TW200924234A - Semiconductor photoelectric element and light emitting diode made thereof - Google Patents

Semiconductor photoelectric element and light emitting diode made thereof Download PDF

Info

Publication number
TW200924234A
TW200924234A TW96145554A TW96145554A TW200924234A TW 200924234 A TW200924234 A TW 200924234A TW 96145554 A TW96145554 A TW 96145554A TW 96145554 A TW96145554 A TW 96145554A TW 200924234 A TW200924234 A TW 200924234A
Authority
TW
Taiwan
Prior art keywords
semiconductor
layer
passivation layer
light
organic
Prior art date
Application number
TW96145554A
Other languages
Chinese (zh)
Inventor
Ming-Shun Lee
Original Assignee
Uni Light Touchtek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Light Touchtek Corp filed Critical Uni Light Touchtek Corp
Priority to TW96145554A priority Critical patent/TW200924234A/en
Publication of TW200924234A publication Critical patent/TW200924234A/en

Links

Abstract

The invention utilizes an organic dielectric layer as a passivation layer for protecting semiconductor photoelectric element which could be a semiconductor light generation element or a semiconductor photodetection element. The use of the organic dielectric layer contributes advantages such as low process temperature and prevention from being peeled off during subsequent process.

Description

200924234 九、發明說明: 【發明所屬之技術領域】 趲先 本發明係有關於一種使用有機介電材料保言蔓 電元件,特別是有關於一種使用有機鈍化層保護 【先前技術】 目前的消費性電子產品’除了許多用來處理气 資訊的處理器以外,另外一種大量用在曰常生活中〜气是 光電元件。所謂光電元件,就是將光訊號轉換成I的枕是 是反過來將電訊號轉換成光訊號。前者如電合執人现或 (CCD; Charge-C◦叩led Device)光感測器,互補气装薏 氧化物半導體(CMOS)光感測器,或是光碟機的金屬 田射讀;& 頭等;後者如液晶顯示器,發光二極體,或是雷鉍—^ ^ 对〜極體 等。上述的光電元件中,有許多是使用半導體製程以 導體材料製造而成的’而這些元件在製造完成之後需要“ 層鈍化層(passivation layer)去保護這些元件。目前純 化層所使用的材料一般為無機的介電材料,例如氧化銘 (aluminum oxide),氮化矽(suicon nitride),氧化矽 (silicon oxide)’ 鼠氧化石夕(siHcon oxynitride),氧 化组(tantalum oxide),氧化鈦(titanium oxide),氣 化弼(calcium fluoride),氧化給(hafnium oxide),硫 化鋅(zinc sulfide),或是氧化鋅(zinc 〇xide)等。這 些材料’一般而言’ f要使用標準的磊晶製程,例如化學 氣像蠢晶法’或是分子束磊晶法等。然而,這些標準的半 200924234 , ' 導體製程需要較高的溫度進行磊晶,而較高的溫度需要較 高的熱預算(thermal budgel:)。這在製程上是屬於比較不 經濟的方式。再者,上述製程需要在反應室(chamber)中 進行薄膜沉積,這附帶的引起諸多的問題,例如反應室的 潔淨度,需要在接近真空或是大於一大氣壓下進行薄膜沉 積。另外,上述這些材料在後段的製程,會有剝離 (1 ift-off )的問題。對於這些容易受到濕氣與氧化攻擊 的半導體元件而言,鈍化層就無法達到它的功能。 因此,需要一種解決方式以避免上述鈞諸多問題。 【發明内容】 鑒於上述之發明背景中,傳統的無機材料之鈍化層所 產生之諸多問題與缺點,本發明之目的在於提供一種以有 機材料作為鈍化層以保護半導體光電元件。在本發明中, 有機介電材料可以使用一般的低溫製程,例如旋塗 (spin-on coating)。另外,本發明不需要使用真空的反 應室,直接在一大氣壓下即可進行薄膜沉積。再者,沉積 V · 之後的有機介電層可以使用一般的光學微影製程'將需要的 開口暴露出來。 本發明的另一目的在於使用有機介電材料作為鈍化 層,在後端的製程中鈍化層不會發生剝離的顯像。 根據以上所述之目的,本發明提供了一種半導體光電 元件,其包含一底材,一位於底材上之半導體層,複數個 位於半導體層上之電極,與一覆蓋半導體層之有機鈍化 6 200924234 層。上述數複數個電極連接到半導體層。上述有機鈍化層 露出該複數個電極,並用以保護該半導體光電元件。上述 之半導體層可將電能轉換成光能或是將光能轉換成電能。 上述之有機鈍化層的材質為樹脂(ABS res i η ),環氧樹脂 (epoxy) ’壓克力樹脂(ΡΜΜΑ),丙烯腈丁烯苯乙烯共聚合 物(acrylonitrile butadiene styrene copolymer),聚 甲基丙稀酸曱脂(polymerethylmethacrylate),聚讽物 (polysulfones)’ 聚醚碉物(polyethersulfone),聚趟 醯亞胺(polyetherimides),聚醯亞胺(pblyimide),聚 醯胺醯亞胺(polyamideimide ),聚曱苯硫化物 (polyphenylene sulfide ),碳石夕熱固型化合物 (silicon-carbon thermosets )其中之一。 本發明亦提供了一種發光二極體,其包含一底材,一 位於底材上之半導體二極體結構,以及一覆蓋住半導體二 極體結構之有機鈍化層。上述之底材為金屬,藍寶石,石夕 鍺’碳化矽’磷化鎵’砷化鎵’或是以氮化鎵為主的三五 族半導體化合物之其中之一。上述之有機鈍化層的材質為 樹脂(ABS resin),環氧樹脂(epoxy )’壓克力樹脂(p丽a), 丙稀腈丁稀苯乙稀共聚合物(acrylonitrile butadiene styrene copolymer ) ’ 聚甲基丙烯酸曱脂 (polymerethylmethacrylate ) ’ 聚讽物(p〇iysuifones), 聚醚讽物 (polyethersulfone ),聚醚醯亞胺 (polyetherimides)’ 聚醯亞胺(polyimide),聚醯胺醯 亞胺(polyamideiinide)’ 聚曱本硫化物(polyphenylene 7 200924234 . 1 sulfide ),碳石夕熱固型化合物 (silicon-carbon thermosets)其中之一。上述之有機鈍化層的折射係數約 在1-2. 33之間。 【實施方式】 本發明的一些實施例會詳細描述如下。然而,除了詳 細描述的實施例外,本發明還可以廣泛地在其它的實施例 中施行,且本發明的範圍不受限定,其以之後的申請專利 範圍為準。 ’ 再者,為提供更清楚的描述及更易理解本發明,圖示 内各部分並沒有依照其相對尺寸繪圖,某些尺寸與其他相 關尺度相比已經被誇張;不相關之細節部分也未完全繪 出,以求圖示的簡潔。 本發明主要是以有機介電材料作為光電元件的鈍化層 (passivation layer),而這裡的光電元件可以為半導體 的光電元件,例如發光二極體,雷射二極體,電荷耦合裝 置光感測器,互補式金屬氧化物半導體光感測器,或是液 V. · 晶顯示器等。特別是在液晶顯示器的製造上,由於玻璃基 板不能承文過尚的溫度5 —般的薄版蠢晶製程的溫度是無 法成長矽單晶或是良好結晶之氧化矽或是氮化矽。本發明 之製程因而非常適用於液晶顯示器上的薄膜電晶體或是彩 色濾鏡的鈍化層之形成。 鈍化層係用以保護光電元件,特別是半導體材料,不 受濕氣或是氧化等的攻擊影響。一般會是在元件形成之後 8 200924234 * ' 才形成鈍化層’然後在適當的地方將鈍化層打開以暴露出 元件的電極。導線接腳(1 ead)可以使用打線接合(wi re bonding)或是覆晶(flip chip)的方式電性地連接到電 極並完成元件的封裝。 在本發明中,有機介電材料可以為樹脂(ABS resin), 環氧樹脂(epoxy)’壓克力樹脂(PMMA),丙烯腈丁烯笨乙 烯共聚合物(acrylonitrile butadiene styrene copolymer ) 聚甲 基丙烯 酸曱脂 (polymerethylmethacrylate),聚砜物(p01ysulfones), 聚醚峨物 (polyethersulfone ),聚醚酸亞胺 (polyetherimides),聚酿亞胺(polyimide),聚酸胺酷 亞胺(poly ami deimide),聚曱苯硫化物(polyphenylene su 1 f i de ) ’或是碳石夕熱固型化合物(s i 1 i con_carb〇n thermosets)等的其中一種,或是上述材料的組合。 上述材料可以直接旋塗(spin-on coating)在光電元 件上。形成薄膜的製程可以在低溫以及一大氣壓之下。所 謂的低溫製程係與一般的化學氣像沉積法相比。一般的化 學氣像沉積法的製程溫度約在500-1000°C,而在本發明中 有機介電材料的製程溫度約在室溫到45(TC之間。薄膜形 成的%間約為2 〇分鐘到一小時左右。反應室的壓力約為一 大氣Μ °製程的溫度與時間取決於所欲沉積的有機介電材 料以及溫度與時間的關係。例如環境的溫度愈低,所需薄 膜沉積的時間也就愈長。 形成好的有機介電層,可以使用一般的微影與蝕刻製 200924234 程在該有機介電層上形成 來,俾伟刹协、隹a 知開口底下的電極暴露出 π j 後的打線封裝或是覆晶封㈣後端f :二-般的微影與蝕刻製程包含光阻塗佈,軟烤,= 擇:Γ:钱?’去光阻等步驟。在钮刻的步驟中,可 電^斗㈣選擇取決於有機介 接下來,以發光二極體作為本發 庫 然而,本發明並非口^^ 應用“例, 染太旅t 於應用在發光二極體上。任何知 I &月特徵者皆應了解亦可以應用在#它的光電元件 -底:二_不"顯示—種發光二極體10,其依序具有 却導、g少· P里V通之半導體層丨4,一主動層15,一 n 之半;,-電流分散層17,在前述P型導通 半I 電極18 ’以及在前述n型導通之 C丰^ 型電極19。底材1G可以為半導體底材 導體化合物底材,例如⑭鍺⑶⑷,碳切(sic), (GaP);^^^ ΠπΡ),(GaAs), 月::TL :導體化合物,例如氮化鋁鎵銦⑷.GaInN), 銥為主“秦based)的半導體化合物,或是非 皆=體的透明材料,例如藍寶石(sapphire),或是金屬等 主私ft材12上面—般會有為?型導通之半導體層14, = 15’以及n型導通之半導體層型導通之半導 ^ 主要疋在半導體層中摻入三族元素使得半導體層 10 200924234 • ' 是以帶正電的電洞導通,而η型導通之半導體層16主要是 在半導體層中摻入五族元素使得半導體層是以帶負電的電 子導通。這裡半導體層的材料可以為碳化矽(SiC),磷化 鎵(GaP) ’磷化銦(inP) ’或是砷化鎵(GaAs),或是所謂 的四元半導體化合物,例如氮化紹鎵銦(A1 GaI nN ),或是 其他以氮化鎵為主(GaN-based )的半導體化合物。材料的 選擇需要考慮晶格結構,能階’製程上磊晶的適應性,以 及其他的問題。主動層15可以為雙異質接面(Double200924234 IX. INSTRUCTIONS: [Technical field to which the invention pertains] The present invention relates to the use of an organic dielectric material for protecting a vine element, in particular for the protection using an organic passivation layer. [Prior Art] Current Consumption The electronic product 'except for many processors used to process gas information, the other is used in a lot of life. The so-called optoelectronic component is the one that converts the optical signal into I, which in turn converts the electrical signal into an optical signal. The former such as the electric copper or the (CCD; Charge-C◦叩led Device) light sensor, the complementary gas-mounted oxide semiconductor (CMOS) light sensor, or the metal field of the CD player; &; the first; the latter such as liquid crystal display, light-emitting diode, or Thunder - ^ ^ on ~ polar body and so on. Many of the above-mentioned photovoltaic elements are fabricated using a semiconductor process as a conductor material. These elements require a "passivation layer" to protect these elements after fabrication. The materials used in the current purification layer are generally Inorganic dielectric materials, such as aluminum oxide, suicon nitride, silicon oxide' siHcon oxynitride, tantalum oxide, titanium oxide ), calcium fluoride, hafnium oxide, zinc sulfide, zinc oxide (zinc 〇xide), etc. These materials 'generally' f use standard epitaxial process For example, chemical gas like stupid crystal method or molecular beam epitaxy, etc. However, these standard semi-200924234, 'guided process requires higher temperatures for epitaxy, while higher temperatures require higher thermal budget ( Thermal budgel:) This is a relatively uneconomical process in the process. Furthermore, the above process requires film deposition in the chamber. The belt causes a number of problems, such as the cleanliness of the reaction chamber, which requires film deposition near vacuum or greater than one atmosphere. In addition, these materials have problems with the ift-off process in the latter stage. For these semiconductor elements susceptible to moisture and oxidative attack, the passivation layer cannot achieve its function. Therefore, a solution is needed to avoid the above-mentioned problems. [Invention] In view of the above-mentioned invention, the conventional The problems and disadvantages of the passivation layer of the inorganic material, the object of the present invention is to provide an organic material as a passivation layer to protect the semiconductor photovoltaic element. In the present invention, the organic dielectric material can be used in a general low temperature process, such as spinning. In addition, the present invention does not require a vacuum reaction chamber, and can perform thin film deposition directly under atmospheric pressure. Furthermore, the organic dielectric layer after deposition of V · can use general optical lithography. The process 'exposing the required openings. Another object of the invention is to use organic dielectric As a passivation layer, the passivation layer does not undergo peeling development in the process of the back end. According to the above, the present invention provides a semiconductor photovoltaic element comprising a substrate and a semiconductor layer on the substrate. And a plurality of electrodes on the semiconductor layer and an organic passivation layer covering the semiconductor layer. The plurality of electrodes are connected to the semiconductor layer. The organic passivation layer exposes the plurality of electrodes and is used to protect the semiconductor photovoltaic device. The above semiconductor layer can convert electrical energy into light energy or convert light energy into electrical energy. The material of the above organic passivation layer is resin (ABS res i η ), epoxy resin (acrylic resin), acrylonitrile butadiene styrene copolymer, polymethyl Polymerethylmethacrylate, polysulfones' polyethersulfone, polyetherimides, pblyimide, polyamideimide , polyphenylene sulfide, one of silicon-carbon thermosets. The present invention also provides a light emitting diode comprising a substrate, a semiconductor diode structure on the substrate, and an organic passivation layer overlying the semiconductor diode structure. The above substrate is metal, sapphire, 石 锗 碳 碳 碳 磷 磷 磷 磷 磷 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或. The above organic passivation layer is made of a resin (ABS resin), an epoxy resin (acrylic butadiene styrene copolymer), and an acrylonitrile butadiene styrene copolymer. Polymerethylmethacrylate 'p〇iysuifones', polyethersulfone, polyetherimides' polyimide, polyamidimide Polyamideene (polyphenylene 7 200924234 . 1 sulfide ), one of the carbon-carbon thermosets. The refractive index of the above-mentioned organic passivation layer is between about 1-2. [Embodiment] Some embodiments of the present invention will be described in detail below. However, the present invention may be widely practiced in other embodiments, except for the detailed description of the embodiments, and the scope of the present invention is not limited thereto, which is subject to the scope of the following claims. In addition, in order to provide a clearer description and a better understanding of the present invention, the various parts of the drawings are not drawn according to their relative dimensions, and some dimensions have been exaggerated compared to other related dimensions; the irrelevant details are not completely Draw, in order to simplify the illustration. The invention mainly uses an organic dielectric material as a passivation layer of a photovoltaic element, and the photoelectric element herein may be a semiconductor photoelectric element, such as a light emitting diode, a laser diode, and a charge coupled device light sensing. , complementary metal oxide semiconductor photo sensor, or liquid V. · crystal display. Especially in the manufacture of liquid crystal displays, the temperature of the glass substrate cannot be increased due to the temperature of the thin film. The temperature of the thin plate process cannot be grown into a single crystal or a well-crystallized yttrium oxide or tantalum nitride. The process of the present invention is thus well suited for the formation of a thin film transistor on a liquid crystal display or a passivation layer of a color filter. The passivation layer is used to protect photovoltaic elements, particularly semiconductor materials, from attack by moisture or oxidation. Typically, after the component is formed, 8 200924234 * 'passivation layer is formed' and then the passivation layer is opened where appropriate to expose the electrodes of the component. The wire lead (1 ead) can be electrically connected to the electrode and packaged by using a wire re-bonding or flip chip. In the present invention, the organic dielectric material may be a resin (ABS resin), an epoxy resin (PMMA), an acrylonitrile butadiene styrene copolymer polymethyl group. Polymerethylmethacrylate, polypoxide (polyphenolsulfone), polyethersulfone, polyetherimides, polyimide, poly ami deimide , polyphenylene su 1 fi de ' or one of Si 1 i con_carb〇n thermosets, or the like, or a combination of the above materials. The above materials can be directly spin-on coated on the photovoltaic element. The process of forming the film can be at a low temperature and under a pressure of one atmosphere. The so-called low temperature process is compared to the general chemical image deposition method. The general chemical vapor deposition process has a process temperature of about 500-1000 ° C. In the present invention, the process temperature of the organic dielectric material is about room temperature to 45 (TC). The % of the film formation is about 2 〇. The minute to an hour or so. The pressure in the reaction chamber is about one atmosphere. The temperature and time of the process depend on the organic dielectric material to be deposited and the relationship between temperature and time. For example, the lower the temperature of the environment, the thin film deposition required. The longer the time is, the better the organic dielectric layer can be formed on the organic dielectric layer using the general lithography and etching process. The electrode under the opening is exposed to π. After the j wire package or flip chip seal (four) back end f: two-like lithography and etching process including photoresist coating, soft baking, = choice: Γ: money? 'to the photoresist and other steps. In the button In the step of the process, the choice of the electric device (four) depends on the organic media. Next, the light-emitting diode is used as the hair-sink. However, the present invention is not an example of the application, and the application is applied to the light-emitting diode. Anyone who knows I & month characteristics should understand and apply In #其光电元件-底:二_不" shows a kind of light-emitting diode 10, which has a derivative, g less · P in the V through the semiconductor layer , 4, an active layer 15, a n And a current dispersion layer 17, in the P-type conduction half I electrode 18' and the above-mentioned n-type conduction C-type electrode 19. The substrate 1G may be a semiconductor substrate conductor compound substrate, for example, 14 锗. (3) (4), carbon cut (sic), (GaP); ^^^ ΠπΡ), (GaAs), month::TL: conductor compound, such as aluminum gallium nitride (4).GaInN), 铱-based "Qin-based" semiconductor Compounds, or non-all-body transparent materials, such as sapphire, or metal and other private ft materials 12 - as usual? The semiconductor layer 14 of the type-conducting, = 15' and the semiconductor layer-type conduction of the n-type conduction are mainly doped with a group III element in the semiconductor layer so that the semiconductor layer 10 is connected with a positively charged hole. The n-type conductive semiconductor layer 16 is mainly doped with a group C element in the semiconductor layer such that the semiconductor layer is turned on by negatively charged electrons. The material of the semiconductor layer here may be tantalum carbide (SiC), gallium phosphide (GaP) 'indium phosphide (inP)' or gallium arsenide (GaAs), or a so-called quaternary semiconductor compound, such as gallium nitride. Indium (A1 GaI nN ), or other GaN-based semiconductor compound. The choice of materials requires consideration of the lattice structure, the adaptability of the epitaxial process, and other problems. The active layer 15 can be a double heterojunction (Double

Hetero-Junction)結構’單量子井結構(Single quantum we 11 structure),或是多量子井結構(mui t ipie quantum well structure) ° 電流分散層17主要是以阻值較低的導體為主。當發光 面是從此出發射時,電流分散層17必須是透明導電的材 質,例如銦錫氧化物(ΙΤ0),銦鋅氧化物(ΙΖ0)或是其他 透明導電材質等。p型電極18 —般需要選擇與p型導通之 半導體層14相互歐姆接觸的材質,而η型電極19需要選 擇與η型導通之半導體層16相互歐姆接觸的材質 如第二圖所示,在發光二極體1〇上形成一有機介電層 20。可以為樹脂(ABS resin ) ’環氧樹脂(epoxy),壓克 力樹脂(P疆A ),丙烯腈丁烯笨乙烯共聚合物 (acrylonitrile butadiene styrene copolymer),聚曱 基丙烯酸曱脂(polymerethy lmethacrylate ) ’聚讽物 (polysulfones)’ 聚醚碉物(polyethersulfone)’ 聚謎 酿亞胺(polyetherimides),聚酸亞胺(polyimide),聚 200924234 酉&胺醯亞胺(p〇lyamideimide ),聚甲苯硫化物 (polyphenylene sul f ide )’或是碳石夕熱固型化合物 (silicon-carbon thermosets)等的其中一種,或是上述 材料的組合。 上述這些材料可以直接旋塗(spin_〇nc〇ating)在考 光二極體10上。所謂的旋塗,京尤是先將材料形成至液體法 態,例如使用溶劑或是將材料加熱成液態。然後,將晶層 旋轉並且將液態的材料到在晶圓上。洲晶圓高速旋=^ 離心力使得材料可以均勾的分布在晶圓上。,這裡的 以使用光阻塗佈的製程。形成有機介電層2 低溫以及-大氣壓之下。所謂的低溫製程係血 氣像沉積法相比。一般的化 ;又: 5⑽-戰’而在本發明中有機介電材= 間,較佳的製程溫度約在15_。€之;^Λ咖之 間約為2Μ'時到—小時左右。形;成的時 壓力.約為-大氣壓。製程4 20的環境 有機介電材料以及溫度盘時二、:間取決於所欲沉積的 度愈低’所需薄膜沉積的時間也』愈長例如製程環境的溫 *第三圖二的出光效率。 形成兩個開口 &分二^有機介電層2。上 ―丨製程在該有機介電層二暴: 12 200924234 口,將開口底下的電極暴露出來,俾使利於進行之後的打 線封裝或是覆晶封裝的後端製程。一般的微影與蝕刻製程 包含光阻塗佈,軟烤,曝光,顯影,硬烤,蝕刻,去光阻 等步驟。在蝕刻的步驟中,可以選擇濕蝕刻或是乾蝕刻, 而蝕刻劑的選擇取決於有機介電材料的選取。 雷射二極體與發光二極體之間的主要差異在於雷射二 極體有共振腔,可以選擇將某一頻率之單一偏向的光束放 大後激發輻射出來。本發明應用在發光二極體的方式與應 用在雷射二極體的方式是類似的。 ' 在薄膜電晶體液晶顯不器中’薄膜電晶體形成之後也 會形成一鈍化層將薄膜電晶體與彩色濾鏡包覆。同樣地, 這層鈍化層亦可以使用本發明之有機介電材料。主要選擇 在可見光頻譜範圍的透光性佳,適合液晶顯示器面板的後 端製程均可。 至於其它的光電元件,例如接收光訊號以產生電訊號 的電荷耦合裝置光感測器或是互補式金屬氧化物光感測 器,.基本上在半導體製程結束之後都會有鈍化層與以保護 之。本發明的有機介電材中,亦可選擇對某些頻率通透 性較佳的材料作為純化層。 本發明提供之有機材料作為保護半導體光電元件之鈍 化層。由於有機介電材料的形成可以使用低溫製程,例如 旋塗(spin-on coating)。除了有較少的熱預算之外並不 需要使用真空的反應室進行薄膜沉積。再者,沉積之後的 有機介電層可以使用一般的光學微影製程將需要的開口暴 200924234 露出來’與現行的製程皆相容。另外, 作為=2,在後端的製”鈍化料t^ 料 上,铁苴立非用㈣—士义本毛雖較佳實例闡明如 ^、㈣心限林發_神。在残離本 ⑽作之修改與類似的安排,均應包含在下^ 較佳實例, ::因此’闡明如上的本發明一 之各種改變。 本發明之精神與範圍内所作 圖式簡單說明 第—圖顯示-發光二極體的結構; 第 第 :::成一有機介電層塗佈在發光二極體結構上作 為鈍化層之結構示意圖;以及 稱上作 圖顯示在有機介電層 體的電極。 形成開口用以暴露出發光二極 【主要元件符號說明】 10 發光二極體 17 12 底材 電流分散層 14 15 η型導通之半導f 主動層 1層 18 19 η電極 Ρ電極 16 P型導通之半導骨 1層 20 22 純化層 開口 14Hetero-Junction structure "Single quantum we 11 structure" or multi-quantum well structure ° current dispersion layer 17 is mainly based on conductors with lower resistance. When the light-emitting surface is emitted therefrom, the current dispersion layer 17 must be a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (?0) or other transparent conductive material. The p-type electrode 18 generally needs to select a material that is in ohmic contact with the p-type conductive semiconductor layer 14, and the n-type electrode 19 needs to be selected to be in ohmic contact with the n-type conductive semiconductor layer 16 as shown in the second figure. An organic dielectric layer 20 is formed on the light-emitting diode 1 . It can be resin (ABS resin) 'epoxy resin, acrylic resin (P Xinjiang A), acrylonitrile butadiene styrene copolymer, polyether acrylate resin (polymerethy lmethacrylate) ) 'polysulfones' polyethersulfone' polyetherimides, polyimide, poly 200924234 酉 & 〇 amide imide (p〇lyamideimide), poly One of polyphenylene sul f ide or silicon-carbon thermosets, or a combination of the above. These materials can be directly spin-coated (spin_〇nc〇ating) on the photodiode 10. In so-called spin coating, Jingyou first forms the material into a liquid state, such as using a solvent or heating the material into a liquid state. The layer is then rotated and the liquid material is applied to the wafer. The high speed spinning of the continent wafer = ^ centrifugal force allows the material to be evenly distributed on the wafer. Here, the process of using photoresist coating. The organic dielectric layer 2 is formed at a low temperature and under -atmospheric pressure. The so-called low temperature process is compared to the blood gas image deposition method. In general, 5 (10)-warfare, and in the present invention, the organic dielectric material = between, and the preferred process temperature is about 15 mm. €; ^ Λ 之 之 约为 约为 约为 约为 约为 约为 约为 约为 约为 约为 约为 约为 约为Shape; the time pressure into the formation. About - atmospheric pressure. The environmental organic dielectric material of the process 4 20 and the temperature plate 2: the lower the degree of deposition required, the longer the time required for film deposition, the longer the temperature of the process environment, for example, the light extraction efficiency of the third embodiment . Two openings & two organic dielectric layers 2 are formed. The 丨 丨 process in the organic dielectric layer 2 storm: 12 200924234 mouth, expose the electrode under the opening, so that it is conducive to the subsequent wire package or flip chip package back-end process. Typical lithography and etching processes include photoresist coating, soft baking, exposure, development, hard baking, etching, and photoresist removal. In the etching step, wet etching or dry etching may be selected, and the choice of the etchant depends on the selection of the organic dielectric material. The main difference between a laser diode and a light-emitting diode is that the laser diode has a resonant cavity, and it is possible to selectively amplify a single-biased beam of a certain frequency to excite radiation. The manner in which the present invention is applied to a light-emitting diode is similar to the manner in which it is applied to a laser diode. A passivation layer is also formed after the formation of the thin film transistor in the thin film transistor liquid crystal display to coat the thin film transistor with the color filter. Similarly, the organic dielectric material of the present invention can also be used for this passivation layer. The main choice is good light transmission in the visible spectrum range, suitable for the rear end of the LCD panel. As for other optoelectronic components, such as a charge-coupled device photosensor that receives an optical signal to generate an electrical signal, or a complementary metal oxide photosensor, there is a passivation layer and protection after the semiconductor process is completed. . In the organic dielectric material of the present invention, a material having a good permeability to some frequencies may be selected as a purification layer. The organic material provided by the present invention serves as a passivation layer for protecting a semiconductor photovoltaic element. Since the formation of the organic dielectric material can be carried out using a low temperature process such as spin-on coating. In addition to having a lower thermal budget, it is not necessary to use a vacuum chamber for thin film deposition. Furthermore, the deposited organic dielectric layer can be exposed to the desired process using a conventional optical lithography process. In addition, as =2, on the back end of the system "passivation material t ^ material, iron 苴 非 ( 四 四 四 四 四 四 四 四 四 四 四 四 — — — 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 虽 较佳 较佳Modifications and similar arrangements are intended to be included in the preferred embodiments, and thus, the various modifications of the invention as set forth herein are set forth. The structure of the polar body; the first::: a schematic diagram of the organic dielectric layer coated on the light-emitting diode structure as a passivation layer; and the upper electrode shown in the organic dielectric layer. Exposure of the light-emitting diode [Main component symbol description] 10 Light-emitting diode 17 12 Substrate current dispersion layer 14 15 η-type conduction semi-conducting f Active layer 1 layer 18 19 η electrode Ρ electrode 16 P-type conduction semi-conductive bone 1 Layer 20 22 purification layer opening 14

Claims (1)

200924234 十、申請專利範圍: 1. 一種半導體光電元件, 一底材; 一半導體層位於該底材上; 複數個②極位;^該半導體層上並連接到該半導體層; 一有機鈍化層韁芸兮坐道⑽ ^ . il4 ^ ^ 是瓜忒丰蛉體層並露出該複數個電極, 该有機鈍化層係用以伴雄兮主 1示°又σ亥半導體光電元件。 、2:如中明專利範圍第}項之半導體光*元件,其 述之半導體層聽電能㈣成光能。 、 电月&amp; …3:、如申明專利範圍第1項之半導體光電元件,其中上 述之半導體層係將光能轉換成 4. 如申請專利範圍帛1項之半導體光電元件,其中上 述之底材為金屬,藍寶石,矽,碳化矽,砷化鎵,或是以 氮化鎵為主的三五族半導體化合物之其中之一。 5. 如申請專利範圍第1項之半導體光電元件,其中上 述之有機鈍化層的材質為樹脂(ABS resin),環氧樹脂 (epoxy) ’壓克力樹脂(PMMA),丙烯腈丁烯苯乙烯共聚合 物(acrylonitrile butadiene styrene copolymer),聚 甲基丙稀酸曱脂(polymerethylmethacrylate),聚石风物 (polysulfones)’ 聚醚石风物(polyethersulfone),聚醚 酿亞胺(polyetherimides),聚酿亞胺(polyimide)’ 聚 酸胺酸亞胺(polyamideimide )’聚曱苯硫化物 (polyphenylene sulfide ),碳石夕熱固型化合物 200924234 « 1 (silicon-carbon thermosets)其中之一。 6. 如申請專利範圍第1項之半導體光電元件,其中上 述之有機鈍化層的形成溫度為室溫到450°C。 7. 如申請專利範圍第6項之半導體光電元件,其中上 述之有機純化層的形成時間為二十小時到·~~小時。 8. 如申請專利範圍第1項之半導體光電元件,其中上 述之有機鈍化層的形成溫度為150°C到250°C。 9. 如申請專利範圍第1項之半導體光電元件,其中上 述之有機鈍化層的形成溫度為80°C到25(TC、 10. 如申請專利範圍第1項之半導體光電元件,其中 上述之有機鈍化層的折射係數約在1-2. 33之間。 11. 一種發光二極體,包含: 一底材; 一半導體二極體結構位於該底材上;以及 一有機鈍化層覆蓋住該半導體二極體結構。 12·如申請專利範圍第π項之發光二極體,其中上述 之底材為金屬’藍寶石,矽鍺,碳化矽,磷化鎵,砷化鎵, 或是以氮化鎵為主的三五族半導體化合物之其中之一。 13.如申請專利範圍第11項之發光二極體,其中上述 之有機鈍化層的材質為樹脂(ABS resin ),環氧樹脂 (epoxy) ’壓克力樹脂(PMMA),丙烯腈丁烯苯乙烯共聚合 物(acrylonitrile butadiene styrene copolymer),聚 曱基丙烯酸曱脂(p〇lymerethylmethacrylate),聚石风物 (polysulfones)’ 聚醚石风物(polyethersulfone),聚醚 16 200924234 » I 醯亞胺(poiyetherimides),聚醯亞胺(polyimide),聚 西1^月女酸亞胺(polyamideimide ),聚曱苯硫化物 (polyphenylene sulfide ),碳矽熱固型化合物 (silicon-carbon thermosets)其中之一。 14·如申請專利範圍第11項之發光二極體,其中上述 之有機鈍化層的形成溫度為室溫到450°C。 15. 如申請專利範圍第丨丨項之發光二極體,其中上述 之有機鈍化層的形成時間為二十小時到一小時。 16. 如申請專利範圍第丨丨項之發光二極體,其中上述 之有機鈍化層的形成溫度為150°C到25(TC。 17. 如申請專利範圍第11項之發光二極體,其中上述 之有機鈍化層的形成溫度為8(TC到250〇C。 18. 如申請專利範圍第丨丨項之發光二極體,其中上述 之有機鈍化層的折射係數約在丨—2· 33之間。 19. 一種發光二極體,包含: 一底材; -一 p型導通之半導體層位於該底材上; 一主動層位於該p型導通之半導體層上; 一 η型導通之半導體層位於該主動層上;以及 一有機鈍化層覆蓋住該η型導通之半導體層,其中上 述之有機鈍化層的材質為樹脂(ABS resin),環氧樹脂 (epoxy),壓克力樹脂(ρΜ·),丙烯腈丁烯苯乙烯共聚合 物(aCryl0nitrile butadiene styrene 聚 甲基丙烯酸曱脂(polymerethylmethacrylate),聚讽物 200924234 ^polysuifones),聚醚砜物(p〇lyethersulf〇ne),聚_ 亞胺(p〇lyetherimides),聚醯亞胺(p〇lyimide),聚 醯胺fe亞胺(p〇lyamideimide ),聚甲苯硫化物 (P〇lyPhenylene sulfide ),碳矽熱固型化合物 silicon-carbon thermosets)其中之一。 20.如申請專利範圍帛19項之發光二極體,其中上述 之二====-,”上述 之有:鈍化I二=::二::光一其中上述 如申s月專利範圍第19頂之私古〜μ辨甘+ 之,層的形成溫度為丨^ 之,: = 極體’以上述 之有機鈍= 極體,其中上述200924234 X. Patent application scope: 1. A semiconductor photovoltaic element, a substrate; a semiconductor layer on the substrate; a plurality of 2 pole positions; ^ the semiconductor layer is connected to the semiconductor layer; an organic passivation layer The squat (10) ^ il4 ^ ^ is the body layer of the 忒 忒 并 and exposes the plurality of electrodes, which are used to accompany the male and female elements. 2: The semiconductor light* element of the Chinese patent scope, the semiconductor layer listening to electrical energy (4) into light energy. , the semiconductor photo-electric component of claim 1, wherein the semiconductor layer converts light energy into 4. The semiconductor photovoltaic component of claim 1 of the patent application, wherein the above-mentioned bottom The material is metal, sapphire, tantalum, tantalum carbide, gallium arsenide, or one of the three or five semiconductor compounds based on gallium nitride. 5. The semiconductor photovoltaic element according to claim 1, wherein the organic passivation layer is made of resin (ABS resin), epoxy (PMMA), acrylonitrile butylene styrene. Acrylonitrile butadiene styrene copolymer, polymerethylmethacrylate, polysulfones' polyethersulfone, polyetherimides, polytetramine (polyimide) 'polyamideimide' polyphenylene sulfide, carbon stone thermosetting compound 200924234 « 1 (silicon-carbon thermosets) one of them. 6. The semiconductor photovoltaic device of claim 1, wherein the organic passivation layer is formed at a temperature of from room temperature to 450 °C. 7. The semiconductor photovoltaic device according to claim 6, wherein the organic purification layer is formed in a time period of twenty hours to ~~ hours. 8. The semiconductor photovoltaic device of claim 1, wherein the organic passivation layer is formed at a temperature of from 150 ° C to 250 ° C. 9. The semiconductor photovoltaic device according to claim 1, wherein the organic passivation layer is formed at a temperature of 80 ° C to 25 (TC, 10. The semiconductor photovoltaic device according to claim 1 of the patent application, wherein the organic The refractive index of the passivation layer is between about 1-2. 33. 11. A light-emitting diode comprising: a substrate; a semiconductor diode structure on the substrate; and an organic passivation layer covering the semiconductor Diode structure. 12. The light-emitting diode of the πth item of the patent application, wherein the substrate is metal 'sapphire, germanium, tantalum carbide, gallium phosphide, gallium arsenide, or gallium nitride. One of the main tri-five semiconductor compounds. 13. The light-emitting diode of claim 11, wherein the organic passivation layer is made of resin (ABS resin) or epoxy resin (epoxy). Acrylic resin (PMMA), acrylonitrile butadiene styrene copolymer, p〇lymerethylmethacrylate, polysulfones' polyether stone (polyethersulfone), polyether 16 200924234 » I poiyetherimides, polyimide, polyimide, polyphenylene sulfide, carbon strontium A light-emitting diode according to the eleventh aspect of the invention, wherein the organic passivation layer is formed at a temperature of from room temperature to 450 ° C. The illuminating diode of the ninth aspect of the invention, wherein the organic passivation layer is formed in a time period of from twenty to one hour. 16. The light-emitting diode according to claim </ RTI> wherein the organic passivation The formation temperature of the layer is from 150 ° C to 25 (TC. 17. The light-emitting diode of claim 11, wherein the organic passivation layer is formed at a temperature of 8 (TC to 250 ° C. 18. The light-emitting diode of the third aspect of the invention, wherein the organic passivation layer has a refractive index of about 丨-2·33. 19. A light-emitting diode comprising: a substrate; - a p-type conduction Semiconductor layer An active layer is disposed on the p-type conductive semiconductor layer; an n-type conductive semiconductor layer is disposed on the active layer; and an organic passivation layer covers the n-type conductive semiconductor layer, wherein the organic layer The passivation layer is made of resin (ABS resin), epoxy resin, acrylic resin (ρΜ·), acrylonitrile butylene styrene copolymer (acryl0nitrile butadiene styrene polyethyl methacrylate (polymerethylmethacrylate), Polyartis 200924234 ^polysuifones), polyethersulfone (p〇lyethersulf〇ne), poly-imine (p〇lyetherimides), polyethylenimine (p〇lyimide), polyamidofemine (p〇lyamideimide) ), one of polystyrene sulfide (P〇lyPhenylene sulfide), carbon-carbon thermosets). 20. For example, the illuminating diode of claim 19, wherein the above two ====-, "the above is: passivation I two =:: two:: light one of which is the above-mentioned patent range of the s month The top of the private ~ ~ discrimination +, the formation temperature of the layer is 丨 ^, : = polar body 'with the above organic blunt = polar body, which above
TW96145554A 2007-11-30 2007-11-30 Semiconductor photoelectric element and light emitting diode made thereof TW200924234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96145554A TW200924234A (en) 2007-11-30 2007-11-30 Semiconductor photoelectric element and light emitting diode made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96145554A TW200924234A (en) 2007-11-30 2007-11-30 Semiconductor photoelectric element and light emitting diode made thereof

Publications (1)

Publication Number Publication Date
TW200924234A true TW200924234A (en) 2009-06-01

Family

ID=44728931

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96145554A TW200924234A (en) 2007-11-30 2007-11-30 Semiconductor photoelectric element and light emitting diode made thereof

Country Status (1)

Country Link
TW (1) TW200924234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015000938B4 (en) * 2014-02-24 2020-01-09 Osram Opto Semiconductors Gmbh laser diode chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015000938B4 (en) * 2014-02-24 2020-01-09 Osram Opto Semiconductors Gmbh laser diode chip
US11695251B2 (en) 2014-02-24 2023-07-04 Osram Oled Gmbh Laser diode chip having coated laser facet

Similar Documents

Publication Publication Date Title
US7943942B2 (en) Semiconductor light-emitting device with double-sided passivation
CN102067346B (en) Semiconductor light-emitting device with passivation layer and manufacture method thereof
WO2010101332A1 (en) Light-emitting device
US7563711B1 (en) Method of forming a carbon nanotube-based contact to semiconductor
US8816383B2 (en) High performance light emitting diode with vias
TW201238084A (en) Semiconductor light emitting device and method for manufacturing same
WO2008093880A1 (en) Semiconductor device and method for manufacturing the same
CN111628035A (en) Photoelectric detector and preparation method thereof
CN114256391A (en) Manufacturing method of display substrate, display substrate and display device
JP2013034010A (en) Vertical light-emitting device
TW201432945A (en) High performance light emitting diode with vias
CN102067340B (en) Semiconductor light-emitting device with passivation in p-type layer
CN101452978A (en) Semiconductor photoelectric component
TW200924234A (en) Semiconductor photoelectric element and light emitting diode made thereof
CN110600990B (en) GaN-based laser based on flexible substrate and HEMT device transfer preparation method
JP2013004674A (en) Ultraviolet light-receiving element and manufacturing method therefor
KR20090083637A (en) Semiconductor photo-electronic device and light emitting diode made of the same
CN209766421U (en) Nano-hole LED array chip with anti-reflection passivation layer
JP2000124502A (en) Semiconductor light-emitting element and manufacture thereof
JP2009152229A (en) Semiconductor photoelectric component and light-emitting diode forming same
CN108649095A (en) Field-effect tube structure photoelectric device and preparation method thereof based on nano-crystal structure carbon film
CN217588966U (en) Light-emitting diode
TW201039464A (en) Light-emitting device
JP5706209B2 (en) Semiconductor ultraviolet light receiving element and manufacturing method thereof
US20240030397A1 (en) Optoelectronic semiconductor component and production method