TW200924228A - Polarized light emitting device - Google Patents

Polarized light emitting device Download PDF

Info

Publication number
TW200924228A
TW200924228A TW96144420A TW96144420A TW200924228A TW 200924228 A TW200924228 A TW 200924228A TW 96144420 A TW96144420 A TW 96144420A TW 96144420 A TW96144420 A TW 96144420A TW 200924228 A TW200924228 A TW 200924228A
Authority
TW
Taiwan
Prior art keywords
light
layer
photonic crystal
polarized light
emitting element
Prior art date
Application number
TW96144420A
Other languages
Chinese (zh)
Inventor
Han-Tsung Hsuen
Chia-Hsin Chao
Chun-Feng Lai
Wen-Yung Yeh
Jim-Yong Chi
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96144420A priority Critical patent/TW200924228A/en
Priority to US12/265,123 priority patent/US8378567B2/en
Publication of TW200924228A publication Critical patent/TW200924228A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A polarized light emitting device includes a substrate and a semiconductor stack structure. The semiconductor stack structure is disposed on the substrate, having at least a first region and a second region. The second region has a photonic crystal structure. The first region generates a light source. After the light source travels through the photonic crystal structure, a polarized light is produced.

Description

200924228 rjlοι w 25805twf.doc/π 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種可以發出偏極化光的發光元件。 【先前技術】 在需要極化光源之光學系統之中,為了能讓一般非極 化光源在控制单一極化光的元件處得以受到控制,必需在 光學設計當中加入極化轉換器’使得光源具有特定極化方 P 向,但是這在光學系統的設計上不但佔空間,而且光源在 經過極化轉換之後只會有一半的光被控制單一極化光的元 件所利用。 另外的傳統技術也有利用光子晶體來產生偏極光。— 般是在發光二極體中設置一橢圓形的孔洞之光子晶體 (photonic crystal)結構層。圖1繪示傳統的光子晶體結構分 佈示意圖。參閱圖1,光子晶體結構會有一些光子晶體分 佈圖案100a、100b、100c,而每一個光子晶體的橫截面的 形狀是橢圓。由於此光子晶體結構會依入射光偏極方向的 ϋ 不同而穿透或反射,藉此穿透此光子晶體結構的光即具有 極化光的特性。因此,當在光子晶體結構層下面的發光層 發光後,光線會因其本身的極化方向的不同而被光子晶體 結構層反射或穿透。穿透的光會具有偏極特性。被反射的 光在遇到反射層而反射後,會再次從光子晶體結構層穿透 而重複循環使用。橢圓形之光子晶體孔洞再加上發光二極 體晶粒中的反射層形成光循環機制,使得發出的光具有極 化的特性。 200924228 rDiyounsiw 25805twf.doc/n 然而,業者仍繼續研發具有偏極化效應的發光元件, 尋求各種不同的設計。 【發明内容】 本發明供一種極化的發光元件,包括一基板以及一 發光半導體堆疊結構。半導體堆疊結構在基板上,有至少 第一區域與一第二區域,其中第二區域有一光子晶體結 構,第一區域產生一光源,該光源行經該光子晶體結構後 Γ 產生一極化光。 本發明提供一種極化的發光元件,包括一基板以及一 半導體堆疊結構。半導體堆疊結構在基板上,有多個條狀 區域,其中在這些條狀區域之間有至少一光子晶體結構。 虽被產生的一光源行經一段波導結構而到達光子晶體結構 後,會被取出且具有極化特性。 本發明提供一種極化的發光元件,包括一基板以及一 ^導,堆疊結構。半導體堆疊結構在基板上,有至少一個 犬出區塊層。突出區塊層上有一光子晶體結構。當被產生 〇 的一光源行經光子晶體結構後產生一極化光。 一本發明提供一種極化的發光元件,包括一基板以及一 半導體堆疊結構。半導體堆疊結構在基板上,有多個突出 區,層構成-陣列分佈,每一個突出區塊層上有一光子晶 體、’°構°當被產生的一光源行經光子晶體結構後轉變為一 極化光。 為讓本發明能更明顯易懂,下文特舉實施例,並配合 所附圖式,做詳細說明如下。 200924228 FMyt,uii81W 25805twf.doc/n 【實施方式】200924228 rjlοι w 25805twf.doc/π IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element that can emit polarized light. [Prior Art] Among optical systems that require a polarized light source, in order to allow a general non-polarized light source to be controlled at a component that controls a single polarized light, it is necessary to incorporate a polarization converter in the optical design so that the light source has The specific polarization is in the P direction, but this not only occupies space in the design of the optical system, but only half of the light after the polarization conversion is utilized by the elements that control the single polarized light. Another conventional technique also utilizes photonic crystals to produce polarized light. — A photonic crystal structure layer in which an elliptical hole is provided in the light-emitting diode. Fig. 1 is a schematic view showing the structure distribution of a conventional photonic crystal structure. Referring to Fig. 1, the photonic crystal structure has some photonic crystal distribution patterns 100a, 100b, 100c, and the cross-sectional shape of each photonic crystal is elliptical. Since the photonic crystal structure penetrates or reflects depending on the ϋ of the incident light polarization direction, the light penetrating the photonic crystal structure has the characteristics of polarized light. Therefore, when the luminescent layer under the photonic crystal structure layer emits light, the light is reflected or penetrated by the photonic crystal structure layer due to its own polarization direction. The transmitted light will have a polar characteristic. The reflected light, after being reflected by the reflective layer, is again penetrated from the photonic crystal structure layer and repeatedly recycled. The elliptical photonic crystal hole plus the reflective layer in the luminescent diode crystal forms a photo-circulation mechanism that causes the emitted light to have an extremely characteristic property. 200924228 rDiyounsiw 25805twf.doc/n However, the industry continues to develop light-emitting components with polarization effects, seeking a variety of different designs. SUMMARY OF THE INVENTION The present invention provides a polarized light-emitting element comprising a substrate and a light-emitting semiconductor stack structure. The semiconductor stack structure has at least a first region and a second region on the substrate, wherein the second region has a photonic crystal structure, and the first region generates a light source, and the light source passes through the photonic crystal structure to generate a polarized light. The present invention provides a polarized light-emitting element comprising a substrate and a semiconductor stacked structure. The semiconductor stack structure has a plurality of strip regions on the substrate, wherein at least one photonic crystal structure is between the strip regions. Although a light source that is generated passes through a waveguide structure to reach the photonic crystal structure, it is taken out and has polarization characteristics. The present invention provides a polarized light-emitting element comprising a substrate and a stacked, stacked structure. The semiconductor stack structure has at least one canine exit block layer on the substrate. There is a photonic crystal structure on the protruding block layer. A polarized light is generated when a light source that is generated by 行 passes through the photonic crystal structure. One invention provides a polarized light-emitting element comprising a substrate and a semiconductor stack structure. The semiconductor stack structure has a plurality of protruding regions on the substrate, and the layers are formed-arrayed. Each of the protruding block layers has a photonic crystal, and the '° structure is converted into a polarization when the generated light source passes through the photonic crystal structure. Light. In order to make the present invention more apparent, the following detailed description of the embodiments and the accompanying drawings are set forth below. 200924228 FMyt,uii81W 25805twf.doc/n [Embodiment]

^發明提出了-種具極化特性的發光元件,例如可以 ^毛光兀件應用在需要極化光源之光學系統中。發光元 件的極化光可以直接使用,不需使用極化轉卿。又或者, 此具極化雜的發技件在搭配極化賴驗科,可讓 光源的損耗大幅的降低。以下舉—些實施例做為本發明的 描述、,但疋本發财纽於所舉實施例,且所舉實施例相 互做適當的結合,無須限制於個別的單一實施例。 本發明可以利用波導結構、平台結構與光子晶體結構 的設計來制極化Μ。此具有極化雜之發光元件,例 如可以應用在投影顯示等相關範圍。 本發明提出一種具極化出光之發光元件,包含電極、 光子晶體及波導結構之配置。根據發航件之波長設計波 ‘結構的大小、形狀及光子晶體之週期、半徑、深度、晶 格與排列方式’同時配合電極輯控制發光區域,以及調 變半導體堆疊結構之厚度和位置,達成發光元件之出光具 有極化特性。 關於光子晶體的設計,本發明針對光子晶體的特性做 更深入的研究發現,光子晶體的晶格結構與入射光的方向 會與取光的強度有關。圖2繪示依據本發明實施例,光子 晶體結構與入射光方向,對應]^=2π/λ)空間的座標示意 圖。參閱圖2’光子晶體結構是由多個光子晶體11〇所& 成,例如組成六重對稱的晶格112。經研究得知,如入射 的平面光106是在晶格的!^]^方向,則從光子晶體結構上 200924228 F51 y 6ϋ 1181 W 25805twf.doc/n 方取光的強度會最大。 圖3繪示光入射角度與光偏極化程度的驗證示意圖。 參閱圖3 ’以一個ΓΜ方向做為〇度,則入射光在〇度與 30度的方向會具有明顯的取光效果。由於光線在經過一段 波導之後會使得光線接近於平面波,且被產生的一光源為 ΤΕ模悲為主,因而促使光線的極化方向因垂直於光線的傳 播方向而排列一致’故入射光在〇度與3〇度的方向進行強 烈的取光之後會使出光具有明顯的極化效果。本發明也藉 此機制設計出偏極化的發光元件,例如是偏極化的發二 極體元件。 Χ 圖4繪示依據本發明實施例,依照波導方式的極化的 發光元件的發光機制示意圖。參閱圖4,對於發光區域U4 的發光源118,其發出的光被橫向導引進入有光子晶體結 構122的區域116。又例如可以再設置一反射層12〇,避^ 光外漏,也允許這部分的光再重複使用。從光子晶體結構 ϋ 122上方取出的光會有偏極化的效應。圖5 ♦示平面光的 產生機制。由於紐光源118發出,行經—段距離後會變 成平面光124。此平面光124如前述的機制藉由光子 結構122的侧’祕域116的上方取得的光會有偏極化 效果。 —圖6料依縣發明—實關,波導方式_化的 以牛立體不賴。參關6,以下描述較具體的極化^ 光兀件’包括-基板200、—半導體堆疊結構2〇2、二 電極層206以及-第二電極層施。半導體堆疊 200924228 〇iy〇uu«i w 25805twf.doc/n 在基板200上,有至少第一區域與第二區域。 域有一光子晶體結構212。第二電極層與第—雷太 '" 應,構成-發光元件。於本實施例例如:第二電極層^目, 共用的’與兩個第—電極層2〇6構成兩個發光單^疋 且第一區域具有發光單元210。 圖7綠示在圖6中沿著W的剖面的結構示意圖。灸 閱圖7 ’本實施例的半導體堆疊結構2〇2,例如是 二 極體的結構,包含有主動發光層222、第—導電型半^ ^ 22〇與第二導電型半導體層Μ4之堆疊結構。第—導電^ 體層220例如是n導電型半導體層,第二導電 = c. 型轉體層。又反之,第—導電型也可以日是^ 導迅型則第—導電型是n導電型。在對應的導電型上各且 其對應之電極206與2G8。此對應之電極可位於發光元件晶= 之同面或獨面,主動發綠位於η型半導體與p型半^ 間電仇由電極注入後使得主動發光層發光。半導體堆最 形成於基板勘上,其材料例如可為ffi v族或細咖 成’例如n-GaN與p-GaN等半導體材料。基板2〇〇的材料 以例如疋賴、金屬、藍寶石㈣水晶、Sd GMs、 GaP或是A1N等,不限定於特定的材料。 另外半V體堆豐結構202之上也可以有歐姆接 電極層施與第二導電型半導體層奴之間。電“ 半導體堆疊結構202的第一導電型半導體層22〇上。 2 ^由電極豸206與208施加適當的順向偏壓就可以使 X 一―極體發出光’而被波導結構228引導向光子晶體結 200924228 «lyfXJUSiW 25805twf.doc/n 構 212。 、光子晶體結構212 ’例如對半導體堆疊結構2〇2形成 凹洞。其例如藉由微影餘刻的方式形成。波導結構228有 波導方向230,使光朝向光子晶體結構212。本實施例的電 極層208例如與兩侧的電極層2〇6共用,分別構成一發光 元件’可以增加取光量。 對於製造上,例如在基板勘上形成具有η__22〇、 主動發光層222與P-GaN 224之蟲晶結構,n_GaN 22()到基板 2〇〇的距離小於p_GaN224職板2〇〇的距離,主動發光層孤 位=n-GaN 220與P-GaN 224之間。在p_GaN 224上可以藉由 化學氣相沉積(chemical vapor depositi〇n,CVD)的方式製彳$一 層材料’例如是SiOx或SiNx #,接_影製程包括將光阻 塗佈於此_上讀’听涉式、軒束微影或黃光微影 之方式在裇之帽作出光子晶__。接下來彻侧的 方式將光子晶體關案由光阻轉移至化學氣相沉積所製作之The invention proposes a light-emitting element having a polarization characteristic, for example, which can be applied to an optical system requiring a polarized light source. The polarized light of the illuminating element can be used directly without the use of polarization. Or, the polarized hair piece is matched with the polarization test, which can greatly reduce the loss of the light source. The following examples are given to illustrate the invention, but the invention is not limited to a single single embodiment, and the embodiments are appropriately combined with each other. The present invention can utilize the design of the waveguide structure, the platform structure and the photonic crystal structure to produce a polarization enthalpy. This polarized light-emitting element can be applied, for example, to a related range such as a projection display. The invention provides a light-emitting element with polarized light, comprising an electrode, a photonic crystal and a waveguide structure. According to the wavelength of the launching member, the size, shape and period, radius, depth, lattice and arrangement of the photonic crystal are simultaneously designed to control the light-emitting area and the thickness and position of the semiconductor stack structure. The light emitted from the light-emitting element has polarization characteristics. Regarding the design of photonic crystals, the present invention has made intensive research on the characteristics of photonic crystals, and found that the lattice structure of the photonic crystal and the direction of the incident light are related to the intensity of the light extraction. 2 is a schematic diagram showing coordinates of a photonic crystal structure and an incident light direction corresponding to a space of [^=2π/λ) according to an embodiment of the present invention. Referring to Fig. 2', the photonic crystal structure is composed of a plurality of photonic crystals 11, for example, a hexagonal symmetry lattice 112. It has been found that the incident plane light 106 is in the lattice! ^]^ direction, from the photonic crystal structure 200924228 F51 y 6ϋ 1181 W 25805twf.doc/n The intensity of the light taken by the square will be the largest. FIG. 3 is a schematic diagram showing the verification of the angle of incidence of light and the degree of polarization of light. Referring to Figure 3, as a twist in the direction of the ΓΜ, the incident light will have a significant light extraction effect in the direction of the twist and 30 degrees. Since the light passes through a waveguide, the light is close to the plane wave, and the generated light source is dominated by the mode, so that the polarization direction of the light is aligned according to the direction perpendicular to the direction of propagation of the light. A strong light extraction with a degree of 3 degrees will give the light a significant polarization effect. The present invention also uses this mechanism to design a polarized light-emitting element, such as a polarized hair-emitting diode element. 4 is a schematic diagram showing the illumination mechanism of a polarized light-emitting element according to a waveguide mode according to an embodiment of the invention. Referring to Figure 4, for illumination source 118 of illumination region U4, the light it emits is laterally directed into region 116 having photonic crystal structure 122. For example, a reflective layer 12 can be further disposed to avoid leakage of light, and this portion of the light is allowed to be reused. Light taken from above the photonic crystal structure ϋ 122 has a polarization effect. Figure 5 ♦ shows the generation mechanism of planar light. Since the neon light source 118 is emitted, it will become planar light 124 after passing through the segment distance. This planar light 124 has a polarization effect by the light obtained above the side ' secret region 116 of the photonic structure 122 as previously described. - Figure 6 is expected to be invented by the county - the real way, the way of the waveguide _ the use of cattle is not bad. Referring to Fig. 6, a more specific polarization device hereinafter includes a substrate 200, a semiconductor stack structure 2, a second electrode layer 206, and a second electrode layer. Semiconductor stack 200924228 〇iy〇uu«i w 25805twf.doc/n On the substrate 200, there are at least a first region and a second region. The domain has a photonic crystal structure 212. The second electrode layer and the first - thunder '" should constitute a light-emitting element. In the present embodiment, for example, the second electrode layer, the common 'and the two first electrode layers 2'6 constitute two light-emitting units, and the first region has the light-emitting unit 210. Fig. 7 is a green schematic view showing a section along W in Fig. 6. FIG. 7 is a semiconductor stacked structure 2〇2 of the present embodiment, for example, a diode structure including a stack of an active light-emitting layer 222, a first conductive type semiconductor layer, and a second conductive type semiconductor layer Μ4. structure. The first conductive layer 220 is, for example, an n-conductive semiconductor layer, and a second conductive = c.-type rotating layer. On the other hand, the first conductivity type can also be a conduction type, and the first conductivity type is an n conductivity type. The corresponding electrodes 206 and 2G8 are on the corresponding conductivity type. The corresponding electrode may be located on the same side or on the side of the light-emitting element crystal, and the active green light is implanted in the n-type semiconductor and the p-type half-energy electrode to cause the active light-emitting layer to emit light. The semiconductor stack is most preferably formed on a substrate, and the material thereof may be, for example, a ffi v group or a fine semiconductor material such as n-GaN and p-GaN. The material of the substrate 2 is not limited to a specific material, for example, a metal, a sapphire crystal, Sd GMs, GaP, or A1N. Alternatively, an ohmic electrode layer may be applied over the second V-body stack structure 202 to the second conductivity type semiconductor layer slave. Electrically "on the first conductive semiconductor layer 22 of the semiconductor stacked structure 202. 2^ by applying appropriate forward bias voltages to the electrodes 206 and 208, the X-pole emits light" and is guided by the waveguide structure 228. Photonic crystal junction 200924228 «lyfXJUSiW 25805twf.doc/n structure 212. The photonic crystal structure 212', for example, forms a recess for the semiconductor stacked structure 2〇2. It is formed, for example, by lithography. The waveguide structure 228 has a waveguide direction. 230, the light is directed toward the photonic crystal structure 212. The electrode layer 208 of the present embodiment is shared, for example, with the electrode layers 2?6 on both sides, respectively forming a light-emitting element' to increase the amount of light taken. For manufacturing, for example, in the substrate formation Having a worm crystal structure of η__22〇, active light-emitting layer 222 and P-GaN 224, the distance from n_GaN 22() to substrate 2〇〇 is less than the distance of 2p of p_GaN224, active light layer parity = n-GaN 220 and Between P-GaN 224. On p_GaN 224, a layer of material can be fabricated by chemical vapor deposition (CVD), such as SiOx or SiNx #, and the photoresist process includes photoresist. Coated here_ Read 'Listen interferometric Xuan beam lithography or photolithography photonic crystals made in the manner of a cap-shirts __ Next Toru embodiment photonic crystal side off the cause of action to resist the transfer of a chemical vapor deposition produced

材料中後,再經過侧將此_轉移至GaN之堆疊姓構中, 此賴製程可以齡主動發光層222或不辦主動發光層 222於疋發光二極體中形成光子晶體結構Μ?,光子晶體區 域f橫向方向的長度例如為9G微米。最後在卜⑽與n-㈣ 上分別製作p型塾與n型墊做為電極層施與测。而在光阻 之=製作出光子晶體的圖案時’可以利用I光微影的方式預留 所需之Ρ電極的區域’此區域不做光子晶體,並且在ρ電滅 PGaN間’也例如形成一透明歐姆接觸層226,如NiO或Ni/Au 等之材料。 200924228 P51%U118TW 25805twf.doc/n p電極206下方之主動發光層222發光後,由於介面折射 率不同導致光線反射的緣故,而使光線在磊晶結構或基板中形 成波導模支持波導模態傳播之磊晶結構或基板即為波導結 構228。若將光子晶體製作於基板中,則基板中的波導模態可 被光子晶體取出,由於主動發光層222發出的光多為TE模 悲,在波導結構中沿橫軸(y軸)傳播之光線的偏極方向皆在x 軸上(TEx light),當此光線傳播至光子晶體區域時,光子晶體 、 會將光線取出並維持其原來X轴上之極化方向,因而使得此發 光二極體具有偏極化之特性。 又,光子晶體結構212的晶格圖案例如可以包含四重 對稱、六重對稱、矩形晶格、週期性排列結構、多重週期 性排列結構、準週期性結構或非週期性結構。而光子晶體 結構212晶體單元的結構例如除了孔洞的結構,例如可以 疋柱狀、錐狀、連續凹凸狀、不連續凹凸狀或結合其中幾 種之一結構。晶體單元的橫截形狀可以是多邊形、圓形或 是橢圓形等。 ’此外,為了提高發光面積以增加發光二極體之出光強度, 透明歐姆接觸層可延伸至光子晶體區域之p_GaN224表面。圖 8緣示健本發㈣-實關,極化的發光元件的剖面示意 圖。參閱圖8,本實施例的結構與圖7的結構相似,然而 ,姆接觸層226會延伸到光子晶體結構212的區域。換句話 既,光子晶體結構212的區域也會發光。再配合蟲晶結構厚度 與大小的wj· ’使彳于絲發光層只能發出具有特定極化方向的 模態的光,因此發光二減可發出高強度的偏極化光。 200924228 F^iyouniSiw 25805twf.doc/n 又’在設計上,波導結構中可存在的模態個數可以由幾個 參數決定。例如’對稱;;皮導結構的厚度為d時,在此波導結構 中可存在的模態個數為: M=2*(d/ λ 〇)*ΝΑ > λ〇為真空中光波長,ΝΑ為數值孔徑。 再者,為了提升波導的效應使得沿y軸傳播之光線增加, 在發光二極體當中可加入分佈布拉格反射鏡(DistributedAfter the material is transferred to the stacked structure of GaN through the side, the process can form the photonic crystal structure in the active light emitting layer 222 or the active light emitting layer 222 in the germanium light emitting diode. The length of the crystal region f in the lateral direction is, for example, 9 Gm. Finally, p-type germanium and n-type mats were fabricated on the electrodes (10) and n-(iv) as electrode layers. In the case where the photoresist = the pattern of the photonic crystal is produced, the area of the desired electrode can be reserved by means of I photolithography. This region does not make a photonic crystal, and is formed, for example, between ρ and PGaN. A transparent ohmic contact layer 226, such as NiO or Ni/Au. 200924228 P51%U118TW 25805twf.doc/np The active light-emitting layer 222 under the electrode 206 emits light, and the light reflects in the epitaxial structure or the substrate to form the waveguide mode to support the waveguide mode propagation. The epitaxial structure or substrate is the waveguide structure 228. If the photonic crystal is fabricated in the substrate, the waveguide mode in the substrate can be taken out by the photonic crystal. Since the light emitted by the active light-emitting layer 222 is mostly TE mode, the light propagates along the horizontal axis (y-axis) in the waveguide structure. The polarization direction is on the x-axis (TEx light). When this light propagates to the photonic crystal region, the photonic crystal will take out the light and maintain its polarization on the original X-axis, thus making the light-emitting diode Has the characteristics of polarization. Further, the lattice pattern of the photonic crystal structure 212 may include, for example, a quadruple symmetry, a sixfold symmetry, a rectangular lattice, a periodic alignment structure, a multiple periodic alignment structure, a quasi-periodic structure, or a non-periodic structure. The structure of the crystal unit of the photonic crystal structure 212, for example, in addition to the structure of the pores, for example, may be columnar, tapered, continuous uneven, discontinuous, or a combination of several of them. The cross-sectional shape of the crystal unit may be polygonal, circular or elliptical or the like. Further, in order to increase the light-emitting area to increase the light-emitting intensity of the light-emitting diode, the transparent ohmic contact layer may extend to the surface of the p-GaN 224 of the photonic crystal region. Fig. 8 shows the schematic diagram of the cross section of the polarized light-emitting element. Referring to Figure 8, the structure of this embodiment is similar to that of Figure 7, however, the contact layer 226 extends to the area of the photonic crystal structure 212. In other words, the area of the photonic crystal structure 212 also illuminates. Further, in combination with the thickness and size of the crystal structure, the light-emitting layer can emit only a mode light having a specific polarization direction, so that the light-emitting reduction can emit high-intensity polarized light. 200924228 F^iyouniSiw 25805twf.doc/n Also, in design, the number of modalities that can exist in a waveguide structure can be determined by several parameters. For example, 'symmetry; when the thickness of the sheath structure is d, the number of modes that can exist in the waveguide structure is: M=2*(d/ λ 〇)*ΝΑ > λ〇 is the wavelength of light in vacuum, ΝΑ is the numerical aperture. Furthermore, in order to increase the effect of the waveguide, the light propagating along the y-axis is increased, and a distributed Bragg mirror can be added to the light-emitting diode (Distributed)

Bragg Reflector ’ DBR)的結構。圖9繪示依據本發明另一實 施例,極化的發光元件的剖面示意圖。參閱圖9,在電極 206下方之主動發光層222發光後’DBR結構層232使得大多 數的光線皆沿y轴傳播’而沿y軸傳播之光線之偏極方向皆在 X轴上(TEx light)。當此光線傳播至光子晶體區域時,光子晶 體會將光線取出並維持其原來x軸上之極化方向,由於沿丫 軸傳播之光線增加’所以也提高發光二極體之偏極光的強度。 圖10綠示依據本發明一實施例,極化的發光元件的剖 面示意圖。參閱圖10’為了提高發光面積以增加發光二極體 之出光強度,可以使透明歐姆接觸層226延伸至光子晶體區域 之上層DBR結構層232之表面。此時,透明歐姆接觸層 下方之主動發光層222皆可發光。再配合磊晶結構厚度與大小 的設計,使得主動發光層只能發出具有特定極化方向的j莫態的 光,因此發光二極體可發出高強度的偏極化光。另外,在波導 相反方向的側面上可加入反射結構,如一具反射特性之光子曰 12 200924228 P51960118TW 25805twf.doc/n 體結構,藉此降低側面所散失的光線同時提高在波導方向上傳 播的光線。 本發明之發光一極體可以製作成例如較大發光面積的發 光源。圖11繪示依據本發明實施例,極化的發光元件立體示 意圖。參閱圖11 ’本實施例與前實施例不同的地方在於增加y 軸上電極的數目與縮減y軸上光子晶體區域寬度。The structure of Bragg Reflector ’ DBR). Figure 9 is a cross-sectional view showing a polarized light-emitting element in accordance with another embodiment of the present invention. Referring to FIG. 9, after the active light-emitting layer 222 under the electrode 206 emits light, the 'DBR structure layer 232 causes most of the light to propagate along the y-axis' and the polarization of the light propagating along the y-axis is on the X-axis (TEx light). ). When this light propagates into the photonic crystal region, the photonic crystal takes out the light and maintains its original polarization on the x-axis, and increases the intensity of the polarized light of the light-emitting diode due to the increase in light propagating along the 丫 axis. Figure 10 is a cross-sectional view showing a polarized light-emitting element in accordance with an embodiment of the present invention. Referring to Fig. 10', in order to increase the light-emitting area to increase the light-emitting intensity of the light-emitting diode, the transparent ohmic contact layer 226 may be extended to the surface of the layer DBR structure layer 232 above the photonic crystal region. At this time, the active light-emitting layer 222 under the transparent ohmic contact layer can emit light. Combined with the thickness and size of the epitaxial structure, the active light-emitting layer can emit only the light of the j-state with a specific polarization direction, so that the light-emitting diode can emit high-intensity polarized light. In addition, a reflective structure can be added to the side of the opposite direction of the waveguide, such as a photonic structure with reflection characteristics, thereby reducing the light scattered by the side surface and increasing the light transmitted in the waveguide direction. The light-emitting body of the present invention can be fabricated as a light source having a large light-emitting area, for example. Figure 11 is a perspective view of a polarized light-emitting element in accordance with an embodiment of the present invention. Referring to Fig. 11 'This embodiment differs from the previous embodiment in that the number of electrodes on the y-axis is increased and the width of the photonic crystal region on the y-axis is reduced.

O j 導的過程中,當光線進入光子晶體區域時,部份的 子晶體結獅di,因此’當光線持續地在光子域傳播 時,光子晶體結構會不斷將在波導結構中傳播的光取出,使得 光線傳播雜光_遠的地树,光子晶體結顧能取出的光 強度就會綱。因此’適t的設計光子晶體區域的大小與搭配 適當的電錄絲增加發絲射餅魏二鐘具有較佳 之極化出光強度。所以本實施例如具有兩個η電極細盘三個 Ρ = 2〇6,構成多個發光單元加。並且極施 ^ 子晶體結構212在y軸方向的長度例如為 了料=電6下方之主動發光層皆會發光,因此增 加了發先面積,此時由p電極傳播至n電極方向之大 二;=:二圖:15繪示依據本發明實施 在ΙΙ-ΙΙ的剖面結構。其與^第^閱圖12,圖12是圖11 與發光單元的數量作變化調敕 I的結構相似,但是尺寸 容易達到極化光源的需求面積與品質,進而更 延伸至光子晶體吐構212 4圖 透明歐姆接觸層226 構212。參閱圖14,其是增設DBR層232 13 200924228 P5196011STW 25S05twf.doc/n 的結構。參閱圖15’其例如是同時設置有〇]5尺層232以及將 透明歐姆接觸層226延伸至光子晶體結構212。 本發明也可以用平台結構的方式來設計發光元件。圖 16A-16B繪示平台結構的發光元件結構立體圖與上視圖。參閲 圖16A,平台式的極化的發光元件,包括一基板3〇〇、一半 導體堆疊結構304、-第-電極層3〇6以及_第二電極層 308。半導體堆疊結構3〇4形成於基板3〇〇上,其中包括一 f\ 犬出區塊層305所構成。突出區塊層305上有一光子晶體 結構310。第一電極層3〇6是在突出區塊層3〇5上。第二 電極層308在半導體堆疊結構304中的302上,且位於突 出區塊層305的一邊緣,與第一電極層3〇6才目對應構成一 發光元件312。突出區塊層3〇5也稱為平台⑦丨对免血 305。 以下,第一電極層306例如是以p電極為實施例,第 =電極層3〇8例如是n電極為實施例做說明。由半導體堆 且、’、α構的主動發光層所發出的光,會受到平台結構之導引與 I ㈣使得光線沿χ轴方向傳播。參酬16Β,當電流由電極 注入後’ρ電極306下方之主動發光層會發光,由於介面折射 係數不同’ ^致光線反射的緣故而使光線在平台結構中形 成波導模態。支持波導模態傳播之平台結構3〇5可包含蟲晶社 構或基板。若將光子晶體製胁基板巾,雌板㈣波導模態 可被光子晶體取出。在平台結構3G5中由於主動發光層32〇 發出的衫為TE模態,沿4傳播的麟其偏極方向皆在y 軸上(TEy light) ’當沿χ轴傳播的光線進人光?晶體區域 14 200924228 ^5iy6uii8iw 25805twf.d〇c/n ,子晶體會將光線取出並維持其原來丫軸上之極化方向,因而 ^了極體具有偏極化之特性。此外,更可藉由調變光 t曰曰體區域的大小(a與b)和形狀、光子晶體之結構、電極的 ^、(c與Φ和形狀與電極和光子晶體的相關位來提高發 先-歸之偏極化雜。例如每—辦自結射躲狀或截切 =錐狀’其尺寸例如寬度介於約5〜微米之間,長度介於约 〇=〇〇〇微米之間,高度約1G微米以下。實際的大小依 f、 而定。 此外’為了提高發光面積以增加發光二極體之出光強度, 如前述的機制,透明歐姆接觸層可延伸至光子晶體區域之 P-GaN表面。此時’透明歐姆接觸層下方之主動發光層皆可發 $ ’再配合平台結構3〇5之厚度、大小與形狀的設計,使得主 發光層只能發出具有特定極化方向的模態的光,因此發光二 ,體可發㈣強度的偏極化光。再者,為了提升波導的效應使 仔化X轴傳播之光線增加,在發光二極體當中可加入結 ,。由於P電極下方之主動發光層發光後,DBR結構使得: t數的光料沿X _播,而沿X祕播之級之偏極化方向During the process of O j , when the light enters the photonic crystal region, part of the sub-crystals are lion di, so 'when the light continues to propagate in the photon domain, the photonic crystal structure will continuously take out the light propagating in the waveguide structure. So that the light propagates stray light _ far away from the tree, the photon crystal can be taken out of the light intensity that can be taken out. Therefore, the size of the photonic crystal region of the design is appropriate and the appropriate electro-optic wire is added to increase the polarization of the hair-emitting cake. Therefore, the present embodiment has three η electrode thin disks of three Ρ = 2〇6, which constitute a plurality of light-emitting units. And the length of the electrode crystal structure 212 in the y-axis direction is, for example, for the active light-emitting layer under the material=electricity 6 to emit light, thereby increasing the area of the first light, and the second electrode is propagated from the p-electrode to the second-order of the n-electrode; =: Figure 2: Figure 15 shows the cross-sectional structure of the ΙΙ-ΙΙ according to the invention. FIG. 12 is similar to the structure of FIG. 11 and the number of light-emitting units is changed, but the size is easy to reach the required area and quality of the polarized light source, and further extends to the photonic crystal structure 212. 4 is a transparent ohmic contact layer 226 structure 212. Referring to Figure 14, the structure of the DBR layer 232 13 200924228 P5196011STW 25S05twf.doc/n is added. Referring to Figure 15', for example, a 5 ft layer 232 is provided and a transparent ohmic contact layer 226 is extended to the photonic crystal structure 212. The present invention can also design a light-emitting element in a platform structure. 16A-16B are a perspective view and a top view showing the structure of a light emitting element of a platform structure. Referring to Fig. 16A, a platform-type polarized light-emitting element includes a substrate 3, a half conductor stack 304, a -electrode layer 3〇6, and a second electrode layer 308. The semiconductor stacked structure 3〇4 is formed on the substrate 3, and includes an f\dog-out block layer 305. The protruding block layer 305 has a photonic crystal structure 310 thereon. The first electrode layer 3〇6 is on the protruding block layer 3〇5. The second electrode layer 308 is disposed on the 302 of the semiconductor stacked structure 304 and located at an edge of the protruding block layer 305 to form a light-emitting element 312 corresponding to the first electrode layer 3?. The protruding block layer 3〇5 is also referred to as the platform 7丨 for blood-free 305. Hereinafter, the first electrode layer 306 is, for example, a p-electrode as an embodiment, and the =electrode layer 3〇8 is, for example, an n-electrode as an embodiment. The light emitted by the active light-emitting layer of the semiconductor stack, the alpha structure, is guided by the platform structure and I (4) causes the light to propagate along the x-axis direction. After 16 Β, when the current is injected by the electrode, the active luminescent layer under the ρ electrode 306 emits light, and the light ray reflects the waveguide mode in the platform structure due to the difference in the refractive index of the interface. The platform structure 3〇5 supporting the waveguide mode propagation may comprise a insect crystal structure or a substrate. If the photonic crystal is used to protect the substrate, the female (four) waveguide mode can be taken out by the photonic crystal. In the platform structure 3G5, since the shirt emitted by the active light-emitting layer 32〇 is in the TE mode, the polarities of the waves propagating along the 4 are on the y-axis (TEy light) ’ when the light propagating along the x-axis enters the light? Crystal region 14 200924228 ^5iy6uii8iw 25805twf.d〇c/n, the subcrystal will take out the light and maintain the polarization direction on its original axis, thus the polar body has polarization characteristics. In addition, by adjusting the size (a and b) and shape of the light t-body region, the structure of the photonic crystal, the electrode (c and Φ, and the shape and the correlation between the electrode and the photonic crystal) First-to-be-polarized miscellaneous. For example, each-self-junction-like or truncated=cone-shaped' has a size of, for example, a width of between about 5 and a micron and a length of between about 〇=〇〇〇 micron. The height is about 1 Gm or less. The actual size depends on f. In addition, in order to increase the light-emitting area to increase the light-emitting intensity of the light-emitting diode, the transparent ohmic contact layer can extend to the P- of the photonic crystal region as described above. GaN surface. At this time, the active luminescent layer under the transparent ohmic contact layer can be made with the thickness, size and shape of the platform structure 3〇5, so that the main luminescent layer can only emit a mode with a specific polarization direction. The light of the state, therefore, emits light, and the body can emit (4) intensity of polarized light. Furthermore, in order to enhance the effect of the waveguide, the light propagating the X-axis is increased, and a junction can be added to the light-emitting diode. After the active light-emitting layer under the electrode emits light, The DBR structure is such that: t-number of light material is broadcast along X _, and the polarization direction along the X secret level

Wy轴上(TEy light),當此光線傳播至光子晶體區域時,光 子晶體會將絲取出並維持其原來以上之極化方向,因此平 口結構中沿X軸傳播之光線增加,所以也提高發力二極體之偏 極光的強度。 此外’為了提高發辆積以增加發光二極體之出光強度, 透明歐姆接觸層可延伸至奸晶域之上層DBR之表面, 此B守,透明歐姆接觸層下方之主動發光層皆可發光,再配合平 15 200924228 FMy6UH8iw 25805tw£doc/n 台結構之厚度、大小與形狀的設計,使得主動發光層只能發出 具有特定極化方向的模態的光,因此發光二極體可發出高強度 的偏極化光。另外,在波導相反方向的侧面上可加入反射結 構,如一具反射特性之光子晶體結構,藉此降低側面所散失的 光線同時提高在波導方向上傳播的光線。 具體而言,圖17繪示依據本發明一實施例,平台式的 極化的發光元件立體圖。參閱圖17,在基板300上可以設置 〇 多個發光元件312。半導體堆疊結構304在基板300上,包 ^有第一導電型半導體層302以及突出區塊層305,其中 第一導電型半導體層3〇2上有多個突出區塊層3〇5構成— 陣列分/布。每一個突出區塊層305上有一光子晶體結構 310。第一電極層3〇6在每一個突出區塊層3〇5上。第二電 極層308在半導體堆疊結構3〇4中的3〇2上,位於突出區 塊,305的一邊緣,與第一電極層3〇6相對應,構成一發 光單元。 * (, 圖18繪示依據本發明一實施例,沿著圖17的Ill-Ill " 線的,剖面結構示意®。參關18,藉由半導體製程的沉 積、微影:钱刻等製程,半導體堆疊結構疊層形成於基板 300上。半導體堆疊結構3〇4疊層包含有第一導電型半導 體層3〇2、主動發光層32〇以及第二導電型半導體層322, 形成於基板300上,而歐姆接觸層324形成於30/之上。 影蝕刻’形成突出區塊層3〇5,其上有光子晶體結構 另外電極層306、308分別形成於歐姆接觸層3以 ”第-導電型半導體層搬上。材料與光子晶體的結構如 16 200924228 P51960118TW 25805twf.doc/n 先如的描述。 在電机由甩極注入後,電極3〇6下方之主動發光層 A光由於)ι面折射率不同導致光線反射的緣故而使光線在 1二構中形成波導模態,支持波導模態傳播之平台結構可包 3 =曰曰了構或基板。若將光子晶體製作於基板巾,則基板中的 波^模態可被光子晶體取出。在平台結構中由於沿X軸傳播的 光線八偏極方向吾在y軸上,當沿X軸傳播的光線進入光子 Ο ⑽區域時’光子晶體會將光線取出並維持其原來y轴上之極 化^向’因而使得此發光二極體具有偏極化之特性 。此外,更 可藉由調文光子晶體區域的大小和形狀、光子晶體之結構、電 極的大小和雜與電極和光子晶體的相關位置來提高發光二 極體之偏極化特性。 圖19-21繪示依據本發明一些實施例,沿著圖η的订 線的:_|面、(構示思圖。依照先前描述的設計變化,參閱圖 19 ’為了提高發光_以增加發光二極體之出光強度,透明 歐姆接觸層324可延伸至光子晶體區域之第二導電型半導體 層322表面。此時,透明歐姆接觸層下方之主動發光層皆可 發光,再配合每個平台結構之厚度、大小與形狀的設計,使得 主動發光層只能發出具有特定極化方向的模態的光,因此發光 二極體可發出高強度的偏極化光。再者,參閱圖2〇,為了提 升波導的效應使得沿x軸傳播之光線增加,在發光二極體當中 可加入DBR、结構層332的結構。電極3〇6下方之主動發光層 320發光後,職結構層332的結構使得大多數的光線皆沿曰X 軸傳播’而沿X軸傳播之光線之偏極化方向皆在y轴上,當此 17 200924228 P51960118TW 258〇5twf.doc/n 光線傳播至光子晶體區域時,光子晶體會將光線取出並維持其 原來y轴上之極化方向。由於在平台結構中沿X轴傳播之光線 增加,所以也提高發光二極體之偏極光的強度。 再者’參關2卜為了提高發光面積以增加發光二極體 之出光強度’透明歐姆接觸層324可延伸至光子晶體區域之上 層DBR結構層332之表面。透明歐姆接觸層324下方之主動 發光層320皆可發光,再配合每個平台結構之厚度、大小與形 〇 狀的設計,使得主動發光層幻〇尸、能發出具有特定極化方向的 模癌的光,因此發光二極體可發出高強度的偏極化光。另外, 在波導相反方向的侧面上可加入反射結構,如一具反射特性之 光子晶體結構’藉此降低側面所散失的光線,同時提高在波導 方向上傳播的光線。 圖22繪示依照本發明實施例,發光元件裝置立體示 思圖。參閱圖22,為了能增加較大的發光面積,也同時增 加取光量’本實施例可以在一基板上設置多個發光二極體312 的平台結構,進而達到平台陣列之發光裝置。至於平台式的發 U 光二極體312的結構如前述。 一般而言,由於光線持續地在光子晶體區域傳播時,光子 晶體結構會不斷將在波導結構中傳播的光取出,使得光線傳播 至離光源越遠的地方時,光子晶體結構所能取出的光強度就會 越弱’因此在平台結構中之光子晶體區域的大小需要適當的設 計。加上需考慮晶片整體之出光量,所以在晶片上形成平台陣 列之結構’以提南出光強度,再配合每一平台之極化出光得到 一具有偏極化之特性之發光二極體。 18 200924228 P51960118TW 25805twf.doc/n 經研究光學的特性後,本發明藉由發光二極體的 結構與光子晶體結構是财平方式配置,取出的光會^有 極化效果。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神 圍内,當可作些許之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1繪示傳統的光子晶體結構的晶體分佈結構示咅 ® ° ^On the Wy axis (TEy light), when this light propagates to the photonic crystal region, the photonic crystal will take out the wire and maintain its original polarization direction. Therefore, the light propagating along the X axis in the flat structure increases, so the hair is also increased. The intensity of the polar light of the force diode. In addition, in order to increase the hair product to increase the light intensity of the light-emitting diode, the transparent ohmic contact layer can extend to the surface of the upper layer DBR of the smear field, and the active luminescent layer under the transparent ohmic contact layer can emit light. In combination with the thickness, size and shape of the platform, the active luminescent layer can only emit modal light with a specific polarization direction, so the illuminating diode can emit high intensity. Polarized light. In addition, a reflective structure such as a photonic crystal structure having a reflective property can be added to the side opposite to the waveguide, thereby reducing the light scattered by the side surface while increasing the light propagating in the waveguide direction. In particular, Figure 17 is a perspective view of a platform-type polarized light-emitting element in accordance with an embodiment of the present invention. Referring to Fig. 17, a plurality of light-emitting elements 312 may be disposed on the substrate 300. The semiconductor stack structure 304 is formed on the substrate 300, and includes a first conductive type semiconductor layer 302 and a protruding block layer 305, wherein the first conductive type semiconductor layer 3〇2 has a plurality of protruding block layers 3〇5. distributed. Each of the protruding block layers 305 has a photonic crystal structure 310 thereon. The first electrode layer 3〇6 is on each of the protruding block layers 3〇5. The second electrode layer 308 is located on the 3〇2 of the semiconductor stacked structure 3〇4 at an edge of the protruding block 305 corresponding to the first electrode layer 3〇6 to constitute a light emitting unit. * (FIG. 18 illustrates a cross-sectional structure diagram along the Ill-Ill " line of FIG. 17 according to an embodiment of the present invention. Reference 18, by semiconductor process deposition, lithography: money engraving, etc. The semiconductor stacked structure stack is formed on the substrate 300. The semiconductor stacked structure 3〇4 laminate includes a first conductive type semiconductor layer 3〇2, an active light emitting layer 32〇, and a second conductive type semiconductor layer 322 formed on the substrate 300. Above, and the ohmic contact layer 324 is formed on 30/. The photoetching 'forms a protruding block layer 3〇5 having a photonic crystal structure thereon, and the other electrode layers 306, 308 are respectively formed on the ohmic contact layer 3 to be "first-conductive" The structure of the semiconductor layer is carried out. The structure of the material and the photonic crystal is as described in the following figure: 1624024228 P51960118TW 25805twf.doc/n The following description is given. After the motor is injected by the drain, the active light-emitting layer A under the electrode 3〇6 is due to the ι surface. The difference in refractive index causes the light to reflect, so that the light forms a waveguide mode in the two-construction. The platform structure supporting the waveguide mode propagation can include 3 = 曰曰 structure or substrate. If the photonic crystal is fabricated on the substrate towel, Wave mode in the substrate It is taken out by the photonic crystal. In the platform structure, the light propagating along the X axis is on the y-axis, and when the light propagating along the X-axis enters the photon Ο (10) region, the photonic crystal will take out the light and maintain its original. The polarization on the y-axis thus makes the light-emitting diode have a polarization characteristic. In addition, the size and shape of the photonic crystal region, the structure of the photonic crystal, the size and the impurity of the electrode can be further improved. Correlation between the electrode and the photonic crystal to improve the polarization characteristics of the LED. Figures 19-21 illustrate the _| plane along the line of Figure η, according to some embodiments of the present invention. According to the design change described previously, referring to FIG. 19 'in order to increase the light emission_ to increase the light-emitting intensity of the light-emitting diode, the transparent ohmic contact layer 324 may extend to the surface of the second conductive type semiconductor layer 322 of the photonic crystal region. The active luminescent layer under the transparent ohmic contact layer can emit light, and the thickness, size and shape of each platform structure are designed so that the active luminescent layer can only emit a mode with a specific polarization direction. Light, so the light-emitting diode can emit high-intensity polarized light. Furthermore, referring to Figure 2, in order to enhance the effect of the waveguide, the light propagating along the x-axis is increased, and DBR can be added to the light-emitting diode. The structure of the structural layer 332. After the active light-emitting layer 320 under the electrode 3〇6 emits light, the structure of the structural layer 332 causes most of the light to propagate along the X-axis while the polarization of the light propagating along the X-axis is On the y-axis, when this 17 200924228 P51960118TW 258〇5twf.doc/n light propagates into the photonic crystal region, the photonic crystal will take out the light and maintain its polarization on the original y-axis. Since the light propagating along the X-axis in the platform structure increases, the intensity of the polarized light of the light-emitting diode is also increased. Further, in order to increase the light-emitting area to increase the light-emitting intensity of the light-emitting diode, the transparent ohmic contact layer 324 may extend to the surface of the layer DBR structure layer 332 above the photonic crystal region. The active luminescent layer 320 under the transparent ohmic contact layer 324 can emit light, and the thickness, size and shape of each platform structure are combined to make the active luminescent layer illusion, capable of emitting a model cancer with a specific polarization direction. The light, so the light-emitting diode can emit high-intensity polarized light. In addition, a reflective structure, such as a photonic crystal structure having a reflective property, may be added to the side opposite to the waveguide to thereby reduce the light scattered by the side while increasing the light propagating in the waveguide direction. Figure 22 is a perspective view of a light emitting device device in accordance with an embodiment of the present invention. Referring to Fig. 22, in order to increase the large light-emitting area, the amount of light extraction is also increased. In this embodiment, the platform structure of the plurality of light-emitting diodes 312 can be disposed on a substrate, thereby achieving the light-emitting device of the platform array. As for the structure of the platform type U-light diode 312, it is as described above. In general, as the light continues to propagate in the photonic crystal region, the photonic crystal structure continuously extracts the light propagating in the waveguide structure, so that the light travels farther away from the light source, the light that can be taken out by the photonic crystal structure The intensity will be weaker' so the size of the photonic crystal region in the platform structure needs to be properly designed. In addition, the amount of light emitted from the entire wafer needs to be considered, so that the structure of the platform array is formed on the wafer to enhance the light intensity of the south, and then the polarized light of each platform is combined to obtain a light-emitting diode having polarization characteristics. 18 200924228 P51960118TW 25805twf.doc/n After studying the characteristics of optics, the structure of the light-emitting diode and the photonic crystal structure are arranged in a financial manner, and the extracted light has a polarization effect. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and retouchings without departing from the spirit of the invention, and thus the scope of protection of the present invention. This is subject to the definition of the scope of the patent application. [Simple diagram of the diagram] Figure 1 shows the crystal distribution structure of a conventional photonic crystal structure 咅 ® ° ^

圖2繪示依據本發明實施例’光子晶體結構對應让空 間的座標,產生偏極化的機制示意圖。 ^ I 圖3 %示光入射角度與光偏極化程度的驗證示音圖。 圖4繪示依據本發明實施例,依照波導方式的偏極化 的發光元件的發光機制示意圖。 圖5繪示平面光的產生機制。 圖6繪示依據本發明一實施例,波導方式的發光元件立 體示意圖。 圖7 圖8 面示意圖 繪示在圖6中沿著I-Ι的剖面的結構示意圖。 繪示依據本發明另一實施例’極化的發光元件的巧 圖9繪示依據本發明另一實施例,極化的發光元件的 面示意圖。 、 圖10繪示依據本發明一實施例’極化的發光元件的 面示意圖。 ' 19 200924228 P51960118TW 25805twf.doc/n 圖11缘示依據本發明實施例,極化的發光元件立體厂、 意圖。 —μ 圖12-15繪示依據本發明實施例,極化的發光元件的剖 面示意圖。 圖16Α-16Β繪示平台結構的發光元件結構立體圖與上視 圖。 圖17繪示依據本發明一實施例,平台結構式的發光元 件立體圖。 Χ 〇 ' 圖18繪示依據本發明一實施例,沿著圖17的瓜迎 線的剖面結構示意圖。 圖19-21繪示依據本發明一些實施例,沿著圖17的 III-III線的剖面結構tf意圖。 圖22繪不依知、本發明實施例’發光元件立體示音圖。 【主要元件符號說明】 100a、100b、100c:光子晶體分佈圖案 106 :平面光 (J 110:光子晶體 112:晶格 114 :發光區域 116:光子晶體區域 118 :發光源 120:反射層 122:光子晶體結構 124:平面光 200 :基板 20 200924228 P51960118TW 25805twf.doc/n2 is a schematic diagram showing the mechanism of the polarization of the photonic crystal structure corresponding to the space in accordance with an embodiment of the present invention. ^ I Figure 3 shows a verification of the incident angle of light and the degree of polarization of the light. 4 is a schematic diagram showing the illumination mechanism of a polarized light-emitting element according to a waveguide mode according to an embodiment of the invention. Figure 5 illustrates the generation mechanism of planar light. 6 is a schematic perspective view of a light-emitting device of a waveguide type according to an embodiment of the invention. Fig. 7 Fig. 8 is a schematic view showing the structure along the I-Ι in Fig. 6. Figure 9 is a schematic illustration of a polarized light-emitting element in accordance with another embodiment of the present invention. Figure 10 is a schematic side view of a polarized light-emitting element in accordance with an embodiment of the present invention. ' 19 200924228 P51960118TW 25805twf.doc/n FIG. 11 illustrates the stereoscopic plant, intention of a polarized light-emitting element according to an embodiment of the present invention. —μ Figure 12-15 is a cross-sectional view showing a polarized light-emitting element in accordance with an embodiment of the present invention. Fig. 16Α-16Β is a perspective view and a top view showing the structure of the light-emitting element of the platform structure. Figure 17 is a perspective view of a light-emitting element of a platform structure according to an embodiment of the invention. Χ 图 ' Figure 18 is a cross-sectional structural view along the guillotine line of Figure 17 in accordance with an embodiment of the present invention. 19-21 illustrate the cross-sectional structure tf along the line III-III of Fig. 17 in accordance with some embodiments of the present invention. Fig. 22 is a perspective view showing a light-emitting element of the embodiment of the present invention, which is not known. [Description of main component symbols] 100a, 100b, 100c: photonic crystal distribution pattern 106: planar light (J 110: photonic crystal 112: lattice 114: light-emitting region 116: photonic crystal region 118: light-emitting source 120: reflective layer 122: photon Crystal structure 124: planar light 200: substrate 20 200924228 P51960118TW 25805twf.doc/n

202:半導體堆疊結構 206 :第一電極層 208 :第二電極層 210 :發光單元 212:光子晶體結構 220 :第一導電型半導體層 222:主動發光層 224:第二導電型半導體層 226:歐姆接觸層 228 :波導結構 230:波導方向 232 : DBR結構層 300:基板 302:第一導電型半導體層 304:半導體堆疊結構 305:突出區塊層 306:第一電極層 308:第二電極層 310:光子晶體結構 312:發光元件 320:主動發光層 322:第二導電型半導體層 324:歐姆接觸層 332 : DBR結構層 21202: semiconductor stacked structure 206: first electrode layer 208: second electrode layer 210: light emitting unit 212: photonic crystal structure 220: first conductive type semiconductor layer 222: active light emitting layer 224: second conductive type semiconductor layer 226: ohm Contact layer 228: waveguide structure 230: waveguide direction 232: DBR structure layer 300: substrate 302: first conductive type semiconductor layer 304: semiconductor stacked structure 305: protruding block layer 306: first electrode layer 308: second electrode layer 310 Photonic crystal structure 312: Light-emitting element 320: Active light-emitting layer 322: Second conductive-type semiconductor layer 324: Ohmic contact layer 332: DBR structural layer 21

Claims (1)

200924228 P51960118TW 25805twf.doc/n 十、申請專利範圍: 1. 一種極化的發光元件,包括: 一基板;以及 :半導體堆疊結構,在該基板上,有至少一第一區域 1第-區域’其中該第二區域有_光子晶體結構,該第 區域產生-統’該光崎經該光子晶體結構後產生一 拯化光。 Ο 2.如^專利㈣第1項所述之極化的發光元件,更 包括: 帛-電極層以及與該第—電極層相對應之一第二 電極層以產生該光源。 ψ 3·如申喷專利範圍第1項所述之極化的發光元件,其 、該光子晶體結構是在該半導體堆4結構上的多個晶體單 凡以構成一晶格圖案。 ί J 4.如申5月專利範圍第3項所述之極化的發光元件,其 =晶格圖案包含四重對稱、六重對稱、矩形晶格、週期 構、多重週期性排列結構、準週期性結構或非週 φ社5.如申專利範31第3項所述之極化的發光元件,其 k些曰曰體單几的結構包括孔洞、柱狀、錐狀、連續凹凸 狀、不連續凹凸I钱合其中幾種之一結構。 6·如申,專利範圍第3項所述之極化的發光元件,其 u二日曰體單7L的横截形狀之多邊形、圓形或橢圓形。 7.如申請專利範圍第1項所述之極化的發光元件,其 22 200924228 P51960118TW 25805twf.doc/n 中該半導體堆疊結構包括: 一第一導電型半導體層; 一主動發光層,在該第一導電型半導體層上; 一第二導電型半導體層,在該主動發光層上;以及 一歐姆接觸層,至少在該第二導電型半導體層與該第 一電極層之間。 8.如申請專利範圍第7項所述之極化的發光元件,其 ) 中該半導體堆疊結構更包括至少-分佈布拉格反射層,在 該第一導電型半導體層與該基板之間與在該第二導電型半 導體層與該歐姆接觸層之間的其一或是兩者。 9·如申請專利範圍第1項所述之極化的發光元件,其 t該光子晶體結構是在該半導體堆疊結構的該第二區域上 的多個半導體柱,也會發出光。 10. —種極化的發光元件,包括: 一基板;以及 半‘體堆豐結構,在該基板上,有多個條狀區域, ' 其中在該些條狀區域之間有至少一光子晶體結構,其中當 被產生的一光源行經該光子晶體結構後產生一極化光。 11. 如申請專利範圍第10項所述之極化的發光元 件’其中該半導體堆疊結構更包括: 多個第一電極條層在該半導體堆疊結構的每一該些 條狀區域上;以及 至少一個第二電極條層,在該半導體堆疊結構且位於 該光子晶體結構之間,與該第一電極條層相對應以產生該 23 200924228 P51960118TW 25805twf.doc/n 无源 12. 如申請專利範圊筮 件,其中該光子晶體結構是第在^項^述之極化的發光元 晶體單元以構成-晶格圖案在#¥體堆疊結構上的多個 13. 如申請專利範圍 件,其中該晶格圖案包含四重 '丄=極化的發光元 Ο Ο =二構、多重週期性排列結構、準週期性結構或 件,1中該::二f乾圍第12項所述之極化的發光元 I,、日日體早㈣結構包括孔洞、柱狀、錐狀、、車 、,凹二狀如:,凹凸狀或結合其中幾種之一結構。 件,其中該些U項所述之極化的發光元 形。’、曰曰早凡的检截形狀之多邊形、圓形或橢圓 件,;韻叙滅的發光元 一第一導電型半導體層; 2動Ϊ光層’在該第—導電型半導體層上; -歐半導體層’在該主動發光層上;以及 一電極層,至少摘第二料料導⑽與該第 件,利範圍第16項所述之極化的發光元 層,;疊結構更包括至少-分佈布拉格反射 第—¥電型半導體層與該基板之間與在該第二導 24 200924228 P51960118TW 25805twf.doc/n 電型半導體層與該歐姆接觸層之間的其一或是兩者。 18·如申請專利範圍第1〇項所述之極化的發光元 件’其中該光子晶體結構是在該半導體堆疊結構上的多個 半導體柱’也會發出光。 19. 一種極化的發光元件,包括: 一基板;以及 一半導體堆疊結構,在該基板上,其中該半導體堆疊200924228 P51960118TW 25805twf.doc/n X. Patent application scope: 1. A polarized light-emitting element comprising: a substrate; and: a semiconductor stack structure on which at least one first region 1 is - region' The second region has a photonic crystal structure, and the first region generates a catalyzed light through the photonic crystal structure. The polarized light-emitting element according to the above item (4), further comprising: a germanium electrode layer and a second electrode layer corresponding to the first electrode layer to generate the light source. The polarized light-emitting element according to claim 1, wherein the photonic crystal structure is a plurality of crystals on the structure of the semiconductor stack 4 to form a lattice pattern. ί J 4. The polarized light-emitting element according to the third aspect of the patent application of the fifth aspect of the invention, wherein the lattice pattern comprises a quadruple symmetry, a six-fold symmetry, a rectangular lattice, a periodic structure, a multiple periodic arrangement structure, The periodic structure or the non-circumferential φ. 5. The polarized light-emitting element according to claim 3, wherein the structures of the scorpions include holes, columns, cones, continuous irregularities, The discontinuous embossing I combines one of several structures. 6. The polarized light-emitting element according to claim 3, wherein the cross-sectional shape of the U-shaped body single 7L is polygonal, circular or elliptical. 7. The polarized light-emitting element of claim 1, wherein the semiconductor stack structure comprises: a first conductive semiconductor layer; an active light-emitting layer; a conductive semiconductor layer; a second conductive semiconductor layer on the active light emitting layer; and an ohmic contact layer between the second conductive semiconductor layer and the first electrode layer. 8. The polarized light-emitting element of claim 7, wherein the semiconductor stacked structure further comprises at least a distributed Bragg reflection layer between and between the first conductive semiconductor layer and the substrate One or both of the second conductive type semiconductor layer and the ohmic contact layer. 9. The polarized light-emitting element of claim 1, wherein the photonic crystal structure is a plurality of semiconductor pillars on the second region of the semiconductor stacked structure, and light is also emitted. 10. A polarized light-emitting element comprising: a substrate; and a semi-body stack structure having a plurality of strip regions on the substrate, wherein at least one photonic crystal is present between the strip regions A structure in which a polarized light is generated when a generated light source passes through the photonic crystal structure. 11. The polarized light-emitting element of claim 10, wherein the semiconductor stacked structure further comprises: a plurality of first electrode strip layers on each of the strip regions of the semiconductor stacked structure; and at least a second electrode strip layer, in the semiconductor stack structure and between the photonic crystal structures, corresponding to the first electrode strip layer to generate the 23 200924228 P51960118TW 25805twf.doc/n passive 12. As claimed in the patent a member, wherein the photonic crystal structure is a polarized crystal unit of the polarization described above to form a plurality of lattice patterns on the #¥ body stack structure. The lattice pattern comprises a quadruple '丄=polarized illuminating element Ο 二 = two-construction, a multiple periodic arrangement structure, a quasi-periodic structure or a piece, and in the case of 1: the polarization of the second term The illuminating element I, the day-to-day body (four) structure includes a hole, a column, a cone, a car, a concave shape such as: a concave-convex shape or a combination of one of several structures. And a polarized light-emitting element as described in the U items. ', a polygon, a circular or elliptical piece of the shape of the interception; a illuminating element of the rhyme - a first conductivity type semiconductor layer; 2 a moving layer of light on the first conductivity type semiconductor layer; - an ohmic layer on the active luminescent layer; and an electrode layer, at least a second material guide (10) and the first element, the polarized illuminant layer described in item 16; And/or both between the at least-distributed Bragg reflection first-electrode type semiconductor layer and the substrate and between the second via 24 200924228 P51960118TW 25805 twf.doc/n electrical-type semiconductor layer and the ohmic contact layer. 18. A polarized light-emitting element as described in claim 1 wherein the photonic crystal structure is a plurality of semiconductor pillars on the semiconductor stack structure also emits light. 19. A polarized light-emitting element comprising: a substrate; and a semiconductor stacked structure on the substrate, wherein the semiconductor stack 構有至少—個突出區塊層,該突出區塊層上有一光子晶 體結構,其中被產生的—光源行經該光子晶體結構後產生 —極化光。 20. 如申請專利範圍第19項所述之極化的發光元 件,更包括: 一第一電極層;以及 與該第-電極層相對應之—第二電極層,以產生該光 件,盆㈣止料利_第19項所述之極化的發光元 晶體單^㈣結構是在料導體堆4結構上的多個 篮早兀以構成一晶格圖案。 件,Γ中二二專么範圍第21項所述之極化的發光元 週期性排列結構、多重:重4對%、六重對稱、矩形晶格、 非週期性結構。顺構、準職性結構或 件,其中!21輯述之極化的發光元 日日—凡的結構包括孔洞、柱狀、錐狀、連 25 200924228 P519601181W 25805twf.doc/n 續凹凸狀、不連續凹凸狀或結合其中幾種之一結構。 24. 如申請專利範圍第21項所述之極化的發光元 =,其中該些晶體單元的橫截形狀之多邊形、圓形或擴圓 形0 25. 如中請專·圍第19項所述之極化的發光元 件,其中該半導體堆疊結構包括: 一第一導電型半導體層; Π 一主動發光層,在該第一導電型半導體層上; -第二導電型半導體層,在該主動發光層上;以及 -歐姆接騎’至少在該第二導電型半導體層與該第 一電極層之間。 26. 如申請專利範圍第25項所述之極化的發光元 件,其中該半導體堆疊結構更包括至少一分佈布拉格反射 層’在該第-導電型半導體層與該基板之間與在該第二導 電型半導體層與該歐姆接觸層之間的其一或是兩者。 y 27.如申請專利範圍第19項所述之極化的發光元 件,其中該光子晶體結構是多個半導體柱,也會個別發光。 28. —種極化的發光元件,包括: 一基板;以及 一半導體堆疊結構在該基板上,其中該半導體堆疊結 構有多個突出區塊層構成一陣列分佈,每一該突出區塊層 上有一光子晶體結構’其中當被產生的一光源行經該光子 曰曰體結構後產生一極化光。 29. 如申請專利範圍第28項所述之極化的發光元 26 200924228 J-My&un^xw 25805twf.doc/n 一ί一電極層在每一該突出區塊層上;以及 塊#的:„該半導體堆疊結構上,位於該突出區 Γ極層相對應,以產生該光源。 30.如申凊專利範圍第 件,其中該光子晶體結構是在該丰暮、=極化的發光兀 晶體單元以構成—晶格圖案。Μ Μ堆疊結構上的多個 Ο 侔,請專利範圍第30項所述之極化的發光元 週期性排列結構、多重週重對稱、矩形晶格、 非週期性結構。 靡㈣結構、料雛結構或 件t如申請專利範圍第Μ項所述之極化的發光元 續凹凸狀 '不連續凹二=;:柱狀、錐狀、連 Μ , ^ ^ ^ Π Χ ' 口口具中幾種之一結構。 件 形 其中該些:曰:體"利祀,、30項所述之極化的發光元 -日日-早凡的松截形狀之多邊形、圓形或擴圓 件,1·中二:ί圍第28項所述之極化的發光元 八中該半導體堆豐結構包括: 一第一導電型半導體層; -=動=光層’在該第—導電型半導體層上; 一弟二導電型半導體層’在該主動 上 一歐姆接觸層,至少在兮第_ θ , —電極層之間。7在該第—導電型半導體層與該第 27 200924228 κ^ινουιΐδΐ w 25805twf.doc/n 35. 如申請專利範圍第34項所述之極化的發光元 件,其中該半導體堆疊結構更包括至少一分佈布拉格反射 層,在該第一導電型半導體層與該基板之間與在該第二導 電型半導體層與該歐姆接觸層之間的其一或是兩者。 36. 如申請專利範圍第28項所述之極化的發光元 件’其中該光子晶體結構是多個半導體柱,也會個別發光。At least one protruding block layer is formed, and the protruding block layer has a photonic crystal structure, wherein the generated light source passes through the photonic crystal structure to generate polarized light. 20. The polarized light-emitting element of claim 19, further comprising: a first electrode layer; and a second electrode layer corresponding to the first electrode layer to generate the light member, the basin (4) Stopping material _ The polarized luminescent element crystal structure described in Item 19 is a plurality of baskets on the structure of the material conductor stack 4 to form a lattice pattern. The polarized illuminating elements described in item 21 of the Γ中二二Special range are periodically arranged, multi-weighted: 4% by weight, six-fold symmetrical, rectangular lattice, non-periodic structure. A conformal, ad hoc structure or piece, of which! 21 The polarized illuminating elements of the day-to-day structure—including holes, columns, cones, and links. 25 200924228 P519601181W 25805twf.doc/n Continued embossing, discontinuous embossing, or combining one of several structures. 24. The polarized illuminant as described in claim 21, wherein the cross-sectional shape of the crystal unit is a polygon, a circle or an expanded circle. The polarized light-emitting element, wherein the semiconductor stacked structure comprises: a first conductive semiconductor layer; an active light-emitting layer on the first conductive semiconductor layer; and a second conductive semiconductor layer And a ohmic ride between at least the second conductive semiconductor layer and the first electrode layer. 26. The polarized light-emitting element of claim 25, wherein the semiconductor stacked structure further comprises at least one distributed Bragg reflection layer 'between the first conductive semiconductor layer and the substrate and the second One or both of the conductive semiconductor layer and the ohmic contact layer. y 27. The polarized light-emitting element of claim 19, wherein the photonic crystal structure is a plurality of semiconductor pillars that also emit light individually. 28. A polarized light-emitting element, comprising: a substrate; and a semiconductor stacked structure on the substrate, wherein the semiconductor stacked structure has a plurality of protruding block layers forming an array distribution, each of the protruding block layers There is a photonic crystal structure in which a polarized light is generated when a generated light source passes through the photonic germanium structure. 29. A polarized light element 26 as claimed in claim 28, 200924228 J-My&un^xw 25805 twf.doc/n an electrode layer on each of the protruding block layers; and block # The semiconductor stack structure corresponds to the drain layer of the protruding region to generate the light source. 30. According to the patent claim, wherein the photonic crystal structure is in the 暮, = polarized 兀The crystal unit is formed into a lattice pattern. The plurality of Ο 上 on the stack structure, the polarized illuminant periodic arrangement structure, multi-cycle symmetry, rectangular lattice, aperiodic, according to the scope of claim 30 Sex structure. 四 (4) structure, material structure or piece t. The polarized illuminant as described in the scope of patent application continuation of the concave and convex shape 'discontinuous concave two=;: columnar, cone-shaped, flail, ^ ^ ^ Π Χ 'The mouth has one of several structures. The shape of the shape: 曰: body " 利祀,, 30 of the polarized illuminators - day-to-day-old pine shape Polygon, circle or expansion piece, 1·中二: 围The polarized light element mentioned in item 28 is the half of the light The bulk stacking structure comprises: a first conductive semiconductor layer; -= moving = optical layer 'on the first conductive semiconductor layer; and a second conductive semiconductor layer 'in the active upper ohmic contact layer, at least兮 _ θ , — between the electrode layers. 7 in the first conductive semiconductor layer and the 27th 200924228 κ ι ν ν 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 An element, wherein the semiconductor stacked structure further comprises at least one distributed Bragg reflection layer, between the first conductive type semiconductor layer and the substrate, and between the second conductive type semiconductor layer and the ohmic contact layer 36. A polarized light-emitting element as described in claim 28, wherein the photonic crystal structure is a plurality of semiconductor pillars, and light is also emitted individually. 2828
TW96144420A 2007-11-21 2007-11-23 Polarized light emitting device TW200924228A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW96144420A TW200924228A (en) 2007-11-23 2007-11-23 Polarized light emitting device
US12/265,123 US8378567B2 (en) 2007-11-21 2008-11-05 Light-polarizing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96144420A TW200924228A (en) 2007-11-23 2007-11-23 Polarized light emitting device

Publications (1)

Publication Number Publication Date
TW200924228A true TW200924228A (en) 2009-06-01

Family

ID=44728928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144420A TW200924228A (en) 2007-11-21 2007-11-23 Polarized light emitting device

Country Status (1)

Country Link
TW (1) TW200924228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499089B (en) * 2010-08-09 2015-09-01 Huga Optotech Inc Light-emitting device structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499089B (en) * 2010-08-09 2015-09-01 Huga Optotech Inc Light-emitting device structure

Similar Documents

Publication Publication Date Title
KR100640497B1 (en) Vertically structured gan type led device
JP5053530B2 (en) Photonic crystal light emitting device having a plurality of lattices
TW201023388A (en) Light emitting device
US5955749A (en) Light emitting device utilizing a periodic dielectric structure
TWI358840B (en) Semiconductor and method of manufacturing semicond
KR102285786B1 (en) Semiconductor light-emitting device
US7679098B2 (en) Highly directional light emitting diode using photonic bandgap waveguides
JP2014131078A (en) Light-emitting element
US20140080239A1 (en) Patterned substrate for light emitting diode and light emitting diode employing the same
US20080061310A1 (en) Light emitting diode device, and manufacture and use thereof
US8378567B2 (en) Light-polarizing structure
KR20070107798A (en) High efficiency light emitting diode(led) with optimized photonic crystal extractor
JP2006310721A (en) Self-light emitting device
JP2009267263A (en) Light-emitting device and method for manufacturing the same
TW201238075A (en) Light emitting diode having large viewing angle and method of fabricating thereof
CN103828071A (en) Light-emitting diode architectures for enhanced performance
JP2008084974A (en) Semiconductor light-emitting device
Mohtashami et al. Metasurface light-emitting diodes with directional and focused emission
WO2019146737A1 (en) Deep ultraviolet led and production method for same
JP2004134633A (en) Lighting device
TW200924228A (en) Polarized light emitting device
Lin et al. Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction
TW201123537A (en) Light emitting devices with embedded void-gap structures through bonding of structured materials on active devices
Wang et al. On the Radiation Profiles and Light Extraction of Vertical LEDs With Hybrid Nanopattern and Truncated Microdome Surface Textures
JP2010186873A (en) White light emitting device and manufacturing method for the same