TW200920047A - Protection zone detection method and device applied to the orthogonal multiplex frequency division system - Google Patents
Protection zone detection method and device applied to the orthogonal multiplex frequency division system Download PDFInfo
- Publication number
- TW200920047A TW200920047A TW96139987A TW96139987A TW200920047A TW 200920047 A TW200920047 A TW 200920047A TW 96139987 A TW96139987 A TW 96139987A TW 96139987 A TW96139987 A TW 96139987A TW 200920047 A TW200920047 A TW 200920047A
- Authority
- TW
- Taiwan
- Prior art keywords
- interval
- detector
- protection
- protection interval
- guard interval
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
200920047 九、發明說明: 【發明所屬之技術領域】 。本發明係關於一種應用於正交分頻多工系統所設計之保 護區間偵測方法及裝置,特別是指一種在正交分頻多工系統 中每個正交分頻多工符元前面必須加上一段保護區間,以避 免符元間干擾。當用戶端欲進接正交分頻多工系統時,必須 先偵測基地台所傳送正交分頻多工符元的保護區間長度,以 作為後續初始同步與訊號解調之參考。 【先前技術】 傳統的通訊系統只採用單一的載波來傳送資料,整個可 用的頻寬僅供一位使用者傳輸資料,而正交分頻多工系統, 是一種多載波的調變傳輸技術,其調變技術則是將整個可用 的頻寬切割成#等分,每一等分用一個次載波(subcarrier) 來傳送資料。由於此種技術採用彼此正交的次載波來傳送資 料’而且可以將不同的次載波分給不同的使用者,所以稱之 為正交分頻多工技術。 正交分頻多工系統具備高頻譜使用效率(Spectrum Efficiency )、可抵抗頻率選擇性衰落(Frequency200920047 IX. Description of the invention: [Technical field to which the invention pertains]. The invention relates to a protection interval detecting method and device designed for orthogonal frequency division multiplexing system, in particular to a front of each orthogonal frequency division multiplex symbol in an orthogonal frequency division multiplexing system. Add a guard interval to avoid interference between symbols. When the UE wants to enter the orthogonal frequency division multiplexing system, it must first detect the guard interval length of the orthogonal frequency division multiplex symbol transmitted by the base station as a reference for subsequent initial synchronization and signal demodulation. [Prior Art] The traditional communication system uses only a single carrier to transmit data. The entire available bandwidth is only used by one user to transmit data, and the orthogonal frequency division multiplexing system is a multi-carrier modulation transmission technology. The modulation technique is to cut the entire available bandwidth into #equal, and each aliquot uses a subcarrier to transmit data. Since this technique uses subcarriers that are orthogonal to each other to transmit data' and can assign different subcarriers to different users, it is called orthogonal frequency division multiplexing. Orthogonal crossover multiplex system with high spectrum efficiency (Spectrum Efficiency) and resistance to frequency selective fading (Frequency
SelectiveSelective
Fading )、可抵抗多重路徑衰落(Multipath Fading )、可抵抗 付元間干擾(Inter-Symbol Interference,ISI )、可使用簡單的 頻率領域專化器(Frequency Domain Equalizer,FDE )、可使 用適應性傳輸機制、簡化接收機的設計等諸多優點。基於上 述諸多優點’新一代的無線通訊系統大多採用正交分頻多工 系統做為空中介面進接技術,包括無線區域網路(ΙΕΕΕ 802.lla/g/n Wireless Local Area Network,WLAN)、無線都會 網路(IEEE 802.16 Worldwide Interoperability for Microwave Access ’ WiMAX )、數位影音廣播系統(Digital Video 200920047Fading), can resist multipath Fading, can resist Inter-Symbol Interference (ISI), can use a simple frequency domain equalizer (FDE), can use adaptive transmission Mechanisms, simplified receiver design and many other advantages. Based on the above advantages, most of the new generation of wireless communication systems use orthogonal frequency division multiplexing system as the air interfacing technology, including wireless area network (ΙΕΕΕ 802.lla/g/n Wireless Local Area Network, WLAN), Wireless Internet Network (IEEE 802.16 Worldwide Interoperability for Microwave Access 'WiMAX), Digital Video Broadcasting System (Digital Video 200920047)
Broadcasting system for Terrestrial/Handheld,DVB-T/H)、超 寬頻系統(Ultra Wide Band system,UWB )、3GPP 下一代演 進標準(3rd Generation partner project f0I· Long-TermBroadcasting system for Terrestrial/Handheld, DVB-T/H), Ultra Wide Band system (UWB), 3GPP Next Generation Implementation Standard (3rd Generation partner project f0I· Long-Term)
Evolution > 3GPP-LTE)等。 在正交分頻多工系統中,為避免因為無線電多重傳播路 徑所造成符元間干擾,必須在每一個正交分頻多工符元前面 -加上一段保護區間。由於此一保護區間是複製自正交分頻多 工符元後面的一部份次載波,所以又稱之為循環區間(Cyclic Prefix,CP )。如果此一保護區間的長度大於多重傳播路徑最 Ο大有效的延遲長度,則將可完全消除符元間干擾。一般來說, 正交分頻多工系統會提供多個不同長度保護區間的選擇,以 應用於不同的通訊環境。因此,當用戶端初次進入正交分頻 多工系統時,必須先偵測所在基地台所使用保護區間的長 度,以進行後續的初始同步與訊號解調。本發明針對正交分 頻多工系統,§曼§十自動偵測不同基地台所使用不同長度保護 區間的方法及裝置。 先前傳統的正交分頻多工系統同步技術主要是針對單一 保護區間長度所設計,並沒有區別不同長度保護區間的能 力,在下列先前的專利技術中有提及類似的概念· 124627卜 00400675、200623688。最近新提出來的技術,主要採用平行 式相關性的運算方法,複雜度高且對長度較短的保護區間偵 測能力較差,在下列先前的專利技術中有提及類似的概念: 1246271 ^ 00400675 > 200623688 . 200620923 ^ 200623756 〇 由此可見’上述習用方式仍有諸多缺失,實非一良善之 設計,而亟待加以改良。 本案發明人鑑於上m方式所衍生的各項缺點,乃函思 加以改良創新’並經多年苦心孤讀潛心研究後,終於成功研 200920047 交分頻多工系統 發完成本件應用於正 裝置。 之保護區間偵蜊方法及 【發明内容】 本發明之目的即在於提供—種針對 設計之保護區間债測方法及裝置 ::多工系統所Evolution > 3GPP-LTE), etc. In an orthogonal frequency division multiplexing system, in order to avoid inter-symbol interference caused by radio multiple propagation paths, a guard interval must be added in front of each orthogonal frequency division multiplex symbol. Since this guard interval is copied from a part of the subcarrier after the orthogonal frequency division multiplex symbol, it is also called a Cyclic Prefix (CP). If the length of this guard interval is greater than the most effective delay length of the multiple propagation path, inter-symbol interference will be completely eliminated. In general, orthogonal frequency division multiplexing systems offer multiple choices of different length guard intervals for use in different communication environments. Therefore, when the UE first enters the orthogonal frequency division multiplexing system, it must first detect the length of the protection interval used by the base station to perform subsequent initial synchronization and signal demodulation. The present invention is directed to a quadrature frequency division multiplexing system, and a method and apparatus for automatically detecting different length protection intervals used by different base stations. The previous conventional orthogonal frequency division multiplexing system synchronization technology is mainly designed for the length of a single guard interval, and does not have the ability to distinguish the guard intervals of different lengths. In the following prior patent technologies, a similar concept is mentioned. 124627 00400675, 200623688. Recently, the newly proposed technology mainly adopts the parallel correlation calculation method, which has high complexity and poor detection capability for the short-length protection interval. Similar concepts are mentioned in the following prior patent technologies: 1246271 ^ 00400675 > 200623688 . 200620923 ^ 200623756 〇 This shows that there are still many shortcomings in the above-mentioned methods of use, which is not a good design, but needs to be improved. In view of the shortcomings derived from the m-method, the inventor of this case was able to improve and innovate, and after years of painstaking research, he finally succeeded in researching the 200920047 cross-frequency multiplex system and completed the application of this article to the positive device. The invention discloses a protection interval detection method and an object of the invention. The object of the invention is to provide a protection interval debt measurement method and device for design: multiplex system
頻多工系統時,由用戶诚福、用戶鳊欲進接正交分 T 用戶端偵測基地合炻種以1: > A L 元的保護區間長度,以作為後 、父刀頻多工符 本發明之次-目的=續提:始同步與 曰的係在於&供一種可自動 r 口所使用不同長度的保護區間的方法及裝置,此—方^ 置可減少後續初始同步所需的時間及複 ^ 分利用保護區間的循環重複特 ^。由於本發明充 與實現效^盾環重複料,故可獲得最大的處理增益 達成上述發明目的之應用於正交 及裝置,係在用戶端偵測由基地台發射出= =頻:工付元的保護區間及其長度。由於Μ基地台會根據 /、所處的通道環境,而使用不同長度的保護區間,因此,在 用戶端進行系統時脈同步之前,必須要能自動偵測正交分頻 多工符元的保護區間及其長度。正交分頻多工符元的保護區 間是複製自正交分頻多工符元後面的—部份次載波,並且置 於每一個正交分頻多工符元的前面。 本發明所知:出之保濩區間自動偵測方法及裝置,包括一 接收機前端、一頻寬偵測器、一類比數位轉換單元、一能量 偵測器、複數保護區間偵測器及一保護區間決策單元;首先, 在用戶端接收機前端將天線接收下來的射頻訊號轉換到中頻 或是基頻,以進行後續類比數位轉換;接下來,在頻寬偵測 器中,偵測基地台所發射訊號的頻寬,以提供接收機前端與 類比數位轉換單元所需之頻寬資訊。接下來,在類比數位轉 200920047 換單元中’將類比訊號轉換成數位訊號’以進行後續之數位 訊號處理’在轉換過程中所使用的取樣頻率是參考自頻寬偵 測器偵測的結果。接下來,在能量偵測器中,偵測接收到的 訊號在一段時間内的累積能量,以作為後續單元之臨界參考 值。由於此一臨界參考值可隨通道環境的變化,而跟著適應 性調整,故可應用於各種不同的無線電通道之中。此一平均 - 能量亦可作為接收訊號強度的指標(Receive Signal Strength Indicator ’ RSSI) ’可回饋(Feedback)至基地台以進行適應 性調變編碼技術(Adaptive Modulation Coding,AMC)或是 f封閉迴圈(Closed-Loop )多天線輸出入(Multiple_Inpm Multiple Output,ΜΙΜΟ)技術等應用。接下來,在保護區間 第一偵測器中,利用保護區間的循環特性,偵測系統所規定 最短保護區間是否存在。如果最短保護區間存在的話,則繼 續依序在保護區間第二偵測器〜第艮偵測器中,偵測系統所規 疋其他長度的保護區間是否存在。這些偵測的流程是由後面 的保護區間決策單元所控制,偵測結果也會送入保護區間決 策單元以進行相關的判斷。其中,保護區間第一偵測器所使 〇用的臨界參考值來自於能量偵測器,*保護區間第二侦測器 第^ Κ偵測器所使用的臨界參考值則來自於保護區間第一偵 測器的偵測值。如此,可以降低保護區間誤判的機率。最後, 在保護區間決策單元,根據第一〜〖個保護區間積測器的摘測 結果’決定最終保護區間出現的位置及其長度。匹配滤波器 的執打只需從保護區間偵測到的那個取樣點開始進行,以獲 得準確的系統時脈並建立系統同步。 【實施方式】 本發明係-種制正交分頻多卫系統所設計之保護區間 摘測方法及裝置,係在用戶端欲進接正交分頻多工系統時, 200920047 由用戶端伯測基地^^ > _ l7 σ所傳达正父刀頻多工符元的保護區間長 度’以可作為後續初始同步柬去 工u合心〇 步參考。—般來說,正交分頻多 :'二ε ’'夕個不同長度保護區間的選擇,以應用於不同 二1:㉟0此,當用戶端初次進入正交分頻多工系統時, υ貞測所在基地台所使用«區間的長度,以進行後續 步與訊號解調。本發明提供—可靠且低複雜度的保 °動偵測方法’並且可在不同的無線通訊環境中進行 適應性的調整。 月參閱圖戶斤示’為本發明應用於正交分頻多工系統之 u保護區間㈣方法及裝置之系統架構w,包括主要: 一接收機前端1 ’該接收機前端1係在用戶端接收機前端 1將天線接收下來之射頻訊號轉換到中頻或是基頻訊號,並將 訊號傳送至類比數位轉換單元3,以進行後續類比數位轉換; 除了訊號移頻外’該接收機前端丨中還會進行包括訊號放大、 訊號濾波及頻率相位補償等處理,以適度重建修補接收到的 類比訊號。由於基地台所發射的訊號可能載送在不同的頻 寬,例如5MHZ、10MHz、20MHZ,所以用戶端接收機前端 1的訊號處理必須要知道訊號的頻寬,才能完整接收到正確的 ^訊號; 一頻寬偵測器2,該頻寬偵測器2係偵測基地台所發射訊 號的頻寬’並將該頻寬訊號傳送至接收機前端1及類比數位 轉換單元3,以提供接收機前端1與類比數位轉換單元3所需 之頻寬資訊; 一類比數位轉換卓元3 ’該類比數位轉換單元3接收接收 機前端1及頻寬偵測器之類比訊號,並將該類比訊號轉換成 數位訊號後,傳送至能量偵測器4及複數個保護區間偵測器5 中,以進行後續之數位訊號處理,在轉換過程中所使用的取 9 200920047 樣頻率是參考自頻寬偵測器2偵測的結果; 一-能量偵測器4’該能量偵測器4係偵測接收到的訊號在 一段時間内的累積能量’並將偵測結果傳送 嘆 間仙器5中,以作為後續單元之臨界參考值;個保心 複數個保護區間债測器5,在第一保護區間偵測器中,利 :保濩區間的循環特性’偵測系統所規定最短保護區間是否 存在,其保護區間偵测器可為一〜κ個;以及 -保護區間決策單元6,用以根據第一〜κ個保護區間偵測 器的偵測結果,決定最終保護區間出現的位置及其長度。 ;請參閱圖二所示,係、本發明應用於正交分頻多工系統之 保》蓃區間偵測方法及裝置之保護區間示意圖,其係、利用保護 區間此一循環重複的特性,即可偵測出保護區間是否存在及 保護區間出S的位置與其長度。在系統規格中的保護區間的 長度,一般都表示成正交分頻多工符元與保護區間的長度 比。例如,對長度為2048個次載波的正交分頻多工符元而言, 1/4保s蒦區間代表其長度為5 12個次載波。常用保護區間的長 度為 1/4、1/8、1/16、及 1/32。 請參閱圖三所示,係本發明應用於正交分頻多工系統之保 護區間偵測方法及裝置之頻寬偵測器2方塊圖。頻寬偵測器2 包括帶通濾波器(Band Pass Filter,Βρρ ) 21、頻譜能量偵測 态22、及頻譜決策單元33 ;其中,該輸入訊號會分別被送入 不同頻寬的帶通濾波器21,以過濾頻寬以外的訊號;該帶通 滤波器21的數目及其對應的頻寬大小由系統規格決定,例如 在地面數位影音廣播系統中,系統規格所規定的頻寬為5、6、 7 ' 8 MHz四種。之後,將訊號送入頻譜能量偵測器22中, 以δ十算各個頻寬中的所有能量。第z•個可能頻寬的頻譜能量乃 可以表示如式(1)所示: 10 200920047 P^]^\m\2dt, \<i<F ⑴ 其中抑為時間領域上的輪入類比訊號,r,為第/個可能 頻寬的符元長度,F為可能頻寬的數目,·之後^個頻譜 能量估計的結果送人頻譜決策單元23以決定目前所在基地台 •所使用的頻寬。在頻譜決策單元23中,擁有最大頻譜能量的 頻寬將被選出’並將此一資訊送到接收機前端i與類比數位 轉換單元3。在類比數位轉換單元3尹,將類比訊號轉 位訊號’以進行後續之數位訊號處理,在轉換過程_所使用 〇 ^樣頻率是參考自頻以貞測器2偵測的結果。在頻寬制 :2中’需進行必要的訊號放大 '遽波處理、以及數仅降頻 等動作。 :下來,在第一保護區間憤測器5中,係利用保護區間 的循環特性’偵測系統所規定最短保護區間是否存在。 請參閱圖四所示,係本發明應用於正交分頻多工系統之 間:貞測方法及裝置之第一保護區間谓測器5方塊圖。 “保護區間谓測器5係由一取共輛複數5卜一延遲#取 樣時間5 2、一複數乘、、表哭q ^ . , 一暫存器54、-複數減法器 ^累六哭 法器56、一個延遲1取樣時間57、一個跨符元 二二Γ、—個取絕對值59、及一個數值比較單元60所組 送入取^保護區㈣測11 5中’首先將數位取樣輸入訊號 時門52^/複數51以取其共輕複數,並接著送入延遲#取樣 $ Y 以取得共轭複數51的訊號延遲iv取樣時間。之 二垂過乘法器53將輸入訊號與延遲#取樣時間方塊52輸 出相乘,如式(2)所示: K (w) = r(”) * 〆—γ) jSl 中 y (2) 送入暫在1 :㈨為複數乘法器53的輸出值。此-輸出結果會 子益54料。暫存器54的長度等於最短保護區間的 200920047 長度屬於先進先出(First_InFirst_0ut,FIF〇)的暫存器, 在時間《的時候輸出時間(„_ z"複數乘法器53的運算結果。’ 之後:將複數乘法器53的輸出值與暫存器54的輸出值:減。 複數減法器55的結果’代表最新延遲相關性與之前心取 延遲相關性的差,此一結果如式(3)所示: ’、 (3) 57的輪出相 接下來,將式(3)的結果與延遲1取樣時間 加’如式(4)〜(6)所示: 〇 ((«'+ Ντ ~ \)%ΝΤ ) + Υ2 (η) ^ = (^%ντ),〇^<Ντ ^ Ντ=ΝΑ (6) 八中,/代表正交分頻多工符元的編號,(η % 代表 it。餘數,心代表最長保護區間的長度,馬代表加上 =護區間後正交分頻多工符元的長度。延遲#樣時間57的 〇 =值為複數加法器56的輪出值。接下來,在跨符元累加器 ,中,將過去/個正交分頻多工符元(包括現在)内計算所 得⑷式的結果,依照所對應相同的編號累加,以獲得更佳的 遲相關性。為獲得與最長保護區間相近的結果,/可設定為 為低複雜度’ Η設定為1。跨符元累加器58的輸 出值專於第-保護區間偵測器5㈣測值, 續 偵測器5。另-方面,跨符元累加…輸出值 會破Μ取絕對值59’以計算其數值的大小。之後,此一數 界:入數值比較單凡6〇 ’以根據能量偵測器所估計的臨 考值’決定目前取樣點的延遲位置是否位間 =如果職值大於臨界參考值,❹〗定目前取樣點的延遲 位於保護區間内,並將伯測結果交由保護區間決策單元6 處理。反之’制續計算Τ-姉㈣。 12 200920047 當第一保護區間偵測器5偵測到最短保護區間的存在之 後,便繼續第二保護區間债測器5的處理。如果第二保護區 間偵測器5也偵測到下一個保護區間的存在之後,便繼續下 一個保護區間偵測器的處理,以此類推,一直到最長的第κ 保護區間偵測器5。 請參閱圖五所示,係本發明應用於正交分頻多工系統之 ,護區間偵測方法及裝置之第二保護區間偵測器5〜第κ保護 區間偵測器之方塊圖。此一方塊圖係由複數個循環延遲器 501、502、503、一個複數加法器504、一個除法器5〇5、及 個數值比軚器506所組成。首先,第一保護區間偵測器5 的輸出值會被送入各循環延遲器5〇1、5〇2、503,/ 為保4區間偵測器5的編號。每個循環延遲器5〇丨、502、503 的延遲長度固定為最短保護區間的長度Μ。之後,將第一保 濩區間偵測器5的輸出值與各個循環延遲器的輸出值相加, 即可得到各個保護區間長度的延遲相關值〜&办,),如式 (7)所示: 〇 («') = ^1,-(«') + Ζυ.((ηLl+NT) % Ντ) 2^1-ι (7) /w=l ΖκΛη,) = ΖιΛη')+ Σ ZxAn'-m*Lx+NT)%NT) 在實際應用上,可以從前一個保護區間偵測器(卜7)的 結果開始累加,以降低複雜度。為了使各個保護區間長度的 延遲相關值常態化(Normalization),複數加法器5〇4的輸出 值必須送入除法器505進行常態化的動作。在除法器5〇5中, 除數為2 。最後,在數值比較單元506,根據第一保護區間 13 200920047 偵測器5的偵測值做為臨界參考值,決定目前取樣點的延遲 位置是否位於該長度的保護區間内,並將偵測結果交由保護 區間決策單7G 6處理。如此,可以降低保護區間誤判的機率。 之後,在能量偵測器4中,偵測接收到訊號在一段時間内 的累積能量,以做為後續單元之臨界參考值。 晴參閱圖六所示,係本發明之能量偵測器4方塊同,該能 -量偵測器4由一取共軛複數41、一複數乘法器42、一暫存器 43、兩個複數加法器44及45、一延遲1取樣時間46、一跨 符元累加器47及一能量調整器48所組成。首先,將數位取 樣輸入訊號送入取共軛複數41以取其共軛複數。之後,將輸 入訊號與其共軛複數41輸出相乘。複數乘法器42的輸出值 會被送入暫存器43儲存。暫存器43的長度等於最短保護區 間的長度Μ ’屬於先進先出的暫存器,在時間w的時候輸出 時間^複數乘法器42的運算結果。之後,將複數乘法器 42的輪出值與暫存器43的輸出值相減,此一結果如式所 示: 五(《) = r⑻ ⑻—^ Q 接下來,將式(8)複數減法器44的結果與延遲1取樣時間 46的輪出相加,如式(9)所示: 20{η') = Ζ0,{{η'+ ΝΓ -\)%ΝΤ) + Ε(η) (ξ •其中,w’及W如式(5)及(6)所示。延遲1取樣時間46的 輸入值為複數加法器45的輸出值。接下來,在跨符元累加器 47中,將過去/個正交分頻多工符元(包括現在)内計算所 得(9)式的結果’依照所對應相同的編號累加。最後,將跨符 凡累加器47結果送入能量調整器48,以產生最終的臨界參考 值。能量調整器48調整的範圍介於〇〜丨之間,若越接近〇則 偵測機率(Detection Probability)會提高,但假警報的機率 14 200920047 (False Alarm)也會跟著上升。若越接近1 ,則假警報的機率 會下降,但錯失機率(Miss Detection )會升高。一般來說, 調整的參數可以設在0.5。由於此一臨界參考值可隨通道環境 的變化而跟著適應性調整,故可應用於各種不同的無線電通 道中。此一平均能量亦可作為接收訊號強度的指標,可回饋 至基地台以進行適應性調變編碼技術或是封閉迴圈多天線輸 -出入技術等應用。 】 最後,將第一保護區間偵測器5至〜第κ保護區間偵測器 偵測5的結果送入保護區間決策單元6,由其決定最終保護區 【間的長度。 請參閱圖七所示,為本發明應用於正交分頻多工系統之 保護區間偵測方法及裝置之保護區間決策流程圖,其流程圖 的運作步驟包括: ~ 步驟一:係先偵測最小保護區間是否存在7〇1,請參閱圖 斤示這裡所使用的臨界參考值是由能量谓測所產生, 請參閱圖六所示。 ° 步驟In the frequency multiplex system, the user is sincere, the user wants to enter the orthogonal T-user to detect the length of the protection interval of the base: 1: > AL, as the post-parent and multi-function multiplexer The second-purpose object of the present invention is the method and apparatus for providing a different length of protection interval for the automatic port, which can reduce the need for subsequent initial synchronization. The time and the repetition are repeated using the loop of the guard interval. Since the present invention is used to implement the effect of the shield ring repeating material, the maximum processing gain can be obtained to achieve the above object of the invention. The application is applied to the orthogonal device and is detected at the user end by the base station. The protection interval and its length. Since the base station will use different lengths of protection according to the channel environment in which it is located, it is necessary to automatically detect the protection of the orthogonal frequency division multiplex symbol before the system clock synchronization is performed on the user side. Interval and its length. The protected area of the orthogonal frequency division multiplex symbol is copied from the orthogonal frequency division multiplex symbol - part of the secondary carrier, and placed in front of each orthogonal frequency division multiplex symbol. The invention relates to a method and device for automatically detecting a security interval, comprising a receiver front end, a bandwidth detector, an analog-to-digital conversion unit, an energy detector, a complex guard interval detector and a The protection interval decision unit; first, the RF signal received by the antenna is converted to the intermediate frequency or the fundamental frequency at the front end of the user receiver for subsequent analog digital conversion; next, in the bandwidth detector, the detection base The bandwidth of the signal transmitted by the station to provide the bandwidth information required by the receiver front end and the analog digital conversion unit. Next, in the analog digital to 200920047 conversion unit, the analog signal is converted into a digital signal for subsequent digital signal processing. The sampling frequency used in the conversion process is the result of the self-bandwidth detector detection. Next, in the energy detector, the accumulated energy of the received signal over a period of time is detected as a critical reference value for the subsequent unit. Since this critical reference value can be adapted to the channel environment and adaptive, it can be applied to a variety of different radio channels. This average-energy can also be used as a Receive Signal Strength Indicator 'RSI' to feed back to the base station for Adaptive Modulation Coding (AMC) or f-closed. Closed-Loop multi-antenna output (Multiple_Inpm Multiple Output, ΜΙΜΟ) technology and other applications. Next, in the first detector of the guard interval, the loop condition of the guard interval is used to detect whether the shortest guard interval specified by the system exists. If the shortest protection interval exists, it continues to detect whether the protection interval of the other length exists in the second detector to the third detector in the protection interval. The detection process is controlled by the subsequent protection interval decision unit, and the detection result is also sent to the protection interval decision unit for relevant judgment. The critical reference value used by the first detector in the protection interval is from the energy detector, and the critical reference value used by the second detector in the protection interval is from the protection interval. The detected value of a detector. In this way, the probability of false positives in the guard interval can be reduced. Finally, in the protection interval decision unit, the position and length of the final protection interval appear according to the first to the result of the measurement of the guard interval product tester. The matching filter is only required to start from the sampling point detected by the guard interval to obtain an accurate system clock and establish system synchronization. [Embodiment] The present invention is a method and device for detecting a protection interval designed by an orthogonal frequency division multi-wei system. When the user wants to enter an orthogonal frequency division multiplexing system, 200920047 is measured by the user end. The base ^^ > _ l7 σ conveys the length of the guard interval of the positive father's knife multiplex symbol. It can be used as a reference for the subsequent initial synchronization. In general, the orthogonal frequency division is more: 'two ε'', the choice of different length protection intervals, to apply to different two 1:350, when the user enters the orthogonal frequency division multiplexing system for the first time, υ Measure the length of the interval used by the base station to perform subsequent steps and signal demodulation. The present invention provides a reliable and low complexity hold detection method' and can be adaptively adjusted in different wireless communication environments. The system architecture w of the method and device for applying the u protection interval (four) to the orthogonal frequency division multiplexing system for the present invention includes: a receiver front end 1 'the receiver front end 1 is at the user end The receiver front end 1 converts the RF signal received by the antenna to the intermediate frequency or the fundamental frequency signal, and transmits the signal to the analog digital conversion unit 3 for subsequent analog digital conversion; in addition to the signal shifting, the receiver front end Processing including signal amplification, signal filtering, and frequency phase compensation will also be performed to properly reconstruct and repair the received analog signal. Since the signal transmitted by the base station may be carried in different bandwidths, such as 5 MHz, 10 MHz, and 20 MHz, the signal processing of the front end 1 of the user terminal must know the bandwidth of the signal to receive the correct signal. The bandwidth detector 2 detects the bandwidth of the signal transmitted by the base station and transmits the bandwidth signal to the receiver front end 1 and the analog digital conversion unit 3 to provide the receiver front end 1 The bandwidth information required by the analog-to-digital conversion unit 3; an analog-to-digital conversion element 3 'the analog-to-digital conversion unit 3 receives the analog signal of the receiver front end 1 and the bandwidth detector, and converts the analog signal into a digital position After the signal is transmitted to the energy detector 4 and the plurality of guard interval detectors 5 for subsequent digital signal processing, the frequency used in the conversion process is the reference self-bandwidth detector 2 The result of the detection; one-energy detector 4' the energy detector 4 detects the accumulated energy of the received signal over a period of time' and transmits the detection result to the sneak fairy 5 as a post The critical reference value of the continuation unit; a guardian number of guard interval debt detectors 5, in the first guard interval detector, the benefit of the loop: the loop characteristic of the guard interval 'detection system, whether the shortest guard interval exists, The guard interval detector may be one to κ; and the guard interval decision unit 6 is configured to determine the position and length of the final guard interval according to the detection result of the first to κ guard interval detectors. Referring to FIG. 2, the present invention is applied to the orthogonal section frequency division multiplexing system and the protection interval section of the method and the apparatus for protecting the interval, and the system uses the characteristic of the protection interval to repeat this cycle, that is, It can detect the existence of the protection interval and the position and length of the protection interval S. The length of the guard interval in the system specification is generally expressed as the ratio of the length of the orthogonal frequency division multiplex symbol to the guard interval. For example, for an orthogonal frequency division multiplex symbol having a length of 2048 subcarriers, the 1/4 guarantee interval represents a length of 5 12 subcarriers. Common protection intervals are 1/4, 1/8, 1/16, and 1/32. Please refer to FIG. 3, which is a block diagram of a bandwidth detector 2 for applying the protection interval detection method and apparatus of the orthogonal frequency division multiplexing system. The bandwidth detector 2 includes a band pass filter (Band Pass Filter, Βρρ) 21, a spectrum energy detection state 22, and a spectrum decision unit 33, wherein the input signals are respectively sent to bandpass filtering of different bandwidths. The filter 21 is configured to filter signals other than the bandwidth; the number of the band pass filters 21 and the corresponding bandwidth are determined by system specifications. For example, in a terrestrial digital video broadcasting system, the bandwidth specified by the system specification is 5. 6, 7 '8 MHz four. Thereafter, the signal is sent to the spectral energy detector 22 to calculate all the energy in each bandwidth by δ. The spectral energy of the zth possible bandwidth can be expressed as shown in equation (1): 10 200920047 P^]^\m\2dt, \<i<F (1) where is the round-in analog signal in the time domain , r, is the symbol length of the first possible bandwidth, F is the number of possible bandwidths, and the result of the estimation of the spectrum energy is sent to the spectrum decision unit 23 to determine the bandwidth used by the current base station. . In the spectrum decision unit 23, the bandwidth having the largest spectral energy will be selected' and this information is sent to the receiver front end i and the analog digital conversion unit 3. In the analog digital conversion unit 3, the analog signal is transposed to the signal for subsequent digital signal processing, and the frequency used in the conversion process is the result of the self-frequency detection by the detector 2. In the bandwidth system: 2, 'need to perform necessary signal amplification', chopping processing, and counting only frequency reduction. : Down, in the first guard interval anger detector 5, the loop condition of the guard interval is used to detect whether the shortest guard interval specified by the system exists. Referring to FIG. 4, the present invention is applied to an orthogonal frequency division multiplexing system: a block diagram of the first protection interval predator 5 of the method and apparatus for detecting. "Protection interval predator 5 is composed of a total number of vehicles, a total of 5, a delay, #sampling time 5, a complex multiplication, a table crying q ^ . , a temporary register 54, a complex subtractor ^ tired six crying The processor 56, a delay 1 sampling time 57, a span symbol 220, an absolute value 59, and a value comparison unit 60 are sent to the protection area (four) to measure 11 5 'first digital input input The signal gate 52^/plural 51 is taken to take a total of the light and complex numbers, and then sent to the delay #sample $Y to obtain the signal delay iv sampling time of the conjugate complex 51. The second traverse multiplier 53 to input the signal and delay # The sampling time block 52 outputs multiplication, as shown in the equation (2): K (w) = r(") * 〆 - γ) jSl y (2) is sent temporarily at 1: (9) is the output of the complex multiplier 53 value. This - the output will be 54 yuan. The length of the register 54 is equal to the 200920047 length of the shortest protection interval. The length is a first-in first-out (First_InFirst_0ut, FIF〇) register, and the time is output at the time („_z"the result of the complex multiplier 53.' : The output value of the complex multiplier 53 is subtracted from the output value of the register 54. The result ' of the complex subtractor 55 represents the difference between the latest delay correlation and the previous heartbeat delay, and the result is as shown in equation (3). Shown: ', (3) 57's round-out phase Next, add the result of equation (3) to the delay 1 sampling time as shown by equations (4) to (6): 〇((«'+ Ντ ~ \)%ΝΤ ) + Υ2 (η) ^ = (^%ντ),〇^<Ντ ^ Ντ=ΝΑ (6) Eight, / represents the number of the orthogonal frequency division multiplex symbol, (η % represents It is the remainder, the heart represents the length of the longest guard interval, and the horse represents the length of the orthogonal frequency division multiplex symbol after the guard interval. The 〇 = value of the delay #sample time 57 is the round-out value of the complex adder 56. Next, in the cross-symbol accumulator, the result of (4) is calculated in the past/one orthogonal frequency division multiplex symbol (including now). The same number is added to obtain a better late correlation. To obtain a result close to the longest guard interval, / can be set to a low complexity ' Η set to 1. The output value of the cross-element accumulator 58 Dedicated to the first-protection interval detector 5 (four) measured value, continued detector 5. On the other hand, the cross-symbol accumulation... output value will break the absolute value 59' to calculate the value of the value. After that, this number Boundary: the comparison of the numerical value is 6'' to determine whether the delay position of the current sampling point is between the bits according to the estimated value of the energy detector. If the value is greater than the critical reference value, the delay of the current sampling point is determined. It is located in the protection interval, and the result is sent to the protection interval decision unit 6. Otherwise, the calculation is continued Τ-姊 (4). 12 200920047 After the first protection interval detector 5 detects the existence of the shortest protection interval, The processing of the second protection interval detector 5 is continued. If the second protection interval detector 5 also detects the existence of the next protection interval, the processing of the next protection interval detector is continued, and so on. until Long κ guard interval detector 5. Please refer to FIG. 5, which is applied to the orthogonal frequency division multiplexing system, and the second interval detector 5 to the guard interval detecting method and device A block diagram of a κ guard interval detector. The block diagram is composed of a plurality of cyclic delays 501, 502, 503, a complex adder 504, a divider 5〇5, and a value comparator 506. First, the output value of the first guard interval detector 5 is sent to each of the cyclic delays 5〇1, 5〇2, 503, / is the number of the 4th interval detector 5. Each cyclic delay 5〇 The delay lengths of 丨, 502, and 503 are fixed to the length 最 of the shortest guard interval. After that, the output value of the first guard interval detector 5 is added to the output value of each cyclic delay device, and the delay correlation value of each guard interval length is obtained, and the equation (7) is obtained. Show: 〇(«') = ^1,-(«') + Ζυ.((ηLl+NT) % Ντ) 2^1-ι (7) /w=l ΖκΛη,) = ΖιΛη')+ Σ ZxAn '-m*Lx+NT)%NT) In practical applications, the result of the previous guard interval detector (Bu 7) can be accumulated to reduce the complexity. In order to normalize the delay correlation value of each guard interval length, the output value of the complex adder 5〇4 must be sent to the divider 505 for normalization. In the divider 5〇5, the divisor is 2. Finally, in the value comparison unit 506, according to the detection value of the detector 5 of the first protection interval 13 200920047 as a critical reference value, determining whether the delay position of the current sampling point is within the protection interval of the length, and detecting the result It is handled by the protection interval decision sheet 7G 6 . In this way, the probability of false positives in the guard interval can be reduced. Then, in the energy detector 4, the accumulated energy of the received signal over a period of time is detected as a critical reference value for the subsequent unit. As shown in FIG. 6, the energy detector 4 of the present invention is identical, and the energy-quantity detector 4 is composed of a conjugate complex 41, a complex multiplier 42, a register 43, and two complex numbers. Adders 44 and 45, a delay 1 sampling time 46, a span symbol accumulator 47, and an energy adjuster 48 are formed. First, the digital sample input signal is sent to the conjugate complex 41 to take its conjugate complex number. The input signal is then multiplied by its conjugate complex 41 output. The output value of the complex multiplier 42 is sent to the register 43 for storage. The length of the register 43 is equal to the length of the shortest protection zone Μ ' belongs to the first-in first-out register, and the time of the operation of the complex multiplier 42 is outputted at time w. Thereafter, the round-off value of the complex multiplier 42 is subtracted from the output value of the register 43, and the result is as follows: five (") = r(8) (8) - ^ Q Next, the complex subtraction of the equation (8) The result of the processor 44 is added to the rounding of the delay 1 sampling time 46, as shown in the equation (9): 20{η') = Ζ0, {{η'+ ΝΓ -\)%ΝΤ) + Ε(η) ( ξ • where w' and W are as shown in equations (5) and (6). The input value of the delay 1 sampling time 46 is the output value of the complex adder 45. Next, in the cross-symbol accumulator 47, The result of the calculation of the equation (9) in the past/one orthogonal frequency division multiplex symbol (including the current one) is accumulated according to the same number corresponding thereto. Finally, the result of the cross-integrator 47 is sent to the energy adjuster 48, In order to generate the final critical reference value, the energy adjuster 48 adjusts the range between 〇~丨. If the closer it is, the detection probability will increase, but the probability of false alarm 14 200920047 (False Alarm) also It will rise. If the closer to 1, the probability of false alarm will decrease, but the Miss Detection will increase. Generally, the adjustment The number can be set at 0.5. Since this critical reference value can be adjusted with the channel environment, it can be applied to various radio channels. This average energy can also be used as an indicator of the received signal strength. To the base station for adaptive modulation coding technology or closed loop multi-antenna input-output technology. 】 Finally, the first protection interval detector 5 to the κ protection interval detector detection 5 The result is sent to the protection interval decision unit 6, which determines the length of the final protection zone. Please refer to FIG. 7 , which is a protection interval detection method and device for the orthogonal frequency division multiplexing system. The decision flow chart, the operation steps of the flow chart include: ~ Step 1: Firstly, it is detected whether there is 7〇1 in the minimum protection interval. Please refer to the figure. The critical reference value used here is generated by the energy predicate. See Figure 6. ° Steps
U .判斷疋否大於臨界參考值702,如果第一保護區 曰4測器㈣測結果大於臨界參考值,則判定目前取樣點的 2位置位於保護區間内,並繼續下—個保護區㈣測器的 处里703。反之,則繼續偵測最小保護區間的動作7〇1。 步驟三:偵測下—個保護區間7G3’ #第—保護區間制 測短保能間的存在之後,便繼續第二保護區間偵 ^處理,請參閱圖五所示。這裡所使用的臨界參考值是 =第-保護區間侧器的偵測值,並乘上—個調整參數。 Ϊ =調整t數必須大於〇.5,如此可以降低保護區間假警 、機率。一般來說,此一調整參數可設為〇8。 步驟四:判斷是否大於臨界參考值704,如果第二保護區 15 200920047 間摘測器的偵測結果Α於臨界參考值7G5,則判定 的延遲位置位於保護區間内,並跳至步驟五。反之跳至 步驟/、’輸出則一個保護區間長度及相關時間資訊施。 步驟五:判斷是否已達最大保護區間7〇5, 的谓測已經到達最大的保護區間長度7〇7,則跳至步驟^^ 之,則跳至步驟三繼續下一個保護區間偵測器的處理— =六:輸出保護區間及相關時間資訊,如果步驟四中的 把界參考值判斷不成立的話’則輪出前一個保護 、資訊,並結束本保護區…貞測方法。如果步驟五中 二區的話,則輪出最大保護區間長度及相 關時間貝汛,並結束本保護區間偵測方法。U. Judging whether 疋 is greater than the critical reference value 702, if the first protection zone 曰4 detector (four) measurement result is greater than the critical reference value, it is determined that the current sampling point 2 position is within the protection interval, and continues to the next protection zone (four) measurement 703 in the middle of the device. Otherwise, it continues to detect the action 77.1 of the minimum guard interval. Step 3: Detecting the next protection interval 7G3' #第-protection interval system After measuring the existence of the short security, the second protection interval detection processing is continued, as shown in Figure 5. The critical reference value used here is the detected value of the =-protection interval side, and is multiplied by - adjustment parameters. Ϊ = Adjust the number of t must be greater than 〇.5, so you can reduce the false alarm and probability of the protection zone. In general, this adjustment parameter can be set to 〇8. Step 4: Determine whether it is greater than the critical reference value 704. If the detection result of the second protection zone 15 200920047 is below the critical reference value 7G5, the determined delay position is within the protection interval, and jumps to step 5. Otherwise, skip to step /, 'output is a guard interval length and related time information. Step 5: Determine whether the maximum protection interval has reached the maximum protection interval of 7〇5. If the pre-test has reached the maximum protection interval length of 7〇7, skip to step ^^, then skip to step 3 and continue to the next protection interval detector. Processing - = six: output protection interval and related time information, if the judgment of the boundary reference value in step 4 is not true, then the previous protection, information, and the end of the protection zone ... the method of measurement. If there is a second zone in step 5, the maximum protection interval length and the related time bounce are taken out, and the detection interval detection method is ended.
^發日㈣提供之應詩正交分财L :方法及裝置,與其他習用技術相互比較時,更具備下= 可自動㈣不同基地台所使用不同長度保護區 :的方法及4置,藉由不同長度保護區間相關性與臨界 ο 度可自動且準糊出用戶端所在基地台使用的保 整,所設計的臨界參考值可隨環境而作適應性調 k口應用於各種不同的無線電通道中。 的執間,_波器 確的系統。到的取樣關錢行,讀得準 4.本發明在實現上相當簡單,每一個取樣點最基本只 要一個㈣乘法及兩個複數加法,為—種低複雜度的方法。 明ί :說月乃針對本發明之—可行實施例進行具體說 ,惟该貫施例並非用以限制本發明之專利範圍,凡未脫離 16 200920047 本發明技藝精神所為之等效實施或變更,均應包含於本案之 專利範圍中。 综上所述,本案不僅於技術思想上確屬創新,並具備習 用之傳統方法所不及之上述多項功效,已充分符合新賴性及 進步性之法定發明專利要件,爰依法提出申請,懇請貴局 核准本件發明專利申請案,以勵發明,至感德便。 β 【圖式簡單說明】 工系統之保護區間偵測 圖一為本發明應用於正交分頻多 方法及裝置之系統架構圖;^ 发日(4) provides the orthogonal distribution of money: the method and device, when compared with other conventional technologies, it has the following method: 4 ways to automatically (4) different length protection zones used by different base stations: Correlation and criticality of different lengths of protection interval can automatically and accurately eliminate the refinement used by the base station where the user is located. The designed critical reference value can be adapted to the environment and applied to various radio channels. . The debrief, the _ wave of the system. The sampling is closed and the reading is accurate. 4. The invention is quite simple to implement. Each sampling point is basically only one (four) multiplication and two complex additions, which is a low complexity method. It is to be understood that the present invention is not limited to the scope of the invention, and is not intended to limit the scope of the invention. Both should be included in the scope of the patent in this case. To sum up, this case is not only innovative in terms of technical thinking, but also has many of the above-mentioned functions that are not in the traditional methods of the past. It has fully complied with the statutory invention patents of new and progressive nature, and applied for it according to law. The bureau approved the application for the invention patent, in order to invent the invention, to the sense of virtue. β [Simple diagram description] Protection interval detection of the system Figure 1 is a system architecture diagram of the method and apparatus for orthogonal frequency division according to the present invention;
圖二為該應用於正交分頻多 及裝置之保護區間示意圖; 工系統之保濩區間伯測方法 圖三為該應用於正交分頻多工系統之保護 及裝置之頻寬偵測器方塊圖; 、〗万忐 圖四為該應用於正交分頻多工系統之保護區間侧方法 及裝置之第一保護區間偵測器方塊圖; 圖五為該應用於正交分頻多工系統之保護測 及裝置之第二保護關«器〜h保護區間仙彳器方塊圖; 圖六為該應用於正交分頻多Μ統之保護區㈣測方法 及裝置之能量偵測器方塊圖;以及 =七為該應用於正交分頻多工系統之保護區間摘測方法 及裝置之保護區間決策流程圖。 【主要部分代表符號】 1 接收機前端 2 頻寬偵測器 21 帶通濾波器 22 頻譜能量偵測器 23 頻寬決策單元 3 數位類比轉換器 17 200920047 4 能量偵測器 41 取共軛複數 42 複數乘法器 43 暫存器 44 複數減法器 45 複數加法器 46 延遲1取樣時間 47 跨符元累加器 48 能量調整器 5 保護區間偵測器 51 取共軛複數 52 延遲N取樣時間 53 複數乘法器 54 暫存器 55 複數減法器 56 複數加法器 57 延遲1取樣時間 58 跨符元累加器 59 取絕對值 60 數值比較單元 501循環延遲器 504複數加法器 505 除法器 506數值比較器 6 保護區間決策單元 18Figure 2 is a schematic diagram of the protection interval applied to the orthogonal frequency division multi-device; the protection system interval detection method of the industrial system Figure 3 is the bandwidth detector of the protection and device applied to the orthogonal frequency division multiplexing system Block diagram; 〖 Wan 忐 diagram 4 is the first protection interval detector block diagram of the protection interval side method and device applied to the orthogonal frequency division multiplexing system; FIG. 5 is the application of the orthogonal frequency division multiplexing The second protection switch of the protection and measurement device of the system is the block diagram of the device and the protection zone of the quadrature frequency division multi-system (Fig. 6). Figure; and = seven are the protection interval decision-making flowcharts for the protection interval extraction method and device applied to the orthogonal frequency division multiplexing system. [Main part representative symbol] 1 Receiver front end 2 Bandwidth detector 21 Band pass filter 22 Spectrum energy detector 23 Bandwidth decision unit 3 Digital analog converter 17 200920047 4 Energy detector 41 Take conjugate complex number 42 Complex multiplier 43 register 44 complex subtractor 45 complex adder 46 delay 1 sampling time 47 span symbol accumulator 48 energy adjuster 5 guard interval detector 51 taking conjugate complex 52 delay N sampling time 53 complex multiplier 54 register 55 complex subtractor 56 complex adder 57 delay 1 sampling time 58 span symbol accumulator 59 take absolute value 60 value comparison unit 501 cyclic delay 504 complex adder 505 divider 506 numerical comparator 6 protection interval decision Unit 18
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96139987A TW200920047A (en) | 2007-10-25 | 2007-10-25 | Protection zone detection method and device applied to the orthogonal multiplex frequency division system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96139987A TW200920047A (en) | 2007-10-25 | 2007-10-25 | Protection zone detection method and device applied to the orthogonal multiplex frequency division system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200920047A true TW200920047A (en) | 2009-05-01 |
TWI346486B TWI346486B (en) | 2011-08-01 |
Family
ID=44727309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96139987A TW200920047A (en) | 2007-10-25 | 2007-10-25 | Protection zone detection method and device applied to the orthogonal multiplex frequency division system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200920047A (en) |
-
2007
- 2007-10-25 TW TW96139987A patent/TW200920047A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI346486B (en) | 2011-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7480234B1 (en) | Initial timing estimation in a wireless network receiver | |
CN1864338B (en) | Method and device for selecting and receiving antenna according to signal quality metrics | |
US10931496B2 (en) | Uplink measurements for wireless systems | |
US10219238B2 (en) | OTDOA in LTE networks | |
CN110224721B (en) | Method and receiver for processing an analog signal from a transmission channel | |
Dikmese et al. | Efficient energy detection methods for spectrum sensing under non-flat spectral characteristics | |
Bagwari et al. | Multiple energy detection vs cyclostationary feature detection spectrum sensing technique | |
WO2008045803A2 (en) | Method and apparatus for detecting a presence of a signal in a communication channel | |
TW200412734A (en) | Non-parametric matched filter receiver for wireless communication systems | |
JP2010527535A (en) | Estimating thermal noise and thermal rise in wireless communication systems | |
CN101951274A (en) | Cooperative spectrum sensing method of low complexity | |
CN102783062A (en) | Receiver and signal received power estimation method | |
EP2436124A2 (en) | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes | |
Baradkar et al. | Implementation of energy detection method for spectrum sensing in cognitive radio based embedded wireless sensor network node | |
WO2013059328A1 (en) | Systems and methods for packet detection | |
Suresh et al. | Kurtosis based spectrum sensing in cognitive radio | |
TWI666947B (en) | An analysis method for multi-users random access signals | |
JP2011066851A (en) | Radar detection apparatus and method | |
TW201110633A (en) | Methods and systems for time tracking in OFDM systems | |
Xhonneux et al. | A maximum-likelihood-based multi-user LoRa receiver implemented in GNU Radio | |
EP1508201A1 (en) | Colored interference identification | |
TW200920047A (en) | Protection zone detection method and device applied to the orthogonal multiplex frequency division system | |
CN106464399A (en) | Interference cancellation technique | |
Lu et al. | A first-order cyclostationarity based energy detection approach for non-cooperative spectrum sensing | |
JP2005295401A (en) | Synchronous apparatus and synchronous method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |