TW200920301A - Capsular endoscope for intestine inspection with functions of movement forward and backward - Google Patents

Capsular endoscope for intestine inspection with functions of movement forward and backward Download PDF

Info

Publication number
TW200920301A
TW200920301A TW96143763A TW96143763A TW200920301A TW 200920301 A TW200920301 A TW 200920301A TW 96143763 A TW96143763 A TW 96143763A TW 96143763 A TW96143763 A TW 96143763A TW 200920301 A TW200920301 A TW 200920301A
Authority
TW
Taiwan
Prior art keywords
capsule endoscope
functions
backward
arm
enteric
Prior art date
Application number
TW96143763A
Other languages
Chinese (zh)
Inventor
Nan-Chyuan Tsai
Chao-Wen Chiang
Chung-Yang Sue
Original Assignee
Nan-Chyuan Tsai
Chao-Wen Chiang
Chung-Yang Sue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan-Chyuan Tsai, Chao-Wen Chiang, Chung-Yang Sue filed Critical Nan-Chyuan Tsai
Priority to TW96143763A priority Critical patent/TW200920301A/en
Publication of TW200920301A publication Critical patent/TW200920301A/en

Links

Landscapes

  • Endoscopes (AREA)

Abstract

The present invention relates to a capsular endoscope for intestine inspection with functions of movement forward and backward, which essentially consists of a first control unit for three-dimensional, magnetive-levitated attitudes, a second control unit for far-distant displacement, a wireless power supplying unit and a wireless bluetooth transmitting unit. The first control unit for three-dimensional, magnetive-levitated attitudes can be used to control the attitudinal angles of the capsular endoscope by means of the external magnetic field in such a manner that a diagnostician may observe the suspicious spots in intestine with proper attitudinal angles presented by the capsular endoscope and check the spots repeatedly by means of the second control unit for far-distant displacement. Still, the capsular endoscope can be stopped on somewhere to adjust the lens thereof to an optimum location of observation in coordination with control of attitudes. Accordingly, it can make a diagnostician to diagnose the possible symptoms or suspicious spots in detail.

Description

200920301 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種具前行與後退功能之勝道膠囊 内視鏡結構,尤其是指一種可由體外磁場控制膠囊内視鏡 之姿態角,使之姿態呈現診療者欲觀察之角度,炎玎於疑 似有病灶處來回重複觀察,同時亦可停於某處,供沴療者 詳細審視可能出現疾病之處的具前行與後退功能之腸道 膠囊内視鏡結構創新設計。 【先前技術】 按,必須以内視鏡檢查的疾病以消化系統為主,主要 包括:腸胃出血、潰爛、損傷和腫瘤、腸發炎、Crohn,s 病症、結腸炎、大腸急躁症等。而人類消化系統的整體結 構長達27公尺’其中包含口腔、食道、胃、小腸、大腸與 肛門等。在胃腸科的領域裡,内視鏡可以觀察的地方卵 多,可以從嘴巴進去,到食道、胃與十二指腸,甚至^ 腸的W段區。也可以從肛門進去,到直腸、結腸(大 甚至到小腸的末端區。因此很多胃腸道的疾病可以布知)、 的用内視鏡檢查發現’而傳統之内視鏡檢查係使用易 内視鏡(Push Endoscopy)。由於推入式内視鏡需 入式 為提供光線及鏡頭觀看疾病的訊號源,當光纖綠從先纖处 入食道及腸胃時,會碰觸到受檢者的喉嘴及食壤蜂 此常常造成受檢者嘔吐及疼痛等極為不適的感薏.邠,闺 由於傳統内視鏡若延伸太長,操控其行進於消化 > 馬者, 非常困難,病人也須承受較大之痛苦,雖然可使=统叫將 式讓受檢者減輕痛楚,但小腸中段仍不容易診辦麻晬方 除病患的感受),也是胃腸科醫師最頭痛的地方。卩隻拆 5 匕’ 200920301 膠囊内視鏡成了另一個選擇。 膠囊内視鏡最早由愛登(Iddan)和斯望(Swain)所提 出。在1999年Given Imaging公司發展出第一顆膠囊内視 鏡原型M2A,之後陸續有許多研究團隊投入研發。其中’ 1999年Given Imaging公司發展出第―顆膠囊内視鏡原 型,係以CMOS為影像感測器具有190, ΟΟΟ-pixel的解析 度,2 images/second的拍攝速率,拍攝之影片藉由無線 傳輸以433MHz的頻率傳至體外接收器。拍攝及照明所需之 電源皆由膠囊内電池所提供,約可使用6-8小時,此類型 已獲美國FDA核準上市。 2002年日本RF System Lab.開發之膠囊内視鏡 Norika3。係以CCD取代CMOS相機,具有410, ΟΟΟ-pixel 的 解析度,有較佳的解析度但相對地較耗費電力。其内具有 兩個特殊溝槽,其一用來組織取樣,另一用來釋放藥物、 拍攝及照明,此系統尚在發展階段,仍未商品化。 韓國智慧型微系統中心(IMC)和日本01ympus公司分 別發展Miro#l被動型膠囊觀察内視鏡。IMC計劃預期最近 將在韓國推出商業化產品,Olympus也在2004年秋天從事 臨床檢驗’兩家公司正努力改善使膠囊内視鏡能夠主動地 在消化系統中移動。 再如Mosse等人提出電子模擬推動膠囊,藉由模擬肌 肉收縮推動膠囊產生移動。而Park等人所發展之無線膠囊 内視鏡雙方向遙測(Telemetry)模組,使膠囊和運算子具 有雙方向通訊’此勝囊能夠以無線方式接收外部給予之指 令’自動開關LEDs及相機的電源,如此即能觀察欲診斷之 部位’不必全程拍攝而浪費不必要的電能。此外,Xie等 200920301 人設計一個低功率ic能夠使用在膠囊内視鏡中,整合中央 處理單元及無線傳輸模組成單一晶片,但上述膠囊内視鏡 都尚在開發階段。 至於國内僅有少數幾位學者及研究機構進行膠囊内 視鏡之研究,其中較知名者為中山科學研究院與中原大學 醫工所。此外,工研院生醫中心發展『無線傳輸控制之生 醫微致動系統』,研發微致動模組及訊號/電力傳輸模組, 可做為藥物遞送及檢體取樣等應用。 但上述膠囊内視鏡在臨床上卻有許多缺失急待改 進,如: 1. 至目前為止,市面上的膠囊内視鏡皆為不可主動控制, 無法在醫師專業判斷下可能會有病變之處進行詳細檢 查。 2. 目前之膠囊内視鏡可謂是『一去不回』,亦即於消化系 統内漫無目的地前進,且只能前進不能後退,無法詳細 且有效地審視可能會有病狀的地方。 3. 傳統膠囊内視鏡皆需安裝一電池於膠囊内,不僅非常佔 空間且可能會有電力不足或續電力不夠(照明不夠)之 窘境。 4. 現行膠囊内視鏡一進入胃部,立即掉到胃的底部,無法 監測胃的上半部,更不能對病變部位詳加檢查。 5. 傳統膠囊内視鏡並無法在腸道中取樣,造成醫師在發現 腸道異狀時僅能參考圖片,無法較正確的進一步診斷。 6. 由於傳統膠囊内視鏡屬於被動且連續式拍照,使得腸胃 科醫師必須使用1〜2小時檢視影像而疲憊不堪。 【發明内容】 200920301 今,發明人即是鑒於上述現有之内視鏡在實際實施上 仍具有多處之缺失,於是乃一本孜孜不倦之精神,並藉由 其豐富之專業知識及多年之實務經驗所輔佐,而加以改 善,並據此創設出本發明。 本發明之具前行與後退功能之腸道膠囊内視鏡結構 的主要目的,係在提供一種可由體外磁場控制膠囊内視鏡 之姿態角,使之姿態呈現診療者欲觀察之角度,並可於疑 似有病灶處來回重複觀察,同時亦可停於某處,供診療者 詳細審視可能出現疾病之處者。 本發明之具前行與後退功能之腸道膠囊内視鏡結構 的目的與功效係由以下之技術所實現: 該具前行與後退功能之腸道膠囊内視鏡結構,主要包 含:三維磁浮姿態控制單元、移動遠距控制單元、無線電 源供應單元和藍芽無線傳輸單元。該膠囊内視鏡可由三維 磁浮姿態控制單元控制膠囊内視鏡之姿態角,使膠囊内視 鏡之姿態呈現診療者欲觀察之角度,再配合移動遠距控制 單元,診療者可於疑似有病灶處來回重複觀察,亦可將膠 囊内視鏡停於某處,配合姿態控制將膠囊之鏡頭調至最佳 觀察位置,使診療者可詳細審視可能出現疾病之處。同時 利用小波具分頻之特性於影像資料壓縮,可提升傳輸之資 料量且高頻之資料亦不會有失真之現象。 【實施方式】 為令本發明所運用之技術内容、發明目的及其達成之 功效有更完整且清楚的揭露,茲於下詳細說明之,並請一 併參閱所揭之圖式及圖號: 本發明之「具前行與後退功能之腸道膠囊内視鏡結 200920301 構」係包括:一三維磁浮姿態控制單元(1)、一移動遠距 控制單元(2)、一無線電源供應單元(3)和一藍芽無線傳輸 單元(4)。其中: 該三維磁浮姿態控制單元(1)之概念如第一圖所示。 其係將一永久磁鐵(11)配置於膠囊内視鏡(5)内以產生固 定磁場,並在體外建置一磁場,令體外之磁場與膠囊内視 鏡(5)内之永久磁鐵(11)互相作用產生磁偶極距 (Magnetic Dipole Moment)以控制膠囊内視鏡(5)之姿 態。再利用控制系統(14)配合感測器(13)之三維姿態量測 技術,實現膠囊内視鏡(5)之三維主動姿態控制,達成可 任意審視疑似有病變處之功能;其中,該控制系統(14)係 採用智慧型模糊比例-積分-微分控制器,而該感測器(13) 則採用微型磁阻感測。 首先,須進行膠囊内視鏡(5)之動態分析。動態方程 式為描述膠囊内視鏡(5)之角速度與姿態變化的過程,藉 由此分析可作為設計該控制系統(14 )之基礎。以尤拉方程 式來描述膠囊内視鏡(5)之動態方程式為: = hCOb 【1 】 ~rh =7L + x4 【2】 at 其中Λ為膠囊内視鏡(5)的慣性張量距陣,為膠囊 内視鏡(5)體座標的角速度向量,h為膠囊内視鏡(5)的角 動量,乃與乃分別為作用在膠囊内視鏡(5)上的干擾力距與 控制力距。將【2】式展開可得: K = Tdi + TeI - (I3 -12 )c〇b 2cob 3 [ 3a] 200920301 [3b] K=Td3+h-(l2- DU 【3 c 】 其中/;、Λ與八為膠囊内視鏡(5)體座標下X、Y與Z的 轴慣量(Moments of Inertia)。 接下來再推導尤拉角與角速度之間的關係式,令 為體座標相對於固定座標的角速度,則可用尤拉角速 度來表示: —.— Φ ~〇~ ~ο~ <=Α(φ)Α(Φ)Α(Φ) 0 + Α( ψ)Α(Φ) θ + Α( ψ) 0 【4】 0 0 Φ_ 將上式乘開後可得: ab()3 = -cos(p)cos(e)j> + sin{p)9 【5 】 ωύ03 = -sin(ff>)cos(9)j) + cos(p)6 【6 】 ω'03 = sin{6)j) + φ 【7 】 在膠囊内視鏡(5)的動態方程式中所使用之體座標相 對於固定座標其轉換關係式為: ωύ = ω\ =ab0+ Ab0w- [8] 其中名為固定座標轉換至體座標的旋轉距陣,可200920301 IX. Description of the Invention: [Technical Field] The present invention relates to a winch capsule endoscope structure with forward and backward functions, and more particularly to an attitude angle of a capsule endoscope that can be controlled by an external magnetic field. Make the posture of the doctor to observe the angle, the inflammation is repeated at the suspected lesions, and can also be stopped somewhere, for the healer to examine in detail the intestines with the function of the disease The innovative design of the tunnel capsule endoscope structure. [Prior Art] According to the disease, the diseases that must be examined by endoscopy are mainly digestive system, including: gastrointestinal bleeding, ulceration, injury and tumor, intestinal inflammation, Crohn, s disease, colitis, and large intestinal urgency. The overall structure of the human digestive system is 27 meters long, including the mouth, esophagus, stomach, small intestine, large intestine and anus. In the field of gastroenterology, endoscopes can observe many places, from the mouth, to the esophagus, stomach and duodenum, and even the W segment of the intestine. It can also go from the anus to the rectum, the colon (large or even to the end of the small intestine. Therefore, many diseases of the gastrointestinal tract can be known), and it is found by endoscopy. The traditional endoscopy is easy to use. Push Endoscopy. Since the push-in endoscope needs to be a signal source for providing light and lens to watch diseases, when the fiber green enters the esophagus and the stomach from the anterior fiber, it will touch the mouth and the bee of the subject. It is very uncomfortable to cause vomiting and pain in the subject. 邠 闺 闺 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统 传统It can be used to relieve the pain of the subject, but the middle part of the small intestine is still not easy to diagnose and treat the symptoms of the patient. It is also the most headache for gastroenterologists.卩 Only 5 匕’ 200920301 Capsule endoscopes became another option. Capsule endoscopes were first proposed by Iddan and Swain. In 1999, Given Imaging developed the first capsule endoscope prototype M2A, and many research teams have been involved in research and development. Among them, 'Given Imaging' developed the first capsule endoscope prototype in 1999, with CMOS as the image sensor with 190, ΟΟΟ-pixel resolution, 2 images/second shooting rate, filming by wireless The transmission is transmitted to the external receiver at a frequency of 433 MHz. The power required for shooting and lighting is provided by the battery inside the capsule and can be used for approximately 6-8 hours. This type has been approved by the US FDA. Capsule endoscope Norika3 developed by RF System Lab., Japan in 2002. It replaces CMOS cameras with CCDs, with 410, ΟΟΟ-pixel resolution, better resolution but relatively power-hungry. There are two special grooves in it, one for tissue sampling and the other for drug release, filming and illumination. The system is still in development and still not commercialized. The Korea Intelligent Microsystems Center (IMC) and Japan's 01ympus developed the Miro#l passive capsule to observe the endoscope. The IMC program is expected to launch commercial products in Korea in the near future, and Olympus is also undergoing clinical testing in the fall of 2004. The two companies are working to improve the ability of capsule endoscopes to actively move through the digestive system. Another example is Mosse et al., which proposes an electronic simulation to push the capsule and push the capsule to move by simulating the contraction of the muscle. The wireless capsule endoscope double-direction telemetry module developed by Park et al. enables the capsule and the operator to have bidirectional communication. 'This wins the capsule to receive the externally given commands wirelessly' automatically switches the LEDs and the camera. The power supply, so that you can observe the part to be diagnosed, you don't have to shoot all the way and waste unnecessary power. In addition, Xie et al. 200920301 designed a low-power ic that can be used in a capsule endoscope, integrating a central processing unit and a wireless transmission module to form a single wafer, but the capsule endoscopes are still in development. As for the study of capsule endoscopes in only a few scholars and research institutes in China, the more famous ones are Zhongshan Institute of Science and Central China University Medical Institute. In addition, the ITRI Health Centre has developed the "Micro-Activity Control Micro-Activity System" to develop micro-actuation modules and signal/power transmission modules for applications such as drug delivery and sample sampling. However, there are many defects in the above-mentioned capsule endoscopes that need to be improved urgently, such as: 1. Until now, the capsule endoscopes on the market are not actively controlled, and there is no possibility of lesions under the professional judgment of the physician. Carry out a detailed inspection. 2. The current capsule endoscope can be described as “going back and forth”, that is, moving forward in the digestive system without aim, and can only move forward and not back, unable to examine the possible symptoms in detail and effectively. 3. Traditional capsule endoscopes require a battery to be installed in the capsule, which is not only very space-consuming, but may also have a dilemma of insufficient power or insufficient power (not enough lighting). 4. As soon as the current capsule endoscope enters the stomach, it immediately falls to the bottom of the stomach. It is impossible to monitor the upper part of the stomach, and it is not possible to check the lesions in detail. 5. Traditional capsule endoscopes cannot be sampled in the intestines, causing physicians to refer to pictures only when they find intestinal abnormalities, and cannot be diagnosed more correctly. 6. Because the traditional capsule endoscope is a passive and continuous camera, the gastroenterologist must use 1 to 2 hours to view the image and be exhausted. SUMMARY OF THE INVENTION 200920301 Now, the inventor is in view of the fact that the existing endoscopes still have multiple defects in practical implementation, so it is a tireless spirit, and with its rich professional knowledge and years of practical experience. The invention was assisted and improved, and the present invention was created accordingly. The main purpose of the enteric capsule endoscope structure with the forward and backward functions of the present invention is to provide an attitude angle of the capsule endoscope that can be controlled by an external magnetic field, so that the posture is presented to the angle that the medical practitioner wants to observe, and Repeat observations at suspected lesions, and also stop somewhere, for the examiner to examine in detail where the disease may occur. The purpose and function of the enteric capsule endoscope structure with the forward and backward functions of the present invention are achieved by the following techniques: The enteric capsule endoscope structure with forward and backward functions mainly includes: three-dimensional magnetic float An attitude control unit, a mobile remote control unit, a wireless power supply unit, and a Bluetooth wireless transmission unit. The capsule endoscope can control the attitude angle of the capsule endoscope by the three-dimensional maglev attitude control unit, so that the attitude of the capsule endoscope presents the angle that the clinician wants to observe, and then cooperates with the mobile remote control unit, and the diagnosis and treatment can be suspected to have a lesion. Repeat the observation at the back and forth, or stop the capsule endoscope at a certain position, and adjust the lens of the capsule to the best observation position with the attitude control, so that the medical examiner can examine in detail the possible diseases. At the same time, the use of wavelet with frequency-dividing characteristics for image data compression can increase the amount of data transmitted and the high-frequency data will not be distorted. [Embodiment] For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, the following is a detailed description, and please refer to the drawings and drawings: The "intestinal capsule endoscope junction 200920301 structure with front and back functions" of the present invention comprises: a three-dimensional maglev attitude control unit (1), a mobile remote control unit (2), and a wireless power supply unit ( 3) and a Bluetooth wireless transmission unit (4). Wherein: The concept of the three-dimensional maglev attitude control unit (1) is as shown in the first figure. The permanent magnet (11) is disposed in the capsule endoscope (5) to generate a fixed magnetic field, and a magnetic field is built outside the body to make the external magnetic field and the permanent magnet in the capsule endoscope (5) (11) The interaction creates a Magnetic Dipole Moment to control the attitude of the capsule endoscope (5). The control system (14) is combined with the three-dimensional attitude measurement technology of the sensor (13) to realize the three-dimensional active attitude control of the capsule endoscope (5), and the function of arbitrarily examining the suspected lesion is achieved; wherein, the control The system (14) uses a smart fuzzy proportional-integral-derivative controller, while the sensor (13) uses miniature magnetoresistive sensing. First, a dynamic analysis of the capsule endoscope (5) is required. The dynamic equation is the process of describing the angular velocity and attitude changes of the capsule endoscope (5), by which analysis can be used as the basis for designing the control system (14). The dynamic equation of the capsule endoscope (5) is described by the Euler equation: = hCOb [1] ~rh =7L + x4 [2] at where Λ is the inertial tensor matrix of the capsule endoscope (5), The angular velocity vector of the capsule endoscope (5) body coordinate, h is the angular momentum of the capsule endoscope (5), and the interference force distance and control force distance acting on the capsule endoscope (5) respectively . Expanding [2] gives: K = Tdi + TeI - (I3 -12 )c〇b 2cob 3 [ 3a] 200920301 [3b] K=Td3+h-(l2- DU [3 c ] where /; Λ and 八 are the Moments of Inertia of the X, Y and Z of the capsule endoscope (5). Next, the relationship between the Euler angle and the angular velocity is derived, so that the body coordinates are fixed relative to each other. The angular velocity of the coordinates can be expressed by the Euler angular velocity: —.— Φ ~〇~ ~ο~ <=Α(φ)Α(Φ)Α(Φ) 0 + Α( ψ)Α(Φ) θ + Α ( ψ) 0 [4] 0 0 Φ_ Multiply the above formula to get: ab()3 = -cos(p)cos(e)j> + sin{p)9 [5 】 ωύ03 = -sin(ff&gt ;)cos(9)j) + cos(p)6 [6] ω'03 = sin{6)j) + φ [7 】 The body coordinates used in the dynamic equation of the capsule endoscope (5) are relative The conversion relationship is fixed at the fixed coordinates: ωύ = ω\ =ab0+ Ab0w- [8] where the fixed coordinate is converted to the body coordinate rotation matrix,

【9】 最後可得到用尤拉角與尤拉角速度表示為: 10 【10】 200920301 · •两 —cos( φ) cos( θ)φ~\· sin( φ )θ 咚= (0b,2 = 一 sin( φ ) cos( θ )本七 cos( φ 5人 3ίη(θ)φ + φ COS((p)COS(e) ~Βΐη(φ)ο〇8(φ) sin( θ ) ΰ〇5(φ)$ΐη(θ)8ίη(φ) - cos( φ) sin(e )cos( φ ) ^ sin( φ) sin( φ) -8ΐη(φ)8ϊη(θ)8ΐη(φ) sin( φ) sin( θ ) cos( φ )cos( φ ) sin( φ ) -cos(0)sin(<!>) cos(0)cos(<p) 將【10】重新整理後可得:[9] Finally, the velocity of the Euler angle and the Euler angle can be expressed as: 10 [10] 200920301 · • two—cos( φ) cos( θ)φ~\· sin( φ )θ 咚= (0b,2 = A sin( φ ) cos( θ ) the seventh cos( φ 5人 3ίη(θ) φ + φ COS((p)COS(e) ~Βΐη(φ)ο〇8(φ) sin( θ ) ΰ〇5 (φ)$ΐη(θ)8ίη(φ) - cos( φ) sin(e )cos( φ ) ^ sin( φ) sin( φ) -8ΐη(φ)8ϊη(θ)8ΐη(φ) sin( φ ) sin( θ ) cos( φ )cos( φ ) sin( φ ) -cos(0)sin(<!>) cos(0)cos(<p) After finishing [10], you can get:

「 · φ (pcos((p)—qsin(<p))/cos(Q) θ psin( φ ) + qcos( φ ) φ _r—(pc〇s(<P)-qsin(<p))tan(<l>) [11] 其中, Ρ abl+ (cos( φ ) sin( φ) + sin( φ ) sin( Θ ) cos( φ ) )ω0 Q z= ωΚ2 七(—sin(φ)sin(θ)sin(φ) + cos(φ)cos(φ))ω0 r . ab3+(-cos(9)sm(<^))m〇 _ 【12】 【12】式即為膠囊内視鏡(5)之姿態動態方程式。若 尤拉角很小時,【10】式可化簡為: 'Φ 1 φ -Θ 0 · - Ψ~φω〇 〇>b = °h.2 = Θ JP_ + 一 φ 1 φ β -Φ ι_ ~ωο 0 Φ + Φω^ 【13】 再對上式微分可得: </' Φ~φω0 = <2 = θ Φ+φω0 [14] 將【13】與【14】式代入【3】式,並且忽略高階項, 可得到二階線性統御方程式為: I, ^ + - /5; - , |ζ>+- /5 - - hw2 y> =τ dI+TCI 【15a】 /^'+5〇V/y+rc, 【15b】 Ι3φ + [ωΐ (I2 c〇〇hw2 ^Ai〇〇(li-l2-I3)-K^j>=T d3+TC3 【15c 】 【15】式即為膠囊内視鏡(5)之姿態運動方程式。 200920301 再利用磁偶極距控制膠囊内視鏡(5)之姿態,其主要 係藉由控制體外電磁線圈(12)之電流方向可產生具有方 向性磁場(如第二圖所示),其與放置於膠囊内視鏡(5)内 之铷鐵硼(NdFeB)永久磁鐵互相作用而產生磁偶極距,藉 此控制膠囊内視鏡(5)之姿態角。具方向性的磁偶極距 M(Magnetic Dipole Moment)可表示為: Μ = nIA 【16】 其中/?為電磁線圈(12)的圈數,/為供給電磁線圈(12) 之電流,J為電磁線圈(12)的有效截面積。利用磁偶極距 與膠囊内視鏡(5)之永久磁鐵(11)交互作用產生磁力距 7;,磁力距產生的公式為:φ (pcos((p)—qsin(<p))/cos(Q) θ psin( φ ) + qcos( φ ) φ _r—(pc〇s(<P)-qsin(<p ))tan(<l>) [11] where Ρ abl+ (cos( φ ) sin( φ) + sin( φ ) sin( Θ ) cos( φ ) )ω0 Q z= ωΚ2 七(—sin(φ ) sin(θ)sin(φ) + cos(φ)cos(φ))ω0 r . ab3+(-cos(9)sm(<^))m〇_ [12] [12] is the capsule The attitude dynamic equation of the mirror (5). If the Euler angle is small, the formula [10] can be reduced to: 'Φ 1 φ -Θ 0 · - Ψ~φω〇〇>b = °h.2 = Θ JP_ + φ 1 φ β -Φ ι_ ~ωο 0 Φ + Φω^ [13] Further, the differential of the above formula can be obtained: </' Φ~φω0 = <2 = θ Φ+φω0 [14] 】Substituting [14] into [3], and ignoring the high-order term, we can get the second-order linear governing equation as: I, ^ + - /5; - , |ζ>+- /5 - - hw2 y> =τ dI +TCI [15a] /^'+5〇V/y+rc, [15b] Ι3φ + [ωΐ (I2 c〇〇hw2 ^Ai〇〇(li-l2-I3)-K^j>=T d3+ TC3 [15c] [15] is the attitude motion equation of the capsule endoscope (5). 200920301 Reuse the magnetic dipole moment The attitude of the capsule endoscope (5) is mainly generated by controlling the current direction of the external electromagnetic coil (12) to generate a directional magnetic field (as shown in the second figure), which is placed in the capsule endoscope ( 5) The neodymium iron boron (NdFeB) permanent magnets interact to generate a magnetic dipole moment, thereby controlling the attitude angle of the capsule endoscope (5). The directional magnetic dipole moment M (Magnetic Dipole Moment) can be Expressed as: Μ = nIA [16] where /? is the number of turns of the electromagnetic coil (12), / is the current supplied to the electromagnetic coil (12), and J is the effective cross-sectional area of the electromagnetic coil (12). The interaction with the permanent magnet (11) of the capsule endoscope (5) produces a magnetic distance 7; the formula for the magnetic distance is:

Tc = MxB [Π] 其中5為膠囊内視鏡(5)内之永久磁鐵(11)之磁場。 由上式之關係即可由體外磁場任意控制膠囊内視鏡(5)之 姿態角。 此外,本發明應用電磁線圈(12)與微型磁阻感測器 (13)達成膠囊内視鏡(5)之三維定位與導航,其優點為無 需使用陀螺儀或加速規即可行膠囊内視鏡(5)之三維定 位,不僅可降低造價且可使膠囊内視鏡(5)整體結構更緊 實精密(Compact)。即本發明應用磁偶之概念以量測膠囊 内視鏡(5)於體内之姿態角。體外電磁線圈(12)如第四圖 所示,其三軸之電磁線圈(12)呈互相垂直配置。單個電磁 線圈(12)所產生的感應磁場如第五圖所示,其數學方程式 表示如下:Tc = MxB [Π] where 5 is the magnetic field of the permanent magnet (11) in the capsule endoscope (5). From the relationship of the above formula, the attitude angle of the capsule endoscope (5) can be arbitrarily controlled by the external magnetic field. In addition, the present invention applies the electromagnetic coil (12) and the micro-magnetoresistive sensor (13) to achieve three-dimensional positioning and navigation of the capsule endoscope (5), which has the advantage that the capsule endoscope can be performed without using a gyroscope or an acceleration gauge. (5) The three-dimensional positioning not only reduces the cost but also makes the overall structure of the capsule endoscope (5) more compact. That is, the present invention applies the concept of a magnetic couple to measure the attitude angle of the capsule endoscope (5) in the body. The external electromagnetic coil (12) is shown in the fourth figure, and the three-axis electromagnetic coils (12) are arranged perpendicular to each other. The induced magnetic field generated by a single electromagnetic coil (12) is shown in Figure 5, and its mathematical equation is expressed as follows:

_ μ〇ι ζ 1 2π [(R+Py+zip- R2+p2+z2 + (R2-p2)2+z2 12 【18】 【19】 200920301 Βθ=〇_ μ〇ι ζ 1 2π [(R+Py+zip- R2+p2+z2 + (R2-p2)2+z2 12 [18] [19] 200920301 Βθ=〇

R2 + ρ2 +ζ2 (R2-ρ2 )2 +ζ2 【20】 其中Κ與Ε為第一類與第二類橢圓積分。本發明之感測 器(13)為微型磁阻感測器(Magnetoresistive Sensor), 其對磁場變化有極局之靈敏度’且被安置於膠囊内視鏡(5) 内以作為膠囊内視鏡(5)姿悲之感測元件。其感測之原王里 為量測體外三維電磁線圈(12)之磁場變化,藉由數學、;寅曾 即可得知膠囊内視鏡(5)之姿態角。若人體消化系統内: 意一點/Χχ,γ,ζ),其感應磁場強度為: 5 = /[Ρ(…)] 【21】 由於三維發射電磁線圈(12)兩兩互相垂直,故三方向 之磁場互相獨立,且磁場方向遵守安培右手定則。由單— 電、線圈(12)之磁場結構可容易地獲得空間中任意仇置 二方向之礤感應強度,分別為:R2 + ρ2 +ζ2 (R2-ρ2 )2 +ζ2 [20] where Κ and Ε are the elliptic integrals of the first type and the second type. The sensor (13) of the present invention is a miniature magnetoresistive sensor (Magnetoresistive Sensor, which has extreme sensitivity to magnetic field changes' and is placed in the capsule endoscope (5) as a capsule endoscope ( 5) Sensing sensor. The original king of the sensing is to measure the magnetic field change of the three-dimensional electromagnetic coil (12) in vitro, and the attitude angle of the capsule endoscope (5) can be known by mathematics. If the human body digestive system: meaning a little / Χχ, γ, ζ), the induced magnetic field strength is: 5 = / [Ρ (...)] [21] Since the three-dimensional transmitting electromagnetic coil (12) is perpendicular to each other, the three directions The magnetic fields are independent of each other and the direction of the magnetic field follows the Ampere right hand rule. From the magnetic field structure of the single-electrode and the coil (12), it is easy to obtain the enthalpy induction intensity of any direction in the space.

By=AP{By=AP{

Bz=f[P{x,yiZ)] ^^2)-7;(9〇°)j.7;(-900) 【22】 【23】 Βχ , 【24】 /、中1與1為磁場繞著X軸與Y軸角度旋轉之關係 y與Βζ皆包含三個主韩方向之分量 d,你,槐)、(肌肌,孤)與(似Ί,炎》。 關係 分別為 又 ’膠囊内視鏡(5)之三維姿態可由發射電磁線圈( 之參考座橾描述,當膠囊内視鏡(5)移動至户點,其姿態角 根據參考座標繞/軸旋轉a角度、繞/軸旋轉6角度、繞 旋轉c角度,可表示為(見及c),此時磁感應強度可表示為· x=Tx(—a)· Ty(—b)· Tz(一 c) 【25】 13 200920301 B y — By*Tx(〜a).Ty(—b).Tz( c) c) 【26】 【27】 B ζ=β2·Τχ(〜a).Ty(—b).Tz( 上列以(不凡岑a,么c)為狀態$Bz=f[P{x,yiZ)] ^^2)-7;(9〇°)j.7;(-900) [22] [23] Βχ , [24] /, medium 1 and 1 are magnetic fields The relationship between the X-axis and the Y-axis rotation y and Βζ all contain the components d of the three main Korean directions, you, 槐), (muscle muscle, orphan) and (like Ί, inflammation). The relationship is respectively 'capsule The three-dimensional posture of the endoscope (5) can be described by the transmitting electromagnetic coil (the reference lens is described. When the capsule endoscope (5) is moved to the household point, the attitude angle is rotated by the angle/w/axis according to the reference coordinate/axis rotation. 6 angle, around the rotation c angle, can be expressed as (see and c), then the magnetic induction can be expressed as · x = Tx (-a) · Ty (-b) · Tz (a c) [25] 13 200920301 B y — By*Tx(~a).Ty(—b).Tz( c) c) [26] [27] B ζ=β2·Τχ(~a).Ty(—b).Tz(listed above (Extraordinary 岑a, 么c) is state $

再者,控制膠囊内視鏡⑸之姿態的周邊硬體包括有 控制系統(14)、微處理機與I/Q介面(15)、功率放大器⑽ 與接收系統(#17)等’如第六圖所示。由於電磁線圈⑽產 生之磁力隔著人體以超距力之方式控制膠_視鏡⑸, 故需透過功率放大器(16)放大電磁線町⑵之功率才能 產生足夠之磁力控制膠囊内視鏡(5)之姿態。 又控制系統(14)採用智慧型模糊比例_積分—微分控 制器係因其模糊控制之最大特點為將專家之經驗匯入控 制器設計中’使所設計之控制器具有人工智慧之特點且系 統具有較佳之強健性(Robustness)。於第七圖中,r為參 考訊號【即欲使膠囊内視鏡(5)達到的姿態角】,e為誤差 值【即參考訊號與回授訊號之差值】,y為控制輸入【即 通與電磁線圈(12)之控制電流】,y為量測訊號【即膠囊 内視鏡(5)之姿態角】’心^為比例增益(Proportional Gain),Γ/為積分增益(Integral Gain),i?/為微分增益 (DerivativeGain)。則智慧型模糊比例-積分-微分控制器 的控制輸入為: . T, de(t) u{t) = KPe(t) + Kt J;e(r)dr + ^[28] 14 200920301 ♦曰慧型模糊比例~積分-微分控制ϋ之設計參數(处、 //與!« m _ (Fuzzy)料法設狀。於消化系統 内’不同的位置其環境可能極為不同⑽如胃與小腸),採 用智慧型模糊比例、積分—微分控制器可隨系統變化由專 家經驗來調整控制增益,對於時變系統具有 優良之適應 性。 本發明之微處理機與1/〇介面(15)包含Real_TimeFurthermore, the peripheral hardware for controlling the attitude of the capsule endoscope (5) includes a control system (14), a microprocessor and an I/Q interface (15), a power amplifier (10) and a receiving system (#17), etc. The figure shows. Since the magnetic force generated by the electromagnetic coil (10) controls the glue mirror (5) through the human body in a super-distance manner, it is necessary to amplify the power of the magnet wire (2) through the power amplifier (16) to generate sufficient magnetic control capsule endoscope (5) ) gesture. The control system (14) adopts the intelligent fuzzy proportional_integral-differential controller because the most important feature of its fuzzy control is to bring the expert's experience into the controller design', so that the designed controller has the characteristics of artificial intelligence and the system. Has better robustness (Robustness). In the seventh figure, r is the reference signal [that is, the attitude angle that the capsule endoscope (5) is to reach], e is the error value [that is, the difference between the reference signal and the feedback signal], and y is the control input [ie, Through the control current of the electromagnetic coil (12), y is the measurement signal [that is, the attitude angle of the capsule endoscope (5)] 'heart ^ is the proportional gain (Proportional Gain), Γ / is the integral gain (Integral Gain) , i? / is the differential gain (DerivativeGain). Then the control input of the intelligent fuzzy proportional-integral-derivative controller is: . T, de(t) u{t) = KPe(t) + Kt J; e(r)dr + ^[28] 14 200920301 ♦曰The design parameters of the hysteresis fuzzy ratio ~ integral-differential control ( (where, // and !« m _ (Fuzzy) material method. The environment may be very different in different locations in the digestive system (10) such as stomach and small intestine) The intelligent fuzzy proportional and integral-differential controller can adjust the control gain by expert experience with the change of the system, and has excellent adaptability to the time-varying system. The microprocessor of the present invention and the 1/〇 interface (15) include Real_Time

Interface (RTI)【即時介面】與c〇ntr〇iDesk【操控面板】。 KTI主要$ dSPAGE即時系統與MmAB/Simul⑽之間的介 面軟體。m不僅提供配合硬體的17⑽塊函數資料庫(1/〇 Block Library) ’使所有演算法可在simui丨故介面下做訊 说的輸入輸出的設定,同時亦可藉由MATLAB中的 Real-Time Workshop【即時機制】自動將Simulink中所設 计之演算流程轉譯成ANSI c程式,再直接載入DS1104的 Power PC板(PPC)上進行運作。 該功率放大器G6)之電路圖如第八圖所示。圖中控制 訊巧端接D/A轉換器所產生的類比控制訊號,經由運算放 大器(161)放大訊號以驅動功率晶體(162)達到功率放大 =效。該功率放大器(16)亦包含返馳電路(163)設計,此 電路有以下之特性: ^可提供充足的驅動電流。 2. 可容許線圈内電流快速且大幅的變動。 3. 雜訊干擾低。 4. 線性操作範圍大。 5. 不易繞毁。 將此功率放大器(16)接上整個控制系統(14)迴路 15 200920301 二必/員得知其功率放大增益,因此於電路之控制訊號端 之電壓值,經由電路之電流感測端來量測電磁線 ,之電/;IL值,其校正曲線如第九圖所示,由圖可知 此功率放大斋⑽於操作範圍内其線性度相當好,其電壓 與電流的關係可表示為: 1 =f(v)==2. 3595v~〇. 12581 【4】 其中7為功率放大器(16)輸出之電流,F為輸入功率放 大器(16)之控制電壓。 ^該移動遠距控制單元(2),由於膠囊内視鏡(5)内裝載 微小攝影裝置、影像擷取系統與無線傳輸系統等,推進機 制須在不傷害結腸壁的前提下使膠囊内視鏡(5)於消化系 統内暢行無阻。 第十圖為本發明之膠囊内視鏡(5)移動機制的架構示 思圖’其包括設在膠囊内視鏡(5)内部的控制電路板 (21)、機器手臂(22)及藥物釋放控制槽(23)。 其中’該控制電路板(21)上具有C0MS控制電路,以 控制機器手臂(22)進行前進或後退動作。 該機器手臂(22)分為前進手臂(221)及後退手臂 (222),且前進手臂(221)及後退手臂(222)間呈對應相 設’該前進手臂(221)及後退手臂(222)的末端處均具有呈 凸出鉤狀之刮取部(2211)、(2221),以利用該刮取部 (2211)、(2221)進行消化器官的檢體取樣;又該前進手臂 (221)及後退手臂(222)採用的材料是離子電導分子薄膜 【ICPF,Ionic Conductive Polymer Film】或稱作 ipmc [Ionomeric Polymer-Metal Composite]該薄膜為全氟 績酸薄膜【PerfluorosulfonicAcid】,其結構式表示如 16 200920301 下: Γ— CF,-CF-{CFrCF.-) n — 、Interface (RTI) [immediate interface] and c〇ntr〇iDesk [manipulation panel]. KTI is the interface software between the main $dSPAGE real-time system and MmAB/Simul(10). m not only provides a 17(10) block function database (1/〇Block Library) with hardware. It allows all algorithms to be used to make input and output settings under the simui interface. It can also be used by Real- in MATLAB. Time Workshop [instant mechanism] automatically translates the calculation process designed in Simulink into ANSI c program, and then directly loads the DS1104 Power PC board (PPC) for operation. The circuit diagram of the power amplifier G6) is as shown in the eighth figure. In the figure, the control signal is terminated by the analog control signal generated by the D/A converter, and the signal is amplified by the operational amplifier (161) to drive the power crystal (162) to achieve power amplification. The power amplifier (16) also includes a flyback circuit (163) design that has the following features: ^ Provides sufficient drive current. 2. Allows rapid and large changes in current in the coil. 3. Noise interference is low. 4. The linear operation range is large. 5. Not easy to ruin. Connect this power amplifier (16) to the entire control system (14) circuit 15 200920301. The two must know the power amplification gain, so the voltage value at the control signal terminal of the circuit is measured through the current sensing terminal of the circuit. Electromagnetic wire, electric /; IL value, its calibration curve is shown in the ninth figure. It can be seen from the figure that the linear amplification of the power amplification (10) is quite good in the operating range, and the relationship between voltage and current can be expressed as: 1 = f(v)==2. 3595v~〇. 12581 [4] where 7 is the current output from the power amplifier (16) and F is the control voltage of the input power amplifier (16). ^ The mobile remote control unit (2), because the capsule endoscope (5) is loaded with a micro-photographing device, an image capturing system and a wireless transmission system, the propulsion mechanism must make the capsule endoscope without damaging the colon wall. The mirror (5) is unobstructed in the digestive system. The tenth figure is an architectural diagram of the movement mechanism of the capsule endoscope (5) of the present invention, which comprises a control circuit board (21), a robot arm (22) and a drug release provided inside the capsule endoscope (5). Control slot (23). The control circuit board (21) has a COMS control circuit for controlling the robot arm (22) to perform forward or backward movement. The robot arm (22) is divided into a forward arm (221) and a backward arm (222), and the forward arm (221) and the backward arm (222) are correspondingly arranged. The forward arm (221) and the backward arm (222) At the end of each of the ends, there are scraping portions (2211) and (2221) which are convex hooks, so that the sampling portions of the digestive organs are taken by the scraping portions (2211) and (2221); and the forward arm (221) The material used in the receding arm (222) is an ion-conducting molecular film (ICPF, Ionic Conductive Polymer Film) or ipmc [Ionomeric Polymer-Metal Composite]. The film is a perfluorosulfonic acid film [Perfluorosulfonic Acid], and its structural formula is as follows. 16 200920301 下: Γ—CF,-CF-{CFrCF.-) n — ,

I (O-CFrCF ) ra ^:)-{CF2)^ SCVNa" I _ CF]I (O-CFrCF ) ra ^:)-{CF2)^ SCVNa" I _ CF]

ViM -- 0 〇.r 1 其之工作原理乃利用離子的遷移性來使薄膜變形振 動’達到驅動流體之效果’即利用電壓的控制,可以使手 臂產生往復運動達到前進與後退之功用(如圖--所 不)。如第十二圖所示’係先在全氟磺酸薄膜 【Perf luorosulfonic Acid】(A)兩端表面鑛上一層|呂(或 是其他導體)(B)與一對金電極(c),若於兩端施以電壓 (D) ’此時薄膜(A)中S〇3的負離子會彎曲偏向陽極,當通 入交流電時,可使薄膜(A)產生往復的振動,就可達到驅 動流體之效果。 該藥物釋放控制槽(23)設於膠囊内視鏡(5)的二端, 且該藥物釋放控制槽(23)内裝有内視鏡專用發泡劑,並於 藥物釋放控制槽(23)的槽口處利用金薄膜予以封住,使内 視鏡專用發泡劑在金薄膜未作用時不致滲漏流出藥物釋 放控制槽(23) °此一結構設計是因為人體的腸道往往皺折 在一起’造成影像拍攝時有許多的死角,而常將許多重要 訊息遺漏;故於適當時機利用電解方式將金薄膜電解,使 藥物釋放控制槽(23)的槽口處不再被封閉,而槽内之内視 鏡專用發泡劑將局部性的釋放到腸道中,並據此將腸道撐 大,此時即可將可能有病狀之部位拍攝的更清楚,利於分 析與取樣。 該無線電源供應單元(3),其係由體外之一次側線圈 17 200920301 (31)產;^、 、罐場與膠囊内視鏡(5)内部之微型二次側線圈 即可^感而產生電壓差(如第十三圖所示),此感應之電壓 m為膠囊内視鏡(5)内所有之系統之電力來源。 盥一,相變壓器模組可被視為無線電源供應系統一次側 二一-人側間之能量轉換,而無線電源供應系統其氣隙(磁 穷產生線圈與感應線圈之距離,亦即電力傳輸之距離)非* 本大因此可由小的磁化感應(Magnetizing Inductance) 與大的漏電感應(Leakage Inductance)表徵之。因此,將 傳統之變壓器模組簡化後可被應用於代表本發明之無線 電源供應單元(3) ’即將二次侧之所有參數由一次側之電 壓、漏電感與通與理想電流源之電阻取代,其等效電路如 第十四圖所示。 該藍芽無線傳輸單元(4) ’係作為膠囊内視鏡(5)影像 資料的傳輸之用,以將該膠囊内視鏡(5)在消化器官内拍 攝所得之影像利用藍芽無線傳輸方式傳輸至外部系統。該 藍芽無線傳輸單元(4)包括一影像處理模組(41)及—藍芽 傳輪模組(42)【參第十五圖】;由於膠囊内視鏡(5)在消 化器官内拍攝所得之影像的資料量相當龐大,因此必須將 拍攝所得之影像加以壓縮之後再進行傳輸,而該影像處理 模組(41)即是為進行影像壓縮處理的執行單位,其所採用 之影像壓縮技術為離散小波轉換方式,離散小波轉換最主 要的功能之一是分頻,分頻即是將訊號之能量依頻率的不 同作有效的分離,之後再利用分頻所得到的子訊號其能旦 或訊號波形的特性做訊號處理。因為一般訊號的能量^ ^ 中在低頻上,所以在分解訊號的過程中,通常只針對低g 的部分再做分解,目的就是為了使低頻帶的能量更為集 18 200920301 中。在資料的壓縮或傳輸應用上,係使用次頻帶編碼演算 法(Subband Coding Algorithm),也就是依不同頻帶加以 編碼。 在小波轉換的階層中,給定一低頻帶的係數,其會和 下一個高頻帶中同一個空間方向位置的係數集合有彳良高 的相關性,因此根據這個特性,定義一樹狀結構稱為空間 方向樹(spatial orientation tree),用來表示小波轉換 中各頻帶間相對應的關係。而針對一給定的低頻帶係數稱 為父代(parent),它所對應的下一個高頻帶同一空間方向 的係數為它的子代(offspring);而與此低頻帶係數相關 的同一空間方向,所有高頻帶的係數為它的子孫代 (descendant)。對於一個做二層小波分解的影像而言,其 小波係數的parent-child【父子】的關係如第十六圖所示。 在對整張影像的小波係數做編碼之前,須先經過適當 的掃描方式來決定係數做編碼的先後順序及相對關係。掃 描方式是將小波係數依tree【樹】的特性及係數的重要性 排列’此掃描方式有一些基本原則,那就是沒有任何一個 子孫代係數是在它的父代係數之前被掃描到,還有在什⑼ 的掃描順序中,依序為L、H、V以及最後是D頻帶的係數被 掃描出。 該藍芽傳輸模組(42)係採用藍芽的微網路 (Piconet) ’因其具有可分散網路(gcatternet)的特性, 使得藍芽網路的建構更加方便,並可大量節省成本使其更 具競爭力。 經由以上的實施說明,可知本發明之膠囊内視鏡(5) 將傳統推入型内視鏡(Push Endoscopy)觀察方式,改變成 19 200920301 只須吞入一顆膠囊,即可完成檢查消化系統疾病,使得病 人不必受傳統方式的侵入式痛苦。且本發明之膠囊内視鏡 (5)的移動與姿態控制機制,係利用無線電源供應及藍芽 無線傳輸,進行處理膠囊内視鏡(5 )在消化系統中所須之 照明與影像截取,並應用姿態控制以節制膠囊内視鏡(5) 的姿態角,可確實達成觀察特別有問題的部位之效果。 此外,本發明之膠囊内視鏡(5)之機器手臂(22)除可 於腸道内自由前行與後退之外,尚因在機械手臂(22)的前 進手臂(221)及後退手臂(222)的末端處設呈凸出鉤狀之 刮取部(2211)、(2221),故可利用該刮取部(2211)、(2221) 進行消化器官的檢體取樣。 又因本發明之膠囊内視鏡(5)整合了微投藥系統 (Micro-dosing Systems)之機制於膠囊外殼表層上,以在 必要時釋放發泡劑使皺折之腸道撐開而利於拍攝,俾有效 地幫助醫師進一步的分析與判斷,進而減少誤判病情之情 形發生的機會。 综上所述,本發明實施例確能達到所預期之使用功 效,又其所揭露之具體構造,不僅未曾見諸於同類產品 中,亦未曾公開於申請前,誠已完全符合專利法之規定與 要求,爰依法提出發明專利之申請,懇請惠予審查,並賜 准專利,則實感德便。 20 200920301 【圖式簡單說明】 第一圖:本發明之膠囊内視鏡磁控示意圖 第二圖:本發明之外部方向性磁場示意圖 第三圖:本發明之膠囊内視鏡方向性磁場示意圖 第四圖.本發明之二轴電磁線圈不意圖 第五圖:本發明之單線圈磁感應示意圖 第六圖:本發明之控制系統結構圖 第七圖:本發明之膠囊内視鏡模糊PID控制示意圖 第八圖:本發明之功率放大器電路圖 第九圖:本發明之功率放大器電路校正曲線圖 第十圖:本發明之膠囊内視鏡移動機制的構造示意圖 第十一圖:本發明之膠囊内視鏡移動機制實施行走時 的示意圖 第十二圖:本發明之膠囊内視鏡移動機制的動作原理 7F意圖 第十三圖:本發明之磁場互感無線電源供應示意圖 第十四圖:本發明之等效無線電源供應電路示意圖 第十五圖:本發明之藍芽無線傳輸單元示意圖 第十六圖:小波係數的parent-chi Id的關係圖 【主要元件符號說明】 <本發明> (1) 三維磁浮姿態控制單元 (11) 永久磁鐵 (12) 電磁線圈 (13) 感測器 (14) 控制系統 (15) 微處理機與I/O介面 (16) 功率放大器 (161) 運算放大器 21 200920301 (162) 功率晶體 (163) (17) 接收系統 (2) 移動遠距控制單元 (21) 控制電路板 (22) (221) 前進手臂 (2211) (222) 後退手臂 (2221) (23) 藥物釋放控制槽 (5) (3) 無線電源供應單元 (31) 一次側線圈 (32) (4) 藍芽無線傳輸單元 (41) 影像處理模組 (42) (A) 薄膜 (B) (C) 金電極 (D) 返馳電路 •機器手臂 刮取部 刮取部 膠囊内視鏡 二次側線圈 藍芽傳輸模組 鋁 電壓 22ViM -- 0 〇.r 1 The working principle is to use the mobility of ions to deform the vibration of the film to achieve the effect of driving the fluid. That is, the control of the voltage can make the arm reciprocate to achieve the function of advancing and retreating (such as Figure--no). As shown in Figure 12, the surface of the perfluorosulfonic acid film (A) is first coated with a layer of |L (or other conductor) (B) and a pair of gold electrodes (c). If a voltage (D) is applied to both ends, the negative ions of S〇3 in the film (A) will be bent toward the anode. When the alternating current is applied, the film (A) can be reciprocated to achieve the driving fluid. The effect. The drug release control slot (23) is disposed at two ends of the capsule endoscope (5), and the drug release control slot (23) is provided with an internal mirror special foaming agent, and is disposed in the drug release control slot (23) The notch is sealed with a gold film, so that the special foaming agent for the endoscope does not leak out of the drug release control groove when the gold film is not applied. (23) This structure is designed because the intestines of the human body are often wrinkled. Together, there are many dead ends in the image shooting, and many important messages are often missed; therefore, the gold film is electrolyzed at an appropriate timing so that the notch of the drug release control groove (23) is no longer closed. The special foaming agent for the endoscope in the tank will be released locally into the intestine, and the intestine will be stretched accordingly. At this time, the part with possible pathology can be photographed more clearly, which is convenient for analysis and sampling. The wireless power supply unit (3) is produced by the primary side coil 17 200920301 (31) of the external body; the micro secondary side coil inside the can field and the capsule endoscope (5) can be generated. The voltage difference (as shown in Figure 13), this induced voltage m is the source of power for all systems within the capsule endoscope (5). First, the phase transformer module can be regarded as the energy conversion between the primary side and the human side of the wireless power supply system, and the air gap of the wireless power supply system (the distance between the magnetic poor generating coil and the induction coil, that is, the power transmission) The distance) is not * can be characterized by small magnetization induction (Raynetage Inductance) and large leakage inductance (Leakage Inductance). Therefore, the conventional transformer module can be simplified and can be applied to the wireless power supply unit (3) representing the present invention. 'All parameters of the secondary side are replaced by the voltage of the primary side, the leakage inductance and the resistance of the pass and the ideal current source. The equivalent circuit is shown in Figure 14. The Bluetooth wireless transmission unit (4) is used for transmitting the image data of the capsule endoscope (5), and the image obtained by capturing the capsule endoscope (5) in the digestive organ is transmitted by means of Bluetooth wireless transmission. Transfer to an external system. The Bluetooth wireless transmission unit (4) includes an image processing module (41) and a Bluetooth wheel module (42) [refer to the fifteenth figure]; since the capsule endoscope (5) is photographed in the digestive organ The amount of data obtained is quite large, so the captured image must be compressed and then transmitted. The image processing module (41) is the execution unit for image compression processing, and the image compression technology used. For discrete wavelet transform, one of the most important functions of discrete wavelet transform is frequency division. The frequency division is to effectively separate the energy of the signal according to the frequency. Then the sub-signal obtained by frequency division can be used. The characteristics of the signal waveform are signal processed. Because the energy of the general signal ^ ^ is at the low frequency, in the process of decomposing the signal, it is usually only decomposed for the low g part, in order to make the energy of the low frequency band more 18 200920301. In the compression or transmission application of data, Subband Coding Algorithm is used, that is, encoding according to different frequency bands. In the hierarchy of wavelet transform, given a coefficient of a low frequency band, which has a high correlation with a coefficient set of the same spatial direction position in the next high frequency band, according to this characteristic, defining a tree structure is called A spatial orientation tree is used to indicate the corresponding relationship between frequency bands in wavelet transform. And for a given low-band coefficient, called the parent, the coefficient of the same high-frequency band in the same spatial direction is its offspring; and the same spatial direction related to the low-band coefficient The coefficients of all high frequency bands are its descendants. For an image with a two-layer wavelet decomposition, the parent-child relationship of the wavelet coefficients is as shown in Fig. 16. Before encoding the wavelet coefficients of the entire image, the appropriate scanning method must be used to determine the order and relative relationship of the coefficients. The scanning method is to arrange the wavelet coefficients according to the characteristics of the tree [tree] and the importance of the coefficients. This scanning method has some basic principles, that is, no one descendant coefficient is scanned before its parent coefficient, and In the scan order of (9), the coefficients of L, H, V, and finally the D band are scanned out. The Bluetooth transmission module (42) adopts Bluetooth micro-network (Piconet). Because of its feature of distributable network (gcatternet), the construction of the Bluetooth network is more convenient, and the cost is saved. It is more competitive. Through the above implementation description, it can be seen that the capsule endoscope (5) of the present invention changes the conventional push-in endoscope (Push Endoscopy) observation mode to 19 200920301, and only needs to swallow a capsule to complete the examination of the digestive system. The disease prevents the patient from being invaded by traditional methods. Moreover, the movement and attitude control mechanism of the capsule endoscope (5) of the present invention utilizes wireless power supply and Bluetooth wireless transmission to process illumination and image interception required by the capsule endoscope (5) in the digestive system. The attitude control is applied to control the attitude angle of the capsule endoscope (5), and the effect of observing a particularly problematic portion can be surely achieved. In addition, the robotic arm (22) of the capsule endoscope (5) of the present invention is freely advanced and retracted in the intestine, but also in the forward arm (221) and the retracted arm (222) of the robot arm (22). The scraping portions (2211) and (2221) having the protruding hook shape are provided at the distal end of the tube, so that the sampling portions of the digestive organs can be sampled by the scraping portions (2211) and (2221). Moreover, the capsule endoscope (5) of the present invention integrates the mechanism of the micro-dosing system on the surface of the capsule casing to release the foaming agent when necessary to open the wrinkled intestine and facilitate shooting.俾 Effectively assists physicians in further analysis and judgment, thereby reducing the chances of misjudging the condition. In summary, the embodiments of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in similar products, nor has it been disclosed before the application, and has completely complied with the provisions of the Patent Law. And the request, the application for the invention of a patent in accordance with the law, please forgive the review, and grant the patent, it is really sensible. 20 200920301 [Simple description of the diagram] First diagram: Schematic diagram of the magnetic mirror of the capsule endoscope of the present invention. Second diagram: Schematic diagram of the external directional magnetic field of the present invention. Third diagram: Schematic diagram of the directional magnetic field of the capsule endoscope of the present invention FIG. 4 is a schematic view of a single-coil magnetic induction of the present invention. FIG. 6 is a schematic diagram of a control system of the present invention. FIG. 7 is a schematic diagram of a fuzzy mirror control of a capsule endoscope of the present invention. 8: FIG. 9 is a power amplifier circuit diagram of the present invention: FIG. 10 is a calibration diagram of a power amplifier circuit of the present invention. FIG. 11 is a schematic diagram showing the structure of a capsule endoscope movement mechanism according to the present invention. FIG. 11 is a perspective view of the capsule endoscope of the present invention. Schematic diagram of the movement mechanism for walking. Twelfth diagram: The principle of operation of the capsule endoscope movement mechanism of the present invention. 7F is intended to be the thirteenth diagram: the magnetic field mutual inductance wireless power supply schematic diagram of the present invention. Figure 14: Equivalent of the present invention Fig. 15 is a schematic diagram of a wireless power supply circuit. Fig. 16 is a schematic diagram of a Bluetooth wireless transmission unit of the present invention: parent-ch of wavelet coefficients i Id diagram [main component symbol description] <present invention> (1) three-dimensional maglev attitude control unit (11) permanent magnet (12) electromagnetic coil (13) sensor (14) control system (15) micro Processor and I/O Interface (16) Power Amplifier (161) Operational Amplifier 21 200920301 (162) Power Crystal (163) (17) Receiving System (2) Mobile Remote Control Unit (21) Control Board (22) ( 221) Forward arm (2211) (222) Back arm (2221) (23) Drug release control slot (5) (3) Wireless power supply unit (31) Primary side coil (32) (4) Bluetooth wireless transmission unit ( 41) Image Processing Module (42) (A) Film (B) (C) Gold Electrode (D) Flyback Circuit • Robotic Scraper Scraper Capsule Endoscope Secondary Side Coil Bluetooth Transfer Module Aluminum Voltage 22

Claims (1)

200920301 十、申請專利範圍: 1. 一種具前行與後退功能之腸道膠囊内視鏡結構,係包 括: 一三維磁浮姿態控制單元,其具有一永久磁鐵並配 置於膠囊内視鏡内以產生固定磁場,並在體外建置一由 三軸之電磁線圈所形成之磁場,以令體外之磁場與膠囊 内視鏡内之永久磁鐵互相作用產生磁偶極距,且配合周 邊硬體控制膠囊内視鏡之姿態; 一移動遠距控制單元,其包括設在膠囊内視鏡内部 的控制電路板及機器手臂,該控制電路板上具有控制電 路,以控制機器手臂前進或後退動作; 一無線電源供應單元,係由體外之一次側線圈產生 磁場與膠囊内視鏡内部之二次側線圈互感產生電壓差 而得; 一藍芽無線傳輸單元,係為膠囊内視鏡所拍攝之影 像傳輸至外部系統。 2. 如申請專利範圍第1項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中,放置於膠囊内視鏡内之永久磁鐵 為敛1鐵棚永久磁鐵。 3. 如申請專利範圍第1項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中,控制膠囊内視鏡之姿態的周邊硬 體包括有控制系統、微處理機與I/O介面、功率放大器 與接收系統。 4. 如申請專利範圍第3項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中,該控制系統係採智慧型模糊比例 23 200920301 -積分-微分控制器。 5. 如申請專利範圍第3項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中,該功率放大器由運算放大器及功 率晶體構成,以由運算放大器放大訊號以驅動功率晶體 達到功率放大之效。 6. 如申請專利範圍第5項所述具前行與後退功能之腸道膠 嚢内視鏡結構,其中,該功率放大器進一步包含返驰電 路。 7. 如申請專利範圍第1項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中,膠囊内視鏡之三維定位與導航係 應用電磁線圈與感測器達成。 8. 如申請專利範圍第7項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中’該感測為微型磁阻感測。 9. 如申請專利範圍第1項所述具前行與後退功能之腸道膠 囊内視鏡結構,其中,該機器手臂分為前進手臂及後退 手臂,且前進手臂及後退手臂間呈對應相設。 10. 如申請專利範圍第9項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該前進手臂的末端處具有刮 取部。 11. 如申請專利範圍第9項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該後退手臂的末端處具有刮 取部。 12. 如申請專利範圍第10或11項所述具前行與後退功能 之腸道膠囊内視鏡結構,其中,該刮取部呈凸出鉤狀。 13. 如申請專利範圍第9項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該前進手臂及後退手臂係採 24 200920301 用離子電導分子薄膜,並在薄膜兩端表面鍍上一層導 體與一對金電極,且於兩端施以交流電壓。 14. 如申請專利範圍第13項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該薄膜為全氟磺酸薄膜,其 結構式為: CF2-CF-(CF,-GF?-)n — ) I (G-CF.-CF) ra -0-(CF^h- SCVNa" I CF」 VJVi ™ 0 or i ^ O 15. 如申請專利範圍第13項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該導體之材質為鋁。 16. 如申請專利範圍第1項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該移動遠距控制單元進一步 包括藥物釋放控制槽,其設於膠囊内視鏡的二端,且 槽内裝有内視鏡專用發泡劑,並於槽口處利用薄膜予 以封住。 Π.如申請專利範圍第16項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該薄膜之材質為金。 18. 如申請專利範圍第1項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該藍芽無線傳輸單元包括一 影像處理模組及一藍芽傳輸模組,以利用影像處理模 組將膠囊内視鏡在消化器官内拍攝所得之影像資料加 以壓縮處理後再由藍芽傳輸模組進行傳輸。 19. 如申請專利範圍第18項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該影像處理模組所採用之影 25 200920301 像壓縮技術為離散小波轉換方式。 20. 如申請專利範圍第18項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,資料的壓縮或傳輸係使用次 頻帶編碼演鼻法。 21. 如申請專利範圍第18項所述具前行與後退功能之腸道 膠囊内視鏡結構,其中,該藍芽傳輸模組係採用藍芽 的微網路。 26200920301 X. Patent application scope: 1. An enteric capsule endoscope structure with forward and backward functions, comprising: a three-dimensional magnetic floating attitude control unit having a permanent magnet and disposed in the capsule endoscope to generate Fixing the magnetic field, and constructing a magnetic field formed by a three-axis electromagnetic coil in vitro, so that the magnetic field outside the body interacts with the permanent magnet in the capsule endoscope to generate a magnetic dipole moment, and is matched with the peripheral hardware to control the capsule. a posture of the mirror; a mobile remote control unit comprising a control circuit board and a robot arm disposed inside the capsule endoscope, the control circuit board having a control circuit for controlling the forward or backward movement of the robot arm; The supply unit is obtained by generating a magnetic field between the primary side coil of the external body and a mutual inductance of the secondary side coil inside the capsule endoscope; a Bluetooth wireless transmission unit transmits the image taken by the capsule endoscope to the outside system. 2. The enteric capsule endoscope structure with the forward and backward functions as described in the first paragraph of the patent application, wherein the permanent magnet placed in the capsule endoscope is a permanent magnet of the iron shed. 3. The enteric capsule endoscope structure having the forward and backward functions as described in claim 1 of the patent scope, wherein the peripheral hardware for controlling the posture of the capsule endoscope includes a control system, a microprocessor and an I/ O interface, power amplifier and receiving system. 4. The enteric capsule endoscope structure with forward and reverse functions as described in item 3 of the patent application scope, wherein the control system adopts a smart fuzzy ratio 23 200920301 - integral-differential controller. 5. The enteric capsule endoscope structure having the forward and reverse functions as described in claim 3, wherein the power amplifier is composed of an operational amplifier and a power crystal to amplify the signal by the operational amplifier to drive the power crystal to reach Power amplification effect. 6. The enteric gel endoscope structure having the forward and reverse functions as described in claim 5, wherein the power amplifier further comprises a flyback circuit. 7. The enteric capsule endoscope structure with forward and reverse functions as described in claim 1 of the patent scope, wherein the three-dimensional positioning and navigation of the capsule endoscope is achieved by applying an electromagnetic coil and a sensor. 8. The enteric capsule endoscope structure having the forward and reverse functions as described in claim 7 of the patent application, wherein the sensing is micromagnetoresistive sensing. 9. The enteric capsule endoscope structure with forward and backward functions as described in claim 1 of the patent scope, wherein the robot arm is divided into a forward arm and a backward arm, and the forward arm and the backward arm are correspondingly arranged. . 10. The enteric capsule endoscope structure having the forward and reverse functions as described in claim 9 wherein the forward arm has a scraping portion at the end. 11. The enteric capsule endoscope structure having the forward and reverse functions as described in claim 9 wherein the receding arm has a scraping portion at the end. 12. The enteric capsule endoscope structure having the forward and reverse functions as described in claim 10 or 11, wherein the scraping portion has a convex hook shape. 13. The enteric capsule endoscope structure with forward and backward functions as described in claim 9 of the patent scope, wherein the advancing arm and the receding arm are used for the membrane of the ion-conducting molecule and are on both end surfaces of the film. A layer of conductor and a pair of gold electrodes are plated and an alternating voltage is applied across the ends. 14. The enteric capsule endoscope structure having the function of advancement and retreat according to claim 13 of the patent application, wherein the film is a perfluorosulfonic acid film, and the structural formula is: CF2-CF-(CF,- GF?-)n — ) I (G-CF.-CF) ra -0-(CF^h- SCVNa" I CF" VJVi TM 0 or i ^ O 15. As described in claim 13 The enteric capsule endoscope structure of the line and the retreat function, wherein the conductor is made of aluminum. 16. The enteric capsule endoscope structure having the forward and backward functions as described in claim 1 of the patent scope, wherein The mobile remote control unit further includes a drug release control slot disposed at the two ends of the capsule endoscope, and the slot is provided with a special foaming agent for the endoscope, and is sealed by a film at the notch. The enteric capsule endoscope structure having the function of advancement and retreat as described in claim 16 of the patent application, wherein the material of the film is gold. 18. The forward and backward functions as described in claim 1 Intestinal capsule endoscope structure, wherein the Bluetooth wireless transmission unit includes an image processing module and a Bluetooth transmission The module compresses the image data captured by the capsule endoscope in the digestive organ by using the image processing module, and then transmits the image data by the Bluetooth transmission module. 19. As described in claim 18 The enteroscope capsule endoscope structure of the line and the back function, wherein the image processing module uses the shadow 25 200920301 image compression technique as a discrete wavelet transform method. 20. As described in claim 18, The intestinal capsule endoscope structure of the receding function, wherein the compression or transmission of the data is performed using the sub-band coding nasal method. 21. The enteric capsule end view with the forward and backward functions as described in claim 18 The mirror structure, wherein the Bluetooth transmission module uses a Bluetooth micro network.
TW96143763A 2007-11-15 2007-11-15 Capsular endoscope for intestine inspection with functions of movement forward and backward TW200920301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96143763A TW200920301A (en) 2007-11-15 2007-11-15 Capsular endoscope for intestine inspection with functions of movement forward and backward

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96143763A TW200920301A (en) 2007-11-15 2007-11-15 Capsular endoscope for intestine inspection with functions of movement forward and backward

Publications (1)

Publication Number Publication Date
TW200920301A true TW200920301A (en) 2009-05-16

Family

ID=44727424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96143763A TW200920301A (en) 2007-11-15 2007-11-15 Capsular endoscope for intestine inspection with functions of movement forward and backward

Country Status (1)

Country Link
TW (1) TW200920301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554240B (en) * 2014-06-25 2016-10-21 台灣基督長老教會馬偕醫療財團法人馬偕紀念醫院 Ultrathin endoscope auxiliary system and use thereof
CN109580270A (en) * 2019-01-21 2019-04-05 长沙学院 A kind of magnetic suspension capsule robot experimental rig
TWI808810B (en) * 2022-06-24 2023-07-11 群曜醫電股份有限公司 Endoscope system and wireless controller thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554240B (en) * 2014-06-25 2016-10-21 台灣基督長老教會馬偕醫療財團法人馬偕紀念醫院 Ultrathin endoscope auxiliary system and use thereof
CN109580270A (en) * 2019-01-21 2019-04-05 长沙学院 A kind of magnetic suspension capsule robot experimental rig
CN109580270B (en) * 2019-01-21 2023-09-19 长沙学院 Magnetic suspension capsule robot test device
TWI808810B (en) * 2022-06-24 2023-07-11 群曜醫電股份有限公司 Endoscope system and wireless controller thereof

Similar Documents

Publication Publication Date Title
Ciuti et al. Frontiers of robotic endoscopic capsules: a review
Ciuti et al. Capsule endoscopy: from current achievements to open challenges
Than et al. A review of localization systems for robotic endoscopic capsules
Basar et al. Ingestible wireless capsule technology: A review of development and future indication
Ciuti et al. Robotic versus manual control in magnetic steering of an endoscopic capsule
Di Natali et al. Real-time pose detection for magnetic medical devices
JP4813190B2 (en) Capsule medical device
Lien et al. Magnetic control system targeted for capsule endoscopic operations in the stomach—design, fabrication, and in vitro and ex vivo evaluations
JP5314913B2 (en) Capsule medical system
JP5873230B2 (en) In-vivo imaging device and method of operating in-vivo imaging device
Wang et al. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment
WO2010047357A1 (en) Capsular endoscopic system
WO2005065521A1 (en) System for sensing movement in subject
WO2005063122A1 (en) System for sensing position in subject
JP5165161B2 (en) Location information estimation system
JP2005507687A (en) System and method for controlling an in-vivo device
Nam et al. Evaluation of gastric disease with capsule endoscopy
WO2005065522A1 (en) System for sensing position in subject
Chen et al. Magnetically actuated capsule robots: A review
WO2005065523A1 (en) System for sensing position in subject
Twomey et al. Swallowable capsule technology: current perspectives and future directions
TW200920301A (en) Capsular endoscope for intestine inspection with functions of movement forward and backward
CN102085084B (en) Sampling capsule system based on wireless energy supply extracorporeal magnetic control
CN105286762A (en) External-use controller for positioning, steering and displacement of in-vivo microminiature device
Xu et al. A review of magnetic sensor-based positioning techniques for capsule endoscopy