TW200919939A - Switching method of a matrix converter and a controlling system thereof - Google Patents

Switching method of a matrix converter and a controlling system thereof Download PDF

Info

Publication number
TW200919939A
TW200919939A TW096139967A TW96139967A TW200919939A TW 200919939 A TW200919939 A TW 200919939A TW 096139967 A TW096139967 A TW 096139967A TW 96139967 A TW96139967 A TW 96139967A TW 200919939 A TW200919939 A TW 200919939A
Authority
TW
Taiwan
Prior art keywords
virtual
voltage
switching
current
converter
Prior art date
Application number
TW096139967A
Other languages
Chinese (zh)
Inventor
Tian-Hua Liu
Der-Fa Chen
Chien-Jung Wu
Ying-Fang Feng
Ching-Guo Chen
Original Assignee
Teco Elec & Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teco Elec & Machinery Co Ltd filed Critical Teco Elec & Machinery Co Ltd
Priority to TW096139967A priority Critical patent/TW200919939A/en
Publication of TW200919939A publication Critical patent/TW200919939A/en

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

A switching method and a controlling system thereof are disclosed. The controlling system is used to control a matrix converter to drive a motor. The matrix converter comprises a plurality of switches. The method comprises following steps: receiving an input voltage and an order current; determining a value of an emulated DC-link voltage; determining a switching strategy for a virtual switch of a virtual converter and a virtual current transformer; determining a switching strategy for the plurality of switches; and switching the plurality of switches to receive different values of the emulated DC-link voltage.

Description

200919939 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種控制系統,特別是 換器輸出之直流鏈電壓值以控制馬達之控制系統。夂軲 【先前技術】 Γ #對於現今的控制馬達m統,皆教能有效率良 ?且=佔空間之控制設備。因此具有矩陣轉換器之控制系 統即^合要求。並且由於矩陣轉換器還具有電流譜波小? 功口同、效率尚、可罪度尚壽命長及可耐高溫等優點,因 此矩陣轉換器已經廣泛的使用在控制馬達的控制系統之應 用上。 ^ 在先前技術中矩陣轉換器之架構如圖丨所示,圖!係 矩陣轉換器之實際架構圖。矩陣轉換器2〇為三相對三相之 轉換器,是由九個固態功率元件所構成。這些固態功率元 件必須具備電流雙向導通功能,這種功率元件—般稱為2 向交流開關(或四象限開關)。因此九個固態功率元件即^ 視為矩陣轉換器20之開關元件S11〜S33。控制系統經由切 換開關元件S11〜S33來決定矩陣轉換器20要輪出的電軍, 藉此控制馬達之轉速等運轉方式。 & 在先前技術當中,矩陣轉換器20常用之切換方法可分 為二大類。其中一類是利用高頻切換函數法(switching function)來決定開關元件S11〜S33的切換方法。此種方法 200919939200919939 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a control system, particularly a DC link voltage value of a converter output to control a motor control system.夂轱 【Prior Art】 Γ # For today's control motor system, it is taught that it can be efficient and = control space for space. Therefore, the control system with matrix converter is the requirement. And because the matrix converter also has the advantages of small current wave, good efficiency, good sin, long life and high temperature resistance, the matrix converter has been widely used in the control system of the control motor. ^ In the prior art, the architecture of the matrix converter is shown in Figure ,, Figure! The actual architectural diagram of the matrix converter. The matrix converter 2 is a three-phase three-phase converter composed of nine solid-state power components. These solid-state power components must have a current bi-directional function, which is commonly referred to as a 2-way AC switch (or four-quadrant switch). Therefore, the nine solid state power elements are regarded as the switching elements S11 to S33 of the matrix converter 20. The control system determines the electric power to be rotated by the matrix converter 20 via the switching elements S11 to S33, thereby controlling the operation mode such as the rotational speed of the motor. & In the prior art, the switching methods commonly used by the matrix converter 20 can be classified into two categories. One of them is a switching method of the switching elements S11 to S33 by using a high-frequency switching function. This method 200919939

需精確計算矩陣轉換器2〇内每一開關元件SI 1〜S33的導通 時間,並即時激發固態功率元件。但若矩陣轉換器利用高 頻切換函數法’需即時處理大量運算以決定開關元件 S11〜S33切換方式。如此一來會增加控制系統的負擔。在 先前技術中另一種切換方法是空間向量調變法(space vector modulation)。此方法是依據所需的輸入電流和輸出 電壓波形加以切換開關元件S11〜S33。矩陣轉換器若應用 空間向置調變法,仍須依馬達之參數以決定空間向量的角 度,計算不易。此方法亦會增加控制系統的負擔。 在另一方面,在先前技術當中切換虛擬直流鏈電壓之 方法’完全和-個三相整流器的切換型式相同。如圖Μ 與f 2B所示’目2A係三相輸入電壓之示意圖,圖沈係 先前技術之虛擬直流鏈電壓示意圖。由圖2B可得知,矩陣 轉換器2G輸人三相輸人電壓後,其得到之直流鏈電壓值均 在輸入電壓的〇.866VPk到Vpk之間變動。盆中 入電壓的峰值。開關切換型式每隔6G。相角改變 : 母-個開關各導通12〇。。使用最高電壓值 範圍’但在馬達中、低轉速時,相二 大的輸出電流職,因而使得馬達具有較大的脈動 轉矩(Torque Ripple)。要改善上述問題,必須 兀件的切換速度’但在提高切換頻率、;更 大的切換損失。 將產生更 器之系統與方法 因此需要發明一種新的控制矩陣轉換 來解決先前技術所發生的問題。 、 200919939 【發明内容】 本發明之主要目的係在提供一種控制系統,具有控制 矩陣轉換器輸出之虛擬直流鏈電壓值之效果。 為達成上述之目的,本發明之控制系統包括矩陣轉換 器、輸入命令端、切換選取模組、電流感測模組與換相邏 輯電路。矩陣轉換器内具有開關元件,並可視為包括虛擬 轉換器與虛擬變流器。輸入命令端用以輸入電流命令以控 制矩陣轉換器。矩陣轉換器得以跟據輸入電壓與電流命令 以控制馬達。切換選取模組與電流感測模組用以控制矩陣 轉換器内開關元件,即虛擬轉換器與虛擬變流器之切換, 以輸出不同之虛擬直流鏈電壓。換相邏輯電路用以保護矩 陣轉換器之開關元件,必免矩陣轉換器快速切換時導致元 件損壞。 本發明之另一主要目的係在提供一種切換方法。 本發明之切換方法包括以下步驟:接收一輸入電壓與 ^ 電流命令;決定虛擬轉換器内之虛擬開關切換方式;決定 虛擬變流器内之虛擬開關切換方式;決定開關元件之切換 方式;以及利用三步換相法切換開關元件以得到不同之直 流鏈電壓值。 【實施方式】 為能讓貴審查委員能更暸解本發明之技術内容,特舉 較佳之具體實施例說明如下。 200919939 請先參考圖3有關於本發明控㈣統之架構圖。 田t月之控制系統1〇為具有矩陣轉換器20之系统, 用以輸出不同之直流鏈電壓值以控制馬達%。馬達可 為水磁同步電動機,但本發明並不以此為限。 拖二 =/〇包括矩陣轉換器20、輪入命令端42、切 換選純組311流感測模組32、回授電路33與換相邏It is necessary to accurately calculate the on-time of each of the switching elements SI 1 to S33 in the matrix converter 2, and to instantaneously excite the solid-state power elements. However, if the matrix converter utilizes the high-frequency switching function method, a large number of operations need to be processed immediately to determine the switching mode of the switching elements S11 to S33. This will increase the burden on the control system. Another switching method in the prior art is space vector modulation. This method switches the switching elements S11 to S33 in accordance with the required input current and output voltage waveform. If the matrix converter applies the spatial orientation modulation method, the angle of the space vector must still be determined according to the parameters of the motor, and the calculation is not easy. This method also increases the burden on the control system. On the other hand, the method of switching the virtual DC link voltage in the prior art is exactly the same as the switching pattern of a three-phase rectifier. As shown in Fig. Μ and f 2B, the schematic diagram of the three-phase input voltage of the 2A system is shown as a schematic diagram of the virtual DC link voltage of the prior art. It can be seen from Fig. 2B that after the matrix converter 2G inputs the three-phase input voltage, the obtained DC link voltage value varies between 866.866VPk and Vpk of the input voltage. The peak value of the voltage in the basin. The switch switching pattern is every 6G. Phase angle change: The mother-to-switch is turned on 12 turns. . Using the highest voltage range ', but in the motor, at low speeds, the phase two output currents, thus making the motor have a larger torque (Torque Ripple). To improve the above problem, the switching speed of the component must be 'but the switching frequency is increased, and the switching loss is increased. Systems and methods that will generate the controllers Therefore, a new control matrix transformation needs to be invented to solve the problems of the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a control system having the effect of controlling the voltage value of a virtual DC link output from a matrix converter. To achieve the above objectives, the control system of the present invention includes a matrix converter, an input command terminal, a switching selection module, a current sensing module, and a commutation logic circuit. The matrix converter has switching elements and can be considered to include virtual converters and virtual converters. The input command terminal is used to input a current command to control the matrix converter. The matrix converter is able to control the motor according to the input voltage and current commands. The switching selection module and the current sensing module are used to control the switching elements in the matrix converter, that is, the switching between the virtual converter and the virtual converter to output different virtual DC link voltages. The commutation logic circuit is used to protect the switching elements of the matrix converter, which will cause the components to be damaged when the matrix converter is quickly switched. Another main object of the present invention is to provide a switching method. The switching method of the present invention comprises the steps of: receiving an input voltage and a current command; determining a virtual switching mode in the virtual converter; determining a virtual switching mode in the virtual converter; determining a switching mode of the switching element; The three-step commutation method switches the switching elements to obtain different DC link voltage values. [Embodiment] In order to enable the reviewing committee to better understand the technical contents of the present invention, a preferred embodiment will be described below. 200919939 Please refer to FIG. 3 for an architectural diagram of the control (four) system of the present invention. The control system of the field is a system with a matrix converter 20 for outputting different DC link voltage values to control the motor %. The motor may be a hydromagnetic synchronous motor, but the invention is not limited thereto. Drag 2 = / 〇 includes matrix converter 20, turn-in command terminal 42, switch select group 311 influenza module 32, feedback circuit 33 and commutation logic

Hr人上述元件係彼此電性連接。矩陣轉換器20内 具有開關7L件S11〜S33 ’但在本實施例中可將矩陣轉換器 20視為包括虛擬轉換器21與虛擬變流器22。虛擬轉換器 21可將交流電源轉為直流電源,而虛擬變流器22可將直 流電源轉為交流電源。矩陣轉換器2〇可與電源供應端41 連接,以接收一輪入電壓VN。電源供應端41可為控制系 統10外接之電源,例如電源插座,但本發明並不以此為 限。輸入命令端42用以輸入電流命令i’以控制矩陣轉換器 20。其中輸入電壓VN為三相之交流電壓,電流命令「亦 為三相之交流電流。矩陣轉換器20得以根據輸入電壓VN 與電流命令i’以控制馬達90。切換選取模組31與電流感測 模組32可設置於DSP晶片30内’但本發明並不以此為限。 切換選取模組31與電流感測模組32用以控制矩陣轉換器 20内開關元件S11〜S33之切換’而電流感測模組32可經 由回授電路33以控制虛擬變流器22。其控制之方法在之 後會有詳細的描述。換相邏輯電路51用以保護矩陣轉換器 20之開關元件S11〜S33,避免矩陣轉換器20快速切換時導 致元件損壞。換相邏輯電路51可為CPLD晶片或FPGA晶 片’但本發明並不以此為限。由於在本實施例中控制系統 200919939 ίο電源輸入為電壓形式,且其輸出負載為電感性負載,所 以本實施例之矩陣轉換器20之開關切換型式具有輸入侧 之開關不得短路及輸出侧開關不得開路的特性,但本發明 之控制系統10並不以此實施例之限制為限。 接下來請參考圖4關於本發明之矩陣轉換器之架構圖。 為了要容易分析計算,矩陣轉換器20内之開關元件 S11〜S33可利用虛擬轉換器21與虛擬變流器22來表示。 其中虛擬轉換器21包括虛擬開關元件cl-c6,虛擬變流器 22包括虛擬開關元件q 1 -q6。虛擬轉換器之輸入輸出之間 的關係表示如下:The above elements of the Hr person are electrically connected to each other. The matrix converter 20 has switches 7L to S33' therein, but the matrix converter 20 can be considered to include the virtual converter 21 and the virtual converter 22 in this embodiment. The virtual converter 21 converts the AC power to a DC power source, and the virtual converter 22 converts the DC power to AC power. The matrix converter 2A can be connected to the power supply terminal 41 to receive a wheel-in voltage VN. The power supply terminal 41 can be a power source external to the control system 10, such as a power outlet, but the invention is not limited thereto. The input command terminal 42 is used to input the current command i' to control the matrix converter 20. The input voltage VN is a three-phase AC voltage, and the current command "is also a three-phase alternating current. The matrix converter 20 can control the motor 90 according to the input voltage VN and the current command i'. The switching selection module 31 and the current sensing The module 32 can be disposed in the DSP chip 30. However, the present invention is not limited thereto. The switching selection module 31 and the current sensing module 32 are used to control the switching of the switching elements S11 to S33 in the matrix converter 20. The current sensing module 32 can control the virtual converter 22 via the feedback circuit 33. The method of controlling the same will be described later in detail. The commutation logic circuit 51 is used to protect the switching elements S11 to S33 of the matrix converter 20. In order to avoid component damage caused by the fast switching of the matrix converter 20. The commutation logic circuit 51 can be a CPLD chip or an FPGA chip, but the invention is not limited thereto. Since the control system 200919939 is in the present embodiment, the power input is voltage. In the form, and the output load is an inductive load, the switching mode of the matrix converter 20 of the embodiment has the characteristics that the switch on the input side must not be short-circuited and the output side switch must not be opened. However, the control system 10 of the present invention is not limited to the limitation of this embodiment. Next, please refer to FIG. 4 for an architectural diagram of the matrix converter of the present invention. In order to facilitate analysis and calculation, the switching element S11 in the matrix converter 20 ~S33 can be represented by a virtual converter 21 and a virtual converter 22. The virtual converter 21 includes virtual switching elements cl-c6, and the virtual converter 22 includes virtual switching elements q 1 -q6. Input and output of the virtual converter The relationship between them is expressed as follows:

Van c3 'VAN ' Vbn cl c5 = q3 q6 c4 c6 cl VBN Vcn q5 q2 VCN _ 其中 VAN、VBN、VCN 為輸入電壓,Van、Vbn、Vcn 為輸出電壓。 而矩陣轉換器20輸出輸入之間的關係可表示為:Van c3 'VAN ' Vbn cl c5 = q3 q6 c4 c6 cl VBN Vcn q5 q2 VCN _ where VAN, VBN, VCN are the input voltages, and Van, Vbn, Vcn are the output voltages. The relationship between the output of the matrix converter 20 can be expressed as:

Van '511 512 513 ' 'VAN Vbn ~ 521 S22 523 VBN Vcn 531 532 533 VCN 因此矩陣轉換器20之開關切換函數公式可由下式求 得: '511 512 513' cl c3 c5 521 S22 523 ~ q3 q6 531 c4 c6 c2 S23 S33 q5 q2 由於矩陣轉換器20之開關切換函數已被熟悉此項技術 200919939 者所廣泛利用,故在此不再贅述。 接下來請參考圖5關於本發明之切換方法之步驟流程 圖。此處需注意的是,以下雖以控制系統10為例說明本發 明之切換方法,但本發明之切換方法並不以使用在控制系 統10為限。 首先進行步驟501 :接收一輸入電壓與電流命令。 矩陣轉換器20經由電源供應端41以接收一輸入電壓 VN,並由輸入命令端42接收電流命令i’。其中輸入電壓 1 VN為具有三相之交流輸入電壓VAN、VBN、VCN,電流 命令i’為具有三相之交流電流ia’、ib’、ic’。 進行步驟502 :決定所需之直流鏈電壓值。 本發明中,矩陣轉換器20可依馬達90之轉速或電流 調制法決定直流鏈電壓Vdc。於此實施例中,以馬達90之 轉速來決定直流鏈電壓。由於馬達90之反電動勢和轉速成 正比,因此在中、低速運轉時,其反電動勢電壓較低。所 Q 以輸入電源不需使用高電壓即可驅動馬達90,故控制系統 10可由馬達90的轉速來區分輸入直流鏈電壓Vdc的大 小。但是由於不同馬達90其額定轉速不一致,故無法以固 定轉速值來區分輸入直流鏈電壓Vdc大小。因此本實施例 中可利用馬達90的額定轉速,將速度等分成數個等級,藉 此分別與輸入電壓作配對。例如可設定在馬達90的額定轉 速五分之四以上為輸入高電壓VHdc,額定轉速五分之三到 五分之二之間為輸入中電壓VMdc,額定轉速五分之一以 下為輸入低電壓VSdc等方式,此一實施例是將速度區分 200919939 為高、中、低三種區間,然本發明並不以此為限。 於本發明之另一實施方式中,即採取電流調制法來決 定直流鏈電壓值Vdc。電流調制法為偵測電流的方向和大 小以決定調整切換次序,以調制輸出電流。矩陣轉換器20 可利用馬達90輸出電流的誤差值來調節輸入直流鏈電壓 Vdc的大小。輪出電流i經由回授電路33回授到電流感測 模組32,由電流命令i’減去電流感測模組32實際量測輸出 電流i,即可得到電流誤差值。若實際輸出電流i與電流命 Γ' 令i’的誤差值大,則為了讓馬達90輸出電流i之值與電流 命令i’之值接近,需增加輸入直流鏈電壓Vdc,產生較大 的電流斜率以提高電流閉迴路響應。反之,若實際輸出電 流i與電流命令i’的誤差值較小時,表示馬達90輸出電流 i之值已接近電流命令i’之值。因此不需高輸入電壓,此時 可減少輸入直流鏈電壓Vdc。如此一來,可以使得馬達90 在低轉速時的電流諧波減少。由於馬達90的額定電流不 同,輸出電流誤差值的大小取決亦不同。在本實施例中可 Q 設定輸出電流誤差值在額定電流四分之一以下為輸入低電 壓,四分之一到二分之一為輸入中電壓,二分之一以上為 輸入高電壓。需注意的是,本發明並不以上述所舉之分類 方式為限。 接著進行步驟503:決定虛擬轉換器内之虛擬開關切換 方式。 請一併參考圖6關於本發明之虛擬轉換器之架構圖與 圖7關於本發明之矩陣轉換器輸出之虛擬直流鏈電壓示意 200919939Van '511 512 513 ' 'VAN Vbn ~ 521 S22 523 VBN Vcn 531 532 533 VCN Therefore, the switching function formula of the matrix converter 20 can be obtained by the following equation: '511 512 513' cl c3 c5 521 S22 523 ~ q3 q6 531 C4 c6 c2 S23 S33 q5 q2 Since the switching function of the matrix converter 20 has been widely used in the technology of 200919939, it will not be repeated here. Next, please refer to FIG. 5 for a flow chart of the steps of the switching method of the present invention. It should be noted here that although the control system 10 is taken as an example to describe the switching method of the present invention, the switching method of the present invention is not limited to the use of the control system 10. First, step 501 is performed: receiving an input voltage and current command. The matrix converter 20 receives an input voltage VN via the power supply terminal 41 and receives a current command i' from the input command terminal 42. The input voltage 1 VN is an AC input voltage VAN, VBN, VCN having three phases, and the current command i' is an alternating current ia', ib', ic' having three phases. Go to step 502: Determine the required DC link voltage value. In the present invention, the matrix converter 20 determines the DC link voltage Vdc in accordance with the rotational speed or current modulation method of the motor 90. In this embodiment, the DC link voltage is determined by the rotational speed of the motor 90. Since the back electromotive force of the motor 90 is proportional to the rotational speed, the back electromotive voltage is low at medium and low speed operation. The Q can be driven by the input power source without using a high voltage, so the control system 10 can distinguish the magnitude of the input DC link voltage Vdc by the rotational speed of the motor 90. However, since the rated speeds of the different motors 90 are not uniform, the magnitude of the input DC link voltage Vdc cannot be distinguished by the fixed rotational speed value. Therefore, in this embodiment, the rated rotational speed of the motor 90 can be utilized to divide the speed into several levels, thereby pairing with the input voltage. For example, it can be set to be more than five-fifths of the rated speed of the motor 90 as the input high voltage VHdc, and between the three-thirds to two-fifths of the rated speed is the input medium voltage VMdc, and the rated speed is less than one-fifth of the input low voltage. In the VSdc and the like, this embodiment divides the speed into 200919939 into three sections of high, medium and low, but the invention is not limited thereto. In another embodiment of the invention, current modulation is employed to determine the DC link voltage value Vdc. The current modulation method detects the direction and magnitude of the current to determine the adjustment switching order to modulate the output current. The matrix converter 20 can adjust the magnitude of the input DC link voltage Vdc using the error value of the motor 90 output current. The wheel current i is fed back to the current sensing module 32 via the feedback circuit 33, and the current error value is obtained by subtracting the current sensing output current i from the current command i'. If the error value of the actual output current i and the current life ''i' is larger, in order to make the value of the output current i of the motor 90 close to the value of the current command i', the input DC link voltage Vdc needs to be increased to generate a larger current. The slope is used to increase the current closed loop response. On the other hand, if the error value of the actual output current i and the current command i' is small, it means that the value of the output current i of the motor 90 is close to the value of the current command i'. Therefore, a high input voltage is not required, and the input DC link voltage Vdc can be reduced at this time. As a result, the current harmonics of the motor 90 at low rotational speeds can be reduced. Since the rated current of the motor 90 is different, the magnitude of the output current error value varies. In this embodiment, the output current error value can be set to be less than one-quarter of the rated current as the input low voltage, one-quarter to one-half is the input medium voltage, and more than one-half is the input high voltage. It should be noted that the present invention is not limited to the above-mentioned classification. Then, step 503 is performed: determining a virtual switch switching mode in the virtual converter. Please refer to FIG. 6 for the architecture diagram of the virtual converter of the present invention and FIG. 7 for the virtual DC link voltage of the matrix converter output of the present invention. 200919939

虛擬轉換器21是由圖6中六個虛擬開關元件cl-c6所 組成,主要目的是將輸入電壓VAN、VBN、VCN整流為直 流鏈電壓Vdc,以供應虛擬變流器22所需的電壓。此部分 虛擬開關元件cl-c6的切換為符合克希荷夫電流定律,必 須滿足下列基本限制,即 cl+c3+c5=l 及 c2+c4+c6=l 其中,狀態'(V表示開關元件截止,狀態值為'Γ表示開 關元件導通。在先前技術之中,矩陣轉換器20是取輸入電 源的最大電壓值做為虛擬直流鏈電壓。並依不同區間由六 個虛擬開關元件cl-c6調變出所需的直流鏈電壓值Vdc。然 而,由圖7可知,由於輸入電壓VAN、VBN、VCN之波形 (如圖2A)使得輸出之直流鏈電壓Vdc可有三種不同的變 化。直流鏈電壓Vdc可分為高電壓VHdc、中電壓VMdc 和低電壓VSdc,其中高電壓VHdc即為先前技術中之直流 電壓值。高電壓VHdc在0.866Vpk〜lVpk之間變動,電壓 平均值為0.955 Vpk。中電壓VMdc在0.5 Vpk〜0.866 Vpk 之間變動,電壓平均值為0.699 Vpk。低電壓VSdc在0〜0.5 Vpk之間變動,電壓平均值為0.256 Vpk。這三項電壓的數 學式可分別表示如下: 高電壓VHdc : < ω5ί <π/6 K-cic(0 = vPk c〇s(iys〇 200919939 中電壓VMdc U)二· 低電壓VSdc Κ-ΑΟ = ·The virtual converter 21 is composed of six virtual switching elements cl-c6 in Fig. 6, the main purpose of which is to rectify the input voltages VAN, VBN, VCN into a DC link voltage Vdc to supply the voltage required by the virtual converter 22. The switching of this part of the virtual switching element cl-c6 is in accordance with the Kirchhoff current law, and the following basic restrictions must be met, namely cl+c3+c5=l and c2+c4+c6=l where state '(V denotes switching element) Cutoff, the state value of 'Γ indicates that the switching element is turned on. In the prior art, the matrix converter 20 takes the maximum voltage value of the input power source as the virtual DC link voltage, and is divided into six virtual switching elements cl-c6 according to different intervals. The required DC link voltage value Vdc is modulated. However, as can be seen from Fig. 7, the DC link voltage Vdc of the output can have three different variations due to the waveforms of the input voltages VAN, VBN, and VCN (Fig. 2A). The voltage Vdc can be divided into a high voltage VHdc, a medium voltage VMdc, and a low voltage VSdc, wherein the high voltage VHdc is a DC voltage value in the prior art. The high voltage VHdc varies between 0.866Vpk and lVpk, and the average voltage is 0.955 Vpk. The medium voltage VMdc varies from 0.5 Vpk to 0.866 Vpk, and the average voltage is 0.699 Vpk. The low voltage VSdc varies between 0 and 0.5 Vpk, and the average voltage is 0.256 Vpk. The mathematical formulas of these three voltages can be expressed as follows: : high Pressure VHdc: < ω5ί < π / 6 K-cic (0 = vPk c〇s (200,919,939 iys〇 voltage VMdc U) two low-voltage VSdc Κ-ΑΟ = ·

Vpkcos^/3 + ast) νρ^〇8(π/3-ωχί)Vpkcos^/3 + ast) νρ^〇8(π/3-ωχί)

Vpkcos^/3-ast) Vpkcos{Kl3 + mst) -π 16< ωχί < 0 0 < ω/ <π/6 -π 16< ω8ί < 0 0 < ω3ί <π/6 其中υο為直流鏈之高電壓瞬時值,為直流鏈之 中電壓瞬時值,為直流鏈之低電壓瞬時值,&為輸入 電壓之峰值。 為了選取虛擬開關元件c 1 -c6切換型式,在本貫施例中 將輸入電壓VN —週期間分為12個區間I〜XII,其中任一 區間均有三種直流鏈電壓值可選擇。矩陣轉換器20可藉由 Ο 控虛擬制開關元件cl-c6即可讓虛擬轉換器21輸出三種不 同之電壓值。最後各區間I〜XII和此三種電壓值相對映的 切換型式就如圖8A-8C所示。其中圖8A為高電壓之切換 型式示意圖,圖8B為中電壓之切換型式示意圖,圖8C為 低電壓之切換型式示意圖。 另一方面,矩陣轉換器20可根據不同時段馬達90所 需的直流鏈電壓值Vdc大小,以決定每一週期高、中及低 電壓切換型式導通的時間。例如可設定區段I到區段IV為 200919939 氧壓VHdc ’區段v到區段xh為中電壓VMdc。因此, ^較於切肋,本發日狀减方法對直流㈣隸的調 整具有較多的自由度。 接著進行步驟5〇4:決定虛擬變流器内之虛擬開關切換 万式。 明同日守參考圖9關於本發明之虛擬變流器之結構圖。 在虛擬變流胃22部分是由六個虛擬開關元件W♦所 施其主要作用是利用這六個虛擬開關元件ql-q6的切 合i ,9G三相輸出電流ia、ib、ie可有效地追隨電流 。⑽Γ、lc’ ’進而控制馬達90之轉矩達成啟動、加 轉向等各種運轉功能。其中虛擬變流器U 1關切換型式的基本限制為: ql+q4=l , q3+q6=l 及 q5+q2=1 導通^ ^方法為依據f流調制的方式來決定開關元件的 〇 電路33 π/ Γ輸出側相臂&為例’輸出電流^經由回授 =^回授到電流感測触32,由電流命令 ia ^ ^ ,、、輸出包肌la,所侍到的電流誤差值△ 擬開關元件ql和q4的導通或戴止 為正值’則表示實際電流ia低於參考電沒ia, 時應由虛擬開關元件ql 二。此 臂a獲取f^ Λ ^使付輸出側相 士取更夕電流。若^為負值’則表 於參考電流ia,,此時應由開關it件qll及同 減低輸出侧相臂a之電流。同理,輸出側相/ ’以 及的的導通或戴止,則由—卜a,%決定,輸 200919939 虛擬開關。5及料通或截止,則由仏(= 流誤差值和虛擬開_換丁 1係本發明之三相輪出電 關切開,狀態為Ί,表示圖。狀態值為Ό'表示開 接著進行步驟5〇5:衫開關元件之切換方式。 經由上述之步驟503鱼 擬開關元…6之:= ==參器2。之開關切換函數公式,即圖η ,: 月之矩陣轉換器實際切換之對應圖、表, 到不==2 = _三步換相法切換開關元件以得 隶後切換選取模組31要藉由步鲈 ;!:=牛一。另-方 = 避免矩陣轉換11 2G内之科損毁。請炎老 圖A-12C關於本發明之矩陣轉換器進行 : 意圖。其中圖12Λ為本發明之開關开杜加一奐相法之不 本發明之矩陣轉換器進行三步換相法之J構:施== 序:二St發明之矩陣轉換器進行三;換相^ 一貫施方式之時序圖。 〜乐 200919939 對矩陣轉換器20而言,輸出側某一相(如:a相)會由 三個雙向交流開關分別連接至電源輸入側相臂A、B與C。 為了滿足輸入侧之開關不得短路及輸出侧開關不得開路的 原則,輸出侧某一相之三個開關在該時間點僅有一個開關 處於導通狀態。因此開關元件切換時,必須依照電流之流 向逐步將原導通之開關轉移至另一組開關,以避免開關燒 毀。此種換相方式即為三步換相法。圖12A-12B中係以要 將開關元件S11切換至開關元件S12為例。其中以開關元 件S11為例,開關元件S11内包括兩個絕緣栅雙極電晶體 (Insulated Gate Bipolar Transistor ,IGBT) mAal 和 mAaO,開關元件S12包括兩個絕緣柵雙極電晶體mBal和 mBaO。假設負載電流足夠大之情形下,且目前輸出側相臂 a之輸出電流ia是由電源輸入侧流向負載輸出侧。在兩個 開關元件S11與開關元件S12切換前,激發訊號同時送至 開關元件SI 1内之兩個絕緣柵雙極電晶體mAal和 mAaO。但由於輸出電流ia流向的關係,實際上僅有絕緣柵 # t 雙極電晶體mAal導通。接著再由輸入側相臂A之電源轉 換連接至輸入側相臂B之電源。此時應先使絕緣栅雙極電 晶體mAaO截止,經過一段延遲時間AT後,再令絕緣柵雙 極電晶體mBal導通,以避免電源輸入侧短路或負載輸出 側開路。當輸出電流ia逐步由輸入侧相臂A轉移至輸入側 相臂B後,再令絕緣柵雙極電晶體mAal截止。再經過一 段延遲時間AT後,才令絕緣柵雙極電晶體mBaO導通,以 完成整個換相程序。若負載電流是反向由負載側流向電源 側,則絕緣栅雙極電晶體mAal和mAaO的截止時序應前 200919939 後對δ周’及絕緣栅雙極電晶體mBa 1和mBa〇的導通昉 是前後對調。 $ μ 此外,若輸出電流ia過小而無法明確判斷其流向時, 為避免電流流向判斷錯誤,而造成絕緣柵雙極'電^晶^燒 宝又,此時換相方式亦應隨之調整。其時序圖即如圖pc所 示。同樣以開關元件S11切換至開關元件S12為例。兩個 開關元件SU與開關元件S12切換前,激發訊號同時送至Vpkcos^/3-ast) Vpkcos{Kl3 + mst) -π 16< ωχί < 0 0 < ω/ <π/6 -π 16< ω8ί < 0 0 < ω3ί <π/6 where υο The high voltage instantaneous value of the DC link is the instantaneous value of the voltage in the DC link, which is the low voltage instantaneous value of the DC link, and the peak value of the input voltage. In order to select the switching pattern of the virtual switching elements c 1 -c6, in the present embodiment, the input voltage VN is periodically divided into 12 sections I to XII, and any of the three types of DC link voltage values can be selected. The matrix converter 20 can cause the virtual converter 21 to output three different voltage values by controlling the virtual switching element cl-c6. The switching patterns of the last intervals I to XII and the three voltage values are shown in Figs. 8A-8C. 8A is a schematic diagram of a switching pattern of a high voltage, FIG. 8B is a schematic diagram of a switching pattern of a medium voltage, and FIG. 8C is a schematic diagram of a switching pattern of a low voltage. On the other hand, the matrix converter 20 can determine the time of the high-, medium-, and low-voltage switching patterns of each cycle according to the magnitude of the DC link voltage value Vdc required by the motor 90 in different periods. For example, section I to section IV can be set to 200919939. Oxygen pressure VHdc' section v to section xh is the medium voltage VMdc. Therefore, compared with the ribs, the present method has more degrees of freedom for the adjustment of the DC (four) s. Then proceed to step 5〇4: Determine the virtual switch in the virtual converter. FIG. 9 is a structural diagram of a virtual converter according to the present invention. In the virtual variable flow stomach 22 part is driven by six virtual switching elements W♦ whose main role is to utilize the convergence of the six virtual switching elements ql-q6, 9G three-phase output currents ia, ib, ie can effectively follow Current. (10) Γ, lc'' and then the torque of the motor 90 is controlled to achieve various operational functions such as starting and steering. The basic limitation of the virtual converter U 1 switching pattern is: ql+q4=l , q3+q6=l and q5+q2=1 conduction ^ ^ method is to determine the switching circuit of the switching element according to the f-stream modulation method 33 π / Γ output side phase arm & for example 'output current ^ via feedback = ^ feedback to the current sense touch 32, by the current command ia ^ ^,, output pack muscle la, the current error The value △ is that the conduction or wear of the quasi-switching elements ql and q4 is positive, indicating that the actual current ia is lower than the reference power ia, and should be made by the virtual switching element ql. This arm a acquires f^ Λ ^ so that the output side phase takes the current. If ^ is a negative value', it is expressed in the reference current ia. At this time, the current of the phase arm a of the output side should be reduced by the switch element q11 and the same. Similarly, the conduction or wear of the output side phase / 'and is determined by -a, %, and the virtual switch is 200919939. 5 and the material pass or cutoff, then 仏 (= flow error value and virtual open _ change 1 is the three-phase wheel power outage of the present invention, the state is Ί, the map. The state value is Ό ' indicates the next step 5〇5: Switching mode of the switch element of the shirt. Through the above-mentioned step 503, the switching element of the fish is...6:===the parameter of the switching function of the switch 2. That is, the figure η,: the matrix converter of the month actually switches Corresponding diagram, table, to =================================================================================================== The internal damage is destroyed. Please refer to the matrix converter of the present invention in Figure A-12C: Intention. Figure 12 is a three-step change of the matrix converter of the present invention. The J-phase of the phase method: Shi == Order: The matrix converter of the invention of the second St performs three; the phase diagram of the commutation ^ consistent application mode. ~ Le 200919939 For the matrix converter 20, one phase on the output side (eg: Phase a) will be connected to the power input side phase arms A, B and C by three bidirectional AC switches. The principle that the short circuit and the output side switch must not be opened is closed, and only one switch of one phase of the output side is in the on state at this time point. Therefore, when the switching element is switched, the original conduction switch must be gradually adjusted according to the flow of current. Transfer to another set of switches to avoid burnout of the switch. This commutation mode is a three-step commutation method. In Figures 12A-12B, the switching element S11 is switched to the switching element S12 as an example. For example, the switching element S11 includes two insulated gate bipolar transistors (IGBTs) mAal and mAaO, and the switching element S12 includes two insulated gate bipolar transistors mBal and mBaO. It is assumed that the load current is large enough. In this case, the current output current ia of the output side phase arm a flows from the power input side to the load output side. Before the switching of the two switching elements S11 and S12, the excitation signal is simultaneously sent to the two of the switching elements SI1. Insulated gate bipolar transistor mAal and mAaO. However, due to the flow direction of the output current ia, only the IGBT #t bipolar transistor mAal is actually turned on. The power supply of the input side phase arm A is switched to the power supply of the input side phase arm B. At this time, the insulated gate bipolar transistor mMaO should be turned off first, and after a delay time AT, the insulated gate bipolar transistor mBal is turned on. To avoid short circuit on the input side of the power supply or open on the output side of the load. When the output current ia is gradually transferred from the input side phase arm A to the input side phase arm B, the IGBT of the IGBT is turned off. After a delay time of AT Then, the insulated gate bipolar transistor mBaO is turned on to complete the entire commutation procedure. If the load current is reversed from the load side to the power supply side, the cutoff timing of the insulated gate bipolar transistor mAal and mAaO should be before 200919939. The conduction 昉 of the δ week' and the insulated gate bipolar transistors mBa 1 and mBa〇 are reversed. $ μ In addition, if the output current ia is too small to clearly determine the flow direction, in order to avoid the current flow direction error, the insulated gate bipolar 'electrical crystal ^ burning treasure, and the commutation mode should be adjusted accordingly. The timing diagram is shown in Figure pc. The switching element S11 is switched to the switching element S12 as an example. Before the two switching elements SU and the switching element S12 are switched, the excitation signal is simultaneously sent to

絕緣栅雙極電晶體mAal和mAa〇。先將由輸入側相臂A 之^轉換連接至輸人側相f B之電源。此時同時令絕緣 :雙晶體mAa0和mAal截止,經過一段延遲時間 後,再々絕緣栅雙極電晶體mBal和恤 ==皆不導通,使得電感性負載之儲能並無任何 仏j以釋放。因此可增 一 電感性負载的儲能。 “路(圖未不)來吸收 所示可圖達換器20安全換相购 電路。藉由二陣轉換器執行換相時序之邏輯間 邏輯電路51击 保護一組開關元件’因此換相 SH:二中/有9組邏輯間511以保護開關元件 驅動訊號,矩Λ轉換器20之九個開關su〜s33激發 輯電路再希姑科匯流排傳送至換相邏輯電路5卜換相邏 511 18 豕珊雙極電晶體。 、之v驟即可得到不同之直流鏈電塵值他以 200919939 驅動馬達9〇。 此處需注意的是,本發明之切換方法並不以上述之步 驟次序為限,只要能達成本發明之目的,上述之步驟次^ 亦可加以改變。 接著請參考圖14A-14C關於本發明之矩陣轉換哭上的 直流鏈電I實測圖。其中圖14A為高電㈣、目14B°為中 電壓區及圖HC為低電麗區。本發明矩陣轉換器2〇即可利 用此三種不同的高、中、低虛擬電屢作為輸人電源的選擇, Ζ善輸出電流㈣波大小,並進—步改善馬達9q的脈動 轉矩(Torque Ripple)。 圖。ίΓ:參考圖15A到圖18相關之實際測量之波形 圖lift Μ15A為利用先前技術,輸出a相電流實測波形。 ㈣之矩陣轉換器2〇輸出a相電流實測波形。 略=雷、」^°本發明所得的電流諧波比先前技術切換策 :的=皮明顯改善。圖16為本發明速度暫態響應波形 L 二額定轉速2000轉/分步階命令時其暫態響應 g。^ L、、*、、、〇.9秒。圖17係本發明馬達速度響應實測 速卿轉/分穩態時,瞬間加入5牛頓-来 復J 5下’此時速度約下降15轉/分,且於0.5秒内恢 ;。:此本發明之控制系統ι〇得以使得馬達⑽具有 。圖18為係本發明轉速命令為週期 ==應實測圖。此時速度命令介於土轉 統10無需提高功率元件切換速度,即能財效的改善i 200919939 90之降低電流諧波與脈動轉矩。對馬達90在中、低轉速 的控速性能有極大的改善。 綜上所陳,本發明無論就目的、手段及功效,在在均 顯示其迥異於習知技術之特徵,懇請貴審查委員明察, 早曰賜准專利,俾嘉惠社會,實感德便。惟應注意的是, 上述諸多實施例僅係為了便於說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式間早說明】 圖1係矩陣轉換器之實際架構圖。 圖2A係三相輸入電壓之示意圖。 圖2B係先前技術之虛擬直流鏈電壓之示意圖。 圖3係本發明之控制系統之架構圖。 圖4係本發明之矩陣轉換器之虛擬架構圖。 圖5係本發明之切換方法之步驟流程圖。 圖6係本發明之虛擬轉換器之架構圖。 圖7係本發明之矩陣轉換器輸出之虛擬直流鏈電壓示意圖。 圖8A-8C係本發明之各區間和此二種電壓值相對映的切換 型式不意圖。 圖9係本發明之虛擬變流器之結構圖。 圖10係本發明之三相輸出電流誤差值和開關切換型式示意 圖。 圖11係本發明之矩陣轉換器實際切換之對應表示意圖。 200919939 圖12A係本發明之開關元件架構圖。 圖12B-12C係本發明之矩陣轉換器進行三步換相法之時序 圖。 圖13係本發明之矩陣轉換器執行換相時序之邏輯閘電路。 圖14A-14C係本發明之矩陣轉換器上的直流鏈電壓實測 圖。 圖15A-15B係矩陣轉換器輸出電流實測波形圖。 圖16係本發明之速度暫態響應波形圖。 圖17係本發明之馬達速度響應實測圖。 圖18係本發明為轉速命令為週期性三角波之馬達速度追踪 響應實測圖。 【主要元件符號說明】 控制系統10 矩陣轉換器20 虛擬轉換器21 虛擬變流器22 DSP晶片30 切換選取模組31 電流感測模組32 回授電路33 電源供應端41 輸入命令端42 200919939 換相邏輯電路51 邏輯閘511 馬達90 輸出電流i、ia、ib、ic 電流命令 i’、ia’、ib’、ic’Insulated gate bipolar transistor mAal and mAa〇. First, the input side phase arm A is switched to the power source of the input side phase f B . At this time, the insulation: the dual crystal maa0 and mAal are cut off. After a delay time, the insulated gate bipolar transistor mBal and the shirt == are not turned on, so that the energy storage of the inductive load is not released. This increases the energy storage of the inductive load. "The road (not shown) absorbs the safe commutation circuit of the illustrated convertible device 20. The inter-logic logic circuit 51 that performs the commutation timing by the two-array converter protects a group of switching elements', thus commutating SH : 2 in / there are 9 sets of logic 511 to protect the switching element drive signal, the nine switches of the matrix converter 20 su~s33 excitation circuit and then the Qiuke bus to the commutation logic circuit 5 swapping logic 511 18 豕珊双极电晶., v, can get different DC link electric dust value. He drives the motor 9〇 in 200919939. It should be noted here that the switching method of the present invention is not in the order of the above steps. However, as long as the object of the present invention can be achieved, the above steps can be changed. Next, please refer to FIGS. 14A-14C for the DC link power I of the matrix conversion crying of the present invention. FIG. 14A is a high power (four) The 14B° is the medium voltage region and the HC is the low voltage region. The matrix converter of the present invention can utilize the three different high, medium and low virtual powers as the input power source, and the output current is good. (4) Wave size, and advance - improve the pulse of the motor 9q Torque Ripple Fig. 15A to Fig. 18 The actual measured waveform diagram lift Μ15A is the measured waveform of the output phase a current using the prior art. (4) Matrix converter 2〇 output a phase current Measured waveform. Slightly = Ray, "^° The current harmonics obtained by the present invention are significantly improved over the prior art switching strategy. Figure 16 is a transient response g of the speed transient response waveform L of the present invention when the two rated speeds are 2000 rpm. ^ L,, *, ,, 〇.9 seconds. Fig. 17 shows the speed response of the motor of the present invention. When the speed is changed to the steady state, the instantaneous addition of 5 Newtons to the return of J 5 is reduced by about 15 rpm, and recovered within 0.5 seconds. This control system of the present invention enables the motor (10) to have. Figure 18 is a diagram showing the rotation speed command of the present invention as cycle ==. At this time, the speed command is not required to improve the switching speed of the power component, which is a reduction in current harmonics and pulsating torque of the 200920099 90. The speed control performance of the motor 90 at medium and low speeds is greatly improved. To sum up, the present invention, regardless of its purpose, means and efficacy, shows its distinctive features of the prior art. You are requested to review the examinations and grant the patents as soon as possible. It is to be noted that the various embodiments described above are intended to be illustrative only, and the scope of the invention is intended to be limited by the scope of the appended claims. [Description between the drawings] Figure 1 is the actual architecture of the matrix converter. 2A is a schematic diagram of a three-phase input voltage. 2B is a schematic diagram of a prior art virtual DC link voltage. Figure 3 is a block diagram of the control system of the present invention. 4 is a virtual architecture diagram of a matrix converter of the present invention. Figure 5 is a flow chart showing the steps of the switching method of the present invention. Figure 6 is a block diagram of a virtual converter of the present invention. Figure 7 is a schematic diagram of the virtual DC link voltage of the matrix converter output of the present invention. 8A-8C are diagrams showing the switching patterns of the respective sections of the present invention and the two kinds of voltage values. Figure 9 is a structural diagram of a virtual converter of the present invention. Figure 10 is a schematic illustration of the three-phase output current error value and switch switching pattern of the present invention. 11 is a schematic diagram of a correspondence table of actual switching of the matrix converter of the present invention. 200919939 Fig. 12A is a diagram showing the structure of a switching element of the present invention. 12B-12C are timing diagrams of a three-step commutation method of the matrix converter of the present invention. Figure 13 is a logic gate circuit in which the matrix converter of the present invention performs a commutation timing. 14A-14C are graphs of DC link voltage measurements on a matrix converter of the present invention. 15A-15B are measured waveforms of the output current of the matrix converter. Figure 16 is a waveform diagram of the velocity transient response of the present invention. Figure 17 is a graph showing the motor speed response of the present invention. Fig. 18 is a view showing the measurement of the motor speed tracking response in which the rotational speed command is a periodic triangular wave. [Main component symbol description] Control system 10 Matrix converter 20 Virtual converter 21 Virtual converter 22 DSP chip 30 Switching selection module 31 Current sensing module 32 Feedback circuit 33 Power supply terminal 41 Input command terminal 42 200919939 Change Phase logic circuit 51 logic gate 511 motor 90 output current i, ia, ib, ic current command i', ia', ib', ic'

電流誤差值△ ia、△ ib、△ ic 輸入電壓VN 直流鏈電壓Vdc 高電壓VHdc 中電壓VMdc 低電壓VSdc 開關元件S11〜S33 虛擬開關元件cl-c6、ql-q6 區間I〜XII 輸出侧相臂a、b、c ◎ 輸入侧相臂A、B、C 絕緣柵雙極電晶體mAaO、mAal、mBaO、mBalCurrent error value △ ia, △ ib, △ ic Input voltage VN DC link voltage Vdc High voltage VHdc Medium voltage VMdc Low voltage VSdc Switching element S11~S33 Virtual switching element cl-c6, ql-q6 Interval I~XII Output side phase arm a, b, c ◎ input side phase arm A, B, C insulated gate bipolar transistor maaO, mAal, mBaO, mBal

Claims (1)

200919939 申請專利範圍 種控制系統,係用於以 括 : 控制馬達,該控制系統包 一矩陣轉換器,具有蓣數 4 山 邏輯開關’該矩陣轉換器可 I由-電源供應端以接收—輸入電壓; 一輸入命令端’用以輸人—電流命令予 :選取模組,用以控制該矩陣轉換器二:邏 輯開關;以及 、 一電流感測模組,用以感測該矩陣轉換器之-輸出電 流’並與該電流命令做比較以得到—钱誤差值,其中 =陣轉換㈣利用該㈣選取模組及該電流感測模 ,、且仟到不同之虛擬直流電壓值以驅動該馬達。 2·如申請專利範圍第!項所述之控制系統,更包括一換相 邏輯電路,用以決定該複數之邏輯開關之導通與截止順 序0 其中該換相邏 其中該換相邏 3. 如申請專利範圍第2項所述之控制系統 輯電路可包括九組之邏輯閘。 4. 如申請專利範圍第3項所述之控制系統 輯電路可為CPLD晶片或FPGA晶片。 其中該換相邏 如申請專利範圍第4項所述之控制系統 輯電路更包括一緩衝電路 6.如申請專利範圍第1項所述之控制系統,其中該矩陣轉 換器可包括一虛擬轉換器與一虛擬變流器,該複數之邏 22 200919939 輯開關可由該虛擬轉換器之複數之虛擬開關及該虛擬 變流器複數之虛擬開關之函數相乘而得。 7.如申請專利範㈣1項所述之控制系統,更包括一回授 電路丄該電流感_組更包括經㈣⑽電路以得到該 電流誤差值。 8. 如申請專利範圍第i項所述之控制系统,其中該切換選 取模組與該電流感測模組可設置一 Dsp晶片内。200919939 Patent application scope control system is used to: control motor, the control system includes a matrix converter, has a number of 4 mountain logic switch 'the matrix converter can be - from the power supply terminal to receive - input voltage An input command terminal for inputting a current command: a selection module for controlling the matrix converter 2: a logic switch; and a current sensing module for sensing the matrix converter - The output current ' is compared with the current command to obtain a money error value, wherein = matrix conversion (4) uses the (4) selection module and the current sensing mode, and switches to a different virtual DC voltage value to drive the motor. 2. If you apply for a patent range! The control system of the present invention further includes a commutation logic circuit for determining the turn-on and turn-off sequence of the logic switch of the complex number, wherein the commutation logic is in which the commutation logic is 3. As described in claim 2 The control system circuit can include nine sets of logic gates. 4. The control system circuit as described in claim 3 can be a CPLD chip or an FPGA chip. The circuit of the control system as described in claim 4, further comprising a buffer circuit. The control system of claim 1, wherein the matrix converter can include a virtual converter. With a virtual converter, the complex logic 22 200919939 can be multiplied by the function of the virtual switch of the virtual converter and the virtual switch of the virtual converter. 7. The control system of claim 1 (4), further comprising a feedback circuit, wherein the current sense group further comprises a circuit via (4) (10) to obtain the current error value. 8. The control system of claim i, wherein the switching selection module and the current sensing module are disposed in a Dsp wafer. 9. 如申請專利範圍第i項所述之控制i統,其中該不同之 虛擬直流電壓值可包括-高電墨值、—中電盘 電壓值之虛擬直流電壓。 八 ^ 1〇.=申請專利範圍第1項所述之控制系統,其中該輪入電 壓為-三相之交流電壓,該輪出電流與該電流命令 三相之交流電流。 11.一種切換方法,係用於一 值,該方法包括: 矩陣轉換器以切換輪出電壓9. The control system of claim i, wherein the different virtual DC voltage values may comprise a high DC value, a virtual DC voltage of a medium voltage voltage value.八^1〇.= The control system of claim 1, wherein the wheel-in voltage is a three-phase AC voltage, and the wheel current and the current command three-phase alternating current. 11. A switching method for a value, the method comprising: a matrix converter to switch the wheel-out voltage 接收一輸入電壓與一電流命令; 決定所需之一直流鏈電壓值; 切換該矩陣轉換器 直流電壓值;以及 中之複數之邏輯開關以得到該虛擬 利用該虛擬直流電壓值控制—馬達。 12.如申請專利範圍第u項所述之切換方法,其中決 之該直流鏈電壓值之步驟包括利用該馬達之轉速之: 小以決定所要得到之該虛擬直流電壓值。 23 200919939 13.如申請專利範圍第u項所述之切換 之該直流鏈電麗值之步驟包括利用-輪出電 之大小以決㈣要得狀趣直流值 14=請專利第u項所述之切換方法 陣轉換器中之複數之邏輯«之步驟包括 換趣 切換一虛擬轉換器内之虛擬開關;以及 切換一虛擬變流器内之虛擬開關。 15.如申請專利範圍第14項所述之切換方法,其 ί 擬變,器内之虛擬開關之步驟包括利用一電流調= 以決定切換方式之步驟。 "丨<*°周衣法 16·如=請專利範圍第η項所述之切換方法,其 直:Α電壓之步驟更包括得到—高電壓值: 壓值或一低電壓值之虛擬直流電壓。 干% π如申料利第m貞所述之切換方法 =壓與該電流命令之步驟更包括接收 电壓與接收一三相之交流電流。 又如· u 18.如申請專利範圍第u項所述之切換 陣轉換器中之複數之邏輟門Μ々本 八中切換该矩 步換相法。痛開關之步驟更包括執行-三 24Receiving an input voltage and a current command; determining a desired DC link voltage value; switching the matrix converter DC voltage value; and a plurality of logic switches to obtain the virtual control using the virtual DC voltage value - the motor. 12. The switching method of claim 5, wherein the step of determining the DC link voltage value comprises using a small value of the motor speed to determine the virtual DC voltage value to be obtained. 23 200919939 13. The step of switching the DC link power value as described in the scope of claim 5 includes using the size of the - wheel power to determine (4) the desired DC value 14 = please refer to the patent item u The logic of switching the complex logic in the array converter includes switching the virtual switch in a virtual converter; and switching the virtual switch in a virtual converter. 15. The switching method of claim 14, wherein the step of virtual switching within the device comprises the step of using a current modulation = to determine a switching mode. "丨<*°周衣法16·如=Please refer to the switching method described in item n of the patent range, the straight: Α voltage step further includes obtaining - high voltage value: virtual value of a voltage value or a low voltage value DC voltage. The dry % π switching method as described in claim m = the step of pressing and the current command further comprises receiving a voltage and receiving a three-phase alternating current. For example, u 18. The multi-step commutation method is switched in a plurality of logic switches in the switching matrix converter described in the U.S. patent application. The steps of the pain switch include the execution - three 24
TW096139967A 2007-10-24 2007-10-24 Switching method of a matrix converter and a controlling system thereof TW200919939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096139967A TW200919939A (en) 2007-10-24 2007-10-24 Switching method of a matrix converter and a controlling system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096139967A TW200919939A (en) 2007-10-24 2007-10-24 Switching method of a matrix converter and a controlling system thereof

Publications (1)

Publication Number Publication Date
TW200919939A true TW200919939A (en) 2009-05-01

Family

ID=44727281

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096139967A TW200919939A (en) 2007-10-24 2007-10-24 Switching method of a matrix converter and a controlling system thereof

Country Status (1)

Country Link
TW (1) TW200919939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468790A (en) * 2010-10-28 2012-05-23 东元电机股份有限公司 Motor driving device
TWI404320B (en) * 2010-06-30 2013-08-01 Univ Nat Chiao Tung A controller apparatus for controlling a dc/ac converter and method thereof
TWI824506B (en) * 2022-05-04 2023-12-01 東元電機股份有限公司 Phase-changing determination system and method for matrix converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404320B (en) * 2010-06-30 2013-08-01 Univ Nat Chiao Tung A controller apparatus for controlling a dc/ac converter and method thereof
CN102468790A (en) * 2010-10-28 2012-05-23 东元电机股份有限公司 Motor driving device
TWI824506B (en) * 2022-05-04 2023-12-01 東元電機股份有限公司 Phase-changing determination system and method for matrix converter

Similar Documents

Publication Publication Date Title
CN103633910B (en) A kind of space vector of voltage control device and its control method for soft start
CN103314513B (en) Power conversion device
US6900998B2 (en) Variable-speed wind power system with improved energy capture via multilevel conversion
CN104901575B (en) Control device for inverter, power-converting device and vehicle
CN105939133B (en) A kind of soft starter and its control method of continuous frequency conversion
WO2004062078A1 (en) Motor drive device for air conditioner
CN104272571A (en) Power conversion device
CN103928946A (en) Smooth switching control method for three-phase dual-mode inverter
JP5675152B2 (en) Power converter
Keyhani et al. A soft-switched three-phase AC–AC converter with a high-frequency AC link
Mondol et al. A compact and cost efficient multiconverter for multipurpose applications
CN102447434A (en) Motor control system
TW200919939A (en) Switching method of a matrix converter and a controlling system thereof
CN210405120U (en) Isolated bus inverter system
Golwala et al. Comparative study of switching signal generation techniques for three phase four wire shunt active power filter
JP2019041490A (en) Inverter controller
Kadam et al. A novel bidirectional three-phase ac-dc/dc-ac converter for pmsm virtual machine system with common dc bus
CN101783601B (en) Multiphase current type PWM rectifier based on dual controllable rectifier bridge of hybrid switch
Bala et al. Matrix converter BLDC drive using reverse-blocking IGBTs
Patil et al. Operating three phase induction motor connected to single phase supply
CN206379905U (en) It is a kind of to be used for the wide fast switching system of motor
CN207304427U (en) A kind of simulation model of high-pressure frequency-conversion driving induction machine
Miura et al. Application of three-phase to single-phase matrix converter to gas engine cogeneration system
Miura et al. Power modulation control of a three-phase to single-phase matrix converter for a gas engine cogeneration system
CN206259879U (en) A kind of switching device for motor speed wide