被鎖定至m目位偏移 △蚧+Δ^上。等式(7)清楚地表示了該雷射拍波212具 有一脈衝寬度,並以一頻率Δω/2π進行重覆,其中 該脈衝寬度受#這個因子的影響而較第3圖中^示 源自兩個雷射場的該雷射拍波211而減小。經由改變 干涉波ΛΓ的數量,該雷射拍波212的拍脈衝寬度〇 被調整,以配合第2圖中由該光陰極13所射出之該 密度調節電子流25的調節深度而達到最佳化。以 請芩閱第5圖,其係本案再一較佳實施例之拍波 15 200924567 雷射系統所產生之雷射拍波的示意圖,其中該拍波雷 射系統2003包含兩個線性啾頻雷射場。 二!sin2-^±M 2 2 #2 sin2 (Afijr + Αφ) 2 Equation (7) where all the laser fields are locked to the m-bit offset Δ蚧+Δ^. Equation (7) clearly shows that the laser beat 212 has a pulse width and is repeated at a frequency Δω/2π, wherein the pulse width is affected by the factor of # and the source is shown in Fig. 3 This laser beat 211 from both laser fields is reduced. By changing the number of interference waves, the beat pulse width 该 of the laser beat 212 is adjusted to be optimized in accordance with the adjustment depth of the density-adjusted electron current 25 emitted by the photocathode 13 in FIG. . Please refer to FIG. 5, which is a schematic diagram of a laser beat wave generated by a laser system of the second embodiment of the present invention, wherein the beat laser system 2003 includes two linear frequency radars. Shooting field. two

頻雷射場一2是由一脈衝雷射光源25=生秋 而來,該脈衝雷射光源2 5 〇用以產生一線性啾頻雷射 脈衝255。其中,該脈衝雷射光源25〇可為—典型的 鎖模(mode-locked)雷射光源,例如_鎖模鈦·藍寶 石雷射、-鎖模镱雷射、或—鎖模斂雷射,而該兩: 線性歌頻雷射場2㈣262之間具有一相對時間延遲 Αί 270。為了從該線性啾頻雷射脈衝255分離出均等 的忐置,該兩個線性啾頻雷射場261和262具 體頻率ω’而其複數振輜(_plexamplitud'e)可分 另 J 表示為 ’r )2+加;其中 τ Θ =雷射脈衝的脈衝寬度,α是用以描述該啾頻的I = =的個系數’而φ是一變相。該兩個線性啾頻雷 且:261和262的結合產了一拍波雷射脈衝280,其 /、, 振盪強度包絡,該振盪強度包絡是受 ,,制’其中少是一個固定相位,且 ==遲△,、該載體頻率ω以及該常數: 疋 此,經由調整該兩個線性啾頻雷射場261 頻、亲】之間的5亥相對時間延遲仏270以及該線性啾 進可5周整該拍波雷射脈衝280的拍頻,並 度調^弟2圖中所示的該密度調節電子流25的密 5月麥閱第6隱1 圖’其係本案另一較佳實施例之電子 16 200924567 輻射設備的示意圖,其中該電子輻射設備為 Smith-Purcell輻射器,其用以發射具有1 ΤΗζ頻率的 電磁輻射。該電子輻射設備103包含一拍波雷射系統 20、一光陰極加速器12、一電子束傳輸系統16以及 一輻射裝置Π;其中該光陰極加速器12包含一光陰 極13用以發射光電子,以及一陽極14用以建立一電 場而加速電子。 在此實施例的設計中,該拍波雷射系統20具有 兩個連續波(CW )籽雷射(seed laser ),其中第一 籽雷射 201為一分布反饋式半導體雷射 (distributed-feedback diode laser),其固定為 1538.98 nm ;而第二籽雷射202為一可調波長半導體雷射, 或特指為一外腔半導體雷射(external-cavity diode laser,ECDL) ’其具有介於1520-1600 nm的一可調波 長。該兩種半導體雷射常見於通信頻帶介於 1200〜1600 nm的光通信中。例如,該第一籽雷射2〇1 可發射一 ITU ( International Telecommunication Union)所規範的波長’而該第二籽雷射202具有範 圍涵蓋了電信光纖之最低耗損的一可調波長。該第二 /籽雷射202的波長被調整為1542.93 nm以提供相對 於該第一籽雷射201頻率的0.5 ΤΗζ之頻率偏移。該 兩個籽雷射信號於一光纖柄合器203中結合,並發送 至一雷射放大器205中,該雷射放大器205具有一摻 斜光纖放大器以及一脈衝光參量放大器(〇ptical 17 200924567 parametric amplifier, OPA)。 該摻铒光纖放大器放大該連續拍波功率至約40 m W,其中兩個雷射場1和2各具有20 mW。該脈衝 OPA進一步將拍波雷射的總能量提高到20 pJ/pulse 且脈衝寬度約為十億分之一秒(1 ns)。OPA的幫浦 雷射為一 1064 nm的Q開關鈥雅鉻(Nd:YAG )雷射 注入該,此鈦雅鉻雷射在具有1 kHz脈衝重複率及 〜Ins脈衝寬度,其峰值功率為150 kW。該0PA採用 一 3公分長的週期極化LiNb03 (PPLN)晶體作為其 增益媒介,該PPLN晶體具有29.68 μπι的準相位匹 配週期,這使得該兩個雷射場1和2的在97°C時相 位匹配到1064 nm的幫浦波長。被放大的雷射拍波脈 衝接著在一雷射諧波產生器206中被倍頻至769.49 nm及771.46 nm (頻率偏移為1 THz ),該兩個雷射 場1和2中,每個雷射場具有近50%的能量轉換效 率。被兩倍增頻的雷射拍波21經由一真空口 29而被 送至該光陰極加速器12中的該光陰極13 ;而調整該 雷射場2相對於該雷射場1的波長或頻率可調整該雷 射拍波21的拍頻。 該光陰極13是一砷化鎵(GaAs)光陰極,而該 光陰極13與該陽極14偏壓形成介於10〜60kV的一 可變電壓。在該雷射拍波21中,約750 nm波長的光 子能量即足以從該光陰極13中誘導出密度調節的光 發射。被發射出的密度調節電子流25接著被加速朝 18 200924567 向該陽極14,並被轉換成一高能週期聚束電子束 251;該高能週期聚束電子束251通過該陽極μ的孔 洞而進入到該電子束傳輸系統16。在約0.5的量子效 率(quamiim efficiency)下,該 1〇 —pulse、^ 脈衝 寬度的雷射拍波足以在^中產生2xlQl3個電子, 或在1-ps的拍脈衝中產生2xl〇1G個電子。 、一砷化鎵光陰極通常需要超高真空,並具有接近 或,於1 ps的發射時間常數。光陰極加速器的另一 種設計就是採用-快速反應銅光陰極。為了從一銅陰 極中誘導出光電子發射’在約77〇nm波長的拍波雷 射^在咕波產生器中被進一步三倍增頻成紫外光 (UV)波長。在使用前述相同設計參數 叫的情況下,uvf射拍波的總輪= 里2達到近乎在lns脈衝寬度下、2 p/pulse,而在 一第三諧波產生器中具有〜10%的轉換效率。為了維 持該U V雷射拍波的1 - Τ Η Z拍頻,兩個籽半導體雷射 的,率偏移會被調整至1ΤΗζ/6,因為該雷射諧波產 生器將輪入雷射頻率變成六倍。假如該諧波產生器中 的該兩個拍波場產生非線性交互混頻,則會產生 個雷射場,在頻譜上相鄰兩雷射場具有相等於原頻率 偏移的一頻率偏移,這時候就直接輸入2 ΤΗζ、而不 需要輸入1 ΤΗζ/6的拍頻雷射。保守估計,若一個銅 陰極具有2.5前6的量子效率下,該㈣仲^的υν 雷射拍波足以在l_ns中產生6 5χ1〇6個電子,或在每 19 200924567 1 -ps的拍脈衝中產生6.5x103個電子。 該加速益的設計核擬是由名為ASTRA的空間電 荷追縱碼所完成,這是由德國Electron Synchrotron Facility, DESY的Floettmann所研發出的。在這個設 計模擬中,該光陰極發射出50個高斯電子聚束,每 一個電子聚束在50-ps的時間内具有週期為0.2-ps rms的聚束長度,每一個電子聚束中包含1 fC電荷或 6.5xl03個電子,因此在50-ps時間中的平均電流為 1 -Hi A。這些電子在陰極上平均分布在一個0.3 mm的 rms半徑範圍中,並被限制在一 1-T軸向磁場中,且 在一 4.5公分的距離中被加速朝向該陽極以獲得 42-keV的能量。如第7(a)及7(b)圖所示,其係分別 表示在該陰極中之發射電子以及從該加速器輸出之 42-keV輸出電子的值。 比較第7(a)及7(b)圖,可看出在電子加速的過程 中,該週期電子聚束的完整性仍維持得很好,雖然被 加速的電子受到空間電荷力的影響而在時間上稍微 地重新分布,週期聚束所導致在聚束頻率的諧波所增 強之光能量亦十分明顯。特別是在第一諧波頻率1 THz的㈣強度在電子加速前後均幾乎相同。 該電子束傳輸系統16係用以傳遞具有適當電子 束大小及發散角以合適該輻射裝置17中一適當位置 的電子束。對於低能量電子,該電子束傳輸系統16 可使用靜電透鏡及偏轉器以分別使電子束聚焦或偏 20 200924567 轉。 此電子輻射設備103下游的該輻射裝置17是一 Smith-Purcell輻射器,該Smith-Purcell輻射器使用 一金屬光栅171,且當該週期聚束電子束251橫越該 金屬光栅171時,而從該金屬光栅的表面以某一角度 產生一輻射28。一 Smith-Purcell幸|射器所產生的輻 射波長受下列等式所決定:The frequency laser field 2 is generated by a pulsed laser source 25=5, which is used to generate a linear frequency laser pulse 255. Wherein, the pulsed laser source 25 〇 can be a typical mode-locked laser source, such as _ mode-locked titanium sapphire laser, - mode-locked 镱 laser, or - mode-locked laser, And the two: The linear song frequency laser field 2 (four) 262 has a relative time delay Αί 270. In order to separate the equalization from the linear chirped laser pulse 255, the two linear chirped laser fields 261 and 262 have a specific frequency ω' and their complex oscillations (_plexamplitud'e) can be divided into another J as 'r 2+ plus; where τ Θ = the pulse width of the laser pulse, α is a coefficient used to describe the I = = of the chirp frequency and φ is a phase change. The two linear chirps and the combination of 261 and 262 produce a beat laser pulse 280, which has an oscillation intensity envelope, and the oscillation intensity envelope is subjected to , where is less than a fixed phase, and == delayed Δ, the carrier frequency ω and the constant: , , 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 经由 261 261 261 261 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及The beat frequency of the beat laser pulse 280, and the density of the density-adjusted electron stream 25 shown in the figure 2 is shown in the figure of another preferred embodiment of the present invention. Electron 16 200924567 Schematic diagram of a radiation device, wherein the electron radiation device is a Smith-Purcell radiator for emitting electromagnetic radiation having a frequency of 1 ΤΗζ. The electronic radiation device 103 includes a beat wave laser system 20, a photocathode accelerator 12, an electron beam transmission system 16 and a radiation device Π; wherein the photocathode accelerator 12 includes a photocathode 13 for emitting photoelectrons, and a The anode 14 is used to establish an electric field to accelerate the electrons. In the design of this embodiment, the beat laser system 20 has two continuous wave (CW) seed lasers, wherein the first seed laser 201 is a distributed feedback semiconductor laser (distributed-feedback) Diode laser), which is fixed at 1538.98 nm; and the second seed laser 202 is a tunable wavelength semiconductor laser, or specifically an external-cavity diode laser (ECDL) A tunable wavelength of 1520-1600 nm. The two semiconductor lasers are commonly used in optical communications with communication bands between 1200 and 1600 nm. For example, the first seed laser 2 〇 1 can transmit a wavelength 'specified by the ITU (International Telecommunication Union) and the second seed laser 202 has a tunable wavelength that covers the lowest loss of the telecommunication fiber. The wavelength of the second/seed laser 202 is adjusted to 1542.93 nm to provide a frequency offset of 0.5 相对 relative to the frequency of the first seed laser 201. The two seed laser signals are combined in a fiber optic shank 203 and sent to a laser amplifier 205 having a slanted fiber amplifier and a pulsed optical parametric amplifier (〇ptical 17 200924567 parametric Amplifier, OPA). The erbium doped fiber amplifier amplifies the continuous beat power to about 40 mW, with two of the laser fields 1 and 2 each having 20 mW. The pulse OPA further increases the total energy of the beat laser to 20 pJ/pulse and the pulse width is approximately one billionth of a second (1 ns). The OPA's pump laser is injected into a 1064 nm Q-switched chrome (Nd:YAG) laser with a 1 kHz pulse repetition rate and ~Ins pulse width with a peak power of 150. kW. The 0PA uses a 3 cm long periodic polarization LiNb03 (PPLN) crystal as its gain medium. The PPLN crystal has a quasi-phase matching period of 29.68 μπι, which makes the phase of the two laser fields 1 and 2 at 97 °C. Match to the 1064 nm pump wavelength. The amplified laser beat pulse is then multiplied to a 769.49 nm and 771.46 nm (frequency offset of 1 THz) in a laser harmonic generator 206, each of the two laser fields 1 and 2 The field has nearly 50% energy conversion efficiency. The twice-amplified laser beat wave 21 is sent to the photocathode 13 in the photocathode accelerator 12 via a vacuum port 29; and the wavelength or frequency of the laser field 2 relative to the laser field 1 can be adjusted to adjust the The beat frequency of the laser beat wave 21. The photocathode 13 is a gallium arsenide (GaAs) photocathode, and the photocathode 13 is biased with the anode 14 to form a variable voltage of 10 to 60 kV. In the laser beat 21, photon energy of a wavelength of about 750 nm is sufficient to induce density-adjusted light emission from the photocathode 13. The emitted density-adjusted electron stream 25 is then accelerated toward 18 200924567 toward the anode 14 and converted into a high-energy periodic bunched electron beam 251; the high-energy periodic bunched electron beam 251 enters through the hole of the anode μ Electron beam transmission system 16. At a quantum efficiency of about 0.5, the 1 〇-pulse, ^ pulse width of the laser beat is sufficient to generate 2xlQl3 electrons in ^, or 2xl 〇 1G electrons in 1-ps beat pulses . A gallium arsenide photocathode typically requires an ultra-high vacuum and has an emission time constant of close to or at 1 ps. Another design for photocathode accelerators is the use of a fast-reacting copper photocathode. In order to induce photoelectron emission from a copper cathode, a beat wave at a wavelength of about 77 〇 nm is further triple-amplified into a ultraviolet (UV) wavelength in the chopper generator. In the case of using the same design parameters as described above, the total wheel of the uvf beat wave = 2 is approximately 2 p/pulse at the lns pulse width, and has a ~10% conversion in a third harmonic generator. effectiveness. In order to maintain the 1 - Τ Η Z beat frequency of the UV laser beat, the rate shift of the two seed semiconductor lasers is adjusted to 1 ΤΗζ / 6 because the laser harmonic generator will turn into the laser frequency It became six times. If the two beat fields in the harmonic generator generate nonlinear cross-mixing, a laser field is generated, in which two adjacent laser fields have a frequency offset equal to the original frequency offset, which When you enter 2 直接 directly, you do not need to input a 1 ΤΗζ/6 beat laser. It is conservatively estimated that if a copper cathode has a quantum efficiency of 2.5 before 6, the υν laser beat of the (4) zhong^ is sufficient to generate 6 5 χ 1 〇 6 electrons in l_ns, or in every 19 200924567 1 - ps beat pulse. Produces 6.5x103 electrons. The accelerating design was developed by a space charge tracking code called ASTRA, developed by Floettmann of the Electron Synchrotron Facility, DESY, Germany. In this design simulation, the photocathode emits 50 Gauss electrons, each electron bunching has a bunch length of 0.2-ps rms in a period of 50-ps, and each electron bunch contains 1 The fC charge is 6.5 x 103 electrons, so the average current in the 50-ps time is 1 - Hi A . These electrons are evenly distributed over the cathode in a radius of 0.3 mm rms and are confined in a 1-T axial magnetic field and accelerated towards the anode at a distance of 4.5 cm to obtain 42-keV of energy. . As shown in Figures 7(a) and 7(b), they represent the emitted electrons in the cathode and the value of the 42-keV output electrons output from the accelerator, respectively. Comparing Figures 7(a) and 7(b), it can be seen that during the electron acceleration process, the integrity of the electron bunching of the period is still maintained well, although the accelerated electrons are affected by the space charge force. The time is slightly redistributed, and the light energy that is enhanced by the harmonics of the bunching frequency caused by the periodic bunching is also very obvious. In particular, the (four) intensity at the first harmonic frequency of 1 THz is almost the same before and after electron acceleration. The electron beam delivery system 16 is adapted to deliver an electron beam having an appropriate beam size and divergence angle to suit a suitable location in the radiation device 17. For low energy electrons, the electron beam delivery system 16 can use an electrostatic lens and deflector to focus or deflect the electron beam, respectively. The radiation device 17 downstream of the electron-emitting device 103 is a Smith-Purcell radiator using a metal grating 171, and when the periodic bunched electron beam 251 traverses the metal grating 171, The surface of the metal grating produces a radiation 28 at an angle. The wavelength of the radiation produced by a Smith-Purcell is determined by the following equation:

Xr =A(l/y^-cos(9)/w 等式(8) 其中Λ是光柵週期,β是電子速度除以光速,β是從 光柵表面所發射出的發射角,而w是繞射級數。根 據等式(8),當一 42-keV電子束以該光柵表面45度 角(m =1)而發射1-THz韓射時,該Smith-Purcell 光柵週期可為157 μπι。在具有來自銅光陰極電子加 速器的6.25χ103電子/聚束及1000個聚束,且其中這 6.25x103電子/聚束及1000個聚束位在1 ns週期内的 情況下,當與一非聚束的電子束相比時,該 Smith-Purcell輻射器產生1 THz的輻射波時Μ,所產 生的光頻譜能量會因相干性增加6.25χ103χ1000倍, 這和傳統輻射能量比起來幾乎增加了 7個數量級。 值得注意的是,雖然上述實施例中的電子輻射設 備103為Smith-Purcell韓射器,但不應只限於此種 輻射設備的設計。也就是說,當所使用的輻射裝置為 一增頻磁鐵、一介電質或一慢波波導器時,本發明所 提供的電子輻射設備亦可分別為一自由電子雷射裝 21 200924567 根攄Γπ灿。V輕射器、或—反向波振盪器。此外, 設:!==求及雷射場的特性,本發明之電子輻射 或一::雷射放大器可為-線性雷射放大器 二光射放大器,其中非線性雷射放大器包含 聯式2 或—拉曼(Raman)放大器。利用串 :二_線性頻率混合,非線性雷射放大器可以產生且 偏移△♦的似個雷射場;而非線Xr = A(l/y^-cos(9)/w Equation (8) where Λ is the grating period, β is the electron velocity divided by the speed of light, β is the emission angle emitted from the grating surface, and w is the winding According to equation (8), when a 42-keV electron beam emits 1-THz Han at a 45 degree angle (m = 1) of the grating surface, the Smith-Purcell grating period may be 157 μm. In the case of 6.25 χ 103 electrons/bundles and 1000 bunches from a copper photocathode electron accelerator, and wherein 6.25 x 103 electrons/bundles and 1000 bunching sites are within a 1 ns period, when When the beam of electron beams is compared, when the Smith-Purcell radiator generates 1 THz radiation, the energy spectrum of the generated light will increase by 6.25χ103χ1000 times due to coherence, which is almost 7 times higher than the conventional radiant energy. It is worth noting that although the electronic radiation device 103 in the above embodiment is a Smith-Purcell, it should not be limited to the design of such a radiation device. That is, when the radiation device used is increased Electron provided by the present invention when a frequency magnet, a dielectric or a slow wave waveguide The shooting device can also be a free electron laser device 21 200924567 摅Γ 灿 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Radiation or a::The laser amplifier can be a linear laser amplifier with two light-emitting amplifiers, wherein the nonlinear laser amplifier comprises a combined 2 or Raman amplifier. Using string: two-linear frequency mixing, nonlinear A laser amplifier can generate a laser field that is offset by Δ♦; instead of a line

的材料可由二階及三階非線性光學材 漿材二 中包含拉曼材料、光參數材料、以及電 4丨认太上:? *週期聚束電子束所產生的超輻射 ^生同冗度的電磁輪射,而本案之使用了雷射拍 2陰極電子加速器的電子輻射設備克服了先前技 付、缺』並大大地改進了先前技術㈣射效能。是 以,本案顯練目前存在之各種習知技術為優,殊為 一極具產業價值之發明。 一上,實施例僅係為了方便說明而舉例,其得由熟 二本技农之人士任;^匠思而為諸般修飾,然皆不脫如 附申請專利範圍所欲保護者。 【圖式簡單說明】 第1圖:係先前技術之電子_設備的示意圖。 第2圖:係本案一較佳實施例之電子輻射設備的示意 22 200924567 第3圖:係本案一較佳實施例之拍波雷射系統所產生 之雷❹波的示意圖,其中該拍波雷射系統包含具有 一固定頻率偏移的兩個雷射場。The material can be composed of second- and third-order nonlinear optical materials, including Raman materials, optical parameter materials, and electricity. *The super-radiation generated by the periodic bunched electron beam is the same as the redundant electromagnetic injection, and the electronic radiation device using the laser-shooting 2 cathode electron accelerator in this case overcomes the prior art, and greatly improves Prior art (four) shooting performance. Yes, this case demonstrates that the various existing technologies that exist at present are superior, and it is an invention with great industrial value. In the above, the examples are merely exemplified for convenience of explanation, and they may be made by a person skilled in the artisan; and they are modified in various ways, and are not intended to be protected by the scope of the patent application. [Simple description of the figure] Fig. 1 is a schematic diagram of an electronic_device of the prior art. FIG. 2 is a schematic diagram of an electron-emitting device according to a preferred embodiment of the present invention. 222424567 FIG. 3 is a schematic diagram of a thunder wave generated by a beat wave laser system according to a preferred embodiment of the present invention, wherein the beat wave The radiation system includes two laser fields with a fixed frequency offset.

第4圖:係本案另一較佳實施例之拍波雷射系統所產 生之雷射拍波的示意圖’其中該拍波雷射系統包含N 個雷射場(於2),在#射頻譜上兩兩相間的雷射場 具有一固定的頻率偏移。 f、 第5 係本案再一較佳實施例之拍波雷射系統所產 生之田射拍波的示意圖,其中該拍波雷射系統包含具 有相對4間延遲的兩個線性嗽頻雷射場。 =6圖.係本案另一較佳實施例之電子輻射設備的示 二囷其中5亥電子輪射設備為Smith-Purcell輻射器。 第7(a)圖·係第6圖之電子輻射設備之電子發射器中 的密度調節電子流之光特性圖。 第7(b)圖·係第6圖之電子輻射設備之電子加速器所 (J 發出的週期聚束電子束之光特性圖。 雷射場 電子輕射設備 脈衝驅動雷射系統 雷射脈衝 光陰極電子加速器 電子發射器 【主要元件符號說明】 1、2 10〇 、 101 v 103 10 11 12 13 23 200924567 14 電子加速器 15 電子脈衝 151 南能量電子脈衝 16 電子束傳輸系統 17 輻射裝置 171 金屬光栅 18 輻射脈衝 20、2001、2002、2003 拍波雷射糸統 201 、 202 籽雷射 203 光纖搞合器 205 雷射放大器 206 雷射放大器 21 、 211 、 212 雷射拍波 22 雷射拍波光陰極電子加速器 25 密度調節電子流 250 脈衝雷射光源 251 週期聚束電子束 255 線性啾頻雷射脈衝 261 、 262 線性啾頻雷射場 270 相對時間延遲 28 電子輻射 280 拍波雷射脈衝 24Figure 4 is a schematic diagram of a laser beat wave generated by a beat wave laser system of another preferred embodiment of the present invention, wherein the beat laser system comprises N laser fields (at 2) on the #射光谱谱The two-field laser field has a fixed frequency offset. f. A schematic diagram of a field-shot wave generated by a beat-wave system of still another preferred embodiment of the present invention, wherein the beat-wave system comprises two linear frequency-frequency laser fields having a relative delay of four. Figure 6 is an illustration of an electronic radiation device of another preferred embodiment of the present invention. The 5H electronic emission device is a Smith-Purcell radiator. Fig. 7(a) is a photo characteristic diagram of the density-adjusted electron current in the electron emitter of the electron-emitting device of Fig. 6. Fig. 7(b) is an electron accelerator of an electron-emitting device of Fig. 6 (light characteristic diagram of a periodic bunched electron beam emitted by J. Laser field light-emitting device pulse-driven laser system laser pulse photocathode electron Accelerator Electron Transmitter [Main Component Symbol Description] 1, 2 10〇, 101 v 103 10 11 12 13 23 200924567 14 Electron Accelerator 15 Electronic Pulse 151 South Energy Electron Pulse 16 Electron Beam Transmission System 17 Radiation Device 171 Metal Grating 18 Radiation Pulse 20, 2001, 2002, 2003 beat wave laser system 201, 202 seed laser 203 fiber optic clutch 205 laser amplifier 206 laser amplifier 21, 211, 212 laser beat wave 22 laser beat wave photoelectron electron accelerator 25 Density regulated electron flow 250 pulsed laser source 251 periodic bunched electron beam 255 linear chirped laser pulse 261, 262 linear chirped laser field 270 relative time delay 28 electron radiation 280 beat wave laser pulse 24

Claims (1)

200924567 十、申請專利範圍: 1. 一種電子輻射設備,其包含: 拍波雷射糸統’用以產生一雷射拍波. 一電子發射器,其受該雷射拍波誘導而發射一密 度調節電子流; 一電子加速器,用以加速該密度調節電子流,並 產生一週期聚束電子束;以及200924567 X. Patent application scope: 1. An electronic radiation device comprising: a beat wave laser system for generating a laser beat wave. An electron emitter that is induced by the laser beat wave to emit a density Regulating the electron flow; an electron accelerator for accelerating the density-regulated electron flow and generating a periodic bunched electron beam; -輻射裝置,用以接收該週期聚束電子束並產生 一電子輻射。 t射ΠΓ利範圍第1項所述之設備,其中該拍波 =系統更包含似個雷射場,其中該财個雷射 %在一頻譜上兩兩相間地具有一固定頻 △⑴…’用以重疊該财個f 波,使得該雷射拍波具有-拍頻生心射拍 3.如申請專利範圍第!項所述之設備, 雷射系統更包含兩個線性 =二/ 頻雷射場β 目+ 項田射%’該兩個線性啾 /貝田耵%之間具有一相對時間延遲△” 兩個線性歌頻f射場 拍波具有使得該雷射 …秋頻變化率的其中之―、而^整亥相對時間延遲&amp;及 聚束t = 1 率項所述之設備,其中該週期 -拍頻而調整。率係藉由改變該雷射拍波的 5. 如申請專利笳圍势 弟]項所述之設備,其t該電子 200924567 輻射的一頻率與該週期聚束電子束之諧波頻率中的 一個相符。 6. 如申請專利範圍第1項所述之設備,其中該電子 輻射為一電子超輻射,該電子超輻射具有一光能量正 比於該密度調節電子流的平方。 7. 如申請專利範圍第1項所述之設備,其中該輻射 裝置係每自一增頻磁鐵 '一光栅、一介電質、以及— 慢波波導之其中之一。 8. 如申請專利範圍第1項所述之設備,係選自一自 由電子雷射裝置、一 Smith-Purcell輻射器、— Cherenkov輻射器以及一反向波振盪器之其中之—。 9_ 一種雷射拍波光陰極電子加速器,其包含: 一拍波雷射系統,用以產生一雷射拍波; 一電子發射器,其受該雷射拍波誘導而發射一密 度調節電子流;以及 一電子加速器,用以加速該密度調節電子流,並 產生一週期聚束電子束。 10.如申請專利範圍第9項所述之加速器,其中該拍 波雷射系統更包含似個雷射場,其中該似個雷 射%在一頻譜上兩兩相間地具有一固定頻率偏移 △ω/2π’用以重疊該·2個雷射場而產生該雷射拍 波,使得該雷射拍波具有一拍頻。 11·如申請專利範圍第9項所述之加速器,其中該拍 波雷射系統更包含兩個線性啾頻雷射場,該兩個線性 26 200924567 歌頻雷射場之間具有—相對時間延遲△,,用以 該兩個線性啾頻雷射場 且 射拍浊呈右一払此 座生忑宙射拍波,使得該雷 及一嗽頻m ’㈣縣以該相對時間延遲心 及秋頻交化率的其中之一而調整。 :聚:第9項所述之加速器,其,該週 的-拍頻而調整。以頻率係藉由改變該雷射拍波 η 產rr個… 田射知而產生一雷射拍波。 •如申請翻_第13韻叙 =場在-頻譜上兩兩相間地具有-固定頻:偏 ==得該雷射拍波具有一拍頻 個-1利範圍第14項所述之系統,更包含-=極=,,其中當Μ時, : 導體雷射的混頻所產生,且該二個半導體 :射的波長係介於一〜的光通信頻= :雷===第14項所述之系統,其中該Μ 系利用-階及-ρ=頻率所產生,且該非線性頻率 η 階非線性光學材料混頻而得。 時:該圍第13項所述之系統,其中當》2 波具有-拍頻,今拍^ 遲△卜使得該雷射拍 ' °Λ拍頻係以該相對時間延遲△纟及— 200924567 啾頻變化率的其中之一而調整。 18.如申請專利範圍第17項所述之系統,更包含一 鎖模雷射光源,其中該兩雷射場係由該鎖模雷射光源 所產生的另一線性啾頻雷射場所分離出。a radiation device for receiving the periodic bunched electron beam and generating an electron beam. The apparatus of claim 1, wherein the beat wave system further comprises a laser field, wherein the financial laser % has a fixed frequency Δ(1)... In order to overlap the financial f wave, the laser beat has a beat-beat shot. 3. As claimed in the patent scope! The equipment described in the item, the laser system further contains two linear = two / frequency laser field β mesh + item field shot % 'the two linear 啾 / Beita 耵% has a relative time delay △" two linear songs The frequency f-spot beat has the device of making the laser...the rate of change of the autumn frequency, and the device of the relative time delay &amp; and the bunching t = 1 rate, wherein the cycle-beat frequency is adjusted The rate is determined by changing the laser beat wave as described in the patent application, the device described in the article, the frequency of the electron 200924567 radiation and the harmonic frequency of the periodic bunched electron beam 6. The device of claim 1, wherein the electron radiation is an electronic super-radiation having a light energy proportional to the square of the density-adjusted electron flow. The device of claim 1, wherein the radiation device is one of a grating, a dielectric, and a slow wave waveguide per self-regulating magnet. 8. As described in claim 1 Equipment, selected from a free electronic mine a device, a Smith-Purcell radiator, a Cherenkov radiator, and a reverse wave oscillator. 9_ A laser beat photocathode electron accelerator comprising: a beat wave laser system for generating a mine a slap wave; an electron emitter that is induced by the laser beat to emit a density-regulated electron current; and an electron accelerator for accelerating the density-adjusted electron flow and generating a periodic bunched electron beam. The accelerator of claim 9, wherein the beat laser system further comprises a laser field, wherein the laser % has a fixed frequency offset Δω/ between two phases in a spectrum. 2π' is used to overlap the two laser fields to generate the laser beat wave, so that the laser beat wave has a beat frequency. The accelerator according to claim 9, wherein the beat wave laser The system further includes two linear frequency-frequency laser fields, and the two linear 26 200924567 song frequency laser fields have a relative time delay Δ, which is used for the two linear frequency-frequency laser fields and the shooting turbidity is right. seat The 射 射 射 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The frequency of the week is adjusted by the frequency of the beat. By changing the laser beat wave η to produce rr... The field shot knows to produce a laser beat wave. • If the application is turned over _ 13th rhyme = field in the spectrum The two-phase-to-phase-fixed frequency: partial == the laser beat has a beat frequency -1 range, the system described in item 14, and further includes -= pole =, where, when Μ, : conductor The mixing of the laser is generated, and the two semiconductors: the wavelength of the radiation is between one and the optical communication frequency =: Ray === the system described in item 14, wherein the system utilizes -order and -ρ = frequency is generated, and the nonlinear frequency η-order nonlinear optical material is mixed. Time: The system described in Item 13 of the circumference, wherein when the ">2 wave has a beat frequency, the current beat ^ △ △ makes the laser beat ' ° Λ beat frequency with the relative time delay △ 纟 and - 200924567 啾Adjusted by one of the frequency change rates. 18. The system of claim 17, further comprising a mode-locked laser source, wherein the two laser fields are separated by another linear frequency-frequency laser generated by the mode-locked laser source. 2828
TW096145053A 2007-11-27 2007-11-27 Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same TW200924567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096145053A TW200924567A (en) 2007-11-27 2007-11-27 Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096145053A TW200924567A (en) 2007-11-27 2007-11-27 Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same

Publications (1)

Publication Number Publication Date
TW200924567A true TW200924567A (en) 2009-06-01

Family

ID=44729070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145053A TW200924567A (en) 2007-11-27 2007-11-27 Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same

Country Status (1)

Country Link
TW (1) TW200924567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808567B (en) * 2020-12-21 2023-07-11 荷蘭商Asml荷蘭公司 Methods and apparatus for controlling electron density distributions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808567B (en) * 2020-12-21 2023-07-11 荷蘭商Asml荷蘭公司 Methods and apparatus for controlling electron density distributions

Similar Documents

Publication Publication Date Title
US7619231B2 (en) Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same
Gallerano et al. Overview of terahertz radiation sources
US7649328B2 (en) Compact high-power pulsed terahertz source
US9053833B2 (en) DC high-voltage super-radiant free-electron based EUV source
Cohen et al. Grating-assisted phase matching in extreme nonlinear optics
US20050175042A1 (en) Method for enabling high-brightness, narrow-band orbital radiation to be utilized simultaneously on a plurality of beam lines
Ginzburg et al. Nonlinear cyclotron resonance absorber for a microwave subnanosecond pulse generator powered by a helical-waveguide gyrotron traveling-wave tube
Ginzburg et al. Generation, amplification, and nonlinear self-compression of powerful superradiance pulses
Penco et al. Enhanced seeded free electron laser performance with a “cold” electron beam
JPS6351403B2 (en)
Labat et al. Optimization of a seeded Free-Electron Laser with helical undulators
TW200924567A (en) Laser-beat-wave photocathode electron accelerator and electron radiation apparatus using the same
US6690023B2 (en) Methods and apparatus for providing a broadband tunable source of coherent millimeter, sub-millimeter and infrared radiation utilizing a non-relativistic electron beam
Huang Laser Beat-Wave Bunched Beam for Compact Superradiance Sources
Zhou et al. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser
Liang et al. Superimposed-harmonic Smith-Purcell free-electron lasers driven by periodic electron-bunches
Gallerano et al. The physics of and prospects for THz-Compact FELs
Savilov Formations of a giant “running” pulse in the process of a quasi-regular amplification of a long wave signal by a slipping electron bunch
Petelin Mode selection in high power microwave sources
Kaminer High harmonic lasing using attosecond electron pulse combs in photon-induced near-field electron microscopy
Bratman et al. A gyrodevice based on simultaneous excitation of opposite and forward waves (Gyrotron BWO-TWT)
Ortega Free electron laser and harmonic generation
Peskov et al. High-efficiency FEL-amplifiers based on Novel Schemes of Trapping Regime
CN116321645A (en) Extreme ultraviolet light source device
Samsonov et al. Recent Activity and Results on Gyro-TWT at the IAP