TW200919772A - Apparatus for making semiconductor layer structure - Google Patents

Apparatus for making semiconductor layer structure Download PDF

Info

Publication number
TW200919772A
TW200919772A TW96139212A TW96139212A TW200919772A TW 200919772 A TW200919772 A TW 200919772A TW 96139212 A TW96139212 A TW 96139212A TW 96139212 A TW96139212 A TW 96139212A TW 200919772 A TW200919772 A TW 200919772A
Authority
TW
Taiwan
Prior art keywords
tube
layer structure
semiconductor layer
reaction chamber
body portion
Prior art date
Application number
TW96139212A
Other languages
Chinese (zh)
Inventor
Chih-Ming Lai
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW96139212A priority Critical patent/TW200919772A/en
Publication of TW200919772A publication Critical patent/TW200919772A/en

Links

Abstract

The present invention relates to an apparatus for making semiconductor layer structure on a substrate. The apparatus includes a reaction chamber, a first feeding pipe and a second feeding pipe. The reaction chamber is configured for receiving the substrate therein. The first feeding pipe and the second feeding pipe are respectively in communication with the reaction chamber, thereby providing a first raw material gas and a second raw material gas to the reaction chamber. The first feeding pipe includes a first portion and a second portion. The first portion and the second portion of the feeding portion are detachably connected to each other.

Description

200919772 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種半導體層結構製作裝置,尤其係一種 適用於製作氮化物半導體層結構之製作裝置。 【先前技術】 發光二極體(LED,Light Emitting Diode)以其亮度高、 工作電壓低、功耗小、易與積體電路匹配、驅動簡單、壽 命長等優點,從而可廣泛應用於液晶顯示器之背光源,可 參見 Chien-Chih Chen 等人在文獻 IEEE Transactions on power electronics, Vol.22,No.3 May 2007 中的 Sequential Color LED Backlight Driving System for LCD Panels —文。 LED之製作技術通常包括鹵素氣相遙晶法(Hydride Vapor Phase Epitaxy, HVPE)、分子束蠢晶法(Molecular Beam Epitaxy, MBE)以及金屬有機氣相蠢晶法(Metal-Organic Vapor Phase Epitaxy, MOVPE)等。 參見圖1,先前之一種用以製作氮化鎵半導體之HVPE " 裝置包括一反應腔80,與該反應腔80相連通之第一進料管 81及第二進料管82。所述反應腔80内設置有供氮化鎵(GaN) 生長用之基底83。 所述第一進料管81用於向反應腔80内提供氬氣(Ar) 與氯化氫(HC1)之混合氣體,該第一進料管81内部設置有一 用於容納熔融金屬鎵(Ga)84之敞口容器85,當氬氣與氯化 氳之混合氣體經由第一進料管81流向反應腔80時,氯化 氫會先與熔融金屬鎵(Ga)84發生化學反應: 200919772200919772 IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a semiconductor layer structure fabrication apparatus, and more particularly to a fabrication apparatus suitable for fabricating a nitride semiconductor layer structure. [Prior Art] Light Emitting Diodes (LEDs) are widely used in liquid crystal displays because of their high brightness, low operating voltage, low power consumption, easy matching with integrated circuits, simple driving, and long life. For a backlight, see Sequential Color LED Backlight Driving System for LCD Panels by Chien-Chih Chen et al., IEEE Transactions on power electronics, Vol. 22, No. 3 May 2007. LED fabrication techniques typically include Hydride Vapor Phase Epitaxy (HVPE), Molecular Beam Epitaxy (MBE), and Metal-Organic Vapor Phase Epitaxy (MOVPE). )Wait. Referring to Figure 1, a prior HVPE " device for fabricating a gallium nitride semiconductor includes a reaction chamber 80, a first feed tube 81 and a second feed tube 82 in communication with the reaction chamber 80. A substrate 83 for gallium nitride (GaN) growth is disposed in the reaction chamber 80. The first feed pipe 81 is configured to supply a mixed gas of argon (Ar) and hydrogen chloride (HC1) into the reaction chamber 80, and the first feed pipe 81 is internally provided with a material for accommodating molten metal gallium (Ga) 84. In the open container 85, when a mixed gas of argon gas and cesium chloride flows through the first feed pipe 81 to the reaction chamber 80, hydrogen chloride first reacts with the molten metal gallium (Ga) 84: 200919772

Ga+2HC1+ GaCl+H2、Ga+3HC1+ GaCl3+3H,生成主要成 分為氯化鎵(GaCl)及三氯化鎵(GaCl3)之第一原料氣體。該 第一原料氣體繼而以平行於基底83上表面830之方向從開 口 810流入至所述反應腔80内,並擴散至基底83之上表 面830。所述第二進料管82用於向反應腔80内提供主要成 分為氨氣(NH3)之第二原料氣體,該第二原料氣體以平行於 基底83上表面830之方向流入至反應腔80内後與第一原 料氣體中之氯化鎵(GaCl)發生化學反應: 3GaCl+NH3+ GaN+3HCl,從而於基底83上形成氮化鎵 (GaN)半導體磊晶層86。 然而,該種HVPE反應裝置之進料管材質通常為石英, 所述第一進料管81向反應腔80提供第一原料氣體之過程 中,該第一進料管81之位於反應腔80内之開口 810處會 因第一原料氣體中之氯化鎵與第二原料氣體中之氨氣於該 處發生反應而沉積氮化鎵,從而會使開口 810發生堵塞, 導致第一原料氣體之進氣速度降低而影響氮化鎵之生長速 率。 參見圖2,先前之另一種用以製作氮化鎵半導體之 HVPE裝置包括一反應腔90以及與該反應腔90相連通之第 一進料管91。該反應腔90還包括一進氣口 94,該第一進 料管91之外側套設有一外管92。製作氮化鎵半導體時,從 所述第一進料管91通入氯化氳氣體,該氯化氫氣體將與第 一進料管91内部之熔融金屬鎵93反應而生成主要成分為 氯化鎵(GaCl)及三氯化鎵(GaCl3)之第一原料氣體,該第一 200919772 原料氣體從第一進料管91之開口 91〇處流出至反應腔9〇 内並流至傾斜設置之基底表面;從所述進氣口 94通入氨 氣;所述外管92被通入一惰性氣體而於第一進料管91之 =口 910周圍形成隔離氣流,儘量避免第一原料氣體與氨 氣於開口 910處相接觸以避免因二者反應造成之氮化鎵沈 積而導致之堵塞現象。然而,根據實際生產情況來看,該 種設置僅能於-定程度上延緩堵塞現象之發生,待反應進 行時間較長時堵塞現象仍然會發生’進而影響氮化鎵^生 長速率。 先剷技術中,為了保證氮化鎵之生長速率不被所述第 進料官之堵塞影響,通常會於發生堵塞時將該第一進料 官取出並將設置於其内之盛有溶融態金屬鎵之容器轉移至 新的進料管中,再將該新的進料管裝入反應腔以進行生 ^。然而,將盛有熔融態金屬鎵之容器轉移至新的進料管 ^金屬鎵容易受到外界環境之污染,從而會影響磊晶生 長出之氮化鎵之品質。 胃 曰曰 有鑑於此,有必要提供一種能夠保證高效率、高品質 生產之半導體層結構製作裝置。 、 【發明内容】 以下將以具體實施例說明一種半導體層結構製作骏 置,其可具有生產效率高、產品品質高之優點。 、 、…—種半導體層結構製作裝置,其用於在一基底上製作 半導體層結構,該半導體層結構製作裝置包括一反應腔, 一第-進料管以及—第二進料管’所述反應腔用於容納所 200919772 述基底所述第一進料管以;5笛- 並分別心向反應腔提歸與反應腔相連通 體,其中,所述第-進料科氣體以及第二原料氣 該第—管體料第第―"部及第二管體部, U —官體部可拆卸地連接在一起。 ,、先刖技術相比,所十 進料管包括可拆卸地連構製作裝置之第一 部,♦第在起之第一管體部及第二管體 -管二:Γ之出氣口處沈積有氮化錄時,可將該第 Z克服先讀術中存在之技術缺陷提升生產效率及產品品 【實施方式] 明。以下將結合附圖對本發明實施例作進—步之詳細說 ^圖3’本發明第—實_所提供之半㈣層結構製 裝置〇匕括:—反應腔u,H 二進料管13。 米 所述反應腔U可設置於高爐(圖未示)内,以帛於提供 衣作半導體層結構之溫度(例如,細。c)及麼力(例 如,〇.5〜1atm)環境。所述反應腔11内設置有一承載座110, 其側壁設置有一第一開口 112’一第二開口 m以及一氣體 出口 116。所述承載座110用於承載生長半導體層結構用之 基底20,如藍寶石(Sapphire)。所述第一開口 ιΐ2、第二開 口 114分別用於與所述第一進料管12、第二進料管^密^ 連通,從而第一原料氣體、第二原料氣體可藉由第一進料 200919772 管12、第二進料管13流入反應腔11内。所述氣體出口 116 用於排除反應腔11内之反應廢氣。 所述第一進料管12設置於反應腔11内,其與所述第 一開口 112密封連通,用於向反應腔11内提供第一原料氣 體。該第一進料管12之材質可為石英,其為圓形管。該第 一進料管12包括第一管體部120及第二管體部122。 所述第一管體部120包括一進氣口 1200,一出氣口 1202以及一原料放置區1206。所述進氣口 1200、出氣口 1202位於原料放置區1206之兩側,該進氣口 1200可與設 置於反應腔11外部之氣源(圖未示)相連通,而該出氣口 1202與第二管體部122相連通。所述原料放置區1206用於 容納熔融態之三族金屬1208,例如鎵、鋁、銦或其組合。 來自外部氣源之鹵素氣體,例如氯化氫氣體,可從進氣口 1200流至原料放置區1206,並與原料放置區1206内之熔 融態之三族金屬1208反應以形成三族金屬鹵化物而作為第 一原料氣體,該第一原料氣體從出氣口 1202流向第二管體 部 122。 所述第二管體部122包括一進氣口 1220及一出氣口 1222,該第二管體部122與第一管體部120可拆卸地連接 在一起。本實施例中,所述第二管體122之進氣口 1220之 口徑略大於所述第一管體部120之出氣口 1202,從而第一 管體部120之出氣口 1202可伸入第二管體部122之進氣口 1220,進而相互套接在一起。所述第一原料氣體可從第一 管體部120之出氣口 1202流出,並從該第二管體部122之 200919772 進氣口 1220流入第二管體部122内,再從第二管體部122 之出氣口 1222流出至反應腔11並流向基底20之上表面 200。 較佳者,該第一管體部120之出氣口 1202與第二管體 部122之進氣口 1220相連接位置之周緣還套設有密封裝置 124,例如密封圈,從而密封第一管體部120與第二管體部 122之連接處。 進一步的,該第一進料管12還包括固定裝置126,例 f 如螺絲或插銷等,其可設置於第一管體部120與第二管體 部122之連接處,以固定住所述第一管體部120與第二管 體部122。 需要說明的是,第一管體部120與第二管體部122之 連接並不局限於上述方式,例如:(a).所述第一管體部120 與第二管體部122還可分別與一連接管(圖未示)之兩端相 連,從而由該連接管將第一管體部120與第二管體部122 連接在一起;(b).所述第一管體部120之出氣口 1202之口 徑略大於第二管體部122之進氣口 1220,從而第二管體部 122之進氣口 1220可伸入第一管體部120之出氣口 1202 而套接在一起。 另外,所述第一進料管12之材質還可為陶究,如熱解 氮化蝴(Pyrolytic Boron Nitride, PBN)、氮化侧(Boron Nitride,BN)等,亦可為高熔點金屬,如鎢、鉬等,還可為 铭氧化物(AlxOy)等,從而可更好地避免三族金屬氮化物於 第一進料管12之第二管體部122之出氣口 1222處之沈積。 11 200919772 所述第二進料管13設置於反應腔1;1内,其與所述第 二開口 114密封連通,用於向反應腔u内提供第二原料氣Ga+2HC1+ GaCl+H2, Ga+3HC1+ GaCl3+3H, and a first raw material gas which is mainly composed of gallium chloride (GaCl) and gallium trichloride (GaCl3). The first source gas then flows from the opening 810 into the reaction chamber 80 in a direction parallel to the upper surface 830 of the substrate 83 and diffuses to the upper surface 830 of the substrate 83. The second feed pipe 82 is configured to supply a second raw material gas whose main component is ammonia (NH3) into the reaction chamber 80, and the second raw material gas flows into the reaction chamber 80 in a direction parallel to the upper surface 830 of the substrate 83. Thereafter, a chemical reaction occurs between gallium chloride (GaCl) in the first material gas: 3GaCl+NH3+ GaN+3HCl, thereby forming a gallium nitride (GaN) semiconductor epitaxial layer 86 on the substrate 83. However, the feed tube of the HVPE reactor is usually made of quartz. During the process of supplying the first feed gas to the reaction chamber 80, the first feed tube 81 is located in the reaction chamber 80. At the opening 810, gallium nitride is deposited due to the reaction between the gallium chloride in the first material gas and the ammonia gas in the second material gas, thereby causing the opening 810 to be clogged, resulting in the entry of the first raw material gas. The gas velocity is reduced to affect the growth rate of gallium nitride. Referring to Figure 2, another prior HVPE device for fabricating a gallium nitride semiconductor includes a reaction chamber 90 and a first feed tube 91 in communication with the reaction chamber 90. The reaction chamber 90 further includes an air inlet 94, and an outer tube 92 is sleeved on the outer side of the first feed tube 91. When the gallium nitride semiconductor is fabricated, a cesium chloride gas is introduced from the first feed pipe 91, and the hydrogen chloride gas reacts with the molten metal gallium 93 inside the first feed pipe 91 to form a main component of gallium chloride ( GaCl) and a first raw material gas of gallium trichloride (GaCl3), the first 200919772 raw material gas flows out from the opening 91〇 of the first feeding pipe 91 into the reaction chamber 9〇 and flows to the surface of the inclined substrate; Ammonia gas is introduced from the air inlet 94; the outer tube 92 is supplied with an inert gas to form an isolated airflow around the mouth 910 of the first feed pipe 91, and the first material gas and the ammonia gas are avoided as much as possible. The openings 910 are in contact to avoid clogging caused by the deposition of gallium nitride due to the reaction between the two. However, according to the actual production situation, this kind of setting can only delay the occurrence of the clogging phenomenon to a certain extent, and the clogging phenomenon still occurs when the reaction takes a long time to proceed, which in turn affects the growth rate of GaN. In the first shoveling technology, in order to ensure that the growth rate of gallium nitride is not affected by the blockage of the first feeder, the first feeder is usually taken out when the blockage occurs and the molten state is set therein. The metal gallium container is transferred to a new feed tube, and the new feed tube is loaded into the reaction chamber for processing. However, the container containing the molten metal gallium is transferred to a new feed tube. The metal gallium is easily contaminated by the external environment, which may affect the quality of the gallium nitride grown by the epitaxial growth. In view of the above, it is necessary to provide a semiconductor layer structure manufacturing apparatus capable of ensuring high efficiency and high quality production. SUMMARY OF THE INVENTION Hereinafter, a semiconductor layer structure fabrication step will be described with reference to specific embodiments, which can have the advantages of high production efficiency and high product quality. , a semiconductor layer structure fabrication apparatus for fabricating a semiconductor layer structure on a substrate, the semiconductor layer structure fabrication apparatus comprising a reaction chamber, a first feed tube and a second feed tube The reaction chamber is configured to receive the first feed tube of the substrate of the 200919772 substrate; 5 flute- and respectively connect the reaction chamber to the reaction chamber, wherein the first-feed gas and the second raw material gas The first portion of the first tubular body material and the second tubular body portion, U-the body portion are detachably connected together. Compared with the prior art, the ten feed pipe includes the first part of the detachable joint manufacturing device, ♦ the first pipe body and the second pipe body - the second pipe: the gas outlet of the raft When the nitride is deposited, the Z can overcome the technical defects existing in the prior reading to improve the production efficiency and the product [embodiment]. The following is a detailed description of the embodiment of the present invention with reference to the accompanying drawings. FIG. 3 'The semi-fourth layer structure device provided by the first embodiment of the present invention includes: - reaction chamber u, H two feed tube 13 . The reaction chamber U may be disposed in a blast furnace (not shown) to provide a temperature (e.g., fine. c) and a force (e.g., 〇.5 to 1 atm) environment for the semiconductor layer structure. A bearing base 110 is disposed in the reaction chamber 11, and a sidewall of the first opening 112' and a second opening m and a gas outlet 116 are disposed on the sidewall. The carrier 110 is used to carry a substrate 20 for growing a semiconductor layer structure, such as sapphire. The first opening ι 2 and the second opening 114 are respectively used to communicate with the first feeding tube 12 and the second feeding tube, so that the first material gas and the second material gas can be firstly Material 200919772 The tube 12 and the second feed tube 13 flow into the reaction chamber 11. The gas outlet 116 is for removing reaction exhaust gas in the reaction chamber 11. The first feed tube 12 is disposed within the reaction chamber 11 in sealing communication with the first opening 112 for providing a first feed gas to the reaction chamber 11. The material of the first feeding tube 12 may be quartz, which is a circular tube. The first feed tube 12 includes a first tube portion 120 and a second tube portion 122. The first tubular body portion 120 includes an air inlet 1200, an air outlet 1202, and a material placement area 1206. The air inlet 1200 and the air outlet 1202 are located at two sides of the material placement area 1206. The air inlet 1200 can communicate with a gas source (not shown) disposed outside the reaction chamber 11, and the air outlet 1202 and the air outlet The two tubular bodies 122 are in communication. The feedstock placement zone 1206 is for holding a molten group of tri-metals 1208, such as gallium, aluminum, indium, or combinations thereof. A halogen gas from an external source, such as hydrogen chloride gas, may flow from the gas inlet 1200 to the feedstock placement zone 1206 and react with the molten tri-family metal 1208 in the feedstock placement zone 1206 to form a tri-family metal halide. The first material gas flows from the gas outlet 1202 to the second tube portion 122. The second tubular body portion 122 includes an air inlet 1220 and an air outlet 1222. The second tubular portion 122 is detachably coupled to the first tubular portion 120. In this embodiment, the air inlet 1220 of the second pipe body 122 has a diameter slightly larger than the air outlet 1202 of the first pipe body 120, so that the air outlet 1202 of the first pipe body 120 can extend into the second port. The air inlets 1220 of the tubular portion 122 are then nested together. The first material gas may flow out from the air outlet 1202 of the first pipe body 120, and flow into the second pipe body 122 from the 200919772 air inlet 1220 of the second pipe body 122, and then from the second pipe body. The air outlet 1222 of the portion 122 flows out to the reaction chamber 11 and flows to the upper surface 200 of the substrate 20. Preferably, the peripheral edge of the outlet of the first tubular body 120 and the inlet 1220 of the second tubular portion 122 is further provided with a sealing device 124, such as a sealing ring, to seal the first tubular body. The junction of the portion 120 and the second tubular body portion 122. Further, the first feeding tube 12 further includes a fixing device 126, such as a screw or a pin, which may be disposed at a joint between the first tube portion 120 and the second tube portion 122 to fix the first portion. A tube body 120 and a second tube portion 122. It should be noted that the connection between the first tubular body portion 120 and the second tubular body portion 122 is not limited to the above manner, for example, (a). The first tubular body portion 120 and the second tubular body portion 122 may also be Connected to both ends of a connecting tube (not shown), so that the first tube body 120 and the second tube portion 122 are connected by the connecting tube; (b) the first tube portion 120 The air outlet 1202 has a slightly larger diameter than the air inlet 1220 of the second tubular portion 122, so that the air inlet 1220 of the second tubular portion 122 can extend into the air outlet 1202 of the first tubular portion 120 to be nested together. In addition, the material of the first feeding tube 12 may also be ceramics, such as Pyrolytic Boron Nitride (PBN), Boron Nitride (BN), etc., or may be a high melting point metal. For example, tungsten, molybdenum, etc., may also be an oxide (AlxOy) or the like, so that deposition of the group III metal nitride at the gas outlet 1222 of the second tube portion 122 of the first feed tube 12 can be better avoided. 11 200919772 The second feed pipe 13 is disposed in the reaction chamber 1; 1 and is in sealing communication with the second opening 114 for providing a second raw material gas into the reaction chamber u.

體,如氨氣。該第二原料氣體與第一原料氣體於反應腔U 内混合並反應,以於基底20的表面生長氮化鎵。該第二進 料管13可為圓形管或方形管,本實施例中該第二進料管13 為方形管。 本實施例所提供之半導體層結構製作裝置1〇之第一進 料管12包括可拆卸地連接在一起之第一管體部12〇及第二 管體部122,當第二管體部12〇之出氣口 1222處沈積有^ 化鎵時,可將該第二管體部122單獨取下以進行更換而無 需更換第一管體部120,其可避免因更換第一管體部 而造成污染並影響半導體層結構之品質,並可保證第一原 料氣體之進氣速度,進而確保半導體之高生產效率。 參見圖4,本發明第二實施例提供之一種半導體層結構 製作裝置30’其與上述半導體層結構製作裝置忉之結構大 致相同。該半導體層結構製作裝置30亦包括1於^載基 底20之反應腔31’以及分別用於向反應腔31内提供第一= 第一原料氣體之一第一進料管32及一第二進料管%。 味所述第一進料管32包括一第一管體部320以及—第二 管體部322,所述第二管體部322包括一出氣口助;: 述第二進料管33包括一出氣口 330,所述出氣口 3222之開 :方向與出氣口 33〇之開口方向相交,從而使得分別從: ϊ 及出氣口 330流入反應腔31之第一原料氣體及 弟-原料氣射充分地混合,其可更有效地提高半導體層Body, such as ammonia. The second material gas is mixed with the first material gas in the reaction chamber U and reacted to grow gallium nitride on the surface of the substrate 20. The second feeding tube 13 can be a circular tube or a square tube. In the embodiment, the second feeding tube 13 is a square tube. The first feeding tube 12 of the semiconductor layer structure manufacturing apparatus 1 provided in this embodiment includes a first tube portion 12A and a second tube portion 122 that are detachably coupled together, and when the second tube portion 12 is When the gallium deposit is deposited at the gas outlet 1222, the second tubular body portion 122 can be separately removed for replacement without replacing the first tubular body portion 120, which can avoid the replacement of the first tubular body portion. The pollution affects the quality of the semiconductor layer structure and ensures the intake velocity of the first material gas, thereby ensuring high production efficiency of the semiconductor. Referring to Fig. 4, a semiconductor layer structure fabricating apparatus 30' according to a second embodiment of the present invention is substantially the same as the semiconductor layer structure fabricating apparatus. The semiconductor layer structure fabricating device 30 also includes a reaction chamber 31' for carrying the substrate 20 and a first feeding tube 32 and a second inlet for supplying the first = first source gas to the reaction chamber 31, respectively. Material tube %. The first feeding tube 32 includes a first tube portion 320 and a second tube portion 322, and the second tube portion 322 includes an outlet port; the second feeding tube 33 includes a The air outlet 330, the opening of the air outlet 3222: the direction intersects with the opening direction of the air outlet 33〇, so that the first material gas and the gas source flowing into the reaction chamber 31 from the ϊ and the air outlet 330 respectively are sufficiently Mixing, which can improve the semiconductor layer more effectively

12 200919772 結構之生長速率。 較佳者,出氣口 3222之開口方向與出氣口 33〇之開口 方向垂直,如圖5所示。所述第二進料管33之出氣口 33〇 之開口方向垂直於紙面,而第二管體部之出氣口 3222之開 口方向與紙面平行’亦即出氣口 33〇之開口方向與出氣口 之開口方向垂直。如此設計可使出氣口 、幻〇流 出之第一、第二原料氣體之氣流受開口方向設計之作用而 互垂直地刀別流向基底20之上表面。參見圖6,與先前 :採用“平行氣流”方式下半導體之生長速率(圖6中虛線 減,採用本實_之“相互垂直氣流,,域流方向 ^ ’可賴提升半導體於基底2G上之生 線所示),從而可進-步提高半導體之生產效率。(中實 需要說明的是’所述第二管體部322之出氣口助 1 口數目並不局限於—個,該第二管體部322亦可包括二 32:圖另不)、三個或更多個開口方向相互平行之出氣口 :22。料,所述第—㈣管%之數 ::Π(如圓―,其中單個進料管:之 進料ί32Γ^Γ^σ方向可相互平行或相交,而多個 交H第 Μσ 3222開口方向亦可相互平行或相 ψ .. 進料官32亦不局限於為圓形管,苴還可為方 形1如圖9所示)等其㈣狀之管體。 還了為方 提出本發明確已符合發明專利之要件,遂依法 式,自不=此:,以上所述者僅為本發明之較佳實施方 此限制本案之申請專利範圍。舉凡熟悉本宰 13 200919772 技藝之人士援依本發明精神^ ^ ^ 雍π #认、,^士 心研砰所作之專效修飾或變化,皆 應涵1於以下申請專利範圍内。 【圖式簡單說明】 先Λ—種半㈣層結構製料置之結構示意圖。 圖。圖係、先則另-種半導體層結構製作裝置之結構示意 圖3係本發明第一實施例戶 農置之結構示意圖。 之+導體層結構製作 圖4係本發明第二實施例所提供之半導 裝置之結構示意圖。 傅表作 圖5係圖4所示半導體層結構製作裝置之内 右視圖。 °丨、,、。構之 圖6係採用本發明第二實施例所提供半導體層 裝置及採用先前半導體層結構製作裝置之半導體屑处 生長速率與氣化氫氣體流量之關係曲線圖。 θ結構 圖7係本發明實施例所提供之第二管體部農— 氣口之半導體層結構製作裝置之結構示意圖。 馒出 圖8係本發明實施例所提供之具有複數第一 半導體層結構製作裝置之結構示意圖。 艸官之 圖9係本發明實施例所提供之第一進料管 ,— 半導體層結構製作裝置之結構示意圖。 形管之 【主要元件符號說明】 半導體層結構製作裝置 10,30 14 (.ς 200919772 反應腔 11,31,80,90 承載座 110 第一開口 112 第二開口 114 氣體出口 116 第一進料管 12,32,81,91 第一管體部 120,320 進氣口 1200,1220,94 出氣口 1202,1222,3222,330 原料放置區 1206 熔融態之三族金屬 1208 第二管體部 122,322 密封裝置 124 固定裝置 126 第二進料管 13,33,82 基底 20,83 上表面 200,830 開口 810,910 熔融金屬鎵 84,93 敞口容器 85 外管 92 氮化鎵半導體磊晶層 86 1512 200919772 Growth rate of the structure. Preferably, the opening direction of the air outlet 3222 is perpendicular to the opening direction of the air outlet 33, as shown in Fig. 5. The opening direction of the air outlet 33 of the second feeding pipe 33 is perpendicular to the paper surface, and the opening direction of the air outlet 3222 of the second pipe body is parallel to the paper surface, that is, the opening direction of the air outlet 33 and the air outlet. The opening direction is vertical. In this way, the air flow, the flow of the first and second material gases flowing out of the illusion are designed to be perpendicular to the surface of the substrate 20 by the opening direction design. Referring to Fig. 6, and the previous: the growth rate of the semiconductor in the "parallel airflow" mode (the dotted line in Fig. 6 is reduced, and the "vertical vertical airflow, the domain flow direction ^" can be used to enhance the semiconductor on the substrate 2G. The production line is shown, so that the production efficiency of the semiconductor can be further improved. (It should be noted that the number of the outlet port of the second tube portion 322 is not limited to one, the second The tubular body portion 322 may also include two 32: two different views, three or more air outlets whose opening directions are parallel to each other: 22. The material of the first (four) tube is: Π (such as a circle -, Wherein a single feed pipe: the feed ί32Γ^Γ^σ directions may be parallel or intersect with each other, and the plurality of cross-H Μσ 3222 opening directions may also be parallel or opposite each other. The feed officer 32 is not limited to a circle. The tube, the crucible can also be a square 1 (such as shown in Figure 9) and its (four)-shaped tube body. It is also proposed that the invention has indeed met the requirements of the invention patent, according to the law, not = this:, above The above is only the preferred embodiment of the present invention, which limits the scope of the patent application of the present invention. 9772 The person skilled in the art is assisted by the spirit of the invention. ^ ^ ^ 雍π #认,,^ The special effects modification or change made by Shi Xinyan are included in the scope of the following patent application. [Simplified illustration] Schematic diagram of a half (four) layer structure material arrangement. Fig. Fig. 1 is a schematic view showing the structure of a semiconductor layer structure manufacturing apparatus according to a first embodiment of the present invention. Figure 4 is a schematic view showing the structure of a semiconductor device according to a second embodiment of the present invention. Figure 5 is a right side view of the device for fabricating a semiconductor layer structure shown in Figure 4. 6 is a graph showing the relationship between the growth rate of the semiconductor chips and the flow rate of the vaporized hydrogen gas using the semiconductor layer device provided by the second embodiment of the present invention and the device for fabricating the semiconductor layer structure. θ structure FIG. 7 is provided by the embodiment of the present invention. FIG. 8 is a schematic structural view of a device for fabricating a semiconductor layer structure of a second tube body. FIG. 8 is a structural diagram of a device for fabricating a plurality of first semiconductor layer structures according to an embodiment of the present invention. Figure 9 is a schematic view showing the structure of a first feeding tube, a semiconductor layer structure forming apparatus provided by an embodiment of the present invention. [Major element symbol description] Semiconductor layer structure manufacturing apparatus 10, 30 14 ( ς 200919772 Reaction chamber 11, 31, 80, 90 Carrier 110 First opening 112 Second opening 114 Gas outlet 116 First feeding tube 12, 32, 81, 91 First tube body 120, 320 Air inlet 1200, 1220 , 94 air outlet 1202, 1222, 3222, 330 material placement area 1206 molten group of tri-metal 1208 second tube body 122, 322 sealing device 124 fixture 126 second feed tube 13, 33, 82 substrate 20, 83 upper surface 200,830 opening 810,910 molten metal gallium 84,93 open container 85 outer tube 92 gallium nitride semiconductor epitaxial layer 86 15

Claims (1)

200919772 十、申睛專利範圍: I一種半導體層結構製作奘罢甘m .體層結構,該何翻於在—基底上製作半導 •-進料管以及-第-二;裝置包括-反應腔,-第 底,所述第一進料反應腔用於容納所述基 別用於向所述反⑼提=料管與反應腔相連通並分 體,其改進在於Γ;斤述第一第一Λ料氣體以及第二原料氣 管體部,#笛、;L進料官包括第一管體部及第二 2·如申上1:管體部與第二管體部可拆卸地連接在-起。 所述第胃〜乾圍1所述之半導體層結構製作裝置,其中, 所逑弟部與第二管體部相互套接在—起。 利範圍1或2所述之半導體層結構製作裝置,其 π二=一進料管還包括設置於第一管體部與第二管體 二管體部之連接處。 用“封㈣—官體部與第 中如::專利範圍1或2所述之半導體層結構製作裝置,其 二==包:設置於第一管體部與第二管體 管體部 固定住該第-管體部及第二 t申請專利範圍丄所述之半導體層結構製作裝置,豆中, 體=將=料氣體從第—進料管中導人反 =料管中導入反應腔之第二出氣口,該第一出氣口 -、乐一出氣口之開口方向相交。 6.如申請專利範圍5所述之半導㈣結構製作|置,其中, 16 200919772 所述第一出氣口與第 7.如申請專利及開口方向垂直。 .所述第所述之半導體層結構製作裝置,I中 .之開口方向相互平行。 A軋口’該複數個出“ :斤如申請專利範圍5所述之半導 ^ ^ -1 it ^ ^ ^ ^ ^ * t, 之開口方向相交。 該稷數個出氣口 9.如申睛專利範目工 所述第—進料管之材二導體層結構製作裝置’其中, 1〇.如申請專 才;:陶竞、鎢,或紹氧化物。 中,所、十^圍戶斤述之半導體層結構製作農置,1 T所述第一管體部包括一推名π 其 出氣口,命 進軋口、一原料放置區以及— 體,該原祖姑里庄m 丨相連通以用於通入齒素氣 '、科放置£用於容納熔融態之三 與第二管體部相連通,所述南辛氣體:入進,氧口 物’該—+入碎上 蜀枭生反應而形成三族金屬齒化 w —知金屬鹵化物作為第一原料 二管體部内。 7 7寸轧體由出軋口流入第 17200919772 X. The scope of the patent application: I. The fabrication of a semiconductor layer structure. The bulk structure, which is turned on the substrate to make a semi-conducting tube, and the -2nd device; the device includes a reaction chamber. a bottom, the first feed reaction chamber for accommodating the base for communicating with the reaction chamber and the split chamber to the counter (9), the improvement being in the Γ; The feed gas and the second raw material gas pipe body, #笛,; L feed officer includes the first pipe body portion and the second 2. As stated in the above: the pipe body portion and the second pipe body portion are detachably connected at - Start. The apparatus for fabricating a semiconductor layer structure according to the first to fourth aspect, wherein the scorpion portion and the second tube body portion are sleeved with each other. The apparatus for fabricating a semiconductor layer structure according to claim 1 or 2, wherein the π==feed tube further comprises a joint disposed between the first tube body portion and the second tube body portion. A device for fabricating a semiconductor layer structure as described in Patent Document 1 or 2, wherein: a package is provided in the body of the first tube body and the body portion of the second tube body. The semiconductor layer structure manufacturing device described in the first pipe body portion and the second application patent range, the bean, the body gas, the material gas is introduced into the reaction chamber from the first feeding tube The second air outlet, the first air outlet-, the opening direction of the music outlet is intersected. 6. The semi-conductive (four) structure as described in claim 5, wherein, the first air outlet of 16 200919772 It is the same as the seventh. The patent application and the opening direction are perpendicular to each other. The opening of the semiconductor layer structure manufacturing apparatus described above, I. The opening directions are parallel to each other. A. The opening directions of the semi-conducting ^^ -1 it ^ ^ ^ ^ ^ * t intersect. The plurality of air outlets 9. The two-conductor layer structure manufacturing device of the material of the feeding tube, as described in the application of the patent eyepiece, wherein, for example, an application specialist;: Tao Jing, tungsten, or Shao oxidation Things. The semiconductor body structure of the middle, the ten, and the tenth households is used to make the agricultural structure, and the first pipe body portion of the 1T includes a push name π, an air outlet, a fat inlet, a raw material placement area, and a body. The original Zu Gu Li Zhuang m 丨 连通 以 以 以 以 以 以 以 以 以 以 以 以 以 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The -+ is broken into a twin reaction to form a tri-group metal toothing w-known metal halide as the first raw material in the second tube body. 7 7-inch rolling stock flows into the 17th from the exit
TW96139212A 2007-10-19 2007-10-19 Apparatus for making semiconductor layer structure TW200919772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96139212A TW200919772A (en) 2007-10-19 2007-10-19 Apparatus for making semiconductor layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96139212A TW200919772A (en) 2007-10-19 2007-10-19 Apparatus for making semiconductor layer structure

Publications (1)

Publication Number Publication Date
TW200919772A true TW200919772A (en) 2009-05-01

Family

ID=44727224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96139212A TW200919772A (en) 2007-10-19 2007-10-19 Apparatus for making semiconductor layer structure

Country Status (1)

Country Link
TW (1) TW200919772A (en)

Similar Documents

Publication Publication Date Title
US9038565B2 (en) Abatement of reaction gases from gallium nitride deposition
EP2084304B1 (en) Method and apparatus for the epitaxial deposition of monocrystalline group iii-v semiconductor material using gallium trichloride
CN101423937B (en) Multi-gas concentric injection showerhead
EP2038456B1 (en) System and process for high volume deposition of gallium nitride
US8382898B2 (en) Methods for high volume manufacture of group III-V semiconductor materials
US9580836B2 (en) Equipment for high volume manufacture of group III-V semiconductor materials
CN101413112B (en) Multi-gas straight channel showerhead
US20090223441A1 (en) High volume delivery system for gallium trichloride
CN101914759A (en) The HVPE sprinkler design
US9481943B2 (en) Gallium trichloride injection scheme
US20090056631A1 (en) Apparatus for manufacturing semiconductor layer
TW200919772A (en) Apparatus for making semiconductor layer structure
JP2006019461A (en) Vapor epitaxial growth device and epitaxial wafer
JP3104677B2 (en) Group III nitride crystal growth equipment
WO2008064085A2 (en) Abatement system for gallium nitride reactor exhaust gases