TW200923319A - System and method for correctting the light source of the image measuring machine - Google Patents

System and method for correctting the light source of the image measuring machine Download PDF

Info

Publication number
TW200923319A
TW200923319A TW96144429A TW96144429A TW200923319A TW 200923319 A TW200923319 A TW 200923319A TW 96144429 A TW96144429 A TW 96144429A TW 96144429 A TW96144429 A TW 96144429A TW 200923319 A TW200923319 A TW 200923319A
Authority
TW
Taiwan
Prior art keywords
image
standard
measuring machine
light source
coordinate position
Prior art date
Application number
TW96144429A
Other languages
Chinese (zh)
Inventor
Chih-Kuang Chang
Xian-Yi Chen
Zhong-Kui Yuan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96144429A priority Critical patent/TW200923319A/en
Publication of TW200923319A publication Critical patent/TW200923319A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention provides a method for correcting the light source of the image measuring machine. The method includes: introducing the standard clarity curve charts for the light source; reading the standard coordinates in the charts; moving the standard workpiece and CCD to the position according to the coordinates; activating the luminous device and making it shine, then making the CCD scan the standard workpiece to get the image of the standard workpiece; computing the value of clarity under the value of brightness, generating a new curve in the standard clarity curve charts for the light source; judging whether the ordinate error of every point of the abscissa is in the setting scale between the standard clarity curve and the new generating curve; if not, then turning up the resistance of rheostat of the luminous device to make the error be in the setting scale.

Description

200923319 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種影像量測系統及方法,尤其是一種影 像測量機台光源校正系統及方法。 【先前技術】 影像量測是目前精密量測領域中最廣泛使用的量測 方法,該方法不僅精度高,而且量測速度快。影像量測主 要用於零件或者部件的尺寸物差和形位誤差的測量,對保 證產品品質起著重要的作用。 傳統的影像量測方法是採用工業光學鏡頭搭配高解 析度的電荷耗合裝置(Charged Coupled Device,CCD), 透過影像擷取卡取得待測工件或者部件的影像,該量測方 法對工件或者部件的很多精密量測都達到了很高的精度。 但是在以前的圖像處理中,由於影像測量機台上發光 裝置所發出的影像光源會有差異,例如,強度、亮度等都 會不同,即使是相同種類的發光裝置(如:同一種規格的 光源裝置)發出的影像光源也會不同,在對CCD影像進行 處理時,就會對獲取的影像清晰度產生很大的偏差,從而 導致不同的機台對相同的工件進行影像測量時的重複性偏 差,從而導致精度不南。 【發明内容】 鑒於以上内容,有必要提出一種影像測量機台光源校 正系統,其可以對影像測量機台上的發光裝置變阻器的阻 值大小進行調節,其發出的影像光源使標準測試工件產生 7 200923319 的影像清晰度與標準的影像清晰度一致。 — 鑒於以上内容,還有必要提出一種影像測量機台光源 _ 校正方法,其可以對影像測量機台上的發光裝置變阻器的 阻值大小進行調節,其發出的影像光源使標準測試工件產 生的影像清晰度與標準的影像清晰度一致。 一種影像測量機台光源校正系統,包括電腦及影像量 測機台,所述電腦包括影像擷取卡,所述影像量測機台安 裝有電荷耦合裝置,所述電荷耦合裝置搭配一個光學鏡 f 頭,用於獲取待測工件的影像,並將該影像傳送至電腦的 影像擷取卡中,所述影像量測機台還包括一發光裝置,所 述電腦還包括:導入模組,用於導入影像光源標準清晰度 曲線圖表;讀取模組,用於讀取所述圖表中標準的座標位 置,所述標準的座標位置是指在製作影像光源標準清晰度 曲線圖表時,標準測試工件及電荷耦合裝置在影像量測機 台上的座標位置;位置確定模組,用於根據所述座標位置, 將標準測試工件及電荷耦合裝置移到該座標位置;啟動掃 描模組,用於啟動發光裝置使其發光,並使電荷耦合裝置 對標準測試工件進行影像掃描以獲得該標準測試工件的影 像;計算顯示模組,用於根據掃描獲得的標準測試工件影 像,計算出在不同亮度值下對應的清晰度的值,在標準清 晰度曲線圖表中生成一條新的曲線;判斷模組,用於判斷 影像光源標準清晰度曲線與新生成的曲線上橫坐標的每一 個點的縱坐標誤差是否在設定的範圍之内;調節模組,用 於當兩條曲線上橫坐標的任何一個點的縱坐標誤差不在設 8 200923319 定的範圍之内時,調節發光裝置變阻器的阻值大小以確保 其誤差在設定的範圍之内。 μ —種影像測量機台光源校正方法,該方法包括步驟. 導入影像光源標準清晰度曲線圖表;讀取所述圖表中 的座標位置,所述標準的座標位置是指在製作影像光㈣ 準,晰度曲線圖表時,標準測試工件及電荷麵合裝置在: 像里測機台上的座標位置;根據所述座標位置,將標準測 試工件及電荷輕合裝置移到該座標位置;啟動發光裝置使 == 吏電荷搞合裝置對標準測試工件進行影像掃描 :::測試工件的影像;根據掃描獲得的標準測試 件衫像’計算出在不同亮度值下對應的清晰度的值 ==表中生成一條新的曲線;判斷影像光源 曲線與新生成的曲線上橫坐標每-個點的縱坐 ^差d在設定的_之内;#兩條料 :一個點的縱坐標誤差不在設定的範圍之内時:調= 裝置變阻㈣阻值大小以確健誤差在設定的範圍之 ▲相較於習知技術,本發明所提供的影像測量機 杈正系統及方法其可輯影像測量 : 器的阻值大小進行調節,其發出裝置變阻 Mum ^出的%像切、使標準測試工 件產生的影像清晰度與標準的影像清晰度—致 影像量測機台的準媒率。 & 南 【實施方式】 ^閲圖i所示’是本發明影像測量機台光源校統 較佳貝_的硬體架構圖。該影像測量機台光源校正系統 200923319 包括電腦1及放置標準測試工件5的影像量測機台2。其 ' 中,所述影像量測機台2的Z轴上安裝有用於採集連續影 - 像的電荷輕合裝置(Charged Coupled Device,CCD ) 3, 所述CCD 3裝有工業光學鏡頭(圖中未示出),所述CCD 3搭配該工業光學鏡頭可以使標準測試工件5成像;所述 影像量測機台2的Z轴上還安裝有發光裝置4,所述發光 裝置4用於為標準測試工件5成像提供影像光源。所述的 發光裝置4可以是燈管及任意合適的能夠提供光源的發光 體。 所述電腦1裝有影像擷取卡10及影像測量機台光源 校正程式11。其中CCD 3透過一條影像資料線與所述影像 擷取卡10相連,將從影像量測機台2獲取的標準測試工件 5的影像傳送到影像擷取卡10上,並可以顯示於電腦1的 顯示器(圖中未示出)上。所述影像測量機台光源校正程 式11連接上述發光裝置4,主要用於控制所述發光裝置4, 並對發光裝置4的變阻器進行調節,發光裝置4發出的影 像光源使標準測試工件5產生的影像清晰度與標準的影像 清晰度一致。 參閱圖2所示,是圖1中光源校正程式11的功能模組 圖。本發明所稱的各模組是所述光源校正程式11中完成特 定功能的各個程式段,比程式本身更適合於描述軟體在電 腦中的執行過程,因此本發明對軟體的描述都以模組描述。 所述光源校正程式11主要包括:導入模組110、讀取 模組111、位置確定模組112、啟動掃描模組113、計算顯 10 200923319 . 示模組114、判斷模組115及調節模組116。 所述導入模組110用於導入影像光源標準清晰度曲線 圖表’亚將其顯不在與電腦丄相連的顯示器(圖中未示出) 上。所述影像光源標準清晰度曲線圖表包括標準清晰度曲 線則票準測試工件5在影像量測機台2上標準的座標位置 等資訊。具體而言,如圖4所示,為標準清晰度曲線圖表 顯不在顯不(圖中未示出)上的示意圖,圖中縱坐標表 示獲得圖像清晰度的值,值越大所獲得的圖像越清晰,在 發光裝置電阻不變動的情況下,橫坐標每個值對應發光裝 置4發光時的焭度值。所述標準的座標位置是在製作影像 光源標準清晰度曲線圖表時影像量測機台2的CCD3及標 準測試工件5的座標位置,如圖4所示的X軸座標310、 Y轴座祆311及Z軸座標312。此外,由於標準測試工件 5只疋放置在一個平面上(如圖α所示),因此標準測試工 件5在影像量測機台2上只有χ軸座標3ι〇、γ軸座標3ιι, 具體而s,假設標準清晰度曲線圖表上標準的座標位置為 (1 2 3 ) ’則CCD3的座標為(1 ’ 2,3 ),而標準測試 工件5座標為(1,2)。進一步的,由於不同的工件在進行 測試時所得到的上述的曲線不同,差異很大,因此在獲得 糕準影像光源清晰度曲線圖表及調試其他同規格影像量測 機台2的影像光源時使用同一個標準測試工件5,以提高 檢測的準確率。 所述讀取模組111用於讀取所述標準清晰度曲線圖表 中標準的座標位置。具體而言,在本較佳實施例中,如圖 11 200923319 4所示,分別讀取χ軸座標 及Ζ軸座標312的值。 310的值、Υ軸座標311的值 菩’ :ΐ1 立置確定模組112用於根據所述標準的座標位 h如像里剩機台2上的標準測試工 到該座標位置。具體而言,在本較佳實施财,假3 ==圖表上標準的座標位置為(1,2,3),則將⑽ 位置置(1,2,3),將標準㈣工件5移到座標 、,所述啟動掃插模組113用於啟動發光裝置4使其發 ^ ^ CCD3難準賴卫件5進行影像掃描轉得該標 準測试工件5的影像,並將其顯示在與電腦丨相連的顯示 器上。 \ 所述計算顯示模組1U用於根據掃描獲得的標準測試 工件影像,計算出在不同亮度值下對應的清晰度的值,在 標準清晰度曲線圖表中生成一條新的曲線。具體而言,在 本較佳實施例中,如圖6所示,圖中分別是標準影像光源 清晰度曲線及新生成的影像光源清晰度曲線,曲線圖表的 h坐彳示上母個值代表發光裝置4的發光時的亮度值,縱坐 標為對應清晰度的值’系統每輸入一個橫坐標的值,發光 裝置4發出對應亮度的光照射在標準測試工件5,CCD3 透過工業光學鏡頭獲得標準測試工件5的影像及組成該影 像母個點的圖元點值P々· ’如圖5所示,ccd截圖放大後 可以看到’在電腦裏,圖片是由點組成的,即為圖元陣列, 可用上下圖元點值差的纟巴對值與左右圖元點值差的絕對值 12 200923319 ' 張影像圖片的面積,作為清晰度的評估, Σ ' P"7+l) + . p,+l y)) / ' S’ /、中S為整張影像圖片的面積。 所述判斷模組115用於判斷影像光源標準清晰度曲線 〃上補生制曲線上橫坐標每—個點的縱韓誤差是否 在設定的範圍之内。具體而言,在本較佳實施例中,誤差 =為5%之内就算合格,所用的計算公式是在橫坐標相 叩況下比較縱坐標的誤差值,即e=Abs(y♦,其中乂 表示新生成的曲線縱坐標的值,a表示標準曲線縱:標的 值,Abs表示取絕對值。在橫坐標的每—點上計算出兩條 曲線縱坐標的誤差範圍,若兩條曲線在橫坐標上某一個點 的縱坐標的誤差範圍超過5%,則說明需要對發光裝置變 阻器的阻值大小進行調節以讀保兩條曲線在橫坐標上每一 個點的縱坐標的誤差在設定的範圍之内。 所述調節模組116用於若兩條曲線上橫坐標的任何一 個點的縱坐標誤差不在設定的範圍之内時,調節發光裝置 變阻器的阻值大小以確保其誤差在設定的範圍之内。 參閱圖3所示,是本發明影像測量機台光源校正方法 較佳實施例的實施流程圖。 步驟S10,導入影像光源標準清晰度曲線圖表,並將 其顯示在與電腦}相連的顯示器(圖中未示出)上。所述 ’5V像光源標準清晰度曲線圖表包括標準清晰度曲線及標準 測β式工件5在影像量測機台2上標準的座標位置等資訊。 具體而言,如圖4所示,為標準清晰度曲線圖表顯示在顯 13 200923319 示器(圖中未示出)上的示意圖,圖中縱坐標表示獲得圖 像清晰度的值,值越大所獲得的圖像越清晰,在發光裝置 電阻不變動的情況下,橫坐標每個值對應發光裝置4發光 時的亮度值。所述標準的座標位置是在製作影像光源標準 清晰度曲線圖表時影像量測機台2的CCD3及標準測試工 件5的座彳示位置’如圖4所示的X轴座標31〇、γ轴座標 311及Z轴座標312。此外,由於標準測試工件5只是放 置在一個平面上(如圖1所示),因此標準測試工件5在影 像量測機台2上只有X轴座標310、γ軸座標311,具體 而5 ’假δΧ彳示準清晰度曲線圖表上標準的座標位置為(1, 2,3),則CCD3的座標為(1,2,3),而標準測試工件5 座標為(1’ 2)。進-步的,由於不同的工件在進行測試時 所得到的上述的曲線不同’差異彳艮大,因此在獲得標準影 像光源清晰度曲線圖表及調試其他同規格影像量測機台2 的影像光源時使用同-㈣準測試工件5 ’以提高檢測的 準確率·。 步驟S11 ’讀取模組m讀取所述標準清晰度曲線圖 表中標準的座標位置。具體而言,在本較佳實施例中,如 圖4所示,分別讀取X軸座標31〇的值、γ軸座標311的 值及Ζ轴座標312的值。 在步驟S12中,位置確定模組112根據所述標準的座 標位置,將該影像量測機台2上的標準測試卫件5及^3 移到該座標位置。具體而言,在本齡 _ %令竿乂佳實施例中,假設標 準清晰度曲線圖表上標準的座標位置為(1,2 14 200923319 2,3 ),將標準測試工件5移 CCD3移到該座標位置 到座標位置(1,2)。 光,Π:對===啟;裝置4使其發 不 準測試工件5的影像,並將:進;描以獲得該標 哭上。 w將…‘,,員不在與龟腦1相連的顯 試工二::14::异顯示模組114根據掃描獲得的標準測 ^ : #出在不同亮度值下對應的清晰度的值, 在^準清晰度曲線目表巾生成-條新的㈣。具體而言, = 施例中,如圖6所示,圖中分別是標準影像光 '、:a線及新生成的影像光源清晰度曲線,曲線圖表 的&坐標上每個值代表發光裝置4的發光時的亮度值,縱 坐標為對應清晰度的值,系統每輸人—個橫坐標的值,發 光裝置4發出對應亮度的光照射在標準測試工件5, 透過工業光學鏡頭獲得標準賴讀5的影像及組成該影 像母個點的圖元點值卜,如圖5所示,CCD截圖放大後 可以看到,在電腦裏,圖片是由點組成的,即為圖元陣列, 可用上下圖元點值差的絕對值與左右圖元點值差的絕對值 求和,之後除以整張影像圖片的面積,作為清晰度的評估, ^ G - [ (Abs(Pi,y-i - Pi"’+1) + Abs(Pi—i,;· · pi+1".)) / S’其中S為整張影像圖片的面積。 在步驟S15中,判斷模組115判斷影像光源標準清晰 度曲線與上述新生成的曲線上橫坐標每一個點的縱坐標誤 差疋否在設定的範圍之内。具體而言,在本較佳實施例中, 15 200923319 .T差範圍為5%之内就算合格,所用的計算公式是在橫坐 •標相同情況下比較縱坐標的誤差值,即e=Abs(y_a)/a,其 • 2 y表示新生成的曲線縱坐標的值,a表示標準曲線縱坐 私的值’ Abs表示取絕對值。在橫坐標的每—點上計算出 兩條曲線縱坐標的誤差範圍,若兩條曲線在橫坐標上某一 個點的縱坐標的誤差範圍超過5%,則說明需要對發光裝 置變阻器的阻值大小進行調節以確保兩條曲線在擇坐標^ 每一個點的縱坐標的誤差在設定的範圍之内。 若兩條曲線上橫坐標任何一個點的縱坐標誤差不在 ,定的範圍之内時,則於步驟S16中,調節發光裝置變阻 益的阻值大小以確保其誤差在設定的範圍之内 步驟S14。 1夂 在步驟S15 t,若兩條曲線上橫坐標的任何—個點的 縱坐標誤差在設定的_之内時,則直接結束流程。 本發明所提供的影像測量機台光源校正㈣及方法 /用標準的影像光源清晰度曲線圖表與經過CCD取景之 後獲得待測機台的影像光源的清晰度曲線進行對比,透過 二周即=裝,阻器的阻值大小使兩條曲線之間的誤差在 用戶没定的範圍之内, 内冋時對測置結果可以以圖形方式輸 出,使測量結果更加直觀、形象。 最後所應說明的是’以上實施例僅用以說明本發明的 /衧方案而非限制’儘管參照以上較佳實施例對本發明進 =了詳細說明’本領域的普通技術人員應當理解,可以對 發月的技術方案進行修改或等同替換’而不脫離本發明 16 200923319 技術方案的精神和範圍。 ' 【圖式簡單說明】 • 圖1為本發明影像測量機台光源校正系統較佳實施例 的硬體架構圖。 圖2為圖1中影像測量機台光源校正程式的功能模組 圖。 圖3為本發明影像測量機台光源校正方法較佳實施 例的實施流程圖。 ^ 圖4為本發明標準的影像光源清晰度在坐標系中的 曲線圖表。 圖5為本發明影像經過CCD截圖放大後的示意圖。 圖6為本發明標準影像光源清晰度曲線及新生成的 影像光源清晰度曲線在同一個圖表中的示意圖。 【主要元件符號說明】 電腦 1 影像量測機台 2 電荷耦1合裝置 3 發光裝置 4 標準測試工件 5 導入模組 110 讀取模組 111 位置確定模組 112 啟動掃描模組 113 計算顯示模組 114 17 200923319 115 116 510 511 判斷模組 調節模組 導入影像光源標準清晰度曲線圖表 讀取所述圖表中標準的座標位置 根據所述座標位置,將標準測試工件及電荷耦合 裝置移到該座標位置 S12 啟動發光裝置使其發光,並使電荷耦合裝置對標 準測試工件進行影像掃描以獲得該標準測試工件 的影像 S13 根據掃描獲得的標準測試工件影像,計算出在不 同亮度值下對應的清晰度的值,在標準清晰度曲 線圖表中生成一條新的曲線 S14 判斷影像光源標準清晰度曲線與新生成的曲線上 橫坐標的每一個點的縱坐標誤差是否在設定的範 圍之内 S15 調節發光裝置變阻器的阻值大小 S16 18200923319 IX. Description of the Invention: [Technical Field] The present invention relates to an image measuring system and method, and more particularly to an image measuring machine light source correcting system and method. [Prior Art] Image measurement is currently the most widely used measurement method in the field of precision measurement. This method is not only highly accurate, but also has a fast measurement speed. Image measurement is mainly used to measure the dimensional difference and shape error of parts or components, which plays an important role in ensuring product quality. The conventional image measurement method uses an industrial optical lens with a high-resolution Charged Coupled Device (CCD) to obtain an image of a workpiece or a component to be tested through an image capture card. The measurement method is for a workpiece or a component. Many precision measurements have achieved high accuracy. However, in the previous image processing, the image light source emitted by the light-emitting device on the image measuring machine may be different, for example, the intensity, the brightness, and the like may be different, even for the same type of light-emitting device (for example, the same type of light source) The image source emitted by the device) will also be different. When the CCD image is processed, the image sharpness will be greatly deviated, which will cause the repeatability deviation of different machines to measure the same workpiece. , resulting in an accuracy that is not south. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an image measuring machine light source correction system, which can adjust the resistance value of the varistor of the illuminating device on the image measuring machine, and the image light source emitted by the image source causes the standard test workpiece to generate 7 The image sharpness of 200923319 is consistent with the standard image clarity. — In view of the above, it is also necessary to propose an image measuring machine light source _ correction method, which can adjust the resistance value of the illuminant varistor on the image measuring machine, and the image light source emitted by the image makes the image generated by the standard test workpiece The sharpness is consistent with the standard image clarity. An image measuring machine light source correction system comprises a computer and an image measuring machine, the computer comprises an image capturing card, the image measuring machine is equipped with a charge coupling device, and the charge coupled device is matched with an optical mirror f a head for acquiring an image of the workpiece to be tested, and transmitting the image to an image capture card of the computer, the image measuring machine further comprising a light emitting device, the computer further comprising: an import module, configured to: Importing an image source standard definition curve chart; reading a module for reading a standard coordinate position in the chart, the standard coordinate position being a standard test piece when the image source standard definition curve chart is produced a coordinate position of the charge coupled device on the image measuring machine; a position determining module for moving the standard test workpiece and the charge coupled device to the coordinate position according to the coordinate position; and starting the scanning module for starting the light emitting The device illuminates and causes the charge coupled device to perform image scanning on the standard test workpiece to obtain an image of the standard test workpiece; The module is configured to test the workpiece image according to the standard obtained by scanning, calculate the corresponding sharpness value under different brightness values, generate a new curve in the standard definition curve chart, and determine the module to determine the image light source Whether the ordinate error of each point on the abscissa of the standard sharpness curve and the newly generated curve is within the set range; the adjustment module is used when the ordinate error of any point on the abscissa of the two curves is not When the range of 8 200923319 is set, adjust the resistance of the varistor of the illuminator to ensure that the error is within the set range. — - image measuring machine light source correction method, the method comprises the steps of: importing an image source standard definition curve chart; reading the coordinate position in the chart, the standard coordinate position refers to the production of image light (four), In the curve diagram, the standard test workpiece and the charge surface combination device are: a coordinate position on the measuring machine; according to the coordinate position, the standard test workpiece and the charge coupling device are moved to the coordinate position; Make the == 吏 charge-carrying device image scan of the standard test workpiece::: test the image of the workpiece; according to the standard test piece obtained by scanning, calculate the value of the corresponding sharpness under different brightness values == in the table Generate a new curve; judge the image source light curve and the vertical coordinate of the newly generated curve on the abscissa of each point - d within the set _; # two materials: the ordinate error of one point is not in the set range Within the time: adjust = device resistance (four) resistance value to confirm the error in the set range ▲ compared to the prior art, the image measuring machine correction system and method provided by the present invention Image measurement: The resistance of the device is adjusted, the % of the device's variable resistance Mum ^ is cut, the image sharpness produced by the standard test workpiece and the standard image sharpness - the standard of the image measuring machine rate. & South [Embodiment] FIG. 1 is a hardware structure diagram of the image measuring machine of the present invention. The image measuring machine light source correction system 200923319 includes a computer 1 and an image measuring machine 2 on which a standard test workpiece 5 is placed. In the 'Z-axis of the image measuring machine 2, a Charged Coupled Device (CCD) 3 for collecting a continuous image is mounted, and the CCD 3 is equipped with an industrial optical lens (in the figure) Not shown), the CCD 3 can image the standard test workpiece 5 with the industrial optical lens; the illuminating device 4 is also mounted on the Z-axis of the image measuring machine 2, and the illuminating device 4 is used as a standard The test workpiece 5 is imaged to provide an image source. The illuminating device 4 can be a lamp tube and any suitable illuminant capable of providing a light source. The computer 1 is equipped with an image capture card 10 and an image measuring machine light source correction program 11. The CCD 3 is connected to the image capturing card 10 through an image data line, and the image of the standard test workpiece 5 obtained from the image measuring machine 2 is transmitted to the image capturing card 10, and can be displayed on the computer 1. On the display (not shown). The image measuring machine light source correction program 11 is connected to the light emitting device 4, and is mainly used for controlling the light emitting device 4, and adjusting the varistor of the light emitting device 4, and the image light source emitted by the light emitting device 4 is generated by the standard test workpiece 5. Image sharpness is consistent with standard image clarity. Referring to Fig. 2, it is a functional block diagram of the light source correction program 11 of Fig. 1. Each module referred to in the present invention is a program segment of the light source correction program 11 that performs a specific function, and is more suitable for describing the execution process of the software in the computer than the program itself. Therefore, the description of the software in the present invention is a module. description. The light source calibration program 11 mainly includes: an import module 110, a reading module 111, a position determining module 112, a startup scanning module 113, a computing display 10 200923319, a display module 114, a determination module 115, and an adjustment module. 116. The introduction module 110 is used to import the image source standard definition curve chart, which is not displayed on the display (not shown) connected to the computer. The image source standard definition curve chart includes a standard definition curve, and the information of the standard test position of the workpiece 5 on the image measuring machine 2 is measured. Specifically, as shown in FIG. 4, a schematic diagram of a standard definition curve chart is not shown (not shown), and the ordinate indicates the value of obtaining image sharpness, and the larger the value is obtained. The sharper the image, the more the value of the abscissa corresponds to the value of the illuminance when the illuminating device 4 emits light, in the case where the resistance of the illuminating device does not fluctuate. The standard coordinate position is the coordinate position of the CCD 3 of the image measuring machine 2 and the standard test workpiece 5 when the standard definition curve chart of the image light source is produced, and the X-axis coordinate 310 and the Y-axis seat 311 as shown in FIG. 4 . And Z-axis coordinates 312. In addition, since the standard test workpiece 5 is placed on a flat surface (as shown in Fig. α), the standard test workpiece 5 has only the x-axis coordinate 3 〇 and the γ-axis coordinate 3 ιι on the image measuring machine 2, specifically s Assume that the standard coordinate position on the standard definition curve chart is (1 2 3 ) ', then the coordinates of CCD3 are (1 ' 2, 3 ), and the standard test workpiece 5 coordinates are (1, 2). Further, since the above-mentioned curves obtained by different workpieces are different, the difference is very large, so when using the image curve of the brightness of the image of the image and the image source of the image measuring machine 2 of the same specification are used. Test the workpiece 5 with the same standard to improve the accuracy of the inspection. The reading module 111 is configured to read a standard coordinate position in the standard definition curve chart. Specifically, in the preferred embodiment, as shown in Fig. 11 200923319 4, the values of the x-axis coordinates and the x-axis coordinates 312 are read, respectively. The value of 310, the value of the 座 axis coordinate 311 菩 ' : ΐ 1 The standing determination module 112 is used for the coordinate position h according to the standard, such as the standard test work on the remaining machine 2 in the image to the coordinate position. Specifically, in the preferred implementation, if the standard coordinate position on the chart is (1, 2, 3), then the (10) position is set (1, 2, 3), and the standard (4) workpiece 5 is moved to a coordinate, the activation sweeping module 113 is used to activate the light-emitting device 4 to enable the CCD 3 to scan the image of the standard test workpiece 5 and display it on the computer.丨 connected to the display. The calculation display module 1U is configured to test the workpiece image according to the standard obtained by the scan, calculate the value of the corresponding sharpness under different brightness values, and generate a new curve in the standard definition curve chart. Specifically, in the preferred embodiment, as shown in FIG. 6, the figure is a standard image light source sharpness curve and a newly generated image light source sharpness curve, and the h chart of the curve chart shows the parent value. The brightness value of the light-emitting device 4 when the light-emitting device 4 emits light, the vertical coordinate is the value corresponding to the sharpness value. Each time the system inputs a value of the abscissa, the light-emitting device 4 emits light of the corresponding brightness to the standard test workpiece 5, and the CCD 3 obtains the standard through the industrial optical lens. Test the image of the workpiece 5 and the pixel point value of the image master point P々· ' As shown in Figure 5, the ccd screenshot can be enlarged to see 'in the computer, the picture is composed of points, that is, the picture element Array, the absolute value of the difference between the value of the upper and lower primitives and the value of the left and right primitives. 2009 23,319 ' The area of the image, as an evaluation of the definition, Σ ' P"7+l) + . p , +ly)) / ' S' /, Medium S is the area of the entire image. The determining module 115 is configured to determine whether the vertical error of each horizontal point of the horizontal coordinate of the image source light source standard sharpness curve is within a set range. Specifically, in the preferred embodiment, the error is within 5%, and the calculation formula used is to compare the error value of the ordinate in the case of the abscissa, that is, e=Abs(y♦, where乂 represents the value of the newly generated ordinate of the curve, a represents the vertical value of the standard curve: the value of the target, and Abs represents the absolute value. The error range of the ordinate of the two curves is calculated at each point of the abscissa, if the two curves are The error range of the ordinate of a certain point on the abscissa is more than 5%, which means that the resistance value of the varistor of the illuminating device needs to be adjusted to read the error of the ordinate of each point on the abscissa of the two curves. The adjustment module 116 is configured to adjust the resistance of the varistor of the illuminating device to ensure that the error is set if the ordinate error of any point on the abscissa of the two curves is not within the set range. Referring to FIG. 3, it is an implementation flowchart of a preferred embodiment of the method for correcting the light source of the image measuring machine of the present invention. Step S10, importing a standard definition curve chart of the image source and displaying it On the display connected to the computer} (not shown), the '5V image source standard definition curve chart includes the standard definition curve and the standard coordinate position of the standard beta type workpiece 5 on the image measuring machine 2. Specifically, as shown in FIG. 4, a schematic diagram of a standard definition curve is displayed on a display (not shown) of the display 13200923, and the ordinate indicates the value of obtaining image sharpness. The larger the value is, the clearer the image is, and the value of the abscissa corresponds to the brightness value when the light-emitting device 4 emits light. The standard coordinate position is the standard definition of the image light source. In the curve chart, the CCD 3 of the image measuring machine 2 and the seat of the standard test workpiece 5 are shown in the position 'X-axis coordinate 31 〇, γ-axis coordinate 311 and Z-axis coordinate 312 as shown in Fig. 4. In addition, due to the standard test workpiece 5 is only placed on a plane (as shown in Figure 1), so the standard test workpiece 5 has only the X-axis coordinate 310 and the γ-axis coordinate 311 on the image measuring machine 2, and the 5' false δ indicates the quasi-sharpness curve. On the chart The standard coordinate position is (1, 2, 3), the coordinates of CCD3 are (1, 2, 3), and the standard test workpiece 5 is marked as (1' 2). The step-by-step, because different workpieces are in progress The above-mentioned curves obtained during the test are different, so the same-(four) quasi-test workpiece 5' is used when obtaining the standard image light source sharpness curve chart and debugging other image light sources of the same specification image measuring machine 2. Increasing the accuracy of the detection. Step S11 'The reading module m reads the standard coordinate position in the standard definition curve chart. Specifically, in the preferred embodiment, as shown in FIG. 4, respectively read The value of the X-axis coordinate 31〇, the value of the γ-axis coordinate 311, and the value of the Ζ-axis coordinate 312 are taken. In step S12, the position determining module 112 places the image measuring machine 2 on the basis of the standard coordinate position. The standard test guards 5 and ^3 are moved to the coordinate position. Specifically, in the preferred embodiment of the present invention, assuming that the standard coordinate position on the standard definition curve chart is (1, 2 14 200923319 2, 3), moving the standard test workpiece 5 to the CCD 3 is moved to the Coordinate position to coordinate position (1, 2). Light, Π: = === ;; device 4 makes it impossible to test the image of the workpiece 5, and will: enter; to get the mark on the cry. w will...', the member is not connected to the turtle brain 1 test 1:: 14:: the different display module 114 according to the standard obtained by scanning ^: # out of the corresponding brightness value under different brightness values, In the ^ quasi-definition curve, the watch towel is generated - a new one (four). Specifically, in the example, as shown in Fig. 6, the figure is the standard image light ', : a line and the newly generated image source sharpness curve, and each value on the & coordinate of the curve chart represents the light-emitting device. The brightness value of the light when the light is emitted, the vertical coordinate is the value corresponding to the sharpness, and the value of the horizontal light is outputted by the illumination device 4, and the light of the corresponding brightness is illuminated on the standard test workpiece 5, and the standard is obtained through the industrial optical lens. Read the image of 5 and the value of the primitives that make up the image of the image. As shown in Figure 5, the CCD screenshot can be seen after zooming in. In the computer, the image is composed of dots, which is an array of primitives. The absolute value of the difference between the upper and lower primitive points is summed with the absolute value of the difference between the left and right primitive points, and then divided by the area of the entire image, as an evaluation of the definition, ^ G - [ (Abs(Pi, yi - Pi&quot ;'+1) + Abs(Pi-i,;· · pi+1".)) / S' where S is the area of the entire image. In step S15, the determination module 115 determines whether the ordinate error of the image light source standard sharpness curve and each of the points on the newly generated curve abscissa is within the set range. Specifically, in the preferred embodiment, 15 200923319 .T is within 5% of the difference, and the calculation formula used is to compare the error value of the ordinate in the case of the same sitting/standard, ie, e=Abs (y_a)/a, where • 2 y represents the value of the newly generated ordinate of the curve, and a represents the value of the standard curve. The Abs represents the absolute value. Calculate the error range of the ordinates of the two curves at each point of the abscissa. If the error range of the ordinate of the two curves on the abscissa is more than 5%, it indicates the resistance of the varistor of the illuminator. The size is adjusted to ensure that the error of the ordinates of each of the two curves at the selected coordinates ^ is within the set range. If the ordinate error of any point on the abscissa of the two curves is not within the predetermined range, then in step S16, the resistance value of the illuminating device is adjusted to ensure that the error is within the set range. S14. 1夂 In step S15 t, if the ordinate error of any point on the abscissa of the two curves is within the set _, the flow is directly ended. The image measuring machine light source correction (4) and method provided by the invention compares with the standard image light source sharpness curve chart and the sharpness curve of the image light source obtained by the CCD framing after obtaining the CCD framing, and the second week is installed The resistance of the resistor makes the error between the two curves within the range that the user has not determined. The result of the measurement can be output graphically when the internal measurement is made, so that the measurement result is more intuitive and visual. It should be noted that the above-mentioned embodiments are merely illustrative of the present invention and are not intended to be limiting, although the present invention has been described in detail with reference to the preferred embodiments of the invention. Modifications or equivalent replacements of the technical solutions of the present invention are made without departing from the spirit and scope of the technical solution of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a hardware structural diagram of a preferred embodiment of a light source correction system for an image measuring machine of the present invention. Fig. 2 is a functional block diagram of the light source correction program of the image measuring machine of Fig. 1. 3 is a flow chart showing an implementation of a preferred embodiment of a method for correcting a light source of an image measuring machine according to the present invention. Figure 4 is a graph showing the standard image source definition in the coordinate system of the present invention. FIG. 5 is a schematic diagram of the image of the present invention enlarged by a CCD screenshot. Figure 6 is a schematic diagram of the standard image source sharpness curve and the newly generated image source sharpness curve in the same chart. [Main component symbol description] Computer 1 Image measuring machine 2 Charge-coupled 1 device 3 Light-emitting device 4 Standard test workpiece 5 Import module 110 Read module 111 Position determination module 112 Start scan module 113 Calculate display module 114 17 200923319 115 116 510 511 Judgement module adjustment module Import image source standard definition curve chart Read standard coordinate position in the chart According to the coordinate position, move the standard test workpiece and charge coupled device to the coordinate position S12 activates the illuminating device to emit light, and causes the charge coupled device to perform image scanning on the standard test workpiece to obtain the image of the standard test workpiece S13. According to the standard test workpiece image obtained by scanning, the corresponding sharpness under different brightness values is calculated. Value, a new curve is generated in the standard definition curve chart. S14 Determine whether the ordinate error of each point of the image source light source standard definition curve and the newly generated curve on the abscissa is within the set range. S15 Adjusting the illuminator varistor Resistance size S16 18

Claims (1)

200923319 十、申請專利範圍 ' 1.一種影像測量機台光源校正系統,包括電腦及影像 • 量測機台,所述電腦包括影像擷取卡,所述影像量測 機台安裝有電荷耦合裝置,所述電荷耦合裝置搭配一 個光學鏡頭,用於獲取待測工件.的影像,並將該影像 傳送至電腦的影像擷取卡中,所述影像量測機台還包 括一發光裝置,所述電腦還包括: 導入模組,用於導入影像光源標準清晰度曲線圖表; f 讀取模組,用於讀取所述圖表中標準的座標位置,所 述標準的座標位置是指在製作影像光源標準清晰度 曲線圖表時,標準測試工件及電荷耦合裝置在影像量 測機台上的座標位置; 位置確定模組,用於根據所述座標位置,將標準測試 工件及電荷耦合裝置移到該座標位置; 啟動掃描模組,用於啟動發光裝置使其發光,並使電 荷耦合裝置對標準測試工件進行影像掃描以獲得該 標準測試工件的影像; 計算顯示模組,用於根據掃描獲得的標準測試工件影 像,計算出在不同亮度值下對應的清晰度的值,在標 準清晰度曲線圖表中生成一條新的曲線; 判斷模組,用於判斷影像光源標準清晰度曲線與新生 成的曲線上橫坐標的每一個點的縱坐標誤差是否在 設定的範圍之内;及 調節模組,用於當兩條曲線上橫坐標的任何一個點的 19 200923319 ' .縱坐標誤差不在設定的範圍之内時,調節發光震置變 阻器的阻值大小以確保其誤差在^定㈣圍之内。 • 2.如中請專職11第1項所述之影像測量機台光源校 正系統,所述設定的誤差範圍的值為百分之五。 3. -種影像測量機台光源校正方法,該方法包括步驟: 導入影像光源標準清晰度曲線圖表; 讀,所述圖表中標準的座標位置,所述標準的座標位 r 置疋扣在製作影像光源標準清晰度曲線圖表時,標準 測試讀及電餘合裝置在影像量測機台上的座標 位置; τ 根據所述座標位置’將標準測試工件及電荷耦合裝置 移到該座標位置; 啟動發光裝置使其發光,並使電荷耦合裝置對標準測 試工件進行影像掃描以獲得該標準測試工件的影像; 根據掃描獲得的標準測試工件影像,計算出在不同亮 度值下對應的清晰度的值,在標準清晰度曲線圖表中 生成一條新的曲線; 判斷影像光源標準清晰度曲線與新生成的曲線上橫 坐標每一個點的縱坐標誤差是否在設定的範圍之 内;及 當兩條曲線上横坐標的任何一個點的縱坐標誤差不 在設定的範圍之内時,調節發光裝置變阻器的阻值大 小以確保其誤差在設定的範圍之内。 4·如申請專利範圍第3項所述之影像測量機台光源校 20 200923319 正方法,所述設定的誤差範圍的值為百分之五。 21200923319 X. Patent Application Scope 1. An image measuring machine light source correction system, including a computer and an image measuring machine, the computer includes an image capturing card, and the image measuring machine is equipped with a charge coupling device. The charge-coupled device is coupled with an optical lens for acquiring an image of the workpiece to be tested, and transmitting the image to an image capture card of a computer, the image measuring machine further comprising a light-emitting device, the computer The method further includes: an import module for importing a standard definition curve chart of the image source; f a reading module for reading a standard coordinate position in the chart, wherein the standard coordinate position refers to a standard for producing an image source The position of the standard test workpiece and the charge coupled device on the image measuring machine during the sharpness curve chart; the position determining module for moving the standard test workpiece and the charge coupled device to the coordinate position according to the coordinate position a scanning module is activated to activate the illumination device to emit light, and the charge coupled device performs image scanning on the standard test workpiece Obtain an image of the standard test workpiece; calculate a display module for testing the workpiece image according to the standard obtained by the scan, calculate a corresponding sharpness value under different brightness values, and generate a new one in the standard definition curve chart a judging module for judging whether an ordinate error of each point of the horizontal sharp coordinate of the newly generated curve is within a set range; and an adjustment module for using two curves 19 200923319 'At any point on the upper abscissa'. When the ordinate error is not within the set range, adjust the resistance of the illuminating varistor to ensure that the error is within the range of (4). • 2. For the image measuring machine light source correction system described in Item 1 of the full-time, the set error range is 5%. 3. A method for correcting the light source of the image measuring machine, the method comprising the steps of: importing a standard definition curve chart of the image light source; reading, a standard coordinate position in the chart, and the standard coordinate position r is placed on the production image When the light source standard definition curve chart is used, the standard test read and the electric recumbent device are at the coordinate position on the image measuring machine; τ according to the coordinate position 'to move the standard test workpiece and the charge coupled device to the coordinate position; The device illuminates and causes the charge coupled device to perform image scanning on the standard test workpiece to obtain an image of the standard test workpiece; according to the standard test workpiece image obtained by the scan, the corresponding sharpness value at different brightness values is calculated, A new curve is generated in the standard definition curve chart; determining whether the ordinate error of each point of the horizontal coordinate of the newly generated curve is within a set range; and the abscissa of the two curves Adjust the illuminance when the ordinate error of any point is not within the set range The resistance of the device varistor is small to ensure that the error is within the set range. 4. The image measuring machine light source meter according to item 3 of the patent application scope is a positive method, and the value of the set error range is 5%. twenty one
TW96144429A 2007-11-23 2007-11-23 System and method for correctting the light source of the image measuring machine TW200923319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96144429A TW200923319A (en) 2007-11-23 2007-11-23 System and method for correctting the light source of the image measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96144429A TW200923319A (en) 2007-11-23 2007-11-23 System and method for correctting the light source of the image measuring machine

Publications (1)

Publication Number Publication Date
TW200923319A true TW200923319A (en) 2009-06-01

Family

ID=44728528

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144429A TW200923319A (en) 2007-11-23 2007-11-23 System and method for correctting the light source of the image measuring machine

Country Status (1)

Country Link
TW (1) TW200923319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050737A (en) * 2020-09-17 2020-12-08 中国航发沈阳黎明航空发动机有限责任公司 Non-contact detection method for rubber sealing ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050737A (en) * 2020-09-17 2020-12-08 中国航发沈阳黎明航空发动机有限责任公司 Non-contact detection method for rubber sealing ring
CN112050737B (en) * 2020-09-17 2021-11-05 中国航发沈阳黎明航空发动机有限责任公司 Non-contact detection method for rubber sealing ring

Similar Documents

Publication Publication Date Title
JP4768579B2 (en) Evaluation method of image clarity
TW201518889A (en) Image measurement system and method
JP2010528318A (en) 3D assembly inspection with 2D images
US10803623B2 (en) Image processing apparatus
CN107132030B (en) Lens focal length detection method and device
JP2017518835A (en) Method for determining visual acuity
CN103712572A (en) Structural light source-and-camera-combined object contour three-dimensional coordinate measuring device
CN106441104B (en) A kind of Size Measuring System
TW200844426A (en) On-line mechanical visional inspection system of an object and method thereof
JP2012037257A (en) Measurement setting data creation device, measurement setting data creation method, and program for measurement setting data creation device
KR20080111653A (en) 3d measuring apparatus for camera using measurment probe of origin correction
JP2009058459A (en) Profile measuring system
TW200923319A (en) System and method for correctting the light source of the image measuring machine
JP2012237613A (en) Shape measuring device and shape measuring method
TWI482942B (en) System and method for displaying various scales of coordinate graphs under various magnification
CN208795173U (en) A kind of online image measuring system of workpiece
CN112233183A (en) 3D structured light module support calibration method, device and equipment
US10753725B2 (en) Measuring apparatus and method for controlling the illumination for a measuring apparatus
CN110470250B (en) Detection device and detection method for surface flatness of part
CN212871124U (en) Parallelism measuring apparatus
JPH0545135A (en) Method and device for visually measuring precise contour
CN1198114C (en) Aperture size mesurer and measuring method
JPH0323856B2 (en)
TWI411862B (en) System and method for measuring images of an object
CN111947896A (en) System and method for aligning optical center of lens with center of photosensitive surface of imaging sensor