200924357 九、發明說明 【發明所屬之技術領域】 本發明是關於減低以電力轉換裝置的開關動作所發生 的高頻雜訊的濾波器裝置,及使用該裝置的電力轉換裝置 。作爲該電力轉換裝置爲將交流電源予以整流而一旦轉換 直壓之後’將該直流電壓變換成可變頻率,可變電壓 的交流的反相器裝置或從交流電源直接轉換成可變頻率, 可變電壓的PWM循環換流器(又稱爲矩陣換流器)。 【先前技術】 在第1 8圖表示習知技術的電力轉換裝置用共態濾波 器的電路構成。在第18圖中,110是共態濾波器,112是 共態抗流器’ 1 1 3是電容器’ 1 1 4是阻尼電阻器,1 1 5是 正常模電流截止用變壓器,116是電容器。 又’ U1,V1及W1是共態濾波器1 1 〇的輸入端子, U2,V2及W2是對應於其輸入端子的共態濾波器1 1 〇的 輸出端子,N是回描線。 第19圖是表示正常模電流截止用變壓器115的電路 構成圖的例子。正常模電流截止用變壓器115是星接3個 絕緣變壓器的1次側線圈,角接2次側線圈。u,v,w是 正常模電流截止用變壓器1 1 5的星接的各星接線端,c是; 共通接線端。 在同圖中,以單相的3個絕緣變壓器所構成,惟也可 使用三相絕緣變壓器。又,同一相的2線圈是可得到所謂 -4 - 113, 200924357 合倂兩條電線而同時地捲繞的雙線捲繞的效果。 共態濾波器1 1 〇是以共態抗流器1 1 2,電容器 阻尼電阻器114,正常模電流截止用變壓器115, 器1 1 6所構成。 各該共%抗流器112的一方,是分別連接於輸 Ul,VI及W1’另一方是分別連接於輸出端子U2, W2。 電容器116的一方是分別連接於共態抗流器的 ,另一方是連接於正常模電流截止用變壓器115的 各星接線端u,v及w。 在正常模電流截止用變壓器115的星接的共通 c與回描線N之間,串聯連接有電容器1 1 3與阻尼 1 1 4 〇 正常模電流截止用變壓器115是爲了抑制過大 電流流在電力轉換裝置輸出的相間而在共態濾波器 部插入有電容器1 1 6。對於正常模,通常所使用的 電流截止用變壓器的相間的電感値是在1 00Hz以下 下爲約1 OOmH,而在1 0kHz爲約數十mH。所以, 波器的低頻的電流是在電容器116被截止,而載波 電流是在正常模電流截止用變壓器115被截止。 表示於第1 8圖的習知方是並聯地插入於電力 ,因而正常模電流截止用變壓器115的電線尺寸是 而可適用於共態濾波器的小型化。但是,正常模電 用變壓器115是對於正常模’需要大電感之故,因 及電容 入端子 V2及 輸出側 星接的 接線端 電阻器 的脈衝 的旁路 正常模 的領域 流在據 成分的 線之故 較小, 流截止 而線圏 -5- 200924357 的匝數較大。所以,漏電感也變大。 對於共態中,與配線的電感變大成爲 頻中,濾波器的旁路部的電感變高, 特性會變差。 說明輸出濾波器的習知技術。作 側的問題,例舉有高頻漏電流,電動 。爲了解決上述問題,在傳統上,爲 電力轉換裝置的輸出側來進行對策。 置的輸出濾波器有例如專利文獻1及 2。專利文獻1及2,非專利文獻1 的共態濾波器。又,非專利文獻2是 子的突波電壓的正常模濾波器及爲了 濾波器所構成者。在專利文獻1及2 表的共態濾波器,是爲了將濾波器的 轉換裝置的載波頻率還要低之故,因 頻漏電流,惟無法抑制電動機端子的 又,將使用於專利文獻1的一次 爲角接法所構成的正常模電流截止用 濾波器的旁路部,則藉由變壓器部的 濾波特性。又,專利文獻2的方式, 頻率作成比電力轉換裝置的載波頻率 電流流在電力轉換裝置輸出側的相間 裝置。又,在非專利文獻2所代表的 制共態電壓及電動機端子的突波電壓 在正常模的漏電感是 等値之故,因而在高 結果,瀘波器的高頻 爲電力轉換裝置輸出 機端子的突波電壓等 將輸出濾波器附加於 在傳統的電力轉換裝 2,非專利文獻1及 是爲了抑制共態電壓 由爲了抑制電動機端 抑制共態電壓的共態 ,非專利文獻1所代 共振頻率作成比電力 而有效率地可抑制高 突波電壓。 側爲星接法,二次側 變壓器被使用於共態 漏電感會降低高頻的 是若將濾波器的共振 還要低,則過大脈衝 ,而會損壞電力轉換 濾波器方式,是可抑 。又,在非專利文獻 -6- 200924357 2所代表的方式’是與專利文獻1及2 ’非專利文獻1等 的方式相比較,濾波器的截止頻率,比電力轉換裝置的載 波頻率還要更高之故,因而成爲尺寸更小且低成本。 又,一般成爲高頻,則散佈在電路各部的浮游容量或 配線電感,藉由使用於據波器的旁路電路部的阻尼電阻會 惡化濾波器特性。如此地’習知的輸出濾波器是除了僅可 使用於特定用途以外,若成爲高頻則無法充分發揮濾波器 特性。 專利文獻1:日本國專利第3596694號(第6頁’第1 圖) 專利文獻2:日本國專利第3466118號(第12頁’第 1圖) 非專利文獻 1 : IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.28,ΝΟ·4,ρ 8 5 8 〜p 8 63,JULY/AUGUST 1992 非專利文獻2:電氣學會論文誌D,116卷12號’平 成 8 年,pl211〜1219) 【發明內容】 傳統的輸出濾波器是散佈於各部的浮游容量或使用配 設電感,濾波器的旁路部的阻尼電阻及藉由正常模電流截 止用變壓器的漏電感,使得濾波器特性惡化,在高頻領域 中有作爲濾波器特性的功能上不充分的問題。又,高頻率 的濾波器特性不充分之故,因而高頻的漏電流流在電源側 200924357 ,在數百kHz〜數十MHz的領域中也有降低雜訊端子電 壓的抑制效果的問題。 本發明是鑑於此種問題點所創作者,其目的在於提供 抑制電動機端子的突波電壓,並且抑制藉由電力轉換裝置 的開關所發生的共態電壓,可將濾波器的高頻特性作成良 好的電力轉換裝置用共態濾波器及輸入濾波器及使用該濾 波器的電力轉換裝置。 爲了解決上述問題,本發明是如下地構成。 申請專利範圍第1項所述的發明是一種電力轉換裝置 用共態濾波器,其特徵爲:具備:串聯地插入於各相輸入 端子的共態抗流器(η2),及星接相數分的絕緣變壓器的1 次側線圏且角接2次側線圈的正常模電流截止用變壓器 (115) ’將電容器(11 6)分別串聯連接於上述共態抗流器 (112)的各輸出端與上述正常模電流截止用變壓器(115)的 星接的各星接線端之間,並將電容器(11 3 )與阻尼電阻器 (1 1 4)串聯連於上述正常模電流截止用變壓器(丨〗5 )的星接 的共通接線端(c)與回描線(N)之間的電力轉換裝置用共態 濾波器’其特徵爲:具備星接的電容器(117),將上述星 接的電容器(117)的各星接線端分別連接於上述正常模電 流截止用變壓器(1 15)的星接的各星接線端,並將上述星 接的電容器(1 17)的共通接線端連接於上述回描線(N)。 又,申請專利範圍第2項所述的發明,是在申請專利 範圍第1項所述的電力轉換裝置用共態濾波器中,將上述 星接的電容器(1 17)的共通接線端代替上述回描線(N),連 200924357 接於上述正常模電流截止用變壓器(1 15)的星接的共通接 線端(c),爲其特徵者。 又,申請專利範圍第3項所述的發明,是在申請專利 範圍第1項所述的電力轉換裝置用共態濾波器中,將上述 星接的電容器(1 17)的共通接線端代替上述回描線(N) ’連 接於上述電容器(113)與上述阻尼電阻器(11 4)的連接點, 爲其特徵者。 又,申請專利範圍第4項所述的發明,是在申請專利 範圍第1項所述的電力轉換裝置用共態濾波器中’將上述 星接的電容器(1 1 7)的星接線端代替上述正常模電流截止 用變壓器(1 1 5)的星接的各星接線端,分別連接於上述共 態抗流器(1 12)的輸出端,爲其特徵者。 又,申請專利範圍第5項所述的發明是在申請專利範 圍第4項所述的電力轉換裝置用共態濾波器中,將上述星 接的電容器(1 1 7)的共通接線端代替上述回描線(N),連接 於上述正常模電流截止用變壓器(1 1 5)的星接的共通接線 端(c),爲其特徵者。 又,申請專利範圍第6項所述的發明,是在申請專利 範圍第4項所述的電力轉換裝置用共態濾波器中,將上述 星接的電容器(1 17)的共通接線端代替上述回描線(N),連 接於上述電容器(Π3)與上述阻尼電阻器(114)的連接點, 爲其特徵者。 又,申請專利範圍第7項所述的發明是一種電力轉換 裝置用共態濾波器,其特徵爲:具備:串聯地插入於各相 -9 - 200924357 輸入端子的共態抗流器(1 1 2),及角接相數分的絕緣變壓 器的2次側線圈的正常模電流截止用變壓器(1 1 5 a),將上 述正常模電流截止用變壓器(11 5a)的1次側各線圈的一方 分別連接於上述共態抗流器(1 1 2),並將另一方分別連接 於星接的電容器(111)的各星接線端,又將電容器(113)與 阻尼電阻器(114)串聯連接於上述星接的電容器(111)的共 通接線端與回描線(N)之間的電力轉換裝置用共態濾波器 ’其特徵爲:具備星接的電容器(11 7),將上述星接的電 容器(1 1 7)的各星接線端分別連接於上述共態抗流器(1丨2) 的各輸出端,並將上述星接的電容器(117)的共通接線端 連接於上述回描線(N)。 又,申請專利範圍第8項所述的發明,是在申請專利 範圍第7項所述的電力轉換裝置用共態濾波器中,將上述 星接的電容器(1 1 7)的共通接線端代替上述回描線(N ),連 接於上述星接的電容器(111)的共通接線端,爲其特徵者 〇 又’申請專利範圍第9項所述的發明,是在申請專利 範圍第7項所述的電力轉換裝置用共態濾波器中,將上述 星接的電容器(1 17)的共通接線端代替上述回描線(N),連 接於上述電容器(113)與上述阻尼電阻器(114)的連接點, 爲其特徵者。 又’申請專利範圍第1 〇項所述的發明,是一種電力 轉換裝置用輸出濾波器’其特徵爲:在申請專利範圍第1 項至第9項中任一項所述的電力轉換裝置用共態濾波器的 -10- 200924357 各相的輸出端,分別串聯地連接有並聯地連接阻尼電阻器 (122)的交流電抗器(121)所成的電力轉換裝置用正常模濾 波器。 又,申請專利範圍第1 1項所述的發明,是一種電力 轉換裝置,其特徵爲:作爲電力轉換裝置用共態濾波器適 用申請專利範圍第1項所述的電力轉換裝置用共態濾波器 或是申請專利範圍第7項所述的電力轉換裝置用共態濾波 器。 依照申請專利範圍第1項至申請專利範圍第9項所述 的發明,在高頻領域中可將共態濾波器的旁路電路部的阻 抗作成較小,而可提昇高頻特性。 又,依照申請專利範圍第1 〇項所述的發明,對於共 態可將濾波器的共振頻率作成比電力轉換裝置的載波頻率 還要低,且對於正常模也比載波頻率可設定成還要更高之 故’因而以小的正常模抗流器就可抑制電動機端子的突波 電壓。 【實施方式】 以下,參照圖式來說明本發明的實施形態。 在圖中僅記載有關於本發明的功能或手段而加以說明 。又’在以下同一名稱上儘量附於同一符號而省略重複說 明。又,本發明是在單相,或是三相,或是其以上的多相 也可適用者’惟方便上,使用三相的例子加以說明。 -11 - 200924357 實施例1 第1圖是表示本發明的電力轉換裝置用共態瀘波器的 電路構成圖的第1例。在第1圖中,117是電容器。 本發明與習知技術不相同之處,是在於具備星接的電 容器1 17。 星接的電容器117的星接的各星接線端,是分別連接 於正常模電流截止用變壓器1 1 5的星接的各星接線端U, v及w。而星接的共通接線端是連接於回描線N。 如此地,構成共態濾波器1 1 0。 在第2圖至第6圖,表示將本發明的電力轉換裝置用 共態濾波器的電路構成圖的星接的電容器1 1 7的連接方法 予以變形的例子。 第2圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第2例子。星接的電容器1 1 7的星接的各星 接線端’是分別連接於正常模電流截止用變壓器1丨5的星 接的各星接線端U,V及W ’而星接的共通接線端是連接 於正常模電流截止用變壓器1 1 5的星接的共通接線端C者 〇 又’弟3圖是表不本發明的電力轉換裝置用共態濃波 器的電路構成圖的第3例子。星接的電容器H7的星接的 各星接線端’是分別連接於正常模電流截止用變壓器n 5 的星接的各星接線端u ’ v及w,而星接的共通接線端是 連接於上述電容器113與上述阻尼電阻器114的連接點者 -12- 200924357 又,第4圖是表示本發明的電力轉換裝置用共態濾波 器的電路構成圖的第4例子。星接的電容器117的星接的 各星接線端,是分別連接於上述共態抗流器1 1 2的輸出端 ’而星接的共通接線端是連接於回描線N者。 又’第5圖是表示本發明的電力轉換裝置用共態濾波 器的電路構成圖的第5例子。星接的電容器117的星接的 各星接線端,是分別連接於共態抗流器1 1 2的輸出端,而 星接的共通接線端是連接於正常模電流截止用變壓器1 1 5 的星接的共通接線端c者。 又’第6圖是表示本發明的電力轉換裝置用共態濾波 器的電路構成圖的第6例子。星接的電容器1 1 7的星接的 各星接線端,是分別連接於上述共態抗流器1 1 2的輸出端 ,而星接的共通接線端是連接於上述電容器113與上述阻 尼電阻器1 1 4的連接點者。 電容器117的作用是爲了防止藉由插入正常模電流截 止用變壓器1 1 5所產生的高頻的濾波器特性的惡化者,而 小容量的電容器就可以。具體上的容量是在約5(nF)以下 就可以。又,電容器113,116是比電容器117還要大的 靜電容量。所以,在第2圖,第3圖,第5圖,第6圖所 表示的電路,是大約等値的電路。又,第1圖與第4圖也 成爲大約等値的電路。 第2圖、第3圖、第5圖、第6圖與第1圖、第4圖 之不同處,在第2圖、第3圖、第5圖、第6圖中,爲在 阻尼電阻器1 1 4的前段成爲連接有電容器1 1 7的星接的共 -13- 200924357 通接線端的構成,對此’在第1圖與第4圖中’ 電阻器1 1 4的後段成爲連接有電容器I 1 7的星接 線端的構成之處,藉由接線阻尼電阻器1 1 4的後 器117的星接的共通接線端會使高頻的濾波器特 〇 在第11圖,表示使用在第18圖所表示的習 濾波器與使用在第4圖所表示的本發明技術的濾 的模擬結果。如第1 1圖所示地,藉由與正常模 用變壓器115並聯地接線電容器117,以1MHz 約1 0 d B左右的濾波器特性。 第7圖是表示本發明的電力轉換裝置用共態 電路構成圖的第7例子。在表示於第4圖的本發 轉換裝置用共態濾波器的電路構成圖的第4例子 電容器116與正常模電流截止用變壓器115之插 係者。 在第7圖中,115a是正常模電流截止用變 ’第8是表示說明正常模電流截止用變壓器U5 的圖式。 在第8圖中,ul, vl及wl是正常模電流截 器1 1 5 a的1次側各線圈的—方端,而u2,v2及 常模電流截止用變壓器丨丨5a的〗次側各線圈的 。正常模電流截止用變壓器u 5 a的2次側各線 被角接。 將正常模電流截止用變壓器n5a的 爲在阻尼 的共通接 段與電容 性更提昇 知技術的 波器特性 電流截止 可提昇大 濾波器的 明的電力 中,變更 入位置關 壓器。又 a的接線 止用變壓 w2是正 另一方端 圈是分別 1次側各線圈的 -14- 200924357 一方ul,vl及wl分別連接於共態抗流器112各輸出端 ,而將另一方U2,v2及w2分別連接於星接的電容器1 ] i 的各星接線端,並將電容器1 1 3與阻尼電阻器1 1 4串聯連 接於星接的電容器1 1 1的共通接線端與回描線N之間。 又,將星接的電容器1 1 7的各星接線端分別連接於共態抗 流器112的各輸出端,並將星接的電容器117的共通接線 端連接於回描線N。 本發明的電力轉換裝置用共態濾波器的電路構成圖的 第7例是具有與表示於第4圖的本發明的電力轉換裝置用 共態濾波器的電路構成圖的第4例同等的濾波器特性。第 7例是成爲可模組化電容器111與電容器113,而且有可 小型化電力轉換裝置用共態濾波器的效果。 在第9圖及第1〇圖’表示在第7圖的電力轉換裝置 用共態濾波器的電路構成圖中,將星接的電容器1 1 7的連 接方法予以變形的例子。 第9圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第8例子。星接的電容器117的星接的各星 接線端是分別連接於共態抗流器1 1 2的輸出端,而星接的 共通接線端是連接於星接的電容器1 1 1的星接的共通接線 端者。 第1 0圖是表示本發明的電力轉換裝置用共態濾波器 的電路構成圖的第9例子。星接的電容器117的星接的各 星接線端是分別連接於共態抗流器1 1 2的輸出端,而星接 的共通接線端是連接於電容器1 1 3與阻尼電阻器1 1 4的連 -15- 200924357 接點者。 表示於第9圖及第10圖的本發明的電力轉換裝置用 共態濾波器的電路構成圖的第8例子及第9例子,是與表 示於第5圖及第6圖的本發明的電力轉換裝置用共態濾波 器的電路構成圖的第5例子及第6例子分別具有同等的濾 波器特性,惟作成可模組化電容器1 1 1與電容器1 1 3,具 有可小型化電力轉換裝置用共態濾波器的效果。 實施例2 第12圖是表示本發明的電力轉換裝置用輸出濾波器 的電路構成圖。在第12圖中,100是輸出濾波器,11〇是 共態濾波器,1 2 0是正常模濾波器,1 2 1是AC電抗器, 122是阻尼電阻器。又,U3,V3及W3是輸出濾波器100 的輸出端子。 正常模濾波器120是由AC電抗器121與並聯連接於 AC電抗器121的各線圈的阻尼電阻器122所構成。 輸出濾波器1〇〇是將正常模濾波器120串聯地連接於 共態濾波器1 1 〇的各相輸出端子U2,V2及W2所構成。 藉由此種構成,在電力線-接地線間發生高頻電壓, 結果,具有可防止流動共態電流的效果。 實施例3 第1 3圖是表示將本發明的電力轉換裝置用輸出濾波 器組裝於電力轉換裝置的例子的電路構成圖。1是商用電 -16- 200924357 源,2是電力轉換裝置’ 3是電動機。η是電力 的筐體接地。 電力轉換裝置2是以三相調變PWM方式, 10kHz所驅動。又,電源1是440V的3相交流電 14圖是表示在第13圖中未附加輸出濾波器1〇〇時 電壓V c 1,V c 2及電流I c的模擬結果。圖未附加輸 器,因此在電力線-接地線間發生Vc2的電壓,結 態電流Ic是會流動。 在第15圖,表示在第13圖中使用習知技術及 的電力轉換裝置用輸出濾波器(共態濾波器是使用I 子)時的共態電壓V c 1,V c 2,電流I c及濾波器電之 模擬結果。又,在第16圖,表示在第13圖中使用 術與本發明技術時的共態電壓Vc2之頻率解析結果 1 5圖所示地,與正常模電流截止用變壓器1 1 5並 入電容器117之故,因而可知在濾波器電流If除 成分的濾波器電流以外,還流著高頻電流。又,$ 圖所示地與習知技術的輸出濾波器相比較,可知本 電力轉換裝置用輸出濾波器是在1 MHz以上的領域 態電壓Vc2的成分會減低。此爲與習知技術的輸出 相比較’爲本發明的輸出濾波器者減小高頻的旁路 的阻抗所致者。 如此地,本發明的電力轉換裝置用輸出濾波器 減少在高頻領域的共態濾波器的旁路電路部的阻抗 減低咼頻成分的共態電壓。 換裝置 波頻率 源。第 的共態 出濾波 果,共 本發明 I 1例 ϋ if的 習知技 。如第 聯地插 了載波 ]第16 發明的 中,共 濾波器 電路部 ,是可 ,而可 -17- 200924357 在第17,表示在第13圖中,電動機電纜較長時的電 力轉換裝置的輸出線間電壓Vuv 1及電動機端子電壓Vuv 2 的測定結果。又,所使用的電動機電纜的長度是1 00m。 本發明的電力轉換裝置用輸出濾波器的正常模濾波器1 2 0 的動作原理,是在低頻領域中,與阻尼電阻器1 22的阻抗 相比較,AC電抗器1 2 1的阻抗變小,而可忽視阻尼電阻 器122。又,在高頻領域中,與AC電抗器121的阻抗相 比較,阻尼電阻器122的阻抗變小,而可忽視AC電抗器 121。在第17(a)圖表示無輸出濾波器的情形,而在第 1 7 (b)圖表示使用本發明輸出濾波器的情形。如此地,在 本發明的電力轉換裝置用輸出側瀘波器是在正常模中,對 於高頻成分作用作爲利用電動機電纜的浮游容量的RC濾 波器,而可減低在電動機端子的突波電壓。 產業上的利用可能性 藉由使用本發明的輸出瀘波器,可減低施加於電動機 的高頻成分的共態電壓之故,因而可抑制電動機軸承部的 電蝕所致的劣化。又,可減低流至電源側的共態電流之故 ,因而可減小使用作爲雜訊端子電壓抑制用的EMI濾波 器的接地電容器或是共態抗流線圈。又,發生在電動機端 子的突波電壓之故,因而可抑制在電動機線圈部的絕緣劣 化。 【圖式簡單說明】 -18- 200924357 第1圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第1例子。 第2圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第2例子。 第3圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第3例子。 第4圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第4例子。 第5圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第5例子。 第6圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第6例子。 第7圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第7例子。 第8圖是表示說明正常模電流截止用變壓器1 1 5 a的 接線的圖式。 第9圖是表示本發明的電力轉換裝置用共態濾波器的 電路構成圖的第8例子。 第10圖是表示本發明的電力轉換裝置用共態濾波器 的電路構成圖的第9例子。 第U圖是表示使用在第1 8圖的習知技術的濾波器與 使用在第4圖的本發明技術的濾波器特性的模擬結果。 第1 2圖是表示本發明的電力轉換裝置用輸出濾波器 的電路構成圖。 -19- 200924357 第13圖是表示將本發明的電力轉換裝置用輸出濾波 器組裝於電力轉換裝置的例子的電路構成圖。 第14圖是表示在第π圖中未附加輸出濾波器1〇〇時 的共態電壓V c 1,V C 2及電流I C的模擬結果。 第15(a)圖及第15(b)圖是表示在第13圖中使用習知 技術及本發明的電力轉換裝置用輸出濾波器(共態濾波器 是使用第1例子)時的共態電壓Vcl ’ Vc2,電流Ic及濾 波器電流I f的模擬結果。 第16(a)圖及第16(b)圖是表示在第13圖中使用習知 技術及本發明技術時共態電壓Vc2的頻率解析結果。 第17(a)圖及第17(b)圖是表示在第13圖中電動機電 纜長時的電力轉換裝置的輸出線間電壓Vuv 1及電動機端 子電壓V u v 2的測定結果。 第1 8圖是表示習知技術的電力轉換裝置用共態濾波 器的電路構成。 第19圖是表示正常模電流截止用變壓器115的電路 構成圖的例子。 【主要元件符號說明】 1 :商用電源 2 :電力轉換裝置 3 :電動機 1〇〇 :輸出濾波器 11 〇 :共態濾波器 -20- 200924357 1 1 1 :電容器 1 1 2 :共態抗流器 1 13 :電容器 1 1 4 :阻尼電阻器 1 1 5,1 1 5 a :正常模電流截止用變壓器 1 1 6 :電容器 1 17 :電容器 120 :正常模濾波器 1 2 1 : AC電抗器 122 :阻尼電阻器 U,V,W :星接線端 r,s,t :商用電源端子 U1,V1,W1:輸入端子 U2,V2,W2,U3,V3,W3:輸出端子 c :共通接線端 N :回描線 η :電力轉換裝置的筐體接地 Vcl,Vc2:共態電壓 Vuvl :輸出線間電壓 Vuv2 :電動機端子電壓 I f :濾波器電流 I c :電流 -21 -BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter device for reducing high frequency noise generated by a switching operation of a power conversion device, and a power conversion device using the same. The inverter device that converts the DC voltage into a variable frequency and converts the DC voltage into a variable frequency, and converts the DC voltage into a variable frequency, or converts the variable voltage into a variable frequency. Variable voltage PWM cyclo-converter (also known as matrix converter). [Prior Art] Fig. 18 shows a circuit configuration of a common mode filter for a power conversion device of the prior art. In Fig. 18, 110 is a common mode filter, 112 is a common-state choke '1 1 3 is a capacitor' 1 1 4 is a damping resistor, 1 15 is a normal mode current cut-off transformer, and 116 is a capacitor. Further, U1, V1 and W1 are input terminals of the common mode filter 1 1 ,, U2, V2 and W2 are output terminals of the common mode filter 1 1 对应 corresponding to the input terminals thereof, and N is a retrace line. Fig. 19 is a view showing an example of a circuit configuration of a normal mode current cutoff transformer 115. The normal mode current cut-off transformer 115 is a primary side coil in which three insulating transformers are connected in a star, and the second side coil is connected in a corner. u, v, w are the star terminals of the normal mode current cut-off transformer 1 1 5, c is; common terminal. In the same figure, a single-phase three-insulated transformer is used, but a three-phase insulated transformer can also be used. Further, the two coils of the same phase have the effect of obtaining a two-wire winding in which two wires of the so-called -4 - 113, 200924357 are combined and wound at the same time. The common state filter 1 1 〇 is composed of a common-state current transformer 1 1 2, a capacitor damping resistor 114, a normal mode current cut-off transformer 115, and a device 1 16 . One of each of the common-flow devices 112 is connected to the output, and the other of VI and W1' is connected to the output terminals U2 and W2, respectively. One of the capacitors 116 is connected to the common-state current transformer, and the other is connected to the respective star terminals u, v and w of the normal mode current cut-off transformer 115. Between the common c of the star connection of the normal mode current cutoff transformer 115 and the line N, a capacitor 1 1 3 and a damping 1 1 4 are connected in series. The normal mode current cutoff transformer 115 is for suppressing excessive current flow in power conversion. A capacitor 1 16 is inserted in the common mode filter section between the phases of the device output. For a normal mode, the phase-to-phase inductance 通常 of the current-cutting transformer that is normally used is about 100 Hz at 100 Hz or less, and is about several tens of mH at 10 kHz. Therefore, the low frequency current of the wave filter is cut off at the capacitor 116, and the carrier current is cut off at the normal mode current cutoff transformer 115. The conventional method shown in Fig. 8 is inserted in parallel with electric power, so that the wire size of the normal mode current cutoff transformer 115 is applicable to the downsizing of the common mode filter. However, the normal mode power transformer 115 is required to have a large inductance for the normal mode, because the capacitor enters the terminal V2 and the output side of the star terminal resistor is bypassed by the normal mode of the field flow in the component line. The reason is smaller, the flow is cut off and the number of turns 圏-5- 200924357 is larger. Therefore, the leakage inductance also becomes large. In the common state, the inductance of the wiring becomes larger, and the inductance of the bypass portion of the filter becomes higher, and the characteristics are deteriorated. A prior art technique for output filters is illustrated. The problem on the side is exemplified by high frequency leakage current and electric power. In order to solve the above problem, countermeasures have conventionally been made for the output side of the power conversion device. The output filters to be placed are, for example, Patent Documents 1 and 2. Patent Documents 1 and 2, and a common mode filter of Non-Patent Document 1. Further, Non-Patent Document 2 is a normal mode filter for a subsense voltage and a filter for the filter. In the common mode filter of the patent documents 1 and 2, in order to reduce the carrier frequency of the filter conversion device, it is possible to suppress the motor terminal due to the frequency leakage current, and it is used in Patent Document 1. The bypass portion of the normal mode current cut filter formed by the corner joint method at one time is subjected to the filter characteristic of the transformer portion. Further, in the aspect of Patent Document 2, the frequency is formed as an interphase device on the output side of the power conversion device than the carrier frequency current of the power conversion device. Further, the common-mode voltage represented by Non-Patent Document 2 and the surge voltage of the motor terminal are equal to the leakage inductance of the normal mode. Therefore, the high frequency of the chopper is the output of the power conversion device. The output voltage filter of the terminal is applied to the conventional power conversion device 2, and the non-patent document 1 and the common mode voltage are suppressed from the common state by suppressing the common-state voltage of the motor terminal. The resonance frequency is generated to be more efficient than the power to suppress the high surge voltage. The side is the star connection method, and the secondary side transformer is used for the common mode. The leakage inductance will lower the high frequency. If the resonance of the filter is lower, the pulse will be too large, which will damage the power conversion filter mode. In addition, the method of the non-patent document -6-200924357 2 is compared with the methods of Patent Documents 1 and 2 'Non-Patent Document 1 and the like, and the cutoff frequency of the filter is more than the carrier frequency of the power conversion device. It is high in size and thus becomes smaller in size and lower in cost. Further, generally, when the frequency is high, the floating capacity or the wiring inductance scattered in each part of the circuit is deteriorated, and the filter characteristic is deteriorated by the damping resistor used in the bypass circuit portion of the wave device. As described above, the conventional output filter is not only usable for a specific use, but does not sufficiently exhibit the filter characteristics when it is a high frequency. Patent Document 1: Japanese Patent No. 3596694 (page 6 'Fig. 1) Patent Document 2: Japanese Patent No. 3466118 (page 12 'Fig. 1) Non-Patent Document 1: IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL .28, ΝΟ·4, ρ 8 5 8 〜 p 8 63, JULY/AUGUST 1992 Non-Patent Document 2: Electrical Society Papers D, 116, No. 12 'Heisei 8 years, pl211~1219) [Summary of the Invention] Conventional The output filter is distributed in each part of the floating capacity or using the arrangement inductance, the damping resistance of the bypass portion of the filter, and the leakage inductance of the transformer by the normal mode current cutoff, so that the filter characteristics are deteriorated, and in the high frequency field, A functionally inadequate problem as a filter characteristic. Further, since the filter characteristics of the high frequency are insufficient, the high-frequency leakage current flows on the power supply side 200924357, and the problem of suppressing the noise of the noise terminal is also suppressed in the field of several hundred kHz to several tens of MHz. The present invention has been made in view of such a problem, and an object thereof is to provide a surge voltage that suppresses a motor terminal, and to suppress a common-state voltage generated by a switch of a power conversion device, thereby making the high-frequency characteristic of the filter good. A common mode filter and an input filter for the power conversion device and a power conversion device using the filter. In order to solve the above problems, the present invention is constructed as follows. The invention according to claim 1 is a common mode filter for a power conversion device, comprising: a common-state current transformer (η2) inserted in series at each phase input terminal, and a star-connected phase number The normal mode current cut-off transformer (115) of the primary side of the insulating transformer is connected to the secondary side of the second-side coil. The capacitors (116) are connected in series to the respective outputs of the common-state current transformer (112). Between the star terminals of the above-mentioned normal mode current cut-off transformer (115), and a capacitor (11 3 ) and a damping resistor (1 1 4) are connected in series to the above-mentioned normal mode current cut-off transformer (丨〖5) The common-mode filter for the power conversion device between the common terminal (c) and the retrace line (N) of the star connection is characterized in that it has a star-connected capacitor (117) and the above-mentioned star-connected capacitor The star terminals of (117) are respectively connected to the star terminals of the above-mentioned normal mode current cut-off transformer (1 15), and the common terminals of the above-mentioned star capacitors (1 17) are connected to the above-mentioned back. Trace line (N). Further, in the invention of claim 2, in the common mode filter for a power conversion device according to the first aspect of the invention, the common terminal of the star-connected capacitor (1 17) is replaced by the above-mentioned The retrace line (N), connected to the common terminal (c) of the above-mentioned normal mode current cut-off transformer (1 15), is connected to 200924357. Further, in the invention according to claim 3, in the common mode filter for a power conversion device according to the first aspect of the invention, the common terminal of the star-connected capacitor (1 17) is replaced by the above-mentioned The retrace line (N)' is connected to the connection point of the above capacitor (113) and the above-described damping resistor (114), and is characterized by the same. Further, in the invention according to the fourth aspect of the invention, in the common mode filter for a power conversion device according to the first aspect of the invention, the star terminal of the above-mentioned star capacitor (1 1 7) is replaced. The star terminals of the above-mentioned normal mode current cut-off transformer (1 15) are respectively connected to the output ends of the above-mentioned common-state current transformers (1 12), and are characterized by them. Further, in the invention of claim 5, in the common mode filter for a power conversion device according to the fourth aspect of the invention, the common terminal of the star-connected capacitor (1 1 7) is replaced by the above-mentioned The retrace line (N) is connected to the common terminal (c) of the star connection of the above-mentioned normal mode current cut-off transformer (1 15). Further, in the invention of claim 6, the common-mode filter for the power conversion device according to the fourth aspect of the invention claims that the common terminal of the star-connected capacitor (1 17) is replaced by the above-mentioned The retrace line (N) is connected to the connection point of the above capacitor (Π3) and the above-described damping resistor (114), and is characterized by the same. Further, the invention of claim 7 is a common mode filter for a power conversion device, comprising: a common-state current transformer (1 1) inserted in series in each phase - 200924357 input terminal; 2) and the normal mode current cut-off transformer (1 1 5 a) of the secondary side coil of the insulating transformer of the angle-connected phase, and the primary-side coil of the normal-mode current-cutting transformer (11 5a) One side is connected to the above common-state current transformer (1 1 2), and the other side is respectively connected to each star terminal of the star-connected capacitor (111), and the capacitor (113) is connected in series with the damping resistor (114). A common-mode filter for a power conversion device connected between the common terminal of the above-mentioned star-connected capacitor (111) and the trace line (N) is characterized in that it has a star-connected capacitor (11 7) and connects the above-mentioned star The respective star terminals of the capacitor (1 1 7) are respectively connected to the respective output ends of the common-state current transformer (1丨2), and the common terminal of the above-mentioned star-connected capacitor (117) is connected to the above-mentioned drawing line. (N). Further, in the invention according to the eighth aspect of the invention, in the common mode filter for a power conversion device according to the seventh aspect of the invention, the common terminal of the star-connected capacitor (1 1 7) is replaced. The above-mentioned retrace line (N) is connected to the common terminal of the above-mentioned star-connected capacitor (111), and the invention described in claim 9 is in the scope of claim 7 of the patent application. In the common mode filter for the power conversion device, the common terminal of the star-connected capacitor (1 17) is connected to the drawing line (N), and is connected to the capacitor (113) and the damping resistor (114). Point, for its characteristics. The invention described in the first aspect of the invention is the power conversion device according to any one of claims 1 to 9 -200924357 of the common-state filter The output terminal of each phase is connected in series to a normal-mode filter for a power conversion device formed by an AC reactor (121) in which a damping resistor (122) is connected in parallel. Further, the invention described in claim 1 is a power conversion device characterized in that a common mode filter for a power conversion device is applied to a common mode filter for a power conversion device according to claim 1 of the patent application scope. The utility model is also a common mode filter for a power conversion device according to claim 7 of the patent application. According to the invention of claim 1 to claim 9, in the high frequency field, the impedance of the bypass circuit portion of the common mode filter can be made small, and the high frequency characteristic can be improved. Moreover, according to the invention described in the first aspect of the patent application, the resonance frequency of the filter can be made lower than the carrier frequency of the power conversion device for the common state, and can be set to be higher than the carrier frequency for the normal mode. Higher so that the surge voltage of the motor terminals can be suppressed with a small normal mode choke. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. Only the functions or means of the present invention are described in the drawings. In the following names, the same reference numerals are attached to the same names, and the repeated description is omitted. Further, the present invention is described in the case where a single phase, a three phase, or a plurality of phases or more is also applicable, but a three-phase example is used. -11 - 200924357 First Embodiment Fig. 1 is a first example of a circuit configuration diagram of a common-mode chopper for a power conversion device according to the present invention. In Fig. 1, 117 is a capacitor. The present invention is different from the prior art in that it has a star-connected capacitor 117. The star terminals of the star-connected capacitors 117 are respectively connected to the star terminals U, v and w of the star of the normal mode current cut-off transformer 1 15 . The common terminal of the star connection is connected to the retrace line N. In this way, the common mode filter 1 10 0 is constructed. Figs. 2 to 6 show an example in which the method of connecting the star-connected capacitors 1 1 7 of the circuit configuration diagram of the common-mode filter for a power conversion device according to the present invention is modified. Fig. 2 is a second example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. The star-connected capacitors of the star-connected capacitors 1 1 7 are connected to the star terminals of the normal mode current-cutting transformers 1丨5, U, V and W', and the common terminals of the star-connected terminals. It is a third example of the circuit configuration diagram of the common-mode thickener for the power conversion device of the present invention, which is connected to the common terminal C of the normal mode current-cutting transformer 1 1 5 . . The star terminals of the star-connected capacitor H7 are connected to the star terminals u'v and w of the star of the normal mode current cut-off transformer n5, respectively, and the common terminal of the star connection is connected to Further, the connection point between the capacitor 113 and the damping resistor 114 is -12-200924357. FIG. 4 is a fourth example of the circuit configuration diagram of the common-mode filter for a power conversion device according to the present invention. The star-connected star terminals of the star-connected capacitors 117 are respectively connected to the output terminal of the above-described common-state current transformer 1 1 2 and the common terminal of the star connection is connected to the traceback line N. Further, Fig. 5 is a fifth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. The star-connected star terminals of the star-connected capacitor 117 are respectively connected to the output terminal of the common-state current transformer 1 1 2, and the common terminal of the star connection is connected to the normal mode current-cutting transformer 1 1 5 The common terminal of the star connection is c. Further, Fig. 6 is a sixth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. The star-connected capacitors of the star-connected capacitors 1 1 7 are respectively connected to the output terminals of the common-state current transformers 1 1 2, and the common terminals of the star-connected terminals are connected to the capacitors 113 and the above-mentioned damping resistors. The connection point of the device 1 1 4 . The capacitor 117 functions to prevent a deterioration of the filter characteristics of the high frequency generated by the insertion of the normal mode current intercepting transformer 1 15 , and a small-capacity capacitor. The specific capacity is below about 5 (nF). Further, the capacitors 113, 116 are larger than the capacitor 117. Therefore, the circuits shown in Fig. 2, Fig. 3, Fig. 5, and Fig. 6 are approximately equal circuits. Further, the first and fourth figures are also approximately equal circuits. 2, 3, 5, 6 and 1 and 4, in the 2nd, 3rd The front section of 1 1 4 becomes the configuration of the common-13-200924357 terminal which is connected to the star of the capacitor 1 1 7 , and in the first and fourth figures, the capacitor of the rear end of the resistor 1 1 4 is connected with a capacitor. The configuration of the star terminal of I 1 7 , by the common terminal of the star connection of the rear 117 of the wiring damping resistor 1 1 4 will make the high frequency filter characteristic in Fig. 11, indicating that it is used in the 18th The simulation results of the filter shown in the figure and the filter using the technique of the present invention shown in Fig. 4 are shown. As shown in Fig. 1, the capacitor 117 is connected in parallel with the normal mode transformer 115 to have a filter characteristic of about 1 0 d B at 1 MHz. Fig. 7 is a seventh example of a configuration diagram of a common-state circuit for a power conversion device according to the present invention. In the fourth example of the circuit configuration diagram of the common mode filter for the present invention shown in Fig. 4, the capacitor 116 and the normal mode current cutoff transformer 115 are interposed. In Fig. 7, 115a is a normal mode current cut-off variable. The eighth figure shows a normal mode current cut-off transformer U5. In Fig. 8, ul, vl and wl are the square ends of the coils of the primary side of the normal mode current interceptor 1 1 5 a, and u2, v2 and the secondary side of the normal mode current cutoff transformer 丨丨5a. For each coil. The lines on the secondary side of the normal mode current cut-off transformer u 5 a are connected at the corners. The normal mode current cut-off transformer n5a is used to increase the common junction of the damping and the capacitance. The current characteristic is cut off. The power of the large filter can be increased, and the position regulator is changed. In addition, the terminal stop voltage change w2 is positive and the other end ring is the first-stage side coils -14-200924357 one ul, vl and wl are respectively connected to the respective outputs of the common-state current transformer 112, and the other side U2 , v2 and w2 are respectively connected to the star terminals of the star-connected capacitor 1 ] i , and the capacitor 1 1 3 and the damping resistor 1 1 4 are connected in series to the common terminal and the reticle of the star-connected capacitor 1 1 1 Between N. Further, the star terminals of the star-connected capacitors 1 1 7 are respectively connected to the respective output terminals of the common-state current transformer 112, and the common terminals of the star-connected capacitors 117 are connected to the trace line N. The seventh example of the circuit configuration diagram of the common-mode filter for a power conversion device according to the present invention is the same as the fourth example of the circuit configuration diagram of the common-mode filter for power conversion device of the present invention shown in FIG. Features. In the seventh example, the module capacitor 111 and the capacitor 113 are formed, and the effect of miniaturizing the common mode filter for the power conversion device is obtained. In the circuit diagram of the common mode filter for the power conversion device of Fig. 7, the connection between the method of connecting the capacitors 1 1 7 of the star connection is shown in Fig. 9 and Fig. 1'. Fig. 9 is a view showing an eighth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. The star terminals of the star-connected capacitor 117 are respectively connected to the output terminal of the common-state current transformer 1 1 2, and the common terminal of the star connection is connected to the star-connected capacitor 11 1 . Common terminal. Fig. 10 is a ninth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. The star-connected star terminals of the star-connected capacitor 117 are respectively connected to the output terminal of the common-state current transformer 1 1 2, and the common terminal of the star connection is connected to the capacitor 1 1 3 and the damping resistor 1 1 4连-15- 200924357 Contact person. The eighth and ninth examples of the circuit configuration diagram of the common mode filter for a power conversion device according to the present invention shown in Figs. 9 and 10 are the powers of the present invention shown in Figs. 5 and 6 The fifth example and the sixth example of the circuit configuration diagram of the common mode filter for the conversion device have the same filter characteristics, and are formed as the moduleizable capacitor 1 1 1 and the capacitor 1 1 3 , and have a miniaturizable power conversion device. Use the effect of the common state filter. (Embodiment 2) Fig. 12 is a circuit configuration diagram showing an output filter for a power conversion device according to the present invention. In Fig. 12, 100 is an output filter, 11 is a common mode filter, 1 2 0 is a normal mode filter, 1 2 1 is an AC reactor, and 122 is a damping resistor. Further, U3, V3 and W3 are output terminals of the output filter 100. The normal mode filter 120 is composed of an AC reactor 121 and a damping resistor 122 connected in parallel to each coil of the AC reactor 121. The output filter 1A is formed by connecting the normal mode filter 120 in series to the output terminals U2, V2 and W2 of the respective phases of the common mode filter 1 1 . With such a configuration, a high-frequency voltage is generated between the power line and the ground line, and as a result, there is an effect of preventing the flow of the common-state current. (Embodiment 3) FIG. 13 is a circuit configuration diagram showing an example in which an output filter for a power conversion device according to the present invention is incorporated in a power conversion device. 1 is a commercial power -16- 200924357 source, 2 is a power conversion device '3 is an electric motor. η is the ground of the housing of the power. The power conversion device 2 is driven by a three-phase modulation PWM method at 10 kHz. Further, the power supply 1 is a three-phase alternating current of 440 V. Fig. 14 is a simulation result showing voltages V c 1, V c 2 and current I c when the output filter 1 is not added in Fig. 13. The figure does not add a transmitter, so the voltage of Vc2 occurs between the power line and the ground line, and the phase current Ic flows. Fig. 15 is a view showing a common-state voltage V c 1, V c 2 , current I c when an output filter for a power conversion device using a conventional technique (the common-mode filter uses I) is used in Fig. 13. And the simulation result of the filter electric. Further, in Fig. 16, the frequency analysis result 15 of the common mode voltage Vc2 when the technique of the present invention is used in Fig. 13 is shown, and the capacitor 117 is incorporated with the normal mode current cutoff transformer 1 15 . Therefore, it is understood that a high-frequency current flows in addition to the filter current of the component of the filter current If. Further, as shown in the figure, compared with the output filter of the prior art, it is understood that the output filter of the power conversion device is reduced in the component voltage Vc2 of 1 MHz or more. This is compared with the output of the prior art, which is caused by the impedance of the output filter of the present invention to reduce the bypass of the high frequency. As described above, the output filter for a power conversion device according to the present invention reduces the impedance of the bypass circuit portion of the common-mode filter in the high-frequency domain and reduces the common-state voltage of the chirped component. Change the device wave frequency source. The first common state filter results, a total of the invention I 1 case ϋ if the conventional technique. In the case of the sixth invention, the common filter circuit unit is available, and -17-200924357 is at the 17th, and the power conversion device when the motor cable is long is shown in FIG. The measurement result of the output line voltage Vuv 1 and the motor terminal voltage Vuv 2 is output. Also, the length of the motor cable used is 100 m. The principle of operation of the normal mode filter 1 2 0 of the output filter for the power conversion device of the present invention is that in the low frequency region, the impedance of the AC reactor 1 2 1 becomes smaller than the impedance of the damping resistor 1 22 . The damping resistor 122 can be ignored. Further, in the high frequency field, the impedance of the damping resistor 122 becomes smaller as compared with the impedance of the AC reactor 121, and the AC reactor 121 can be ignored. Fig. 17(a) shows the case where there is no output filter, and Fig. 17(b) shows the case where the output filter of the present invention is used. In the normal mode, the output side chopper for the power conversion device of the present invention acts as a RC filter for utilizing the floating capacity of the motor cable in the high frequency component, thereby reducing the surge voltage at the motor terminal. INDUSTRIAL APPLICABILITY By using the output chopper of the present invention, the common-state voltage applied to the high-frequency component of the motor can be reduced, and deterioration due to electrolytic corrosion of the motor bearing portion can be suppressed. Further, the common-state current flowing to the power source side can be reduced, so that the grounding capacitor or the common-mode choke coil which is an EMI filter for noise suppression of the noise terminal can be reduced. Further, since the surge voltage occurs in the motor terminal, the insulation deterioration in the coil portion of the motor can be suppressed. [Brief Description of the Drawings] -18- 200924357 Fig. 1 is a first example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 2 is a second example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 3 is a third example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 4 is a fourth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 5 is a fifth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 6 is a sixth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 7 is a seventh example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 8 is a view showing the wiring of the transformer 1 1 5 a for normal mode current cutoff. Fig. 9 is a view showing an eighth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. 10 is a ninth example of a circuit configuration diagram of a common mode filter for a power conversion device according to the present invention. Fig. U is a simulation result showing the filter characteristics of the filter using the conventional technique of Fig. 8 and the technique of the present invention used in Fig. 4. Fig. 1 is a circuit configuration diagram showing an output filter for a power conversion device according to the present invention. -19-200924357 Fig. 13 is a circuit configuration diagram showing an example in which an output filter for a power conversion device according to the present invention is incorporated in a power conversion device. Fig. 14 is a graph showing simulation results of the common-state voltages V c 1, V C 2 and current I C when the output filter 1 未 is not added to the π-th diagram. 15(a) and 15(b) are diagrams showing the common state in the case of using the conventional technique and the output filter for the power conversion device of the present invention (the common mode filter is the first example). Simulation results of voltage Vcl 'Vc2, current Ic and filter current I f . Figs. 16(a) and 16(b) are diagrams showing frequency analysis results of the common state voltage Vc2 when the conventional technique and the technique of the present invention are used in Fig. 13. Figs. 17(a) and 17(b) are diagrams showing measurement results of the output line voltage Vuv1 and the motor terminal voltage Vuv2 of the power conversion device when the motor cable is long in Fig. 13. Fig. 18 is a circuit diagram showing a configuration of a common mode filter for a power conversion device of the prior art. Fig. 19 is a view showing an example of a circuit configuration of a normal mode current cutoff transformer 115. [Main component symbol description] 1 : Commercial power supply 2 : Power conversion device 3 : Motor 1 〇〇: Output filter 11 〇: Common state filter -20- 200924357 1 1 1 : Capacitor 1 1 2 : Common-state current-carrying device 1 13 : Capacitor 1 1 4 : Damping resistor 1 1 5,1 1 5 a : Normal mode current cut-off transformer 1 1 6 : Capacitor 1 17 : Capacitor 120 : Normal mode filter 1 2 1 : AC reactor 122 : Damping resistor U, V, W: star terminal r, s, t: commercial power terminal U1, V1, W1: input terminal U2, V2, W2, U3, V3, W3: output terminal c: common terminal N: The retrace line η: the chassis ground of the power conversion device Vcl, Vc2: the common state voltage Vuvl: the output line voltage Vuv2: the motor terminal voltage I f : the filter current I c : the current - 21 -