TW200919944A - Pade approximate calculation and conversion circuit of directly digital frequency synthesizer - Google Patents

Pade approximate calculation and conversion circuit of directly digital frequency synthesizer Download PDF

Info

Publication number
TW200919944A
TW200919944A TW96139044A TW96139044A TW200919944A TW 200919944 A TW200919944 A TW 200919944A TW 96139044 A TW96139044 A TW 96139044A TW 96139044 A TW96139044 A TW 96139044A TW 200919944 A TW200919944 A TW 200919944A
Authority
TW
Taiwan
Prior art keywords
signal
conversion circuit
pade
approximate calculation
divider
Prior art date
Application number
TW96139044A
Other languages
Chinese (zh)
Other versions
TWI347080B (en
Inventor
Xian-Xun Zheng
xing-chen Lin
Wei-Li Dou
Bao-Gui Hong
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW96139044A priority Critical patent/TW200919944A/en
Publication of TW200919944A publication Critical patent/TW200919944A/en
Application granted granted Critical
Publication of TWI347080B publication Critical patent/TWI347080B/zh

Links

Landscapes

  • Superheterodyne Receivers (AREA)

Abstract

The invention relates to a pade approximate calculation and conversion circuit of directly digital frequency synthesizer. A multiplier receives and a first input signal and a variable signal and multiplies them to generate a multiplied signal. A divider receives the variable signal and has it divided by a second input signal to generate a division signal. An adder receives and adds the multiplied signal and the division signal up to generate an output signal which is returned to the divider. A sine wave signal of quarter cycle is then completed by a second order direct operation. Therefore, the operation time of the entire sine wave and the area of the operation circuit can be reduced.

Description

200919944 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種直接數位頻率合成器之相位對正弦振幅轉換電 路’其係尤指-種_ Pade近似演算法之直接數位鮮合成㈣轉換電 路’轉換相位為四分之一之正弦波訊號。 【先前技術】 按般直接數位頻率合成(Direct digital frequency synthesis, DDFS)包含使用一相位累加器1〇,(phase Accumuiat〇r)與一相位對正弦振 幅轉換器 20’(Phase-to-Sinusoid Amplitude Converter,卩5八〇產生- 所需诚的數位化形式,再制—數鋪比轉換⑽igital 脇呢200919944 IX. Description of the Invention: [Technical Field] The present invention relates to a phase-to-sine amplitude conversion circuit of a direct digital frequency synthesizer, which is a direct digital synthesis (four) conversion of the Pade approximation algorithm. The circuit 'converts the phase to a quarter of the sine wave signal. [Prior Art] Direct Digital Frequency Synthesis (DDFS) includes the use of a phase accumulator 1〇, (phase Accumuiat〇r) and a phase-to-sine amplitude converter 20' (Phase-to-Sinusoid Amplitude) Converter, 卩5 gossip generation - the required digital form, re-production - number shop conversion (10)igital threat

Converter,DAC)將此數位形式轉換成一類比波形。如第一圖所示,其為習 知之直接數位鮮合成器,如_示,其包含—她累減1(),、一相位 對正弦振幅賴H 20’與-數鋪轉換n 3Q,。直接數侧率合成器 之相位累加H 1G’接收—數位錢,而輸出至相位對正錄幅轉換器 20 ’並對應出-輸出信號,再由數位類比轉換器3〇,轉換為一類比信號。 其中’數位類比轉換器3〇’之輸出的類比信號可使用一低通滤波器(圖中未 不)作平滑化,以產生-聊信號,例如正弦波。 由於直接數位頻率合成技術具有解析度高、頻率切換速度快、相位連 續線性變化、低成本及架構㈣紐點,因此在數位通訊纽中有著廣泛 的應用。.目前直接數位頻率合成技術的直接運算架構有泰勒多赋咖沉 polyr^nial)與C0RDIC演算法,其中利用泰勒多項式直接展開作正弦波近 似運算中’此方法實現架構相單簡胃,她輸人經由絲連_算與弦波 f稱性餘構,產生完録波峨。再者,ω麗演算法,驗據三角函 特性運算對應於輸人她的正餘錄的架構,經絲法、加法和平移來 計^所魏轉她經過相加⑻後騎朗正餘綠,並概轉角度但 固疋為_11(2 )的觀念,使乘法器以移位器取代,透過弦波對稱性質架構, 200919944 產生完整弦波訊號。 八惟_泰勒多項式直接展開作正弦波近似運算卜相位輸入實現 期正弦波近似必須•錢續乘法運算,運算相#耗時並實現 演算法在初始肖额旋㈣度的選定影 曰旋轉疊代私魏,因此減輸人歧運算相職 且旋轉疊代運算次數過高,故實現完整的弦波是相當耗時。、手伐 可r:算上述問題而提出—種新穎直接數位頻率合成器,不僅 了㈣運异元整弦波的時間,並節省電路面積以節省成本,故 之問題。 【發明内容】 本發明之目的之—,在於提供—種直接數位辭合成器之近似演 算轉換電路’其藉由Pade近似演算法而節省運算完整弦波的時間。 μ本拥之目狀…在於提供—種直接數位解合絲之咖近似演 异轉換電路’其藉由Pade近似絲節省電路運算四分之—週期相對應 正弦波振幅’而節省電路的面積。 ’ 本發明之直練賴率合絲之Pade近似演算賴電路,其利用一 Pade近似演算法而輯出—轉換電路,其包含—乘法器、__除法器與一加 法器。乘法II接收並相乘-第—輸人訊號與—變數職,而產生一乘法訊 號;並除法器接收並相除變數訊號與一第二輸入訊號,而產生—除法城, -加法器接收並相加乘法與除法職,而產生—輸出峨並回傳至除 法器’以完成四分之-週期正弦波訊號。再使用第一個聰與第二個腸 將四分之一週期正弦波訊號還原成完整的正弦波訊號。 再者,本發明之Pade近似演算轉換更包括複數多工器,並分別配 合-選擇《,而分別依序輸人簡至乘法器與除法器,喊成四分之一 週期正弦波訊號。 200919944 【實施方式】 茲為使貴審查委員對本發明之結構特徵及所達成之功效有更進一步 之瞭解與認識’謹佐以較佳之實施例及配合詳細之說明,說明如後: 請參閱第二圖’係為本發明之一較佳實施例之直接數位頻率合成器之 方塊圖。如_示,本發明之直接數位頻率合成器包含—相位累加器1〇、 一相位對正弦振幅轉換器2〇、一數位類比轉換器3〇與一低通濾波器4〇。 相位累加器1G接收-N位it輸人訊號,而產生―相位累加訊號,並 傳送至相位對正弦振幅轉換器20,以轉換相位累加訊號為一正弦波訊號, 再經由數鋪比轉㈣賴正贼訊縣―類比之正紐减,低通滤 波器40過濾正弦波訊號之雜訊,以平滑化正弦波訊號。其中,上述之相位 累加器10、相位對正弦振幅轉換器20、數位類比轉換器3〇與低通滤波器 40之間係依據一時脈訊號,似以合成輸出頻率為,·之輸出訊號,再者,相 位對正弦振幅轉換器20更包括一互斥邏輯閘22、一 pa(je近似演算轉換電 路24與一互斥邏輯閘26。互斥邏輯閘22接收M-2位元之相位累加訊號與 第一個咼位元(2 MSB)的相位累加訊號,以映射相位累加訊號的斜坡訊號 而產生三角波訊號’Pade近似演算轉換電路24轉換三角波訊號而產生週期 性的二分之一正弦波訊號,互斥邏輯閘26接收週期性的二分之一正弦波訊 號與第一個高位元(MSB)的相位累加訊號,以映射二分之一正弦波訊號, 而產生一正弦波訊號,其中除了第一個高位元與第二個高位元之其餘的相 位累加訊號則傳送至Pade近似演算轉換電路24,以轉換四分之一的正弦波 訊號。 承上所述,Pade近似演算轉換電路24係利用一 pade近次演算法而進 行設計,其Pade演算法則由以下進行分析:首先假設外為泰勒Converter, DAC) converts this digital form into an analog waveform. As shown in the first figure, it is a conventional direct digital fresh synthesizer, such as _, which includes - she is decremented by 1 (), and a phase versus sinusoidal amplitude Hz H 20' and - number spread n 3Q. The phase of the direct number side rate synthesizer accumulates H 1G 'received - digital money, and outputs to the phase alignment video converter 20 ' and corresponding to the output signal, and then converted to an analog signal by the digital analog converter 3 〇 . The analog signal of the output of the 'digital analog converter 3' can be smoothed using a low pass filter (not shown) to generate a chat signal, such as a sine wave. Because the direct digital frequency synthesis technology has high resolution, fast frequency switching, continuous linear phase change, low cost and architecture (4), it has a wide range of applications in digital communication. At present, the direct computational architecture of direct digital frequency synthesis technology includes Taylor's polyg^nial and C0RDIC algorithm, in which Taylor's polynomial is directly developed for sine wave approximation. 'This method realizes the architecture of the simple stomach, she loses The person through the silk _ calculation and the sine wave f-like co-formation, resulting in the completion of the wave. Furthermore, the ω 丽 algorithm, the trigonometric characteristic operation of the test corresponds to the structure of the positive suffix of the input, and the method of silk, addition and translation is used to calculate the wei, and then she passes the addition (8) and then rides the langzheng green. And the idea of turning the angle but fixing it to _11(2) causes the multiplier to be replaced by a shifter. Through the sinusoidal symmetry structure, 200919944 produces a complete sine wave signal. The eight-only Taylor polynomial directly expands into a sine wave approximation. The phase input realizes a sine wave approximation. • The multiplication of the multiplication operation, the operation phase # consumes time and implements the algorithm in the initial coordinate rotation (four) degree of the selected image rotation iteration Private Wei, so the reduction of the number of people and the number of rotation iterations is too high, so achieving a complete sine wave is quite time consuming. Hand-cutting R: The above-mentioned problem is proposed - a novel direct digital frequency synthesizer, which not only (4) transports the time of the sine wave, but also saves the circuit area to save costs, so the problem. SUMMARY OF THE INVENTION It is an object of the present invention to provide an approximate arithmetic conversion circuit for a direct digital synthesizer that saves time for computing a complete sine wave by the Pade approximation algorithm. The purpose of μ is to provide a kind of direct digital de-emphasizing approximation of the conversion circuit, which saves the circuit area by saving the circuit operation by a quarter of the Pade approximation. The Pade approximation algorithm of the present invention is a Pade approximation algorithm which uses a Pade approximation algorithm to compile a conversion circuit comprising a multiplier, a __ divider and an adder. Multiplication II receives and multiplies - the first-input signal and the - variable, and generates a multiply signal; and the divider receives and divides the variable signal and a second input signal to generate - divide the city, - the adder receives and Add multiplication and division, and generate - output 峨 and pass back to the divider ' to complete the quarter-cycle sine wave signal. Use the first Cong and the second intestine to restore the quarter-cycle sine wave signal to a complete sine wave signal. Furthermore, the Pade approximate calculation conversion of the present invention further includes a complex multiplexer, and respectively cooperates with - selects, and sequentially inputs the simple to the multiplier and the divider, and shouts into a quarter-cycle sine wave signal. 200919944 [Embodiment] For the purpose of understanding and understanding the structural features and the achievable effects of the present invention, please refer to the preferred embodiment and the detailed description. Figure ' is a block diagram of a direct digital frequency synthesizer in accordance with a preferred embodiment of the present invention. As shown in the figure, the direct digital synthesizer of the present invention comprises a phase accumulator 1〇, a phase-to-sine amplitude converter 2〇, a digital analog converter 3〇 and a low-pass filter 4〇. The phase accumulator 1G receives the -N bit it input signal, and generates a "phase accumulating signal" and transmits it to the phase-to-sine amplitude converter 20 to convert the phase accumulating signal into a sine wave signal, and then through the number-pitch conversion (four) In the case of the thief-county-class analogy, the low-pass filter 40 filters the noise of the sine wave signal to smooth the sine wave signal. Wherein, the phase accumulator 10, the phase-to-sine sine amplitude converter 20, the digital analog converter 3 〇 and the low-pass filter 40 are based on a clock signal, and the synthesized output frequency is an output signal, and then The phase-to-sine amplitude converter 20 further includes a mutually exclusive logic gate 22, a pa (je approximate arithmetic conversion circuit 24 and a mutually exclusive logic gate 26. The exclusive circuit gate 22 receives the phase accumulation signal of the M-2 bit. A phase accumulating signal with the first one bit (2 MSB) is used to map the slope signal of the phase accumulating signal to generate a triangular wave signal. The Pade approximate arithmetic conversion circuit 24 converts the triangular wave signal to generate a periodic one-half sine wave signal. The mutually exclusive logic gate 26 receives the periodic half-sine wave signal and the first high-order element (MSB) phase accumulation signal to map a half sine wave signal to generate a sine wave signal, wherein The remaining phase accumulation signals of the first high bit and the second high bit are transmitted to the Pade approximation calculation conversion circuit 24 to convert a quarter of the sine wave signal. As described above, the Pade approximation Conversion circuit 24 and into the line-based design algorithm using a pade recent times, by which the analysis algorithm Pade: first assumed that an outer Taylor

>=〇 J 多項式,其中為泰勒多項式第/7階係數且刀屬於正整數;Pade 200919944 近似目標函數為,其中分子部分巧(Χ)=Λ+尺…+ ,為义次多項 Qm{x) 式’而分母部分么(x) = l + W + ." +知/爲似次多項式。使Pade近似目標函數 同等於泰勒多項式為J(x)-A^=〇,因此有以下關係式:>=〇J Polynomial, where Taylor's polynomial /7th order coefficient and the knife belongs to a positive integer; Pade 200919944 Approximate objective function is, where the molecular part is (Χ)=Λ+尺...+ , which is a multiple of Qm{x ) and the denominator part (x) = l + W + ." + know / is a polynomial. Let Pade approximate the objective function and the Taylor polynomial is J(x)-A^=〇, so there are the following relations:

Qm(x) a0 =P〇 αι + a〇qx = Pi Q2 — Pi (1)Qm(x) a0 =P〇 αι + a〇qx = Pi Q2 — Pi (1)

+ % = A aM ^~aL(l\ "* ^ aL-M+\(}M = 〇 ^L+M αΐ+ΜΑ^\ + · · · + ClLqM = 0 為了產生四分之一週期正弦波五階泰勒多項式近似為 ⑵ 3(x) = sin(x) β X -丄 X3 + 丄文5 3! 5! 由(1)式與(2)式的關係能夠得到以下係數對應關係 v αη «2=.4=0,α1=1,α3=--,«5=_ ⑶ 因此Pade近似目標函數即為 Φ) _ ΰΛχ)+ % = A aM ^~aL(l\ "* ^ aL-M+\(}M = 〇^L+M αΐ+ΜΑ^\ + · · · + ClLqM = 0 To generate a quarter-cycle sine wave The fifth-order Taylor polynomial approximation is (2) 3(x) = sin(x) β X -丄X3 + 丄文5 3! 5! The relationship between (1) and (2) can give the following coefficient correspondence v αη « 2=.4=0, α1=1, α3=--,«5=_ (3) Therefore, the Pade approximation objective function is Φ) _ ΰΛχ)

~Χ + X 1 +~Χ + X 1 +

X ⑷ 20 接著Pade近似目標函數簡化成連續分數(continued ~x 200 fraction)為 3jc + 60 此升^式只需一個乘法器、一個加法器及一個除法器即可合 200919944 成四分之一週期正弦波。 請參閲第三圖,係為本發明之—較佳實施例之驗近似演算轉換電路 的方塊圖。如騎示’本發明之Pade近似演算轉換電路24健由上述之X (4) 20 Then the Pade approximation objective function is reduced to a continuous fraction (continued ~x 200 fraction) to 3jc + 60. This liter type requires only one multiplier, one adder and one divider to form a quarter cycle of 200919944. Sine wave. Please refer to the third figure, which is a block diagram of an approximate calculation conversion circuit of the preferred embodiment of the present invention. For example, the Pade approximate calculation conversion circuit 24 of the present invention is constructed by the above

Pade演算法所推導出的連續分數—^ 臓計出本翻之触近似演算 3jc + ~The continuous score derived from the Pade algorithm—^ 臓 出 本 本 翻 近似 近似 近似 3 3 3 3 3jc + ~

X 轉換電路24,其包括-乘法器240、一除法器241與一加法器242。首先, 乘法器240係接收-第-輸入訊號A〇與—變數訊號,並相乘第一輸入訊號 A0與變數訊號,而產生-第一乘法訊號,其中變數訊號為相位累加訊號, 也就是斜坡訊號’除法器241接收變數訊號與一第二輸入訊號BG,並相除 變數訊號與第二輸入訊號B0,而產生一第二除法訊號,加法器242接收並 相加乘法訊號與除法訊號,而產生-第—輸出訊號。其中第—輸人訊號A〇 與第二輸人減BG域分別3與6G ’如此第—次Pade近似演算轉換電路 24輸出為3义十並回傳至除法器24卜鱗乘法器接收新的第广輸入 « A卜並與變數訊號相成而-第二乘法訊號,除法器2从接收第一輸出 訊號,並與第二輸人訊號B1相除而產生—第二除法訊號,加刻2犯相加 第二乘法訊號與第二除法訊號’而產生―第二輸出訊號,其中第—輸入訊 號A1與第二輸入訊號B1之值分別為與·,她近似演算轉換電路μ 經-次的直接運算後’而產生第二輸出訊號,也就是我們所需的連續分數 —,如此,本發明係利用Pade近似演算法以直接運算合成正弦 波,增加運算的速度,並且只冑-個乘法器、一個除法器與一加法器即可 200919944 完成運算,所以電路實現的面積小,進而減少成本。 此外,由於Pade近似演算轉換電路24必須進行二次直接運算才可得 出所需要的輸出訊號,並乘法器240、除法器241必須依據不同次數的運算 而輸入不_輸人訊號,所以本侧之Pade近似演算轉換電路%係包括 複數多工器,其分別為一第一多工器243、一第二多工器244與—第三 器245 ’第-多工器243接收複數第一輸入訊號A〇、ai,並依據一& 擇訊號Sel A而輸出該些第一輸入訊號之其中之一,第二多工器 收 複數第二輸入訊號BO、B卜並依據-第二選擇訊號糾β而守一 輪入訊號之其中之-,第三多工器245接收變數訊號與第一輪出: 依據-第三選擇訊f虎Sel c而輸出變數訊號與第_輸出訊號之之u一, 當Pade近似演算轉換電路24進行第一次運算時,第一多工/、 , 工器244與第三多工器245係分別依據第一選擇訊號、第項擇 二選擇訊號’而第_輸人嫌u AG、第三輸人訊龍與變 ^ -次的運算喊生第m號:當運算祕24進行第二 ^, :工器240、第二多工器244與第三多工器挪係分別依據;―:擇二-第二選擇訊號與第三選擇訊號,而選擇第—輸人訊擇訊说、 與第-輸出訊號進行第二次的運算,而產生所需的第二輪出^錢號B1 接上所述,利用本發明之Pade近似演算轉換電路2 山 訊號,在誤差準财面分成誤差積分準誤差微分㈣,以、正弦波 與Pade近似目標函數誤差_關性#。其巾在誤差積 彳斷正弦波 體誤差之效能影響,能以(5)式作表示 宁,分析其整 E(x):= Jf sin(x) =f sin(x)-| + + 3x 200 jc、 60 + 3^ dx dx 8.63x10 表示 而誤差微辨财,錢其最大黯之效能辦,能以⑹式作 10 (5) 200919944 dx sin(x)- 7 —JC + 3 60 200 >0 vThe X conversion circuit 24 includes a multiplier 240, a divider 241, and an adder 242. First, the multiplier 240 receives the -first input signal A and the variable signal, and multiplies the first input signal A0 and the variable signal to generate a first multiplication signal, wherein the variable signal is a phase accumulation signal, that is, a slope The signal 'divider 241 receives the variable signal and a second input signal BG, and divides the variable signal and the second input signal B0 to generate a second dividing signal. The adder 242 receives and adds the multiplication signal and the dividing signal. Generate - the first - output signal. The first-input signal A〇 and the second input-subtractive BG domain are respectively 3 and 6G. The output of the first-order Pade approximation calculation circuit 24 is 3 and is transmitted back to the divider 24. The scale multiplier receives a new one. The first input «A Bu and the variable signal - the second multiplication signal, the divider 2 receives the first output signal and is divided by the second input signal B1 - the second division signal, plus 2 The second multiplication signal and the second division signal are generated to generate a second output signal, wherein the values of the first input signal A1 and the second input signal B1 are respectively AND, and she approximates the conversion circuit μ-time After the direct operation, the second output signal is generated, which is the continuous score we need. Thus, the present invention uses the Pade approximation algorithm to directly synthesize the sine wave, increase the speed of the operation, and only multiply-multiplier A divider and an adder can complete the operation in 200919944, so the circuit realizes a small area, thereby reducing the cost. In addition, since the Pade approximate calculation conversion circuit 24 must perform the second direct operation to obtain the required output signal, the multiplier 240 and the divider 241 must input the non-input signal according to the operation of different times, so the side is The Pade approximate calculation conversion circuit % includes a complex multiplexer, which is a first multiplexer 243, a second multiplexer 244, and a third 245 'the multiplexer 243 receives the plurality of first input signals. A〇, ai, and one of the first input signals is output according to a & selection signal Sel A, the second multiplexer recovers the second input signal BO, B and corrects according to the second selection signal And the third multiplexer 245 receives the variable signal and the first round of output: according to the third selection signal, the tiger Sel c outputs the variable signal and the _ output signal, When the Pade approximate calculation conversion circuit 24 performs the first calculation, the first multiplexer/, the 244 and the third multiplexer 245 select the signal according to the first selection signal and the second selection signal respectively. People suspect u AG, the third loser Xunlong and change ^ - times of transport Shouting the mth number: When the operation secret 24 performs the second ^, : the worker 240, the second multiplexer 244 and the third multiplexer are respectively based on the basis; ―: select the second-second selection signal and the third selection Signal, and select the first-input message selection, and the second-order operation with the first-output signal, and generate the required second round of the money number B1, as described above, using the Pade approximate calculation of the present invention. The conversion circuit 2 is divided into error integral quasi-error differentiation (4) in the error quasi-financial plane, and the sine wave and Pade approximation objective function error_offence#. The effect of the towel on the error product sine wave body error can be expressed as (5), and its whole E(x):= Jf sin(x) =f sin(x)-| + + 3x 200 jc, 60 + 3^ dx dx 8.63x10 means that the error is slightly discerned, and the maximum efficiency of Qian’s work can be made by (6) 10 (5) 200919944 dx sin(x)- 7 — JC + 3 60 200 &gt ;0 v

X ⑹ / π 0.0042 因此由⑸式與⑹式可知四分之—聊正錄與Padei^似目標函數誤 差極小’所以本發明 Pade近似演算法於时之—聊並配合正弦波對 雛質所合成的正賊概,不但運算速频,電路面積小且誤差小。 綜上所述’本發明之直紐位頻率合成器之驗近似演算轉換電路, 其藉由Pade近似演算法而設計出轉換電路,其由一乘法器接收並相乘一第 ^輸入訊號與-魏訊號,而產生—祕訊號;—除法^触並相除變數 錢與-第二輸人域,而產生—除法峨;—加法器接收並相加乘法訊 號與除法訊號’而產生-輸出訊號並_至除法器,如此經過二次的運算, 以完成四分之-週期正賊訊號,可節省運算完整弦波的時間並 電路的面積。 本發明係實為-具有卿性、進步性及可供產業_者應符合我國 專利法所規定之專利申請要件無疑,爰依法提出發明專利申請,祈釣局 早曰賜准專利,至感為禱。 a惟以上所述者’縣本發歡—触實施_已,並_來限定本發 :實施之範圍,舉凡依本發日种請專利範圍所述之形狀、構造、特徵及精 神所為之解變化與修飾,均應包括於本發明之”專利範圍内。 【圖式簡單說明】 第—圖為習知技術之直接數位頻率合成器; ^二圖為本發敗-健實施歡直接數位解合成ϋ之方侧;以及 第二圖為本_之—健實補之直接触鮮合成^之祕近似演算轉 200919944 換電路之方塊圖。 【主要元件符號說明】 10, 相位累加器 20, 相位對正弦振幅轉換器 30, 數位類比轉換器 10 相位累加器 20 相位對正弦振幅轉換器 30 數位類比轉換器 40 低通遽波器 22 互斥邏輯閘 24 Pade近似演算轉換電路 26 互斥邏輯閘 240 乘法器 241 除法器 242 加法器 243 第一多工器 244 第二多工器 245 第三多工器 12X (6) / π 0.0042 Therefore, the equations (5) and (6) can be used to know that the quarter--the chatter and the Padei^ seem to have a very small error in the objective function. Therefore, the Pade approximation algorithm of the present invention is used in the time-talking and sine wave synthesis. The thief is not only computing the frequency, but also has a small circuit area and small error. In summary, the invention relates to an approximate calculation algorithm conversion circuit of a direct-link frequency synthesizer of the present invention, which designs a conversion circuit by a Pade approximation algorithm, which is received by a multiplier and multiplied by a ^ input signal and - Wei Xun, and the generation of the secret signal; - division and touch and change the variable money and - the second input domain, and the generation - division method; - the adder receives and adds the multiplication signal and the division signal 'produces - output signal And _ to the divider, so after a second operation, to complete the quarter-cycle thief signal, can save the time to complete the complete sine wave and the area of the circuit. The invention is actually - has a clear, progressive and available for industry _ should meet the requirements of the patent application stipulated in China's patent law undoubtedly, 提出 filed an invention patent application according to law, the prawn bureau gave a patent early, to the sense prayer. a Only the above mentioned 'prefecture of the county's hair-touch implementation _ has, and _ to limit the hair: the scope of implementation, according to the shape, structure, characteristics and spirit of the scope of the patent Variations and modifications are to be included in the scope of the patent of the present invention. [Simple description of the figure] The first figure is a direct digital frequency synthesizer of the prior art; ^The second figure is the direct digital solution of the failure-health implementation Synthetic ϋ square side; and the second picture is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ For sinusoidal amplitude converter 30, digital to analog converter 10 phase accumulator 20 phase to sine amplitude converter 30 digital analog converter 40 low pass chopper 22 mutual exclusion logic gate 24 Pade approximation calculation conversion circuit 26 mutual exclusion logic gate 240 Multiplier 241 Divider 242 Adder 243 First multiplexer 244 Second multiplexer 245 Third multiplexer 12

Claims (1)

200919944 十、申請專利範圍: 1. 一種Pade近似演算轉換電路,其應用於一直接數位頻率合成器,包含: 一乘法器’接收並相乘一第一輸入訊號與'—變數訊號’而產生—乘法 訊號; 一除法器,接收並相除該變數訊號與一第二輸入訊號,而產生—除法 訊號;以及 一加法器,接收並相加該乘法訊號與該除法訊號,而產生一輸出訊號 並回傳至該除法器。 2.如申請專利範圍第1項所述之Pade近似演算轉換電路,其中該pade近 似演算轉換電路係轉換訊號為四分之一週期的正弦波訊號。 3·如申請專利範圍第1項所述之pade近似演算轉換電路,其更包括: 一多工器,接收複數第一輸入訊號,並輸出該些第一輸入訊號之其中 之一至该乘法器。 4. 如申請專利範圍第3項所述之Pade近似演算轉換電路,其中該多工器 依據一選擇訊號而輸出該些第一輸入訊號之其中之一至該乘法器。 5. 如申請專利範圍第3項所述之Pade近似演算轉換電路,其中該些第一 輸入訊號之值為3或-+。 6. 如申請專利範圍第1項所述之pade近似演算轉換電路,其更包括: -多工器’接收複數第第二輸人訊號’並輸出該些第二輸人訊號之其 中之一至該除法器。 7. 如申請專利範圍第6項所述之pade近似演算轉換電路,其_該多工器 依據一選擇訊號而輸出該些第二輸入訊號之其中之一至該除法器。 如申請專利範圍第6項所述之pade近似演算轉換電路,其中該些第二 輸入訊號之值為60或200。 如申請專利範圍第1項所述之Pade近似演算轉換電路,其更包括: -多工器’接《訊號與該翻轉,並輸出該變數訊號與該輸 出訊號之其中之一至該除法器。 9. 200919944 10. 如申請專利範圍第9項所述之Pade近似演算轉換電路,其中該多工器 依據一選擇訊號而輸出該變數訊號與該輸出訊號之其中之一至該除法 器。 11. 如申請專利範圍第1項所述之Pade近似演算轉換電路,其中該變數訊 號為一相位累加訊號。 14200919944 X. Patent application scope: 1. A Pade approximate calculation conversion circuit applied to a direct digital frequency synthesizer, comprising: a multiplier 'receiving and multiplying a first input signal and a '-variable signal' to generate - a multiplier signal; a divider that receives and divides the variable signal and a second input signal to generate a divide signal; and an adder that receives and adds the multiplication signal and the divide signal to generate an output signal and Return to the divider. 2. The Pade approximate calculation conversion circuit according to claim 1, wherein the pade-like calculation conversion circuit converts the signal to a quarter-cycle sine wave signal. 3. The pade approximate calculation conversion circuit of claim 1, further comprising: a multiplexer receiving the plurality of first input signals and outputting one of the first input signals to the multiplier. 4. The Pade approximate calculation conversion circuit of claim 3, wherein the multiplexer outputs one of the first input signals to the multiplier according to a selection signal. 5. The Pade approximate calculation conversion circuit of claim 3, wherein the first input signals have a value of 3 or -+. 6. The pade approximate calculation conversion circuit of claim 1, further comprising: - the multiplexer 'receiving the plurality of second input signals' and outputting one of the second input signals to the Divider. 7. The pade approximate calculation conversion circuit according to claim 6, wherein the multiplexer outputs one of the second input signals to the divider according to a selection signal. The pade approximate calculation conversion circuit of claim 6, wherein the second input signals have a value of 60 or 200. The Pade approximate calculation conversion circuit of claim 1, further comprising: - the multiplexer is connected to the signal and the flip, and outputs one of the variable signal and the output signal to the divider. 9. The invention relates to a Pade approximate calculation conversion circuit according to claim 9, wherein the multiplexer outputs one of the variable signal and the output signal to the divider according to a selection signal. 11. The Pade approximate calculation conversion circuit of claim 1, wherein the variable signal is a phase accumulation signal. 14
TW96139044A 2007-10-18 2007-10-18 Pade approximate calculation and conversion circuit of directly digital frequency synthesizer TW200919944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96139044A TW200919944A (en) 2007-10-18 2007-10-18 Pade approximate calculation and conversion circuit of directly digital frequency synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96139044A TW200919944A (en) 2007-10-18 2007-10-18 Pade approximate calculation and conversion circuit of directly digital frequency synthesizer

Publications (2)

Publication Number Publication Date
TW200919944A true TW200919944A (en) 2009-05-01
TWI347080B TWI347080B (en) 2011-08-11

Family

ID=44727285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96139044A TW200919944A (en) 2007-10-18 2007-10-18 Pade approximate calculation and conversion circuit of directly digital frequency synthesizer

Country Status (1)

Country Link
TW (1) TW200919944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891680A (en) * 2011-07-22 2013-01-23 中山大学 Direct frequency synthesizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891680A (en) * 2011-07-22 2013-01-23 中山大学 Direct frequency synthesizer

Also Published As

Publication number Publication date
TWI347080B (en) 2011-08-11

Similar Documents

Publication Publication Date Title
Rajan et al. Efficient approximations for the arctangent function
CN1677868B (en) Dither system for a quantizing device
US9141339B2 (en) Delta-modulation signal processors: linear, nonlinear and mixed
Simsek et al. A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers
Chinnathambi et al. FPGA implementation of fast and area efficient CORDIC algorithm
TW201246804A (en) Delta-sigma ADC modulator with excess loop delay compensation
Singh et al. Fibonacci-Like sequence and its properties
TW200919944A (en) Pade approximate calculation and conversion circuit of directly digital frequency synthesizer
Savio et al. Design of higher order multiplier with approximate compressor
TW201021427A (en) Direct digital frequency synthesizer and method for calculating coefficients
Zhao et al. A generalized sampling model in shift-invariant spaces associated with fractional Fourier transform
Molahosseini et al. A new four-modulus RNS to binary converter
US20090125576A1 (en) Pade approximation convert circuit of direct digital frequency synthesizer
Suryavanshi et al. A comparative study of direct digital frequency synthesizer architectures in 180nm CMOS
Chen et al. Linear complexity and autocorrelation values of a polyphase generalized cyclotomic sequence of length pq
CN103837748B (en) Touch-control system and its electric capacity amount detecting device
Wanhammar et al. Efficient sine and cosine computation using a weighted sum of bit-products
Menakadevi et al. Direct Digital Synthesizer using Pipelined CORDIC Algorithm for Software Defined Radio
Dake et al. Low complexity digit serial multiplier for finite field using redundant basis
Bello et al. A MRC Based RNS to binary converter using the moduli set {22n+ 1-1, 2n-1, 22n-1}
Hariharan et al. Coherent Sinusoid Generation using Novel DDFS Architecture
KR20090055813A (en) Pade approximation convert circuit of direct digital frequency synthesizer
Schiefermayr Inequalities for the Jacobian elliptic functions with complex modulus
Saburov et al. On Square Root Function over ℚp and its Application
JP4385304B2 (en) Trigonometric function arithmetic unit