TW200923453A - Optical module and fabrication method of the same - Google Patents

Optical module and fabrication method of the same Download PDF

Info

Publication number
TW200923453A
TW200923453A TW96144630A TW96144630A TW200923453A TW 200923453 A TW200923453 A TW 200923453A TW 96144630 A TW96144630 A TW 96144630A TW 96144630 A TW96144630 A TW 96144630A TW 200923453 A TW200923453 A TW 200923453A
Authority
TW
Taiwan
Prior art keywords
optical
waveguide
module
substrate
optical waveguide
Prior art date
Application number
TW96144630A
Other languages
Chinese (zh)
Inventor
Jun-Seok Choi
Hyung-Jong Lee
Original Assignee
Chung Kyoung Hie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Kyoung Hie filed Critical Chung Kyoung Hie
Priority to TW96144630A priority Critical patent/TW200923453A/en
Publication of TW200923453A publication Critical patent/TW200923453A/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Disclosed is an optical module comprising, an optical waveguide on the upper side of a substrate; a cutout with at least two slant surfaces, passing at least the core of the optical waveguide; and a film-filter above the cutout. Constructions of bi-directional multi-wavelength optical transmitter-receiver assembly using the optical module as a unit element are also provided in variety on a planar substrate. According to this invention, a bi-directional multi-wavelength transmitter-receiver, which is compact, reliable, excellent in the optical performance and simple in the alignments between the composing elements, can be produced.

Description

200923453 九、發明說明: 【發明所屬之技術領域】 本發明關於光學模組及其製造方法。該光學模組包 含.-光學波導、至少一傾斜面及在一平面基板上的薄膜 濾波器。使用該光學模組做為一單元元件之雙向多波長光 學傳送器·接收n組合的架構亦可錢化地提供在一平面 f板上嘯據本發明可以製㈣雙向多波長傳送器-接收 器Hi、型的、可靠較於光學效能優越的,並且在組 成元件間之對準較簡單。 【先前技術】 雙向光學通訊在-單一光纖的兩個方 接收光學信號。在每—方向 Θ上1^傳达與 同,即使路徑為單-時亦提供 肖的光學波長並不相 在一光纖的東λ固獨立的通訊路徑。因此, 在先纖的“處,離__ 相反路徑中,並發生兩次的信 卩1於輸入Μ之 轉換到光學,而在接㈣由光心/卩在傳輸時由電子 訊之更為it用的型式使用了比在_ ^子。雙向光學通 更多的波長。然後每個方向上向上的兩個波長要 開或組合;而每個光學波長的 ^在光纖終端處分 由光學轉換到電子。 13〜17由電子轉換到光學或 這種雙向裝置之範例為用於 纖“Fiber-to-the-home”)網路中^訊之FTTH(到戶光 稱為BiDi)雙工器,其由每個用^的刪(雙向;簡 傳輪到中央辦公室(上 200923453 游信號)的1.31輝波長,而於網路中每個用戶處接收(下 游信號)i.55_波長。在此’“雙工器”係指兩個波長裝 置。因此,於用戶處錢的終端由該光學裝置連接為131 —輸以及接收成為-單—光纖到該中央辦公室。 另一方面,除了該雙工器之兩個波長之外,使用一額 外波長來傳送一信號,例如CATV(纜線電視)到每個用戶, 其稱之為BiDi-二工器,或簡稱為三工器。在此例中,下游 數位;ί§號使用1.49卿波長;上游數位信號使用131輝波長; 而下游類比is號使用1.55卿波長。再者’進一步擴充的第 四個波長1.61_由一些服務提供者所考慮。 因為所使用波長頻道之數目依此方式增加時,所使用 光學組件的數目及該等組件之組合中的光學對準即成為製 造此裝置時的關鍵問題。例如’一共用光纖的核心約為1〇 _,及在光學對準中小於一微米的公差即為固定該光纖及 該使用中光學裝置之光學對準的程序中所需要(傳送器或 接收器;通常是雷射二極體或光二極體)。 對於Bidi三工器,例如使用前述技術之光學對準具有 約50的自由度來固定對準;因此該裝置的一個組合需要超 過10分鐘的時間’造成生產時的嚴重瓶頸。 第一圖所示為使用前述光纖技術之習用BiDi-三工器 之結構。這種程序可參見”Development of 3 TO-Triplexer Optical Sub-Assembly”(光電研討會2004,論文編號 ΤΙ A2,韓國光學協會,Junwan Park等人,三星電子)。 請參照第一圖,BiDi三工器由三個ΤΟ-CAN(電晶體輪 200923453 廓罐21,、22,=構成」其為—雷射二極體,兩個光二極體 及^光學缚膜遽波器26, 27, 28, 29。傳送 預先與雷射二極體23c、鏡片23a及杜 . 皿硯先二極體23b組裝 好,而接收器TO_CAN,s 21, 22每一個猫也t 00K .,3 ^ u ^ 個預先與光二極體21b, 22b,、鏡片21 a, 22a組裝好。在每個τ〇 r Λ Χτ , 哥1"川-(^汉21,22,23前方 的鏡片21a,22a,23a與終結光纖25之鐘κ <纜片24可保證這些組 件21,22, 23, 25之間光束的準直通道。 :下說明該裝置的運作’來自光纖乃之"轉.49 ==之接收信號在自由空财由薄_波器冰A Μ, ^刀=後抵達該接收器光二極體21,22。來自雷射二極 "之波長的傳送信號通過兩個連續滤波器28, ’…、、後抵達先肋^兩個光二極咖力前方’配置⑸ _或1.4_波長之阻隔濾、波器27,29,其可切斷除了相對應 光一極體之外的其它波長。 使用習用技術之三卫器在光學對準中造成很重的負 擔。為了解決此問題,引進使用一平面光學波導而非使用 «•午夕個別組件之方法。根據此方法,組件之間的光學對準 可被最小化;而且像是薄膜據波器、傳送器及接收器等之 組件可以組裝在單一晶片上。此方法可顯著降低固定在光 學對準中的自由度數目’因為光學波導可以連接構成組件 之間的信號。 第二圖所示為使用光學波導之習用技術的三工器之結 構’其揭不於曰本早期公開JP 1998142459 (Kyocera公司的 ‘波導式光學模組,)。請參照第二圖,由光纖丨發射通過 200923453 輸入埠14之光信號傳送通過光學波導18進入到溝槽9中薄 膜濾波器7, 8’其中該等信鍊藉由根據其波長通過或反射而 組合或分開該等波長。來自光學傳送器5之1.31卿波長的信 號由薄膜濾波器8反射而纠達光纖〗。i 49辦及1.55_波長之 信號自光纖1進入。1.49_信號通過兩個速續薄膜濾波器7, 8到達接收器光二極體4 ; 1.55細信號由薄膜濾波器7反射到 達光纖2。在光纖2的終端4,可附加一接收器光二極體。 在該三工器之結構中’厚度之易碎的薄膜 濾波器7, 8與匹配溝槽9共同準備來插入濾波器7, 8;並執行 將薄膜插入到溝槽9中的精密程序。這種光學濾波器7, 8通 常由被覆在一玻璃基板上所製備,接著將其與該基板分 離’然後將其切割成適當的大小。這種程序一個接一個重 複。此在製造時仍會造成_著的問題,即使相較於第一圖 所示在自由空間中使用該濾波器的前述方法而有一些改 進。 專利名為“波導之間自由空間光學傳遞的光學組件” ("OPTICAL COMPONENT FOR FREE-SPACE OPTICAL PROPAGATION BETWEEN WAVEGUIDES") (US 7031575 B2, Xponent光電公司)亦揭示一種類似於第二圖所示的方 法之模組,但這方法仍然包含在先前製造該裝置時所會遇 到之插入薄膜進入溝槽的類似問題。 【發明内容】 本發明係用於解決這些問題。本發明一目的為製造具 200923453 以良好生產效率之光學模組。 本發明另一目的為發明一種光學模組的結構,其在當 分開或組合每個波長的光學信號時,不會降低通訊品質, . · 例如光學損失、串音或其它。 本發明另一目的為發明一種光學模組的結構,其中薄 膜濾波器被覆在該模組的表面上,排除切割溝槽的不便, 然後將該等濾波器插入到溝槽中。 本發明另一目的為提供一種有效的方法來連接垂直於 晶圓的光線路徑到平行於晶圓的光學波導,可滿足將近垂 直於該薄膜濾波器之光線路徑改善光學模組效能之需求, 例如分開或組合每個波長。 本發明另一目的為提供一種平面製造的晶圓級製程, 其適合光學模組的大量製造,取代先前的製程,例如一個 一個地將濾波器插入到溝槽中。 本發明另一目的為提供一種手段來在雙向多波長收發 器(或傳送器-接收器)製造期間簡單及有效率地固定雷射 二極體或光二極體之對準在該模組的平面晶片上。 本發明另一目的為使用半導體裝置的封裝技術(如覆 晶貼合)於固定光二極體或雷射二極體在該模組晶圓的表 面上來改善製造性。 本發明其它目的係要藉由附加該雷射二極體或光二極 體在一額外的載具上,然後再次將其貼合到晶圓,以改善 雷射二極體或光二極體與光學波導之光學互連之效率。這 種載具特别用於辅助雷射二極體之固定與位置之對準。 200923453 本發明第一態樣提供一種光學模組,其包含:一光學波 導,其位在一基板的上方側;一切口,其具有至少兩個斜 面,通過至少該光學波導的核心;及一薄膜濾波器,其位 在該切口的上方或下方,並平行於該基板。較佳地是,該 切口的至少一表面為一斜面,並為了光學目的可在其上具 有一額外的被覆層。 該“斜面”傳送或反射光線的部份或全部波長,其傳 遞通過該光學波導或基板表面,其可朝向該基板表面或進 入該波導。在該斜面之上或之下的“薄膜濾波器”根據光 線的波長傳送或反射自該斜面反射的光線。 “光學模組”可理解為一通用詞彙,代表可應用於光 學通訊、光學互連及光學信號處理之領域的光學結構。‘光 學模組’之概念在實施本發明時涵蓋多波長光學傳送器或 接收器,及兩個波長以上之雙向光學傳送器-接收器(或收 發器)設備。 ‘切口’可理解為可多樣化製造的組件,其不限於特 定的切割方式,包括乾式或濕式蝕刻,由機械工具或其它 所切割。 “具有至少兩個斜面之切口並通過至少該光學波導之 核心”的描述可瞭解為包含多樣性的變化,以實施本發明 的想法。例如,在到達該斜面之前終止的光學波導,或部 份由該斜面切割的光學波導之核心係要包含在這些變化 内,因為該光學波導的部份係相關於傾斜功能,光線的傳 輸與反射。 200923453 “兩斜面”並非要理解為光學表面,但做為該切口的 出口,其可在必要時藉由像被覆或其它方式可選擇性地轉 換成光學表面。在“兩斜面”中的“兩個”可理解為製造 • · 該切口的最少切面。 較佳地是,該切口可填滿透明的光學媒介,以通過該 斜面。若未填滿該切口及光學性被覆該斜面,該斜面亦可 做為一完全内部反射表面。 較佳地是,該光學波導可裝設橫跨該斜面之延伸,以 沿著該波導來延續該光線傳遞。一光學裝置需要額外地安 裝在該切口之上或之下。在本發明中的“光學裝置”係做 為一通用詞彙,代表包括一光學接收器或傳送器或其一些 變化之裝置。 該光學波導(一第一光學波導)可以形成與該斜面垂 直之投影有一角度(在光學波導之平面上第一傾角)。這種 關於該斜面之光學波導的配置會阻礙來自該薄膜濾波器或 該光學裝置之光線的返回反射進入該第一光學波導之相反 k, 方向上。 另一方面,除了該第一光學波導之外的一第二光學波 導可裝設成與該斜面成一角度的配置,如同該第一光學波 導。該第二光學波導接收來自該第一光學波導的光線,其 由該薄膜濾波器或該斜面所反射。 在光學波導的傾斜終端、薄膜濾波器及光學裝置之間 的光線路徑中,可裝設至少一微鏡片。首先,在由光學波 導的終端到該光學裝置之光線路徑中的微鏡片可增強該光 11 200923453 學裝置與該光學波導之光線耦合。其次,在光學波導的兩 個終端之間光線路徑上的微鏡片,其係與由該薄膜濾波器 所反射之斜面相同侧或橫跨該切口,即會降低該波導之間 的通道損失。 這些微鏡片可多樣化地製造,例如利用一移轉蝕刻方 法雕刻光阻的回流鏡片圖案進入該基板表面;藉由利用固 定該鏡片於定位之聚合物或環氧樹脂重新填入該間隙之後 將一較高折射係數的微球鏡片進入該切口;或藉由局部放 射適當的紫外線或超快雷射造成波導之折射係數的改變或 填入材料。 一工具可裝設在該基板上’支撐並將該光學裝置區隔 在某距離之外。該工具亦可承載在該工具或其上的薄膜濾 波器内的本體中形成的微鏡片。 該等微鏡面可形成為對稱或非對稱,以在微鏡片的平 面上旋轉約90度,其特別可輔助該雷射傳送器之散光修正。 在本發明第一態樣中複數個單元光學模組亦可用於在 經由該光學波導彼此連接的相同基板上形成一單一光學模 組。 本發明第二態樣提供一種光學模組,其包含:一第一 及一第二光學波導,其在一基板的上方側彼此靠近;一第 三及一第四光學波導彼此靠近,其具有該接近區域,其延 伸連接到該第一及第二光學波導;在該接近區域處一切 口,其包含一第一斜面,用於利用一第一切割角切割該第 一與第二光學波導,及一第二斜面,用於利用一第二切割 12 200923453 角切割該第三與第四光學波導;及形成在該接近區域上的 一薄膜濾波器。 較佳地是,延伸的第一及第三光學波導與延伸的第二 及第四波導係對稱於在該基板平面上第一及第二斜面之垂 直投影;且該第一及第二斜面為對稱於通過該光學波導之 交又中心的基板垂直方向。在此例中,該切口及該斜面垂 直平面之交點較佳地形成一等邊或直角三角形。 .一光學裝置可額外地裝設在該接近區域之上或之下, 其較佳地是具有一薄膜濾波器及微鏡片。一表面放射雷射 二極體或一表面感應光二極體為該光學裝置的範例。另一 方面,在該接近區域之上或之下可裝設支撐一光學裝置以 及一薄暝濾波器或微鏡片之一工具。 車父佳地是’來自該第一光學波導進入光線之一些波長 要傳輸到藉由該第一斜面及該薄膜濾波器所反射的該第二 光學波導;而來自該第三光學波導進入光線之一些波長要 傳輸到横跨該第一及第二斜面之第一光學波導。 另一方面,該切口可填入一透明光學媒介;並可藉由200923453 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical module and a method of manufacturing the same. The optical module includes an optical waveguide, at least one inclined surface, and a thin film filter on a planar substrate. The bidirectional multi-wavelength optical transmitter using the optical module as a unit component, the receiving n-combination structure can also be provided on a plane f board. According to the invention, the (four) bidirectional multi-wavelength transmitter-receiver can be manufactured. Hi, type, reliability is superior to optical performance, and the alignment between the constituent elements is relatively simple. [Prior Art] Two-way optical communication receives optical signals on both sides of a single optical fiber. In each direction, 1^ is transmitted and the same, even if the path is single-time, the optical wavelength of Xiao is not the same as the independent communication path of a fiber. Therefore, in the "fiber", in the opposite path from the __, and two times the signal 1 occurs in the input Μ to the optical, and in the (4) from the optical center / 卩 in the transmission by the electronic message The pattern used by it uses more wavelengths than the two-way optical pass. Then the two wavelengths in each direction are turned on or combined; and the optical wavelength of each optical wavelength is converted to optical at the fiber end. Electronics 13 to 17 from electronic to optical or such a two-way device example for the fiber "Fiber-to-the-home" network in the FTTH (to the household light called BiDi) duplexer, It is used by each of the deleted (two-way; Jane's turn to the central office (on 200923453 travel signal) 1.31 wavelength, and each user in the network receives (downstream signal) i.55_ wavelength. Here '"Duplexer" means two wavelength devices. Therefore, the terminal at the user's money is connected by the optical device to 131-transmission and reception as a-single-fiber to the central office. On the other hand, except for the duplex In addition to the two wavelengths of the device, an additional wavelength is used to transmit a signal, such as CATV (cable TV) to each user, it is called BiDi-diplexer, or simply as triplexer. In this case, the downstream digit; ί§ uses 1.49 qing wavelength; upstream digital signal uses 131 hui Wavelength; and the downstream analog is using a 1.55 s wavelength. The fourth wavelength further expanded by 1.61 is considered by some service providers. Since the number of wavelength channels used is increased in this way, the optical components used are The number and optical alignment in the combination of such components is a critical issue in the manufacture of such devices. For example, 'the core of a common fiber is about 1 〇 _, and the tolerance of less than one micron in optical alignment is fixed. Required for optical fibers and optical alignment procedures for optical devices in use (transmitters or receivers; typically laser diodes or photodiodes). For Bidi triplexers, for example optical alignment using the aforementioned techniques It has a degree of freedom of about 50 to fix the alignment; therefore a combination of the device takes more than 10 minutes to cause a serious bottleneck in production. The first figure shows the use of the aforementioned fiber optic technology. The structure of the BiDi-triplemaker. This procedure can be found in the "Development of 3 TO-Triplexer Optical Sub-Assembly" (Photonics Workshop 2004, Paper No. ΤΙ A2, Korea Optics Association, Junwan Park et al., Samsung Electronics). Referring to the first figure, the BiDi triplexer consists of three ΤΟ-CAN (transistor wheel 200923453 cans 21, 22, = constitute "the laser diode, two photodiodes and ^ optical binding film" The wavers 26, 27, 28, 29. The transmission is pre-assembled with the laser diode 23c, the lens 23a and the D-plate first diode 23b, and the receivers TO_CAN, s 21, 22 each cat also t 00K .3 ^ u ^ pre-assembled with the photodiodes 21b, 22b, and the lenses 21 a, 22a. In each of τ〇r Λ Χτ , brother 1 " Chuan - (^ Han 21, 22, 23 front lens 21a, 22a, 23a and final fiber 25 clock κ < cable 24 can guarantee these components 21, 22, The collimating channel of the beam between 23, 25: The following shows the operation of the device 'from the fiber is the same as the '.. === The received signal is in the free space by the thin wave_ ice A Μ, ^ knife = after Arriving at the receiver optical diodes 21, 22. The transmission signal from the wavelength of the laser diodes passes through two continuous filters 28, '..., and then arrives at the first ribs ^ two light poles in front of the configuration' (5) _ or 1.4_wavelength barrier filter, waver 27, 29, which can cut off wavelengths other than the corresponding light body. The use of the conventional three-guard is a heavy burden in optical alignment. To solve this problem, the introduction of a planar optical waveguide instead of the use of «• midnight individual components. According to this method, the optical alignment between components can be minimized; and it is like a thin film finder, transmitter and receiver. Components such as devices can be assembled on a single wafer. This method can significantly reduce fixation to optical alignment The number of degrees of freedom 'because the optical waveguide can be connected to form the signal between the components. The second figure shows the structure of the triplexer using the conventional technique of optical waveguides'. It is not disclosed in the early publication of JP 1998142459 (Kyocera 'Waveguide optical module,'. Referring to the second figure, the optical signal transmitted by the fiber 丨 through the 200923453 input 埠 14 is transmitted through the optical waveguide 18 into the trench 9 in the thin film filter 7, 8' where the chain The wavelengths are combined or separated by passing or reflecting according to their wavelengths. The 1.31-inch wavelength signal from the optical transmitter 5 is reflected by the thin film filter 8 and is tuned to the optical fiber. i49 and 1.55_wavelength signals from the optical fiber 1 enters. The 1.49_ signal arrives at the receiver optical diode 4 through two successive thin film filters 7, 8; the 1.55 fine signal is reflected by the thin film filter 7 to reach the optical fiber 2. At the terminal 4 of the optical fiber 2, a receiver can be attached Light dipole. In the structure of the triplexer, the 'thickness of the fragile thin film filters 7, 8 are prepared together with the matching grooves 9 to insert the filters 7, 8; and the insertion of the film into the grooves 9 is performed. Precision program Such optical filters 7, 8 are typically prepared by coating on a glass substrate, which is then separated from the substrate 'and then cut to size. This procedure is repeated one by one. This is still at the time of manufacture. There will be some problems, even if there are some improvements compared to the previous method of using the filter in free space as shown in the first figure. The patent is called "optical component for free space optical transmission between waveguides" (" (Available from US Pat. A similar problem encountered with inserting a film into the groove. SUMMARY OF THE INVENTION The present invention is directed to solving these problems. An object of the present invention is to manufacture an optical module having a good production efficiency with 200923453. Another object of the present invention is to construct a structure of an optical module that does not degrade communication quality when separating or combining optical signals of each wavelength, such as optical loss, crosstalk, or the like. Another object of the present invention is to construct a structure of an optical module in which a thin film filter is coated on the surface of the module to eliminate the inconvenience of cutting the grooves, and then the filters are inserted into the grooves. Another object of the present invention is to provide an efficient method for connecting a light path perpendicular to a wafer to an optical waveguide parallel to the wafer, which satisfies the need to improve the performance of the optical module by a light path that is nearly perpendicular to the thin film filter, such as Separate or combine each wavelength. Another object of the present invention is to provide a wafer-level process for planar fabrication that is suitable for mass production of optical modules, replacing previous processes, such as inserting filters into the trenches one by one. Another object of the present invention is to provide a means for simply and efficiently securing the alignment of a laser diode or photodiode in the plane of the module during manufacture of the bidirectional multi-wavelength transceiver (or transmitter-receiver) On the wafer. Another object of the present invention is to improve the manufacturability by using a packaging technique (e.g., flip-chip bonding) of a semiconductor device on a surface of the module wafer to fix a photodiode or a laser diode. Other objects of the present invention are to improve the laser diode or photodiode and optical by attaching the laser diode or photodiode to an additional carrier and then attaching it to the wafer again. The efficiency of the optical interconnection of the waveguide. This carrier is particularly useful for assisting the alignment and position alignment of the laser diode. 200923453 A first aspect of the present invention provides an optical module comprising: an optical waveguide positioned on an upper side of a substrate; a port having at least two slopes passing through at least the core of the optical waveguide; and a film A filter positioned above or below the slit and parallel to the substrate. Preferably, at least one surface of the slit is a bevel and may have an additional coating thereon for optical purposes. The "bevel" transmits or reflects some or all of the wavelength of the light that passes through the optical waveguide or substrate surface, which may be toward the surface of the substrate or into the waveguide. A "thin film filter" above or below the bevel transmits or reflects light reflected from the bevel depending on the wavelength of the light. An "optical module" is understood to be a generic term that represents an optical structure that can be used in the fields of optical communication, optical interconnection, and optical signal processing. The concept of 'optical module' encompasses multi-wavelength optical transmitters or receivers, and bi-directional optical transmitter-receiver (or transceiver) devices of two wavelengths or more in the practice of the present invention. "Cutting' can be understood as a component that can be manufactured in a variety of ways, which is not limited to a particular cutting method, including dry or wet etching, cut by mechanical tools or others. The description of "having at least two beveled cuts through at least the core of the optical waveguide" can be understood to include variations in diversity to implement the concepts of the present invention. For example, the optical waveguide that terminates before reaching the bevel, or the core of the optical waveguide partially cut by the bevel, is included in these variations because the portion of the optical waveguide is related to the tilting function, the transmission and reflection of light. . 200923453 "Two bevels" is not to be understood as an optical surface, but as an outlet for the slit, it may be selectively converted into an optical surface by, for example, coating or otherwise. "Two" in "two bevels" is understood to mean the smallest cut of the cut. Preferably, the slit is filled with a transparent optical medium to pass the bevel. If the slit is not filled and the bevel is optically coated, the bevel may also serve as a completely internal reflective surface. Preferably, the optical waveguide can be mounted to extend across the ramp to continue the light transmission along the waveguide. An optical device needs to be additionally mounted above or below the slit. "Optical device" as used in the present invention is used as a generic term to refer to a device that includes an optical receiver or transmitter or some variation thereof. The optical waveguide (a first optical waveguide) may be formed at an angle to the vertical projection of the slope (a first tilt angle in the plane of the optical waveguide). The arrangement of the optical waveguide with respect to the bevel prevents the return reflection of light from the thin film filter or the optical device into the opposite k, direction of the first optical waveguide. Alternatively, a second optical waveguide other than the first optical waveguide can be disposed at an angle to the slope as the first optical waveguide. The second optical waveguide receives light from the first optical waveguide that is reflected by the thin film filter or the bevel. At least one microlens may be disposed in the light path between the tilted end of the optical waveguide, the thin film filter, and the optical device. First, the microlens in the light path from the end of the optical waveguide to the optical device enhances the coupling of the light to the optical waveguide. Secondly, the microlens in the ray path between the two terminals of the optical waveguide, which is on the same side of or across the slant reflected by the thin film filter, reduces the channel loss between the waveguides. These microlenses can be manufactured in a variety of ways, such as by using a transfer etching method to engrave a resistive reflowed lens pattern into the surface of the substrate; after refilling the gap by fixing the lens to the positioned polymer or epoxy A higher refractive index microsphere lens enters the slit; or a localized radiation of a suitable ultraviolet or ultrafast laser causes a change in the refractive index of the waveguide or fills in the material. A tool can be mounted on the substrate to support and separate the optical device from a distance. The tool can also carry microlenses formed in the body of the tool or the membrane filter thereon. The micromirrors may be formed symmetrically or asymmetrically to rotate about 90 degrees on the plane of the microlens, which may particularly aid in astigmatism correction of the laser transmitter. In the first aspect of the invention, a plurality of unit optical modules can also be used to form a single optical module on the same substrate that is connected to each other via the optical waveguide. A second aspect of the present invention provides an optical module including: a first and a second optical waveguide that are close to each other on an upper side of a substrate; and a third and a fourth optical waveguide are adjacent to each other, having the same An access region connected to the first and second optical waveguides; a port at the proximity region including a first slope for cutting the first and second optical waveguides with a first cutting angle, and a second bevel for cutting the third and fourth optical waveguides with a second cut 12 200923453; and a thin film filter formed on the proximity region. Preferably, the extended first and third optical waveguides and the extended second and fourth waveguides are symmetric with respect to a vertical projection of the first and second slopes on the plane of the substrate; and the first and second slopes are Symmetrical to the vertical direction of the substrate passing through the center of the optical waveguide. In this case, the intersection of the slit and the vertical plane of the slope preferably forms an equilateral or right triangle. An optical device can additionally be mounted above or below the proximity region, preferably having a thin film filter and microlenses. A surface-emitting laser diode or a surface-sensing photodiode is an example of the optical device. On the other hand, an optical device supporting one optical device and one thin diaphragm filter or microlens can be mounted above or below the proximity region. The driver is preferably 'some wavelengths from the first optical waveguide entering the light to be transmitted to the second optical waveguide reflected by the first slope and the thin film filter; and the third optical waveguide enters the light Some wavelengths are transmitted to the first optical waveguide across the first and second slopes. Alternatively, the slit can be filled with a transparent optical medium;

黑碳的一吸收劑之聚合物或環氧樹脂的—第二背襯層,其 可提供横跨吸收該散失光線切口 該第一及第二斜面亦可用一 光線路徑之連接。 傾斜角非對稱地被 覆並沉 積該光學薄膜在兩個斜面上,其造成該等絲薄膜之光學 特性相較彼此之間的偏移。 13 200923453 #本么明第二痛樣提供一光學模組,其包含一第一及— =一光學波導’其在—基板的上方側上彼此靠近;位在該 辞1域處一切口,由一斜面構成,利用一角度切割該第 I及第二光學波導;及—薄麟波器,其形成在該接近區 千^其中該第—光學波導相對於該基板的平面上該斜面 射構成-第-人射角,域第二光學波導接收來自 “第-光學波導藉由該斜面及該薄關波器反射的光線。 本發明第四紐提供—光學模組,其包含該光學模組 $一第-及第二單元’其彼此連接:其中光學模組的第— ^包含-第-及-第二光學波導,其在—基板的上方側 彼此罪近;位在該接近區域處一切口,由一第一斜面構 成’利用-角度切割該第—及第二光學波導;及—第一薄 膜遽波器,其形成在該接近區域上:該第一光學波導相對 於"亥基板的平面上該第—斜面垂直投射構成—第一入射 ^,且該第二光學波導接收來自該第一光學波導藉由該第 *:斜面及該第一薄膜遽波器反射的光線:其中光學模組的 第二單元包含該第二及-第三光學波導,其在一基板的上 方=上彼此靠近;位在該第二接近區域處一第二切口,由 、第-斜面構成’利用—角度切割該第二及第三光學波 導;及-第二薄波器,其形成在該第二接近區域上: 該第二光學波導相對於該基板的平面上該第二斜面垂直投 射構成-第二人射角,且該第三絲波導接收來自該第二 光學波導藉由該第二斜面及該第二薄㈣波器反射的光 線。 14 200923453 較佳地是,該第一及第二薄膜濾波器以相同的結構構 成;但第一及第二入射角不相同。 本發明第五態樣係提供一光學模組的製造程序,其包 • · 含在該晶圓基板上形成該光學波導的步驟;形成自該基板 前側或背側通過至少該光學波導之核心具有斜面之切口的 步驟;及被覆該光學薄膜視需要在該斜面上及在靠近的波 導區域中的步驟:其中該切口可由自一矽基板背側的一非 等向濕式蝕刻,接著藉由乾蝕刻移轉該濕蝕刻圖案到該波 導層來製造;或可直接藉由使用一矽或光阻的適當輪廓蝕 刻光罩而乾式蝕刻該波導層來由基板的前側製造。 其亦可能藉由使用像是旋轉研磨器的適當機械工具加 工該波導層來製造該切口。 (1) 特定波長的光學信號可由該光學波導分離出來,或 組合到該光學波導中,其可在該光學波導之前向或 相反方向上。 (2) 使用本發明,可簡單對準其組件元件之高效率雙向 多琿多波長光學收發器可有效及可靠地經由一晶 圓級製程由該晶f圓的前側及背側製造:這種晶圓級 製程同時生產數百個光學波導、薄膜濾波器、複數 光學表面,其為組合或分開該等光學信號之波長所 需要,而不需要每個裝置的一對一製程。 (3) 該光學模組之生產性與可靠性可藉由被覆該光學 薄膜在該晶圓表面上而大幅改進,而不用一個一個 地將個別的薄膜插入到溝槽中,並使用如傳統方式 15 200923453 的環氧樹脂將其固定。 ()母種光學薄膜的效能可最佳化:在該晶圓表面上的 . 薄膜渡波器用於分離或組合靠近間隔的波長做為 在該三工器中L49厚與1.55_之接收頻道,而在該 第一斜面上的光學薄膜用於分離或組合散佈間隔 的波長做為在該三工器中丨.31颂之傳送頻道成為 接收的反向路徑’分開成1 49_。換言之,在相近 間隔的波長頻道之隔離中極性化的相關性可由利 用一斜面調整交叉波導的結構來改進,其中該交叉 角度可視需要選擇較小的角度,而在防止波導之間 串音的範圍内。 (5)該光學模組的大小可以降低:一交叉波導的一單元 了具有二個光學組合的薄膜,其在該基板的上方與 底面具有四個波導及兩個光學裝置,構成一小型結 構,如二工益之具體實施例中所示。 【實施方式】 以下將詳細說明本發明之範一性具體實施例。但是, 本發明並不限於下述的具體實施例,但可實施成多種形 式。因此,以下的具體實施例係為了使本說明更加完整來 說明,並可使熟知該項技術者瞭解。 (第一具體實施例) 第三圖為根據本發明第一具體實施例之光學模組的平 面圖及橫截面。 16 200923453 請參見第三圖,該第一具體實施例的光學模組包含形 成在一基板100上的一光學波導120 ; —切口 130,其具有至 少兩個斜面通過至少具有一斜面132之光學波導的核心 120b ; —光學薄膜(未示出),其視需要被覆在該斜面132 上;及一薄膜濾波器133,其位在該切口 130之上。 請參見第三圖,光學波導120包含在輸入側上的第一波 導136,及位在相反側上的第二波導137。但其亦可能在需 要時僅使用136, 137其中之一來設置一光學模組。當光學波 導120具有傳送光線通過斜面132,ι34的功能時,其需要於 切口 130填滿一透明光學媒介。斜面132, 134在當沒有填入 媒介k,可為不需要任何被覆的完全内部反射表面。光學 波導136, 137亦可傾斜某種程度,例如在x_y平面上為8度, 以防止由光學裝置140或薄膜濾波器133反射回到該輪入光 學波導。 其亦可能在切口 13〇之相同側面上形成第一光學波導 136及第二波導137。例如,第—光學波導麵直於基板⑽ 的斜面之投射形成m·㈣二光學波導提 同側面上,用於接收來自第1學波導藉由該斜面騎斜 面上薄膜濾波器所反射之光線。 人’、 較佳地是,每個斜面132,134裝設有一多層被 出)’用於根據該人射光的波長傳送或反射。 反射式被覆做為金屬被覆或甚至不需要任何=用 該傾斜垂纽触地是細平㈣彡成45度; 垂直入射到薄膜濾波器133,及該耠山保扭近乎 茨输入與該輸出光學波導之 17 200923453 間的互連。 較佳地是,薄膜濾波器丨3 3為一多層被覆,其根據光線 的波長傳送或反射該入射光。 光學裝置140可附加於薄膜濾波器133上。光學裝置14〇 可為一光學傳达器或一光學接收器;並可例如使用覆晶貼 合的常用方法來簡單地附著。光學傳送器可為VCSEL (垂 直凹穴表面放射雷射,“Verticai Cavity Surface_EmittingA second backing layer of a black carbon-absorbent polymer or epoxy resin that provides a cross-over absorption of the lost light cut. The first and second bevels may also be joined by a ray path. The tilt angle is asymmetrically coated and the optical film is deposited on two slopes which cause the optical properties of the filament films to be offset from one another. 13 200923453 #本明明The second pain sample provides an optical module comprising a first and - = an optical waveguide 'which is close to each other on the upper side of the substrate; a beveled surface, the first and second optical waveguides are cut at an angle; and a thin nucleus is formed in the proximity region, wherein the first optical waveguide forms a plane with respect to the plane of the substrate - the first The second optical waveguide receives the light reflected from the first optical waveguide by the slope and the thin gate. The fourth invention of the present invention provides an optical module including the optical module $1 - and The second unit 'connects to each other: wherein the first of the optical modules - the - and - the second optical waveguides are adjacent to each other on the upper side of the substrate; the bit is located at the vicinity of the substrate, a beveled surface constituting the first and second optical waveguides by using an angle; and a first thin film chopper formed on the proximity region: the first optical waveguide is opposite to the plane of the substrate - oblique vertical projection composition - the first Injecting, and the second optical waveguide receives light reflected from the first optical waveguide by the *: slope and the first film chopper: wherein the second unit of the optical module includes the second and - a three-optical waveguide, which is adjacent to each other above a substrate; a second slit located at the second proximity region, wherein the first and third optical waveguides are cut by the angle-angle; and a second thin wave filter formed on the second proximity region: the second optical waveguide is perpendicularly projected with respect to the second inclined surface on a plane of the substrate to form a second human angle, and the third wire waveguide receives the same The second optical waveguide is reflected by the second inclined surface and the second thin (four) wave. 14 200923453 Preferably, the first and second thin film filters are constructed in the same structure; but the first and second The fifth aspect of the present invention provides a manufacturing process of an optical module, comprising: a step of forming the optical waveguide on the wafer substrate; forming at least the front side or the back side of the substrate Optical waveguide core a step of the bevel having a bevel; and a step of coating the optical film as needed on the bevel and in the adjacent waveguide region: wherein the incision may be by an anisotropic wet etching from the back side of a substrate, followed by Manufactured by dry etching to transfer the wet etched pattern to the waveguide layer; or may be dry etched directly from the front side of the substrate by etching the reticle with a suitable outline of a germanium or photoresist. The slit is fabricated by machining the waveguide layer using a suitable mechanical tool such as a rotary grinder. (1) An optical signal of a particular wavelength can be separated by the optical waveguide or incorporated into the optical waveguide before it can be preceded by the optical waveguide Orientation in the opposite direction. (2) With the present invention, a highly efficient bidirectional multi-turn multi-wavelength optical transceiver that can simply align its component components can be efficiently and reliably processed from the front side of the crystal f-circle via a wafer level process. Backside manufacturing: This wafer level process simultaneously produces hundreds of optical waveguides, thin film filters, and complex optical surfaces that combine or separate the wavelengths of the optical signals. Need, without the one-to-one process of each device. (3) The productivity and reliability of the optical module can be greatly improved by coating the optical film on the surface of the wafer, without inserting individual films into the grooves one by one, and using conventional methods. 15 200923453 Epoxy resin fixes it. () The performance of the mother optical film can be optimized: on the surface of the wafer. The thin film waveguide is used to separate or combine the wavelengths close to the interval as the receiving channel of the L49 thickness and 1.55_ in the triplexer. The optical film on the first slope is used to separate or combine the wavelengths of the dispersion intervals as the transmission path of the 三.31颂 in the triplexer becomes the received reverse path 'divided into 1 49_. In other words, the correlation of polarity in the isolation of closely spaced wavelength channels can be improved by the use of a bevel to adjust the structure of the crossed waveguides, where the angle of intersection can be selected to a smaller angle, while preventing the range of crosstalk between the waveguides. Inside. (5) The size of the optical module can be reduced: a unit of a cross-waveguide has a film with two optical combinations, and has four waveguides and two optical devices on the upper and lower surfaces of the substrate to form a small structure. As shown in the specific embodiment of the second work. [Embodiment] Hereinafter, a specific embodiment of the present invention will be described in detail. However, the present invention is not limited to the specific embodiments described below, but can be embodied in various forms. Therefore, the following specific embodiments are set forth to provide a more complete description of the present invention and may be understood by those skilled in the art. (First Embodiment) The third embodiment is a plan view and a cross section of an optical module according to a first embodiment of the present invention. 16 200923453 Referring to FIG. 3, the optical module of the first embodiment includes an optical waveguide 120 formed on a substrate 100; a slit 130 having at least two slopes passing through an optical waveguide having at least one slope 132 The core 120b; an optical film (not shown) that is optionally coated on the slope 132; and a thin film filter 133 positioned above the slit 130. Referring to the third diagram, optical waveguide 120 includes a first waveguide 136 on the input side and a second waveguide 137 on the opposite side. However, it is also possible to use only one of 136, 137 to set up an optical module when needed. When the optical waveguide 120 has the function of transmitting light through the ramps 132, ι 34, it needs to fill the slit 130 with a transparent optical medium. The bevels 132, 134 may be completely internal reflective surfaces that do not require any coating when not filled with the medium k. Optical waveguides 136, 137 may also be tilted to some extent, e.g., 8 degrees in the x_y plane, to prevent reflection by optical device 140 or thin film filter 133 back into the wheeled optical waveguide. It is also possible to form the first optical waveguide 136 and the second waveguide 137 on the same side of the slit 13〇. For example, the projection of the first optical waveguide surface directly to the slope of the substrate (10) forms the m·(tetra) optical waveguide on the opposite side for receiving light reflected from the first learning waveguide by the thin film filter on the inclined surface. The person ', preferably, each of the slopes 132, 134 is provided with a plurality of layers" for transmitting or reflecting according to the wavelength of the person's light. The reflective coating is used as a metal coating or even does not require any = the ground is touched with a thin flat (four) 彡 45 degrees; the vertical incidence to the thin film filter 133, and the 耠 保 近 近 input and the output optics Interconnect between 17 and 200923453. Preferably, the thin film filter 丨3 3 is a multi-layered coating that transmits or reflects the incident light according to the wavelength of the light. The optical device 140 can be attached to the thin film filter 133. The optical device 14A can be an optical transmitter or an optical receiver; and can be simply attached, for example, using conventional methods of flip chip bonding. The optical transmitter can be a VCSEL (Vertical Cavity Surface Radiation, "Verticai Cavity Surface_Emitting

Laser”)或一 HCSEL (垂直凹穴表面放射雷射,‘‘H〇riz〇ntal Cavity Surface-Emitting Laser,,);及該接收器可為一表面感 應光二極體。一邊緣放射雷射亦可在雷射光束當採用一額 外載具較佳地被導;1到該基板時亦可使帛,這種載具旋轉 田射光束90度,该載具用於邊緣放射雷射之常用T〇CA]y^e 裝。 h基板削的材料可多樣化,其上形成-光學波導 地疋’使用-石夕基板形成一應用石夕石的光學波導。 —使用第一具體實施例之光學模組,光學模組之生產性 簡單地藉由提供薄麟波器m與斜面I%來增進,其 1須分開或組合光學波長缝導的光學路徑成為一小型結 ^曰例如’在4斜面上薄職波器之光學被覆僅可藉由自 ^姑^的上方或底部㈣或切割造成該切σ來完成;藉此 =據,線波長選擇祕自該光學波導傳送或反射光線信 ^由,者’來自該斜面反射的光線根據其波長再次濾、波, 該波導上方之薄膜濾波^ 133處反射或傳送。 我們可使用像是覆晶貼合的—簡單程賴姐置該光 18 200923453 學接收Is在相瀘、波器133上,接收“ 送的信號。另一方面,# 、、二由溥膜濾波器133傳 發射該,以由料學料的相反方向 上-光學接收器。=取代在薄⑽波器133 為-單元元件。”:=,其使用該光學模組做 (第二具體實施例) 第四圖所示為使理 器之平面圖及横戴面。原理之二波長肺i光學收發 請參見第四圖,概姑楚__ θ碰& 冑 實施例之職三工器裝 °又第及第一先予波導36, 37,第三及第四光學波導38 39,切口 30及薄膜據波 九于波導38, 學媒介。 ⑽車-佳地是,切口 30填入一光 第一及第二光學波導36, 37在基板1〇上具有-相互交 叉區域Ll山;第三及第四光學波導从从 L2連接到每—個第—及第二光學波導36,37。 切口 3:形成在交又區域以中,並裂設第一斜面%, 其利用-第-切割角(Φι)切割第一及 37’第二斜面34利用一第二切割角㈣切割第三及第四光 學波導38,39。第—及第二_綠佳地是45度,如^ 一^ 體實施例中所述。 米八 、在此具體實知例中的光學模組在光學波導之交叉區 域LA上額外具有1學接收㈣。較佳地是,—薄麟 19 200923453 波器3 3可穿^ · 置40之間。在交又區域Ll,L2上光學波導層20及光學裝 在光織、、击、、 斜面32之導層2〇中,第一及第三光學波導36, 38與第一 39形成對ρ ^投射形成一角度0,而第二及第四光學波導37, 的理想吉構到第一及第三光學波導36, 38。入射角(Θ) :靶圍為1到25度。 第一'及塗- 並被覆〜令二斜面32, 34與基板10之表面31形成約45。’ 斜面具有第屬❹料電材料。第—32及第二斜面34每一 個光學、、由it (Φΐ)及第二切割角(φ2),其傳送或反射來自兩 戍導之光線。 冲導據第—具體實施例’多波長光線信號來自第一光學 在其中第〇、隹,與第一斜面32之垂直投射35&之入射角(θ)。 膜渡波ίΓ3^二波錢㈣—斜面32反射,並投射到薄 。然後入射到薄膜濾波器33之角度構成與進 入波導相同的角度⑻。 僂、关Ϊ入射到薄濾波器33之光線信號當中,僅有第二波長 〇迗溥膜濾波器33到達薄膜濾波器33之上的光學接收器 a匕波長被反射回到第一斜面32,缺後到達第二光學 波導37。 ” 與另—方面,具有第三波長之光學信號進入通過第三光 各皮導38,並通過第二及第一斜面]2,離開通過第一光 學波導36。 第五圖所示為第四圖之三波長BiDi光學收發器之運作 原理及埠組態之架構。 20 200923453 請參見第五圖’第一斜面32及第二斜面34反射來自第 一光學波導36入射的1.49岸及L55厚波長的光學信號,並傳 送來自第三光學波導38入射的丨·31波長之光學信號;且薄 膜濾波器33反射1.49μη及1.55坪1波長之一並傳送另一個。 第一及第二光學波導36, 37(或苐二及第四光學波導38, 39 )可於靠近第一斜面32 (或第二斜面34)之側邊結合, 用於光學波導間的光學對準。 f 該等光學波導可具有一 水平方向上改變導引結構。 厚度漸小的一光點尺寸轉換 結構亦可應用。 光點尺寸轉換器,其在垂直與 第五圖所示為該波導之寬度與 器;但光點尺寸轉換器之其它 第-及第二光學波導36, 37可經由第—斜㈣及^ 準;而ί的:"表面㈣產生的其鏡像影像虛擬地平直對 覆中的以自第仏36人射光線行經在垂直於波導上方包 復中的基板之平面内,直Laser") or an HCSEL (Vertical Cavity Surface-Emitting Laser, ''H〇riz〇ntal Cavity Surface-Emitting Laser,,); and the receiver can be a surface-sensing photodiode. The laser beam can be preferably guided when an additional carrier is used; 1 can also be used for the substrate, which rotates the beam by 90 degrees, and the carrier is used for the edge-emitting laser. 〇CA]y^e loaded. h substrate cutting material can be diversified, on which the optical waveguide is formed - using - the stone substrate to form an optical waveguide using Shi Xishi. - using the optical of the first embodiment The productivity of the module and the optical module is simply improved by providing the thin ribber m and the bevel I%, and the optical path of the optical wavelength slit is to be separated or combined into a small junction, for example, 'on the 4 slope The optical coating of the wave machine can only be completed by the upper or the bottom (four) or the cutting of the σ; or by the line wavelength, the line wavelength is selected from the optical waveguide to transmit or reflect the light signal. 'The light reflected from the slope is filtered again according to its wavelength, ., A thin film filter above of the waveguide ^ at 133 reflected or transmitted we can use such flip-chip bonded - Simple Cheng Lai sister opposite the light 18200923453 Science received Is in phase Lu, duplexer 133, reception "signal to send. On the other hand, #, , and 2 are transmitted by the diaphragm filter 133 to the optical receiver in the opposite direction of the material. = Replaced in the thin (10) waver 133 is a - unit element. ":=, which uses the optical module (second embodiment). The fourth figure shows the plan view and the horizontal wear surface of the processor. The principle of the two-wavelength lung i-transmission is shown in the fourth figure. Chu __ θ 碰 &; 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 ° 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄 胄(10) Car - preferably, the slit 30 is filled with a light first and second optical waveguide 36, 37 having a cross-over region L1 on the substrate 1〇; the third and fourth optical waveguides are connected from the L2 To each of the first and second optical waveguides 36, 37. The slit 3: is formed in the intersection and the region, and ruptures the first slope %, which cuts the first and 37' with the -first cutting angle (Φι) The second slope 34 cuts the third and fourth optical waveguides 38, 39 by a second cutting angle (four). The first and second_green are preferably 45 degrees, as described in the embodiment. The optical module in the specific embodiment has an additional learning reception (4) on the intersection area LA of the optical waveguide. Preferably, the thin film 19 200923453 wave device 3 3 ^ · between 40. In the cross-region L1, L2 optical waveguide layer 20 and optically mounted in the guiding layer 2 of the optical woven, impact, and slope 32, the first and third optical waveguides 36, 38 and The first 39 forms an angle 0 for the ρ ^ projection, and the second and fourth optical waveguides 37 are ideally configured to the first and third optical waveguides 36, 38. The incident angle (Θ): the target circumference is 1 to 25 degrees. The first 'and the coated-and coated'-two inclined faces 32, 34 form a surface 45 with the surface 31 of the substrate 10. The inclined surface has a first electrical material. The -32 and the second inclined surface 34 are each optical, By means of (Φΐ) and a second cutting angle (φ2), which transmits or reflects light from the two guides. According to the first embodiment, the multi-wavelength light signal comes from the first optics in the third, 隹, The incident angle (θ) of the projection & 35 is perpendicular to the first slope 32. The film is waved Γ 3^2 bucks (4) - the slope 32 is reflected and projected to the thin. Then the angle of incidence to the thin film filter 33 is the same as that of the incoming waveguide. Angle (8). 偻, GuanΪ Among the light signals incident on the thin filter 33, only the second wavelength 〇迗溥 membrane filter The optical receiver a 到达 wavelength reaching the thin film filter 33 is reflected back to the first slope 32, and then reaches the second optical waveguide 37. In contrast, the optical signal having the third wavelength enters through the third The light guides 38 exit through the first optical waveguide 36 through the second and first slopes 2 . The fifth figure shows the operation principle of the three-wavelength BiDi optical transceiver in the fourth figure and the architecture of the 埠 configuration. 20 200923453 Please refer to the fifth figure 'the first slope 32 and the second slope 34 reflect the optical signals of the 1.49 shore and L55 thick wavelengths incident from the first optical waveguide 36, and transmit the 丨·31 wavelength from the third optical waveguide 38. The optical signal; and the thin film filter 33 reflects one of 1.49 μη and 1.55 ping 1 wavelength and transmits the other. The first and second optical waveguides 36, 37 (or the second and fourth optical waveguides 38, 39) may be joined adjacent to the side of the first slope 32 (or the second slope 34) for optical pairing between the optical waveguides quasi. f The optical waveguides may have a horizontally varying guiding structure. A spot size conversion structure with a decreasing thickness can also be applied. a spot size converter, which is shown in the vertical and fifth figures as the width and the width of the waveguide; but the other first and second optical waveguides 36, 37 of the spot size converter can pass the first oblique (four) and And ί's: " surface (4) produces its mirror image virtually flat to the plane of the substrate from the 仏36 ray of light passing through the substrate perpendicular to the cladding above the beam, straight

光學接收器或第二光由二次反射該人射光離開該 光線導引/ 予波导37。在此光線通道中,未提供 :構’造成_些光線散射。因 弟一先學波導37之間的井與 牙 當一波分社、予連當中發生一些光學損失。 差異時,gp兩“只U與該包覆的折射係數中有相當大的 反地,當書要採用—光點尺寸轉換器來降低該損失。相 及該損失!/]G25%時,大於咖之波導的模態尺寸 如果是0.25^光^佳化該波導的結構而做得較*。例如, 模態場域的#、子波導中上方包覆之典型厚度為2〇_,這種 射發生在第一斜面32與薄膜濾波器33間40鉀 21 200923453 之來回行程中可小到〇·5 dB。 第六圖所示為第一及第二光學波導之間三次反射光線 耦合之交叉角度相關性。一數值模擬使用在基於第五圖中 光學模組的計算當中。在交叉區域1^,乙2上加入微鏡片,如 同在微鏡片上方之薄膜渡波器的第九圖當中,其增進柄合 損失由〇.4dB到〇.25dB,其在一般應用中可忽略。所使用微 鏡片的細節在第四及第五具體實施例中說明。 類似地,來自第三波導38的入射光線要被發射到第一 光學波導36。在第二斜面34及第一斜面32間未定義光學波 導。藉此,該光點尺寸轉換器即因相同理由用於降低該損 失。較佳地是’即需要同時在水平及垂直方向上擴充該模 態場域之光點尺寸轉換器,但在一些狀況中,可使用僅在 —個方向上擴充的一光點尺寸轉換器,其可為水平或垂 直。基於第四圖中的組態,由第一到第三光學波導計算的 光線耦合顯示出小於〇.3 dB損失。 在第一與第三光學波導間光線路徑上的一微鏡片可進 —步降低該耦合損失。這些微鏡片可多樣化地製造,例如 將一較高折射係數的微球鏡片插入到該切口,接著利用一 聚合物或一環氧樹脂重新填入該縫隙,以固定該鏡片在定 位;或藉由局部放射適當的紫外線或超快雷射造成波導或 該切口的填入材料之折射係數改變。 概言之,該TM (橫向磁性’“Transverse Magnetic”) 極性化光線比TE (棒尚電性,“Transverse Electric”)極性 化光線具有相當低的反射性,因為反射時的入射角度接進 22 200923453The optical receiver or second light exits the light guiding/pre-waveguide 37 by secondary reflection of the human light. In this ray channel, there is no provision: "construction" causes some light scattering. Because the younger brother first learned the wells and teeth between the waveguides 37. When a wave of branches, there were some optical losses. When there is a difference, gp two "only U has a considerable inverse of the refractive index of the cladding, when the book is to be used - the spot size converter to reduce the loss. And the loss! /] G25%, greater than If the modal size of the waveguide of the coffee is 0.25^, the structure of the waveguide is made better. For example, the typical thickness of the upper cladding of the modal field is 2〇_, which is The incidence occurs as small as 〇·5 dB in the round trip of 40 potassium 21 200923453 between the first slope 32 and the thin film filter 33. The sixth figure shows the intersection of the three reflected light rays between the first and second optical waveguides. Angle correlation. A numerical simulation is used in the calculation based on the optical module in the fifth figure. Microlenses are added to the intersection area 1^, B2, as in the ninth diagram of the film waveguide above the microlens, The increased handle loss is from 〇4dB to 〇25dB, which is negligible in general applications. The details of the microlenses used are illustrated in the fourth and fifth embodiments. Similarly, incident light from the third waveguide 38 To be emitted to the first optical waveguide 36. On the second slope 34 and An optical waveguide is not defined between the inclined faces 32. Thereby, the spot size converter is used to reduce the loss for the same reason. Preferably, it is required to simultaneously expand the modal field in the horizontal and vertical directions. Point size converter, but in some cases, a spot size converter that expands only in one direction can be used, which can be horizontal or vertical. Based on the configuration in the fourth figure, from first to third The optical coupling calculated by the optical waveguide exhibits a loss of less than 〇3 dB. A microlens in the ray path between the first and third optical waveguides can further reduce the coupling loss. These microlenses can be manufactured in various ways, for example Inserting a higher refractive index microsphere lens into the slit, and then refilling the gap with a polymer or an epoxy resin to fix the lens in position; or by locally emitting appropriate ultraviolet or ultra-fast lightning The refractive index of the material that is injected into the waveguide or the slit changes. In summary, the TM (transverse magnetic) is polarized light than TE (the rod is still electrically, "Transverse Electri c”) Polarized light has a relatively low reflectivity because the angle of incidence during reflection is taken in. 22 200923453

Brewster角。因此,如果光學表面具有45度的入射角,具有 對極性化較低相關性的光學濾波器之設計在原理上很困 難,也有時候薄膜濾波器之層可堆疊甚至到100層,以達到 所想要的光學效能。 在設計一光學模組時,請參見第五圖,入射到薄膜遽 波器33之光線具有與第一光學波導36對於第一斜面之垂直 投射35a相同的入射角Θ。因此,Θ角可於光學波導之配置設 計期間來選擇。角度Θ可被選擇為接近該基板的垂直方向, 其可以容易地利用對極性化的低相關性來設計薄膜遽波器 33。相反地,如果角度太小,即會發生由第一36到第四光 學波導39之光線的交叉洩漏或由第一到第一光學波導%之 返回洩漏。較佳的Θ角範圍由1到25度。 較佳地是,第一斜面32與第二斜面34要相同的被覆如 同對稱表面。切口 30要填入一透明光學媒介,如同光學玻 璃或聚合物材料,其與該光學波導具有相同的折射係數。 例如’該切口可由CVD (化學氣相沉積,“Chemical Vap〇r Deposition”)沉積一應用矽石玻璃到一波導厚度,然後額 外地填入一應用聚合物材料,較佳地是包含一些黑碳。該 黑碳可吸收來自該光學表面、該波導橫跨或填入該切口媒 介的散失光線,以消除對該光學接收器之雜訊。 值得一提的是在切口 3〇之第一斜面32與第二斜面34上 的溥膜可藉由沉積在一傾斜角度以不同比例被覆。在此例 中,在斜面32, 34之每一側上堆疊薄膜在其厚度上具有一固 定比例’其係根據該傾斜角度,造成反射或穿透之光譜範 23 200923453 圍中一些偏移。使用此方法,來自一切口單一圖案的第一 斜面32與第二斜面34之光學特性可不同地調整。此調整方 法應用在第五具體實施例中。 在穿透第一與第二斜面32, 34的方向上第三光學波導 38被選擇為反方向上1.31輝波長之穿透。在斜面上,具有 良好波長分離特性之濾波器很難設計,因為該斜面的角度 很接近Brewster角度,因此造成極性化反射或穿透的明顯相 關性。因此,該等斜面用於組合遠端波長1.31_之濾波器 為兩個接近的波長1.49_及1.55_。另一方面,在波導上方 的薄膜濾波器較適於分離波長1.49厚及1.55_之鄰近頻 道,因為對該薄膜濾波器之入射角在光學波導的配置中可 視需要儘量地小。 第五圖中所示複數個模組可以組合成多種組合,其造 成不僅是一單一埠光學模組,但亦可為在多波長頻道中傳 送或接收的許多多埠光學模組(請參照第十圖)。此將在以 下做說明。 請參照第七圖,將依序說明在本發明具體實施例中製 造該光學模組之程序。第七圖所示為該光學模組的橫截面。 首先,矽基板10的表面為平面[100]或與[1〇〇]傾斜成某 個角度之平面,且兩側皆研磨。這種基板的特殊方向藉由 熟知的石夕基板之非等向银刻而產生一特定面向角度,其由 矽的結晶軸與該基板表面垂直方向的角度所決定。仔細選 擇晶圓方向有助於在以下之矽基板的非等向蝕刻中控制該 切口的面向角度。 24 200923453 請參照第七(a)圖,光學波導20之基底層(20a;或下方 包覆)形成在晶圓上;且一三角錐形的切口由基板10的背 侧蝕刻出來。該基底層可由氧化該矽晶圓或使用CVD (化 學氣相沉積)或FHD (火燄水解沉積)沉積一應用矽石玻 璃來製造。矽的氧化同時發生在該基板的兩侧。自該基板 的背侧移除氧化物,使用正方圖案的一負光罩,暴露所提 出成角錐形切口的基底;然後該區域使用常用之非等向濕 蝕刻方式蝕刻成一角錐形。 當使用CVD或FHD時,除了氧化之外,用於製造光學 波導之下方包覆,其僅在單一侧上沉積一應用矽石玻璃。 因此,對於以下的非等向蝕刻於該背側處沉積一氮化矽層 做為一遮罩層;並光圖案化該正方形,接著蝕刻該氮化物 以暴露所提供切口之基底。然後該暴露的區域以前述相同 的程序被蝕刻成一角錐形,並移除剩餘的氮化矽層。 請參照第七(b)圖,光學波導20之核心與上方包覆20b, 20c產生於下方包覆20a上,並沉積薄膜濾波器在上方包覆 20c上。將光學波導以精確的位置對準於該基板上的切口對 於本發明之適當運作很重要;並提供在本具體實施例中。 換言之,光學波導的圖案對準於角錐穴上方的正方形,其 可透過下方包覆20a看到。 該上方包覆有時候由於波導核心的輪廓而不均勻,並 可由常用的平面化方法做平面化。在上方包覆的平面化表 面上,可選擇性地沉積薄膜濾波器。例如,可使用一升空 方法用於選擇性沉積,其使用一光罩沉積一犧牲層,接著 25 200923453 被覆薄膜濾波器,然後移除該犧牲層。 請參照第七(C)圖,在基板上切口的圖案由該基板背侧 移轉到波導層,同時蝕刻矽的斜面及波導層的暴露區域, 直到接近薄膜濾波器之層。橫跨矽與波導層介面的圖案移 轉通常會改變深度的長寬比,其較佳地是藉由控制多種條 件來調整成產生切口的45度斜面,例如氧、氳氟碳、碳氫 氟及/或氬的相對部份壓力;相對偏壓功率及/或RF功率; 及壓力。特別是,每種氣體的相對部份壓力及RF/偏壓功率 為關鍵參數。第八圖為藉由該濕蝕刻矽基板的移轉蝕刻所 製造的一光學波導切口之掃描電子微顯影。表1所示為該移 轉蝕刻的範例性程序。 表1 樣本編5虎 TX9 TX10 RF功率[W] 1800 1800 偏壓功率[W] 120 150 CF4流量[seem] 75 80 CHF3 流量[seem] 30 35 02 流量[seem] 10 15 Ar流量[seem] 10 20 壓力[mTorr] 4 4 1虫刻時間[min] 30 30 在石夕斜面的移轉餘刻到波導層之後,下包覆之傾斜角 度可不同於上包覆。此係由於每個波導層之材料組成的變 26 200923453 化。適當選擇層的材料以及移轉糾的適#程序 修正此問題。在㈣口斜面均外沉積低溶师料做= 磷石夕玻璃絲合物,接著在適當溫度下敎通過溶解,:·、 有助於修正像是該切π斜面不均勻的特徵。斜面的粗輪度 在此程序中亦有改善,其亦有助於光學應用。 σ 請參照第七(d)圖,一適當的光學薄膜之結構沉積在該 切口的斜面上。如第七(d)圖之垂直於該基板的沉積在該切 口的兩側上造成相同的薄膜,但與垂直線的一些偏移在該 切口的母一側上產生兩個不同的薄膜堆疊,其在每一層中 具有固定的比例。 請參照第七(e)圖,該切口填入一背面光學媒介,然後 該光學裝置黏結到該切口上方。該背面光學媒介可為一應 用聚合物的材料、由CVD或FHD製造的一應用矽石的材 料’或月ϋ述材料的多重層。 第九圖所示為在此具體實施例中該光學模組的另一個 結構。在第九圖所示的模組中,較佳地是僅被覆該切口兩 御表面中一個斜面’並活化成一光學表面,而另一個則藉 由填入匹配折射係數的一透明媒介而調整成透明。我們可 將此模組視為僅具有一光學斜面,即使在該切口的程序中 數造兩個斜面。 解釋與在第七圖所述程序的差異,切口 30在製造波導 廣2 /基板的剷側上產生。這種結構可簡易地使用一適 當的機蜮工具在波導層20上加工一 V型溝槽來製造。 首先,在基板10上產生一光學波導。然後,使用一旋 27 200923453 轉機械工具,例如碟片鋸,較佳地是具有一適當形狀的切 割邊緣,沿著該表面移動而切割該波導層有一深度。此處 的切割邊緣代表利用鑽石粉處理的一適當形狀的研磨表 * . 面。該切割邊緣的橫截面可由具有一適當角度的兩個側面 構成。藉由這種工具,由與該基板具有角度的兩個面向表 面構成的一適當形狀的溝槽可沿著該基板的表面加工。適 當的使用一機械工具可產生1_的典型精度,其足以生產本 發明之光學模組。當然,可以實現具有45度傾斜角之溝槽。 另一種生產具有45度傾斜角之切口的方式為使用一種 熟知的晶圓貼合法,其常用於生產一絕緣體上矽 (silicon-on-insulator)晶圓。一額外的石夕晶圓可貼合到具有 一波導層的晶圓。然後,貼合的石夕晶圓研磨出一適當的厚 度。一角錐形的切口由非等向性姓刻該附著晶圓來產生, 接著移轉蝕刻該切口到該波導層某一深度,如第七圖所示。 另一種由基板的前側產生45度斜面的方法為使用一灰 階光罩(灰階;一光罩的多層遮影),其在半導體產業中時 常使用。製造使用灰階光罩的一光阻之V型橫截面圖案, 然後使用乾蝕刻方法直接移轉到該波導層中。 當由波導晶圓的前方側產生該切口時,其亦需要沉積 一光學被覆在該切口的斜面上,然後使用透明光學媒介填 入該切口,接著平面化該填入材料的表面。該填入材料可 為一光學聚合物或一應用矽石的玻璃。 (第三具體實施例) 28 200923453 第十圖為在本發明中應用該光學模組生產四波長光學 收發益之架構圖。在第十圖中每個組件模組%, 57,58, 59, 60代表本發明中的光學模組’如第三圖所示。該等單元模 組56,57,58, 59,60裝設有薄膜濾波器 56a, 57a, 58a,59a, 60a、光學裝置56b,57b,58b,59b,60b,及具有斜面之切口 (未示出)。 在第三具體實施例中的四波長光學收發器具有接收波 長 1.49μιη,1·55μιη及 1.61μιη,傳送波長 1.31μιη。光學信號 到外部之10 (輸入-輸出)埠51a經由光學波導51連接到光 學模組56之第一單元。模組56之第一單元接收一波長頻 道’並結合一傳輸波長頻道到該進入光學路徑的反向方向 中。由光學波導52, 54連接模組之第二及第三單元57, 58分 開接收光學信號成每一個其波長。 由光學波導53, 55連接的模組之第五及第四單元6〇 % 組合每個波長之傳輸信號,或監視該雷射傳送器之運作。 在本具體實施例中結構在模組的第一單元56處分離該 傳輸與接收信號成為兩個獨立的波導路徑,其降低進入與 離開信號之間的串音。 〃 請參照第十圖’在模組的第一單元56中的光學事置 56b,其位在該切口第一斜面之上,接收與該進入信號分離 之濾波56a之一波長頻道。另一方面,值得一提的是光學夢 置56b亦可位在該切口的第二斜面之上,用於監视該傳送作 號。 。 在此具體實施例中,其有可能輸入或輸出來自該晶圓 29 200923453 表面所有接收或傳域線;而該光學傳送器、或接收器可使 用-覆晶貝占合方法簡單地安裝在薄膜渡波器56a,57a,地 59a,60 a上。在本例中使用的傳送器或接收器為表面吸收光 '一極體或表面放射雷射,如前所述。 在下述中,該光學模組的運作原理依一四波長的範例 解釋,其中1.31叫用於傳輸,h49_,i 御關 =接收。、經由51a來自外部光、纖的接收信號進人模組的第一 單兀56,造成經由該光學波導51之入射角叮;然後由薄膜 遽波器56a反射,除了 1.49pm信號。L49|im信號被傳遞到光 學接收器56b,其中被轉換成電子信號。其它信號,如i 5_ 及1.61μιη,由光學波導52所導引。 光學波導52導引1.55μιη及ΐ.61μπι的光線進人模組的第 二單元57’造成-入射角θ2。155卿信號傳送通過模組的 第二單元57中的薄膜渡波器5% ;並由光學接收器57b轉換 成電子佗號。其它信號1.61 被導引到光學波導54。 來自光學波導54之1.61 μιη的光學信號進入模組的第三 單元58’構成入射角Θ3;然後,其傳送通過薄膜濾波器58a, 並由光學接收器58b轉換成電子信號。在此,薄膜濾波器58a 用於隔離所有其它波長,例如131μπι,1·49μιη&155μιη。 备1.31μηι,1.49μπι及1.55μιη的信號足夠弱時,可排除遽波 器 58b。 另一方面’由在模組之第四單元59上傳送器59b所產生 的上游#號’於通過抗反射被覆59a被發射到光學波導55 中,然後被傳遞到模組的第五單元6〇,其中該信號經由薄 30 200923453 膜濾波器60a而部份傳遞到 反射及發射到光學波導53中+收器_。其餘的仏號被 ^ ^ # 。在此,第五單元60中的光學 裝置60b做為一監視光二極 平 兀予 道π々楠於β咕油 粒(mPD)。再次地,來自光學波 導53之傳輸彳5就傳送模組之—扣_ ·· 士水興、办道弟—早元56的兩個斜面,並經 由光=11及10蜂51a離開到外部光纖。 权組的弟一到第三單亓 ,7 _ 56, 57, 58上的薄膜濾波器56a, 57a,5 8a通吊會不同的被覆, ^ 其代表在模組上每個薄膜濾波 益有不问的》儿積。我們可姑丨 f 备 ^ 伐们了减少—次的沉積,對連接到該等 模組的母個光學波導引入不 、 等引入不同的入射角θΐ5 θ2,及Θ3。此所 矛!用的事實為-薄膜濾波器之穿透範圍由人射角的改變而 偏移,即使模組的薄膜56&,5乃,5仏皆相同。 模組之第二到第五單元57, 58, 59,60之45度斜面上的 光學被覆為廣泛波長範圍中的反射式,並可為一金屬被 覆、一介電被覆、一沒有任何被覆的完全内部反射表面, 或其中的組合。 做為接收器模組之第一到第三單元56, 57, 58之薄臈據 波器56a,57a,58a之穿透範圍皆緊密相隔’而多層介電層基 本上由數十層所構成。選擇入射角到〇度可便於薄膜濾波器 之設計,並可造成緊密相隔的波長頻道之間高隔離性與極 性化的低相關性。 在模組之第四單元59上的薄膜濾波器59a可為抗反射 或無功能(未被覆),其上放置一光學傳送器。模組之第五 單元60的薄膜濾波器60a部份反射該入射光,並通常被覆一 介電質或金屬或其組合。 31 200923453 在此具體實施例中,其亦可利用直接耦合一邊緣放射 雷射到一光學波導,如傳送器模組之傳統雷射,而取代一 表面放射雷射自該晶圓表面柄合。一傳送器模組的正方形 區域,取代模組的第四單元59,由該基板的上方乾蝕刻到 一適當的深度;且該邊緣放射雷射固定在該蝕刻的底部, 對準於暴露在該蝕刻側壁上光學波導之核心。 對於修正,此具體實施例在當傳輸波長為緊密間隔時 即依下述實施。該單元模組僅由第一及第二光學波導、第 一斜面及薄膜濾波器(第四圖中的36, 37, 32, 33 )構成。複 數單元模組由光學波導連接成鋸齒狀,其可設置成一波長 多工器或反多工器。在此,第四圖中第一斜面32為所有波 長的反射鏡;而在該斜面之上的薄膜濾波器進行波長選擇。 另一方面,分配到任何波長頻道之光學路徑為一可反 向路徑,也就是接收與傳送可互換使用。因此,在任何薄 膜濾波器上以一接收器取代一傳送器可改變傳輸的功能為 接收功能,反之亦然。 常用於光學通訊之光學裝置為一表面吸收光二極體、 一邊緣放射雷射或一 VCSEL。一表面吸收光二極體的活化 區域之直徑基本上為20到100厚,其大小足以由覆晶貼合構 成光二極體之對準。 相反地,一光學傳送器之發光區域的直徑一般僅為數 微米。因此,在本發明的模組中,必須使用一額外的工具 (例如鏡片或光點尺寸轉換器)由該傳送器連接該光學路 徑到該光學波導。一些具體實施例在下述說明,請參見第 32 200923453 九圖及第十圖。 (第四具體實施例) 第十一圖所示為根據本發明第四具體實施例之光學模 組的橫截面圖。 請參照第十一圖,第四具體實施例之光學模組裝設有 形成在基板10上的光學波導20 ;具有斜面88, 86之切口 89 通過至少光學波導2〇之核心2〇b ;及在微鏡片84a上的薄膜 .. 遽波器83。承載一光學裝置85之載具81額外安裝在薄膜濾 波器83之上。該載具在一角錐形凹穴82中沿著其中心軸提 供一光學路徑’其通過薄膜濾波器83及微鏡片84,然後到 達光學裝置85。凹穴82的其餘部份通常保留淨空;但當需 要時可選擇性由一光學媒介填滿。 載具81輔助經由該基板之表面由光學波導2〇之傾斜終 端的光學連接到光學裝置85,其為一傳送器或一接收器。 ^':; 其固疋光學裝置85之位置在基板10上’並提供襄置μ與光 學波導20之間光學的空間。一接收器裝置不需^該載^, 因為接收器之感應區域的50μηι之直徑相較於典型為印瓜到 8μηι之波導20的尺寸足夠大。相反地,—傳送器裝置,例 如表面放射或一邊緣放射雷射,其大致需要—微鏡片,以 匹配-雷射的模態尺寸到一波導;及-裁具提供^該鏡){ 到該雷射二極體之適當的距離。在此,所示為在一載具上 具有一雷射的光學模組。 根據此具體實施例之結構,該傳送器(或雷射)85放 33 200923453 置在斜面86上的載具81上;一微鏡片84a放置成與斜面86 有些區隔;及一額外的微鏡片84b,84c,其裝設在具有載具 ^1之主體内。此係要達到光學波導87a,87b之間模態場域的 取佳匹配’以及雷射二極體85之㈣場域與波導87a或87b 的最佳匹配。 為此目的 雷射一極體固定在一額外的載具81上, 其中心部份清除為—角錐形;而該載具可光學地對準並固 疋於基板1G之表面上。載具使用珍晶圓的非等向#刻來製 造’其為熟知的SiOB (矽光學工作台“smc〇n 〇ptical bench”)技術。 微鏡片可製造在切口之上波導的上包覆中(或在切口 的填料上)。在玻璃層(或聚合物)的圓形(或多邊形;擴 圓形)光阻圖案即做為圓形,經由將其溶解由光阻的表面 張力形成鏡片,然後類似鏡片的光阻即由一乾蝕刻移轉到 底層。 微鏡片通常製作於薄職波器上額外的玻璃層 。在此 具體實施财’該微鏡片先製造在波導晶圓的上表面上, 然後由-薄膜滤波器被覆(_薄膜紐器)。因此,該被覆 的薄膜層依循該成鏡片表面之輪廓。較佳地是,來自光學 波導87a或87b之發散相位前端與在微鏡片⑽上薄膜遽波 器84a具有相同的曲率’但在該基板垂直方向偏離軸上。 在此纽態中’在成鏡片表面上的薄膜濾波器在45度斜 面86的辅助下將來自人射波導⑺反射波長之光線聚焦到 離開波導87b ’而其它波長的光線行經該薄膜濾、波器,而對 34 200923453 相位前端不會造成扭曲。雷射二極體85光線耦合到光學波 導可獨立地由鏡片84b, 84c完成。由於波導87a與87b間折射 造成的通道損失可由聚焦消除,如第六圖戶^示。 以下說明在該載具之内形成微鏡片之範例。在兩側研 磨之矽晶圓即氧化成厚度15μιη。一角錐形的凹穴藉由光罩 及非等向蝕刻在氧化的晶圓上製造。厚氧化物在下—步驟 的敍刻之後留在該載具上方。然後,在凹穴82之内由較低 到較高折射係數堆疊層84c,84b產生一微鏡片。較佳地是, 溶解其間先前堆疊層可圓角該堆疊層的表面輪廓,並可控 制該鏡片之收斂特性。每一層可為應用矽石之玻璃或由 FHD,CVD,光學聚合物之旋轉或其它方式沉積的光學聚 合物。較佳地是由較高到較低的溶解溫度的堆疊層。 在載具81上方之一氧化秒81 a層提供一額外光學表面 作為一第二薄膜濾波器。因此,在此具體實施例中分別提 供形成微鏡片與薄膜濾波器之兩種方式。 該微鏡片系統可為對稱或非對稱,其繞著晶圓表面之 垂直方向旋轉約9〇度。該非對稱鏡片使用像是長方形或橢 圓形的一非對稱圖案來簡單地製造’其沿著該鏡片之正交 軸造成兩種不同的鏡片輪廓。該非對稱鏡片特別有用於修 正該雷射二極體之散光。 將雷射二極體光線耦合到該光學波導87a或87b係位在 與載具81中凹穴82之中心輛的偏離軸上,其位在晶圓表面 處垂直於該基板之平面上的0角在折射角度上,如同在該基 板上的波導。這種偏離軸耦合可由位在該載具晶片上方之 35 200923453 雷射二極體的偏離軸對準來完成。值得注意的是該組合的 鏡片系統84中,一個在基板上,另一個在該載具之内,其 可同時處理將來自波導84a之光線聚焦到波導84b中,及將 來自雷射二極體(光學裝置85)之光線聚焦到前述的波導 84a, 84b之一。 (第五具體實施例) 第十二圖所示為根據第五具體實施例之光學模組的橫 截面及平面圖。 請參照第十二圖,該具體實施例之光學模組在基板10 上裝設一光學波導2〇 ;具有第一及第二斜面96a,96b之切口 至少通過光學波導2〇的核心2〇b ;被覆在第一斜面上的第一 薄膜(未不出);被覆在第二斜面上的第二薄膜(未示出); 在切口之上的第一薄膜濾波器98a ;在第一薄膜濾波器98a 上的第一光學裝置99a ;在切口之下的第二薄膜濾波器 98b ’-载具板95,其支撐第二薄膜遽波器98b ;及在第二 薄膜遽波器98b上第二光學裝置幾。 &具體實施例為第二具體實施例中所述之—雙向三波 長收發器的另-例示。由輸入光學波導20ba入射的1.55μπι 之下相類比光學信號9l自第一斜面術所反射;通過第一 薄膜滤波器98a’穿過光遮蔽97a;然後由第-光學袋置99a 所摘測。由輸入光學波導2〇ba入射的〗之下游類比光 學#號92通過第-斜面96&;由第二斜面鳴反射;通過第 二薄膜m 98b ’穿過光遮蔽97b :然後由第二光學裝置 36 200923453 99b所偵測。第一薄臈濾波器98a為1.49μιη信號之切斷濾波 器,而第二薄膜濾波器98b為1.55μιη信號之切斷濾波器。光 遮蔽97a,97b被額外地加入,用於遮蔽由91, 92及93所定義 . * 之特定路徑所逸出之散失光線。另一方面,1.3Ιμπι之上游 數位光學信號93來自輸入光學波導20ba之另一側20bb,並 組合到通過第二斜面96b與第一斜面96a之輸入光學波導的 反向路徑當中。 在基板10的上方侧上第一光學裝置99a與光學波導20 僅相隔數十微米。因此,來自光學波導之筆形光束發散非 常小,直到其到達來自第一斜面96a之第一光學裝置99a。 相反地,第二光學裝置99b位在基板10之背側上’其與光學 波導20相隔基板之厚度(約imm)。然後,來自該光學波導 之筆形光束在橫跨該基板之側向發散超過第二光學裝置 99b之感應區域(直徑正常約為5〇μιη)。因此,其有需要聚 焦光束92到第二光學裝置99b之感應區域當中。在此具體實 施例中微鏡片的聚焦光學例示於第十二圖。 在此具體實施例中連接該光學模組亦可製造具有更多 功能的一雙向多波長光學模組。在本發明中將此具體實施 例進一步組合到其它光學模組仍可能更多樣性地製造其它 光學裝置。 本發明的多種修正皆可在本發明的觀念及範圍内進 行。因此,根據本發明之具體實施例的解釋旅非做為申請 專利範圍或其同等者之限制,而僅做為例示之用。 37 200923453 【圖式簡單說明】 上述以及其它本發明之特徵與好處將可藉由以下詳細 說明其範例性具體實施例並參照附屬圖式而更加暸解,其 中: 第一圖所示為使用習用光學濾波器技術之BiDi-三工 器之結構。 第二圖為使用光學波導的習用技術之三工器的結構。 第三圖為根據本發明第一具體實施例之一光學模組之 結構。 第四圖為根據本發明第二具體實施例之一光學模組之 結構。 第五圖為根據第四圖之光學模組的一雙向三波長光學 傳送器-接收器組合的操作。 第六圖所示為該第一與第二光學波導之間三重反射的 光線輕合之交叉角度的相關性;一微鏡片可增進該麵合。 第七圖為藉由一蝕刻方法製造該光學模組之程序。一 斜面由晶圓背面製造。 第八圖為藉由該濕蝕刻矽基板的移轉蝕刻所製造的一 光學波導的切口之掃描電子微顯影。 第九圖為波導交叉一切口的光學模組。一斜面由晶圓 前面製造。 第十圖為根據本發明第三具體實施例之一雙向四波長 光學傳送器-接收器組合的結構。 第十一圖為根據本發明第四具體實施例之一光學模組 38 200923453 之結構。 第十二圖為根據本發明第五具體實施例之一光學模組 之結構。 【主要元件符號說明】 1 光纖 2 光纖 4 接收器光二極體 5 光學傳送器 7 薄膜滤波器 8 薄膜濾、波器 9 溝槽 10 基板 14 輸入埠 18 光學波導 20 光學波導 20a 下方包覆 20b 核心 20c 上方包覆 21 電晶體輪廓罐 21a 鏡片 21b 光二極體 22 電晶體輪廓罐 22a 鏡片 39 200923453 22b 光二極體 23 電晶體輪廓罐 23a 鏡片 23b 光二極體 23c 雷射二極體 24 鏡片 25 光纖 26 薄膜濾波器 27 薄膜濾波器 28 薄膜濾、波器 29 薄膜濾、波器 30 切口 31 表面 32 第一斜面 33 薄膜渡波器 34 第二斜面 35a 垂直投射 36 第一光學波導 37 第二光學波導 38 第三光學波導 39 第四光學波導 40 光學接收器 51 光學波導 51a 10埠 40 200923453Brewster Point. Therefore, if the optical surface has an incident angle of 45 degrees, the design of an optical filter with a lower correlation of polarization is difficult in principle, and sometimes the layers of the thin film filter can be stacked even up to 100 layers to achieve the desired The desired optical performance. In designing an optical module, referring to the fifth diagram, the light incident on the film chopper 33 has the same angle of incidence Θ as the vertical projection 35a of the first optical waveguide 36 with respect to the first slope. Therefore, the corners can be selected during the configuration of the optical waveguide. The angle Θ can be selected to be close to the vertical direction of the substrate, which can easily design the thin film chopper 33 with a low correlation to polarity. Conversely, if the angle is too small, cross leakage of light from the first 36 to fourth optical waveguides 39 or leakage back from the first to first optical waveguides may occur. Preferred corner angles range from 1 to 25 degrees. Preferably, the first bevel 32 and the second bevel 34 are the same as the symmetric surface. The slit 30 is filled with a transparent optical medium, like an optical glass or polymeric material, which has the same refractive index as the optical waveguide. For example, the slit can be deposited by CVD (Chemical Vapor Deposition) using a vermiculite glass to a waveguide thickness, and then additionally filled with an applied polymer material, preferably containing some black carbon. . The black carbon absorbs scattered light from the optical surface that traverses or fills the slit dielectric to eliminate noise from the optical receiver. It is worth mentioning that the ruthenium film on the first slope 32 and the second slope 34 of the slit 3 can be covered in different proportions by deposition at an oblique angle. In this example, the stacked film on each side of the bevels 32, 34 has a fixed ratio in its thickness' which, depending on the angle of inclination, causes some shift in the spectral range of reflection or penetration 23 200923453. Using this method, the optical properties of the first bevel 32 and the second bevel 34 from a single pattern of the individual ports can be adjusted differently. This adjustment method is applied in the fifth embodiment. The third optical waveguide 38 is selected to penetrate the 1.31 wavelength in the opposite direction in the direction penetrating the first and second slopes 32, 34. On a slope, a filter with good wavelength separation characteristics is difficult to design because the angle of the slope is very close to the Brewster angle, thus causing a significant correlation of polar reflection or penetration. Therefore, the bevels are used to combine the filters of the far-end wavelength 1.31_ to two close wavelengths of 1.49_ and 1.55_. On the other hand, the thin film filter above the waveguide is more suitable for separating adjacent channels having a wavelength of 1.49 and 1.55 Å because the incident angle of the thin film filter can be as small as possible in the configuration of the optical waveguide. The plurality of modules shown in the fifth figure can be combined into a plurality of combinations, which result in not only a single optical module but also many multi-turn optical modules that are transmitted or received in a multi-wavelength channel (please refer to Ten maps). This will be explained below. Referring to Figure 7, the procedure for fabricating the optical module in a specific embodiment of the present invention will be described in sequence. The seventh figure shows the cross section of the optical module. First, the surface of the ruthenium substrate 10 is a plane [100] or a plane inclined at an angle with [1〇〇], and both sides are ground. The particular orientation of such a substrate is created by a non-isotropic silver engraving of the well-known Shishi substrate to produce a particular angle of incidence which is determined by the angle of the crystal axis of the crucible in the direction perpendicular to the surface of the substrate. Careful selection of the wafer orientation helps to control the angle of the slit in the anisotropic etch of the underlying substrate. 24 200923453 Referring to the seventh (a) diagram, the base layer (20a; or under cladding) of the optical waveguide 20 is formed on the wafer; and a triangular tapered slit is etched from the back side of the substrate 10. The base layer may be fabricated by oxidizing the tantalum wafer or depositing a vermiculite glass using CVD (Chemical Vapor Deposition) or FHD (Flame Hydrodeposition). The oxidation of ruthenium occurs simultaneously on both sides of the substrate. The oxide is removed from the back side of the substrate, and a negative mask of the square pattern is used to expose the raised pyramid-shaped substrate; the area is then etched into a pyramid using conventional non-isotropic wet etching. When CVD or FHD is used, in addition to oxidation, it is used to fabricate the underlying cladding of the optical waveguide, which deposits only one application of vermiculite glass on a single side. Thus, a non-isotropic etch is applied to the back side to deposit a tantalum nitride layer as a mask layer; and the square is photopatterned, and then the nitride is etched to expose the substrate of the provided slit. The exposed areas are then etched into a pyramid in the same procedure as previously described and the remaining tantalum nitride layer is removed. Referring to the seventh (b) diagram, the core of the optical waveguide 20 and the upper cladding 20b, 20c are formed on the lower cladding 20a, and a thin film filter is deposited on the upper cladding 20c. The incision of the optical waveguide in precise position on the substrate is important for proper operation of the present invention; and is provided in this particular embodiment. In other words, the pattern of the optical waveguide is aligned to a square above the pyramidal cavity, which is visible through the underlying cladding 20a. The upper cladding is sometimes uneven due to the contour of the waveguide core and can be planarized by conventional planarization methods. A thin film filter can be selectively deposited on the planarized surface coated above. For example, a lift-off method can be used for selective deposition, which uses a mask to deposit a sacrificial layer, followed by 25 200923453 to coat the thin film filter, and then remove the sacrificial layer. Referring to the seventh (C) diagram, the pattern of the slits on the substrate is transferred from the back side of the substrate to the waveguide layer while etching the bevel of the crucible and the exposed area of the waveguide layer until it is close to the layer of the thin film filter. Pattern shifting across the interface of the germanium and waveguide layers typically changes the aspect ratio of the depth, which is preferably adjusted to produce a 45 degree bevel of the cut by controlling various conditions, such as oxygen, helium fluorocarbon, hydrofluorocarbon And/or relative partial pressure of argon; relative bias power and/or RF power; and pressure. In particular, the relative partial pressure and RF/bias power of each gas are key parameters. The eighth figure shows the scanning electron micro-developing of an optical waveguide slit produced by the transfer etching of the wet-etched ruthenium substrate. Table 1 shows an exemplary procedure for this transfer etch. Table 1 Sample code 5 Tiger TX9 TX10 RF power [W] 1800 1800 Bias power [W] 120 150 CF4 flow [seem] 75 80 CHF3 Flow [seem] 30 35 02 Flow [seem] 10 15 Ar flow [seem] 10 20 Pressure [mTorr] 4 4 1 Insect time [min] 30 30 After the Shi Xi slope is transferred to the waveguide layer, the angle of inclination of the lower cladding may be different from that of the upper cladding. This is due to the change in the material composition of each waveguide layer. Correctly select the material of the layer and the appropriate program for the transfer correction. The low-melting material is deposited on the (four) slant surface to make = phosphorite glass splicing, and then sputum is dissolved at a suitable temperature, which helps to correct the unevenness of the π-slope. The coarse roundness of the bevel has also improved in this procedure, which also contributes to optical applications. σ Referring to the seventh (d) diagram, a structure of a suitable optical film is deposited on the slope of the slit. The deposition perpendicular to the substrate as in the seventh (d) diagram causes the same film on both sides of the slit, but some offset from the vertical line creates two different film stacks on the female side of the slit, It has a fixed ratio in each layer. Referring to Figure 7(e), the slit is filled with a back optical medium, and the optical device is then bonded over the slit. The backside optical medium can be a material of a polymer, a material of a vermiculite made of CVD or FHD, or multiple layers of a material. The ninth diagram shows another structure of the optical module in this embodiment. In the module shown in FIG. 9, it is preferable to cover only one of the two surfaces of the slit and activate it into an optical surface, and the other is adjusted by filling a transparent medium matching the refractive index. Transparent. We can think of this module as having only one optical bevel, even if two bevels are created in the program of the slit. Explaining the difference from the procedure described in the seventh figure, the slit 30 is produced on the shovel side of the waveguide 2/substrate. This structure can be easily fabricated by processing a V-shaped groove on the waveguide layer 20 using a suitable machine tool. First, an optical waveguide is produced on the substrate 10. Then, using a rotary 27 200923453 rotary machine tool, such as a disc saw, preferably a cutting edge having a suitable shape, along which the waveguide layer is cut to have a depth. The cutting edge here represents a suitably shaped grinding table treated with diamond powder. The cross section of the cutting edge may be formed by two sides having an appropriate angle. With such a tool, a suitably shaped groove formed by two face-facing surfaces having an angle with the substrate can be machined along the surface of the substrate. The proper use of a mechanical tool produces a typical accuracy of 1 _ which is sufficient to produce the optical module of the present invention. Of course, a groove having a 45 degree tilt angle can be realized. Another way to produce slits having a 45 degree tilt angle is to use a well known wafer sticking method, which is commonly used to produce a silicon-on-insulator wafer. An additional Shishi wafer can be attached to a wafer having a waveguide layer. Then, the bonded Shixi wafer is ground to a suitable thickness. A pyramidal slit is created by the non-isotropic first name of the attached wafer, and then the slit is etched to a certain depth of the waveguide layer, as shown in FIG. Another method of creating a 45 degree bevel from the front side of the substrate is to use a gray scale mask (gray scale; multiple masking of a mask), which is often used in the semiconductor industry. A V-shaped cross-sectional pattern of a photoresist using a gray scale mask is fabricated and then directly transferred into the waveguide layer using a dry etching method. When the slit is produced from the front side of the waveguide wafer, it also needs to deposit an optically coated bevel on the slit, and then fill the slit using a transparent optical medium, and then planarize the surface of the filled material. The filling material can be an optical polymer or a glass using vermiculite. (Third embodiment) 28 200923453 The tenth figure is an architectural diagram for producing a four-wavelength optical transceiver in the optical module of the present invention. In the tenth figure, each component module %, 57, 58, 59, 60 represents the optical module ' in the present invention' as shown in the third figure. The unit modules 56, 57, 58, 59, 60 are provided with thin film filters 56a, 57a, 58a, 59a, 60a, optical devices 56b, 57b, 58b, 59b, 60b, and slits having bevels (not shown) Out). The four-wavelength optical transceiver in the third embodiment has a reception wavelength of 1.49 μm, 1.55 μm and 1.61 μm, and a transmission wavelength of 1.31 μm. The optical signal to the external 10 (input-output) 埠 51a is connected to the first unit of the optical module 56 via the optical waveguide 51. The first unit of module 56 receives a wavelength channel' and combines a transmission wavelength channel into the reverse direction of the incoming optical path. The second and third units 57, 58 of the module are connected by optical waveguides 52, 54 to receive optical signals for each of their wavelengths. The fifth and fourth units of the module connected by the optical waveguides 53, 55 combine the transmission signals of each wavelength or monitor the operation of the laser transmitter. In the present embodiment, the structure separates the transmitted and received signals at the first unit 56 of the module into two separate waveguide paths that reduce crosstalk between the incoming and outgoing signals. 〃 Referring to the tenth diagram, the optical event 56b in the first unit 56 of the module is positioned above the first slope of the slit to receive a wavelength channel of the filter 56a separate from the incoming signal. On the other hand, it is worth mentioning that the optical dream 56b can also be placed above the second bevel of the slit for monitoring the transmission number. . In this embodiment, it is possible to input or output all receiving or routing lines from the surface of the wafer 29 200923453; and the optical transmitter, or receiver can be simply mounted on the film using a flip-chip bonding method The wavers 56a, 57a, the grounds 59a, 60a. The transmitter or receiver used in this example is a surface absorbing light 'one pole or surface emitting laser, as previously described. In the following, the operation principle of the optical module is explained by a four-wavelength example, where 1.31 is called for transmission, h49_, i is off = reception. The first signal 56 entering the module via the 51a received signal from the external light or fiber causes an incident angle 经由 through the optical waveguide 51; and is then reflected by the thin film chopper 56a, except for the 1.49 pm signal. The L49|im signal is passed to an optical receiver 56b where it is converted to an electrical signal. Other signals, such as i 5_ and 1.61 μηη, are guided by optical waveguide 52. The optical waveguide 52 guides the light of 1.55 μm and ΐ.61 μπι into the second unit 57' of the module to cause an incident angle θ2. The 155 qing signal is transmitted through the thin film ferrite 5% in the second unit 57 of the module; It is converted into an electronic nickname by the optical receiver 57b. The other signal 1.61 is directed to the optical waveguide 54. The 1.61 μηη optical signal from the optical waveguide 54 enters the third unit 58' of the module to form an angle of incidence Θ3; it is then transmitted through the thin film filter 58a and converted by the optical receiver 58b into an electrical signal. Here, the thin film filter 58a is used to isolate all other wavelengths, for example, 131 μm, 1·49 μm, and 155 μm. When the signals of 1.31 μm, 1.49 μm and 1.55 μm are sufficiently weak, the chopper 58b can be eliminated. On the other hand, 'the upstream # number generated by the transmitter 59b on the fourth unit 59 of the module is emitted into the optical waveguide 55 through the anti-reflection coating 59a, and then transmitted to the fifth unit 6 of the module. Wherein the signal is partially transmitted to the reflection and emission to the optical waveguide 53 via the thin 30 200923453 membrane filter 60a. The remaining apostrophes are ^ ^ #. Here, the optical device 60b in the fifth unit 60 serves as a monitor light dipole to the 咕 々 于 in the β 咕 oil particles (mPD). Again, the transmission 彳5 from the optical waveguide 53 transmits the two slopes of the module - _ _ _ Shi Shui Xing, Xiao Dian - Early 56, and exits to the external fiber via the light = 11 and 10 bees 51a . The brothers of the right group go to the third one, and the thin film filters 56a, 57a, 5 8a on 7_56, 57, 58 will have different coatings, ^ which means that each film filter on the module benefits Asked "Children." We can reduce the deposition of the secondary ones, introduce different incident angles θΐ5 θ2, and Θ3 for the introduction of the mother optical waveguides connected to the modules. This spear! The fact is that the penetration range of the thin film filter is shifted by the change of the angle of the human lens, even if the film of the module 56 & 5 is the same. The optical coverage of the 45th slope of the second to fifth units 57, 58, 59, 60 of the module is reflective in a wide range of wavelengths, and can be a metal coating, a dielectric coating, and a coating without any coating. A completely internal reflective surface, or a combination thereof. As the first to third units 56, 57, 58 of the receiver module, the penetration ranges of the waveguides 56a, 57a, 58a are closely spaced apart, and the multilayer dielectric layer is basically composed of dozens of layers. . Selecting the angle of incidence to the 可 degree facilitates the design of the thin film filter and results in a high correlation between high isolation and polarization between closely spaced wavelength channels. The thin film filter 59a on the fourth unit 59 of the module can be anti-reflective or non-functional (uncovered) with an optical transmitter placed thereon. The thin film filter 60a of the fifth unit 60 of the module partially reflects the incident light and is typically coated with a dielectric or metal or a combination thereof. 31 200923453 In this embodiment, it is also possible to use a conventional laser that directly couples an edge-emitting laser to an optical waveguide, such as a transmitter module, instead of a surface-emitting laser from the surface of the wafer. a square region of a transmitter module, in place of the fourth unit 59 of the module, is dry etched from above the substrate to a suitable depth; and the edge radiation is fixed at the bottom of the etch, aligned with the exposure The core of the optical waveguide on the sidewall is etched. For the correction, this embodiment is implemented as follows when the transmission wavelengths are closely spaced. The unit module is composed only of the first and second optical waveguides, the first slope, and the thin film filter (36, 37, 32, 33 in the fourth figure). The complex unit modules are connected in a zigzag shape by optical waveguides, which can be arranged as a wavelength multiplexer or an inverse multiplexer. Here, in the fourth figure, the first slope 32 is a mirror of all wavelengths; and the thin film filter above the slope performs wavelength selection. On the other hand, the optical path assigned to any wavelength channel is a reversible path, i.e., the reception and transmission are used interchangeably. Therefore, replacing a transmitter with a receiver on any thin film filter can change the function of the transmission to the receiving function and vice versa. An optical device commonly used for optical communication is a surface absorbing photodiode, an edge emitting laser or a VCSEL. The activation region of a surface absorbing photodiode has a diameter of substantially 20 to 100 Å, which is large enough to conform to the alignment of the photodiode by the flip chip bonding. Conversely, the diameter of the illuminating region of an optical transmitter is typically only a few microns. Therefore, in the module of the present invention, an optical path (to the lens or spot size converter) must be used to connect the optical path to the optical waveguide by the transmitter. Some specific embodiments are described below, please refer to the 32nd 200923453 nine and tenth figures. (Fourth embodiment) Fig. 11 is a cross-sectional view showing an optical module according to a fourth embodiment of the present invention. Referring to FIG. 11, the optical module assembly of the fourth embodiment is provided with an optical waveguide 20 formed on the substrate 10; the slit 89 having the inclined surface 88, 86 passes through at least the core 2b of the optical waveguide 2; Film on microlens 84a: chopper 83. A carrier 81 carrying an optical device 85 is additionally mounted on the membrane filter 83. The carrier provides an optical path along a central axis thereof in a pyramidal recess 82 which passes through a thin film filter 83 and microlenses 84 and then to an optical device 85. The remainder of the pocket 82 typically retains clearance; however, it may optionally be filled by an optical medium when needed. The carrier 81 assists optical connection to the optical device 85 via the surface of the substrate by the tilted end of the optical waveguide 2, which is a transmitter or a receiver. ^':; its solid optical device 85 is positioned on the substrate 10' and provides an optical space between the pupil μ and the optical waveguide 20. A receiver device does not need to be mounted because the diameter of the sensing region of the receiver is sufficiently large compared to the size of the waveguide 20, which is typically a melon to 8 μm. Conversely, a transmitter device, such as a surface radiation or an edge-emitting laser, which generally requires - a microlens to match the modal dimension of the laser to a waveguide; and - a cutting tool provides the mirror) {to The appropriate distance of the laser diode. Here, an optical module having a laser on a carrier is shown. In accordance with the construction of this embodiment, the conveyor (or laser) 85 is placed on the carrier 81 on the ramp 86; a microlens 84a is placed spaced apart from the ramp 86; and an additional microlens 84b, 84c, which are mounted in the body having the carrier ^1. This is to achieve a good match of the modal field between the optical waveguides 87a, 87b and the best match of the (four) field of the laser diode 85 with the waveguide 87a or 87b. To this end, the laser body is fixed to an additional carrier 81 whose central portion is removed to a pyramidal shape; and the carrier is optically aligned and fixed to the surface of the substrate 1G. The vehicle uses the non-isotactic # of the wafer to make it 'known as the SiOB (smc〇n 〇ptical bench) technology. The microlens can be fabricated in the upper cladding of the waveguide above the slit (or on the filler of the slit). The circular (or polygonal; flared) photoresist pattern in the glass layer (or polymer) is made circular, and the lens is formed by dissolving the surface tension of the photoresist, and then the photoresist of the lens is dried. The etch is transferred to the bottom layer. Microlenses are typically fabricated on additional glass layers on thin duty waves. Here, the microlens is first fabricated on the upper surface of the waveguide wafer and then covered by a thin film filter (method filter). Thus, the coated film layer follows the contour of the lens surface. Preferably, the divergent phase front end from the optical waveguide 87a or 87b has the same curvature as the thin film chopper 84a on the microlens (10) but is offset from the axis in the vertical direction of the substrate. In this state, the thin film filter on the surface of the lens is focused with the 45-degree bevel 86 to focus the light from the reflection wavelength of the human-emitting waveguide (7) away from the waveguide 87b' while the light of other wavelengths passes through the membrane. And the phase front end of 34 200923453 will not be distorted. The coupling of the laser diode 85 light to the optical waveguide can be accomplished independently by the lenses 84b, 84c. The channel loss due to the refraction between the waveguides 87a and 87b can be eliminated by focusing, as shown in the sixth figure. An example of forming a microlens within the carrier is described below. The wafer after grinding on both sides is oxidized to a thickness of 15 μm. A pyramidal recess is fabricated on the oxidized wafer by photomasking and non-isotropic etching. The thick oxide remains above the carrier after the next step of the step. A microlens is then created within the pocket 82 from the lower to higher index of refraction stacking layers 84c, 84b. Preferably, the previously stacked layer between them can be rounded to fill the surface profile of the stacked layer and the convergence characteristics of the lens can be controlled. Each layer can be a glass of vermiculite or an optical polymer deposited by FHD, CVD, optical polymer rotation or other means. Preferred are stacked layers of higher to lower dissolution temperatures. An oxidized second 81 a layer above the carrier 81 provides an additional optical surface as a second thin film filter. Thus, two ways of forming microlenses and thin film filters are provided in this particular embodiment, respectively. The microlens system can be symmetrical or asymmetrical, rotating about 9 degrees about the vertical direction of the wafer surface. The asymmetrical lens is simply fabricated using an asymmetrical pattern such as a rectangle or an ellipse to cause two different lens profiles along the orthogonal axes of the lens. The asymmetric lens is particularly useful for correcting astigmatism of the laser diode. Coupling the laser diode light to the optical waveguide 87a or 87b is located on the off-axis of the center of the pocket 82 in the carrier 81 at a position on the wafer surface that is perpendicular to the plane of the substrate. The angle is at the angle of refraction as the waveguide on the substrate. This off-axis coupling can be accomplished by off-axis alignment of the 35 200923453 laser diode located above the carrier wafer. It is noted that the combined lens system 84, one on the substrate and the other within the carrier, can simultaneously process the light from the waveguide 84a into the waveguide 84b and from the laser diode. The light of (optical device 85) is focused to one of the aforementioned waveguides 84a, 84b. (Fifth Embodiment) Fig. 12 is a cross section and a plan view of an optical module according to a fifth embodiment. Referring to FIG. 12, the optical module of the specific embodiment is provided with an optical waveguide 2 on the substrate 10; the slit having the first and second inclined surfaces 96a, 96b passes through at least the core 2b of the optical waveguide 2 a first film (not shown) coated on the first slope; a second film (not shown) coated on the second slope; a first thin film filter 98a above the slit; a first optical device 99a on the device 98a; a second thin film filter 98b' under the slit - a carrier plate 95 supporting the second thin film chopper 98b; and a second on the second thin film chopper 98b A few optical devices. & A specific embodiment is another exemplification of the two-way three-wavelength transceiver described in the second embodiment. The analog optical signal 9l below 1.55 μm incident from the input optical waveguide 20ba is reflected from the first bevel; passes through the light shield 97a through the first thin film filter 98a'; and is then taken by the first optical pocket 99a. The downstream analog optical #92 incident from the input optical waveguide 2〇ba passes through the first-slope 96&; is reflected by the second bevel; through the second film m 98b' through the light-shielding 97b: then by the second optical device 36 200923453 99b detected. The first thin buffer 98a is a cut filter of 1.49 μηη signal, and the second thin film filter 98b is a cut filter of 1.55 μηη signal. Light occlusions 97a, 97b are additionally added to mask the loss of light that is escaped by the particular path defined by 91, 92, and 93. On the other hand, the upstream digital optical signal 93 of 1.3 Ι μπι is from the other side 20bb of the input optical waveguide 20ba and is combined into the reverse path of the input optical waveguide passing through the second inclined surface 96b and the first inclined surface 96a. The first optical device 99a is spaced apart from the optical waveguide 20 by only several tens of micrometers on the upper side of the substrate 10. Therefore, the pen beam from the optical waveguide diverges very small until it reaches the first optical device 99a from the first slope 96a. Conversely, the second optical device 99b is located on the back side of the substrate 10, which is spaced apart from the optical waveguide 20 by a thickness (about imm). Then, the pencil beam from the optical waveguide diverges across the side of the substrate beyond the sensing area of the second optical device 99b (normally about 5 μm in diameter). Therefore, it is necessary to focus the beam 92 into the sensing area of the second optical device 99b. The focusing optics of the microlens in this particular embodiment are illustrated in the twelfth. Connecting the optical module in this embodiment can also produce a bidirectional multi-wavelength optical module having more functions. Further integration of this embodiment into other optical modules in the present invention may still make other optical devices more versatile. Various modifications of the invention are possible within the spirit and scope of the invention. Therefore, the explanation of the specific embodiments of the present invention is not intended to limit the scope of the patent application or its equivalents. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The above and other features and advantages of the present invention will become more apparent from the detailed description of the exemplary embodiments illustrated herein. The structure of the BiDi-tripor of the filter technology. The second figure shows the structure of a triplexer using a conventional technique of optical waveguides. The third figure shows the structure of an optical module according to a first embodiment of the present invention. The fourth figure shows the structure of an optical module according to a second embodiment of the present invention. The fifth figure shows the operation of a bidirectional three-wavelength optical transmitter-receiver combination of the optical module according to the fourth figure. The sixth figure shows the correlation of the angle of intersection of the triple-reflected light between the first and second optical waveguides; a microlens enhances the face. The seventh figure shows the procedure for fabricating the optical module by an etching method. A bevel is made from the back side of the wafer. The eighth figure shows the scanning electron micro-developing of the slit of an optical waveguide manufactured by the transfer etching of the wet-etched ruthenium substrate. The ninth picture shows the optical module of the waveguide intersection. A bevel is made from the front of the wafer. Figure 11 is a diagram showing the construction of a bidirectional four-wavelength optical transmitter-receiver combination in accordance with a third embodiment of the present invention. Figure 11 is a view showing the structure of an optical module 38 200923453 according to a fourth embodiment of the present invention. Figure 12 is a view showing the structure of an optical module according to a fifth embodiment of the present invention. [Main component symbol description] 1 Fiber 2 Fiber 4 Receiver Photodiode 5 Optical Transmitter 7 Thin Film Filter 8 Membrane Filter and Wave Filter 9 Groove 10 Substrate 14 Input 埠18 Optical Waveguide 20 Optical Waveguide 20a Bottom Covered 20b Core 20c upper cladding 21 transistor contour can 21a lens 21b light diode 22 transistor contour can 22a lens 39 200923453 22b light diode 23 transistor contour can 23a lens 23b light diode 23c laser diode 24 lens 25 fiber 26 Membrane filter 27 Membrane filter 28 Membrane filter, wave filter 29 Membrane filter, waver 30 Notch 31 Surface 32 First slope 33 Film waveguide 34 Second slope 35a Vertical projection 36 First optical waveguide 37 Second optical waveguide 38 Three optical waveguide 39 fourth optical waveguide 40 optical receiver 51 optical waveguide 51a 10埠40 200923453

52 光學波導 53 光學波導 54 光學波導 55 光學波導 56 模組 56a 薄膜濾波器 56b 光學裝置 57 模組 57a 薄膜濾波器 57b 光學裝置 58 模組 58a 薄膜遽波器 58b 光學裝置 59 模組 59a 薄膜濾波器 59b 光學裝置 60 模組 60a 薄膜濾波器 60b 光學裝置 81 載具 81a 二氧化矽 82 角錐形凹穴 83 薄膜濾、波器 84 微鏡片 200923453 84a 波導 84b 波導 84c 微鏡片 85 雷射二極體 86 斜面 87 光學波導 87a 光學波導 87b 光學波導 88 斜面 89 切口 91 下游類比光學信號 92 下游類比光學信號 93 上游數位光學信號 95 載具板 96 斜面 96a 第一斜面 96b 第二斜面 97 光遮蔽 97a 光遮蔽 97b 光遮蔽 98 薄膜滤波器 98a 第一薄膜處波器 98b 第二薄膜濾波器 99 光學裝置 42 200923453 99a 第一光學裝置 99b 第二光學裝置 100 基板 120 光學導波 120a 下方包覆 120b 核心 120c 上方包覆 130 切口 132 斜面 133 薄膜濾波器 134 斜面 136 第一波導 137 第二波導 140 光學裝置 20ba 輸入光學波導52 Optical waveguide 53 Optical waveguide 54 Optical waveguide 55 Optical waveguide 56 Module 56a Thin film filter 56b Optical device 57 Module 57a Thin film filter 57b Optical device 58 Module 58a Thin film chopper 58b Optical device 59 Module 59a Thin film filter 59b optical device 60 module 60a thin film filter 60b optical device 81 carrier 81a cerium oxide 82 angular conical pocket 83 thin film filter, wave device 84 microlens 200923453 84a waveguide 84b waveguide 84c microlens 85 laser diode 86 bevel 87 Optical waveguide 87a Optical waveguide 87b Optical waveguide 88 Bevel 89 Incision 91 Downstream analog optical signal 92 Downstream analog optical signal 93 Upstream digital optical signal 95 Carrier plate 96 Bevel 96a First bevel 96b Second bevel 97 Light shielding 97a Light shielding 97b Light Mask 98 Membrane Filter 98a First Membrane Waver 98b Second Membrane Filter 99 Optical Device 42 200923453 99a First Optical Device 99b Second Optical Device 100 Substrate 120 Optical Guide Wave 120a Lower Cover 120b Core 120c Overlay 130 Incision 132 Surface 133 inclined surface 136 of the first thin-film filter 134 of the waveguide 137 second waveguide optical apparatus 140 input optical waveguide 20ba

Claims (1)

200923453 十、申請專利範圍·· I一種光學模組,其包含: 一光學波導,位於一基板的上方側上; 一切口’其具有至少兩個斜面’至少通過該光學波 導的核心;及 一薄膜濾波器,其位在該切口之上或之下。 2.如申請專利範_丨項之光學模組,其中該加的兩個 斜面中至少一斜面被覆成一光學層。 1申請專職圍第以2項之絲模組,其中該光學波 ¥要裝設橫跨該斜面之-延伸,以沿著該波導持續 線傳遞。 、 4.如申請專利範圍第i項之光學模組,進—步包含在 該切口之上或之下的一光學裝置。 1申請專利範㈣i《2項之光學模組,其中該光學波 導形成與該斜面的垂直方向投射成一角度。 申請專利範圍第! $ 2項之移模組%中該光學波 導包含-第-波導與m且其中 =設成_斜面_直投射成—肖度(在光學波= ”面上人射角)’而該第二光學波導可額外裝設, 於接收來自该薄膜濾波器與該斜面反射的該第一光學 波導光線。 7·如申請專利範圍第4項之光學模組,進—步包含在由該 光學波導到該光學裝置的光線路徑中至少一微鏡片。 請專利範圍第4項之光學模組,進—步^用於支 44 200923453 撐:區隔該基板上該光學裝置 9. 如申請專利範圍 禋具。 在該工且或发 、之光學模級’其中該工具可承載 10. 如申請專利膜滤波器内本體中所形成的微鏡片。 丁口月寻利範圍第7 . 成為對稱或非對稱,而在子;;且,其中該等微鏡片形 11. 如申請專利_第i或2項1=面上旋轉約9〇度。 組包含經由該光風找咕組,其中該光學模 12. -種光學模%¥彼此連接的複數單元光學模組。 、、’其包含: 彼此接近;帛—光學波導’其在—基板的上方侧上 接到延::二1四光學波導’其彼此接近’應具有連 一 及第二光學波導接近區域; 於利用一第—位在該接近區域,其包含一第一斜面,用 箸 切割角切割該第一及第二光學波導,及一 三及第四光200923453 X. Patent Application Scope I. An optical module comprising: an optical waveguide on an upper side of a substrate; a slit 'having at least two slopes' passing through at least the core of the optical waveguide; and a film A filter that is positioned above or below the slit. 2. The optical module of the patent application, wherein at least one of the two inclined faces is covered with an optical layer. 1 Apply for a full-length 2nd wire module, wherein the optical wave is to be extended across the slope to be transmitted along the continuous line of the waveguide. 4. An optical module as claimed in claim i, wherein the step further comprises an optical device above or below the slit. 1 Patent Application (4) i. The optical module of item 2, wherein the optical waveguide is formed at an angle to the vertical direction of the slope. Apply for patent coverage! In the shift module % of the $2 item, the optical waveguide includes a -th-waveguide and m and wherein = is set to _slope _ straight projection into - diametry (on the optical wave = "face") and the second The optical waveguide may be additionally configured to receive the first optical waveguide light reflected from the thin film filter and the slope. 7. The optical module of claim 4, wherein the optical waveguide is included in the optical waveguide At least one microlens in the light path of the optical device. The optical module of the fourth item of the patent scope is further used for the support 44 200923453 support: the optical device is separated from the substrate. 9. In the optical mold stage of the work, the tool can carry 10. The microlens formed in the body of the patented membrane filter. The range of the Dingkouyue is 7th. It becomes symmetrical or asymmetrical. And in the sub-;; and wherein the micro-lens shape 11. As claimed in the patent _ i or 2 item 1 = surface rotation about 9 。 degrees. The group contains the group by the light wind, wherein the optical mode 12. Optical module %¥ complex unit optical module connected to each other. It comprises: close to each other; 帛-optical waveguide 'which is connected to the upper side of the substrate:: two 14 optical waveguides 'which are close to each other' should have a first and second optical waveguide proximity area; Positioning in the proximity region, comprising a first slope, cutting the first and second optical waveguides with a 箸 cutting angle, and a third and fourth light 學波導面及用於利用一第二切割角切割該第 η 皮器’其形成在該接近區域上。 1 .如申請專利範圖楚,Λ 一 阁弟12項之光學模組,其中該第一與第 二光學波導及兮贫. 守久该第二與第四光學波導實質上在該基板 '平面上對稱於該第-與該第二斜面之垂直投射。 申印專12項之光學模組,其中該第一與該 a —斜面貧質上對稱於通過該等光學波導之交叉中心 該基板之垂直線。 15’如申%專利In圍第12項之光學模組,進—步包含在該 45 200923453 接近區域之上或之下的—光學裝置。 16.如申請專利範圍第12項之光學模組,其中來 一 ^波導進人光線之—些波長藉由該第—斜岐射而 傳輪到該第二光學波導、來自該第三光學波導進 些波長橫跨該第—與第二斜面而傳輸到該第-尤学波導。 17·如申請專利範圍第15項之光學模組,其中該光學裝置 為-表面放射雷射二極體或—表面感應光二極體。 18.如申請專利範圍第12項之光學模組,其中該切口填入 —透明光學齡或-雙層的—_光學媒介及 吸收媒介,用於防止一散失光線。 、、 如申請專利範圍第18項之光學模組,其中該透明光學 =介,該光線吸㈣介為—朗…聚合物一環氧樹 =或包含在-吸收劑(例如黑碳)的一聚合物或環氧 瓜如申請專利範圍第14項之光學模組,其中該第一與第 一斜面為非對稱性被覆。 21. —種光學模組,其包含·♦ 分一第一及一第二光學波導,其在-基板的上方侧上 彼此接近; -第三及-第四光學波導,其彼此接近,應具有連 接到延伸的第—與第二光學波導之接近區域; 一切口 於利用一第 ,位在該接近區域,其包含一第一斜面,用 一切割角切割該第—及第二光學波導,及— 46 200923453 :波導;及用於利用—第二切割角切割該第—及第二光 —溥膜濾波器,並报士产—从 97 ^ ^ 具形成在該接近區域上 22. —種光學模組,其包含:· . 光學波導,其在一基板的上方側上 一第一及一第二 彼此接近; -角卢:二=位在該接近區域,由-斜面構成,利用 肖 ^亥第—及第二光學波導;及 一薄膜f波器’其形成在該接近區域上, 面Φ:::ί光學波導相對於該基板的平面上該斜 來自 第—入射角,且該第二光學波導接收 先象:、學波導自該斜面及該薄膜濾、波器反射的 23.二種光學模組,其包含:該光學模組的—第—及一第二 單元,其彼此連接: 其中光學模組的第—單元包含一第一盘 學波導’其在一基板的上方侧上彼此靠近Γ位在賴近 區域處一第一切口,由一第一斜面構成,利用一角度切 割該第-與第二光學波導;及一第—薄縣波器,其形 成在该接輕域上,該第—光學波導㈣於該基板的平 面上該第-斜面垂直投射構成一第—入射角,且該第二 光學波導接收來自該第-光學波導自該第一斜面及該 第一薄膜濾波器反射的光線; 其中光學模組的第二單元包含該第二及一第三光 47 200923453 學波導,其在一基板的上方側上彼此靠近;位在該第二 接近區域處一第二切口,由一第二斜面構成,利用—角 度切割該第二與第三光學波導;及—第二薄膜遽波器, 其形成在該第二接近區域上:該第二光學波導相對於該 基板的平面上該第二斜面垂直投射構成一第二入射 角且ϋ亥第二光學波導接收來自該第二光學波導自該第 二斜面及該第二薄膜濾波器反射的光線。 " 24. 25. 26. 27. 28. 如申請專魏圍第23項之絲模組,其巾該第一與第 二薄膜濾波器以相同的結構構成;但第一與第二入射 不相同。 一種光學模組的製造方法,其包含·· 於該晶圓基板上形成該光學波導; 由該基板的前方侧或後方侧形成具有至少兩個斜 面之切口,其通過至少該光學波導的核心;及 選擇性地在該斜面上被覆該光學薄膜,且在 導的區域中。 :申請專利_第25項之製造方法,其巾形成該切口 =驟可由自-石夕基板的背侧的―非等向濕式㈣,接 者猎由乾蝕刻轉換該濕蝕刻圖案到該波導層來完成或 ::該基板的前方側使用一石夕或光阻的適當二的: d光罩乾式钱刻該波導層來製造。 =請專利範圍第25項之製造方法,其巾形成該切口 之^驟使用機械工具加工該波導層所完成。 如申請專鄉圍第25項之製造方法,其巾在形成該切 48 200923453 口的步驟中,該切口的斜面以實質上45度來達到。 29. 如申請專利範圍第28項之製造方法,其中在形成該切 口之步驟,該切口的斜面以實質上45度來達到,其藉 r * 由控制以下的條件,包括氧、氫氟碳、礙氳氟碳及/或 氬的相對部份壓力;相對偏壓功率及/或RF功率;及壓 力。 30. —種光學模組,其包含複數單元光學模組,該等單元光 學模組之每一模組包含:一光學波導,其位在一基板的 ·. . 上方側;一切口,其具有至少兩個斜面,通過至少該光 學波導的核心;及一薄膜濾波器,其位在該切口的上方 或下方,其中該等單元光學模組之每一模組的輸入埠及 /或輸出埠經由該光學波導連接到光學模組單元中至少 口口 一 —単兀0 49The waveguide face is used and used to cut the first n-piercing device ' with a second cutting angle' formed on the proximity region. 1. For example, the patent module Fan Tuchu, the optical module of 12 cabinets, wherein the first and second optical waveguides are poor. The second and fourth optical waveguides are substantially on the plane of the substrate. Symmetrically projected perpendicular to the first and the second bevel. The optical module of claim 12, wherein the first and the a-slope are leanly symmetrical with respect to a vertical line passing through the substrate at the intersection of the optical waveguides. 15', as in the optical module of claim 12, the optical device is included in the optical device above or below the vicinity of the 45 200923453. 16. The optical module of claim 12, wherein the wavelength of the incoming light is transmitted to the second optical waveguide by the first oblique oblique beam from the third optical waveguide The wavelengths are transmitted across the first and second slopes to the first-sense waveguide. 17. The optical module of claim 15, wherein the optical device is a surface-emitting laser diode or a surface-sensing photodiode. 18. The optical module of claim 12, wherein the slit is filled with a transparent optical age or a double layer of optical media and an absorbing medium for preventing a loss of light. The optical module of claim 18, wherein the transparent optical device comprises: the light absorption (four) is - a polymer - an epoxy tree = or a one contained in an absorbent (for example, black carbon) The polymer or epoxy guar is the optical module of claim 14, wherein the first and first slopes are asymmetrically coated. 21. An optical module comprising: ???one first and a second optical waveguide which are adjacent to each other on an upper side of the substrate; - third and fourth optical waveguides which are close to each other and shall have Connecting to the extended first and second optical waveguides; a slit in the proximity region, comprising a first slope, cutting the first and second optical waveguides with a cutting angle, and — 46 200923453 : a waveguide; and for cutting the first and second optical-deuterium filter with a second cutting angle, and reporting the production of the film from the 97 ^ ^ member on the proximity region. a module comprising: an optical waveguide, wherein a first and a second are adjacent to each other on an upper side of the substrate; - a corner = two = in the proximity region, consisting of - a slope, using Xiao ^hai a first and second optical waveguide; and a thin film f-waveper 'which is formed on the proximity region, the surface Φ:::ί optical waveguide with respect to the plane of the substrate, the oblique from the first incident angle, and the second The optical waveguide receives the first image: the waveguide is learned from the slope The two optical modules of the optical filter and the filter reflect: the first and the second unit of the optical module are connected to each other: wherein the first unit of the optical module comprises a first disk a waveguide, which is adjacent to each other on a top side of a substrate, and a first slit is formed by a first inclined surface, and the first and second optical waveguides are cut at an angle; and a first a thin wave device formed on the light-handling domain, the first optical waveguide (four) is perpendicularly projected on the plane of the substrate to form a first incident angle, and the second optical waveguide receives the first-optical waveguide The optical waveguide reflects light from the first slope and the first thin film filter; wherein the second unit of the optical module includes the second and third light 47 200923453 waveguides, which are close to each other on an upper side of the substrate a second slit located at the second proximity region, formed by a second slope, the second and third optical waveguides are cut by an angle; and a second thin film chopper is formed in the second proximity Area: the second light A second waveguide with respect to the vertical projection forms a ramp angle of incidence on the plane of the second substrate and the second optical waveguide ϋ Hai received from the second inclined surface and the light reflected from the second thin film filter of the second optical waveguide. " 24. 25. 26. 27. 28. If the silk module of the 23rd item of Weiwei is applied, the first and second thin film filters are constructed in the same structure; but the first and second incidents are not the same. A method for manufacturing an optical module, comprising: forming the optical waveguide on the wafer substrate; forming a slit having at least two slopes from a front side or a rear side of the substrate, passing through at least a core of the optical waveguide; And selectively coating the optical film on the slope and in the region of the lead. The manufacturing method of claim 25, wherein the towel forms the slit = the non-isotropic wet type (four) of the back side of the self-shixi substrate, and the wet etching pattern is converted to the waveguide by dry etching. The layer is completed or:: the front side of the substrate is made of a suitable stone or a photoresist: a d-mask is used to make the waveguide layer. = The manufacturing method of claim 25, wherein the forming of the slit is performed using a mechanical tool to machine the waveguide layer. For example, in the method of manufacturing the hometown section 25, in the step of forming the slit 48 200923453, the slope of the slit is achieved at substantially 45 degrees. 29. The method of manufacture of claim 28, wherein in the step of forming the slit, the slope of the slit is achieved at substantially 45 degrees, and the following conditions are controlled by r*, including oxygen, hydrofluorocarbon, The relative partial pressure of fluorocarbon and/or argon; relative bias power and / or RF power; and pressure. 30. An optical module comprising a plurality of unit optical modules, each module of the unit optical modules comprising: an optical waveguide positioned on an upper side of a substrate; At least two slopes passing through at least the core of the optical waveguide; and a thin film filter positioned above or below the slit, wherein input and/or output of each module of the unit optical modules are via The optical waveguide is connected to at least one port of the optical module unit - 単兀0 49
TW96144630A 2007-11-23 2007-11-23 Optical module and fabrication method of the same TW200923453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96144630A TW200923453A (en) 2007-11-23 2007-11-23 Optical module and fabrication method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96144630A TW200923453A (en) 2007-11-23 2007-11-23 Optical module and fabrication method of the same

Publications (1)

Publication Number Publication Date
TW200923453A true TW200923453A (en) 2009-06-01

Family

ID=44728605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144630A TW200923453A (en) 2007-11-23 2007-11-23 Optical module and fabrication method of the same

Country Status (1)

Country Link
TW (1) TW200923453A (en)

Similar Documents

Publication Publication Date Title
US8025444B2 (en) Optical module and fabrication method of the same
JP4789619B2 (en) Optical device and optical assembly incorporating optical device
KR101744281B1 (en) photonic integrated circuit comprising light turning micro mirror interior of optical waveguide and method of manufacturing thereof
US20020191916A1 (en) Vertical waveguide tapers for optical coupling between optical fibers and thin silicon waveguides
US20040114869A1 (en) Mode converter including tapered waveguide for optically coupling photonic devices
JPH0774342A (en) Integrated optical device and manufacture thereof
US20170153391A1 (en) Photonic chip optical transceivers
TW201140181A (en) Integrated optical receiver architecture for high speed optical I/O applications
CA2708767A1 (en) Coupling between free space and optical waveguide using etched coupling surfaces
US10739518B2 (en) Optical components for wavelength division multiplexing with high-density optical interconnect modules
CA3062713A1 (en) Photonic chip with integrated collimation structure
JP2013084005A (en) Waveguide substrate and optical device
TW201702661A (en) Optical zig-zags
TW200303999A (en) High density integrated optical chip with low index difference and high index difference waveguide functions
US10302871B2 (en) Microfabricated fiber optic platform
US8023782B2 (en) Method and apparatus for demultiplexing optical signals in a passive optical network
KR100865127B1 (en) Optical module and fabrication method of the same
TW200923453A (en) Optical module and fabrication method of the same
US6847491B1 (en) Hybrid microlens array
JP2004101678A (en) Micro mirror and its manufacturing method
JP6303323B2 (en) Optical device
KR20090053440A (en) Optical module and fabrication method of the same
KR20020046697A (en) Alignment device of optical fiber and fabricating method thereof
CN117826320A (en) End face coupler structure and method for manufacturing end face coupler
KR20080056700A (en) Optical module and fabrication method of the same