TW200919761A - Production line module for forming multiple sized photovoltaic devices - Google Patents

Production line module for forming multiple sized photovoltaic devices Download PDF

Info

Publication number
TW200919761A
TW200919761A TW097133226A TW97133226A TW200919761A TW 200919761 A TW200919761 A TW 200919761A TW 097133226 A TW097133226 A TW 097133226A TW 97133226 A TW97133226 A TW 97133226A TW 200919761 A TW200919761 A TW 200919761A
Authority
TW
Taiwan
Prior art keywords
substrate
solar cell
module
line
dividing
Prior art date
Application number
TW097133226A
Other languages
Chinese (zh)
Inventor
Robert Z Bachrach
Yong-Kee Chae
Soo-Young Choi
Vries Nicholas G J De
Yacov Elgar
Eric A Englhardt
Michel R Frei
Charles Gay
Parris Hawkins
Choi Gene Ho
James Craig Hunter
Penchala N Kankanala
Liwei Li
Wing Hoo Hendrick Lo
Danny Cam Toan Lu
Fang Mei
Stephen P Murphy
Srujal Steve Patel
Matthew J B Saunders
Asaf Schlezinger
Shuran Sheng
Tzay-Fa Jeff Su
Jeffrey S Sullivan
David Tanner
Teresa Trowbridge
Brice Walker
John M White
Tae K Won
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200919761A publication Critical patent/TW200919761A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention generally relates to a sectioning module positioned within an automated solar cell device fabrication system. The solar cell device fabrication system is adapted to receive a single large substrate and form multiple silicon thin film solar cell devices from the single large substrate.

Description

200919761 九、發明說明: 【發明所屬之技術領域】 本發明的實施例一般涉及到用於形成多種尺寸太陽能 電池元件的生產線模組。 【先前技術】 光電(photovoltaic, PV)元件或者太陽能電池是將太 陽光轉換成直流C DC )電功率的元件。典型的薄膜型PV 元件或者薄膜太陽能電池具有一個或多個ρ-i-η接合。每 個p-i-n接合都包括ρ型層、本質層和η型層。當太陽能 電池的ρ-i-η接合暴露到太陽光(由光子的能量所構成) 時,太陽光就通過PV效應轉換成電力。太陽能電池可嵌 入到較大的太陽能陣列中。太陽能陣列可通過連接大量太 陽能電池和用特定的框架和連接器將其結合到面板上來製 造。 通常,薄膜太陽能電池包括主動區或光電轉換單元, 和設置成前電極和/或背電極的透明導電氧化物 (transparent conductive oxide, TCO)膜。光電轉換單元 包括卩型石夕層,η型碎層和爽在ρ型和η型石夕層之間的本 質型(i型)石夕層。包括微晶石夕模(microcrystalline silicon film, pc-Si)、非晶石夕膜(α-Si)、多晶石夕膜(po】y-Si)等 幾種類型的矽膜都可用於形成光電轉換單元的P型、η型、 和/或i型層。背側電極可含有一個或多個導電層。需要一 種形成具有良好介面接觸、低接觸電阻,且提供高整體電 8 200919761 元件性能之太陽能電池的改良製程。 隨著傳統能源價格的上漲,需要一種使用低成本太陽 * 能電池元件來產生電力的低成本方式。習知太陽能電池製 . 造程序是勞力密集度高且具有能影響生產線產量、太陽能 電池成本以及元件產率的多種干擾。例如,對於特定應用, 需要特定的太陽能電池元件尺寸。習知太陽能電池生產線 僅能製造單一尺寸的太陽能電池元件,或者需要顯著的停 / 機時間,以手動地轉換太陽能電池生產線製程,以合於不 同基板尺寸並製造不同尺寸的太陽能電池元件。因此,需 要一種能夠實施所有階段的製造程序,以從單一個大基板 製造多種尺寸太陽能電池元件的生產線。 【發明内容】 在本發明的實施例中,一種用於劃分太陽能電池元件 的模組包括一入口傳送器、一劃線機械裝置、一第一放置 機械裝置以及一第一致動器,該入口傳送器係建構成接收 來自一系統控制器的指令,並將一太陽能電池元件傳送到 該模組的一劃線台中,該劃線機械裝置係建構成接收來自 該糸統控制的指令’並將一圖案劃入該太陽能電池元件的 一第一表面中,該第一放置機械裝置係建構成接收來自該 系統控制器的指令,並將經劃線的太陽能電池元件精確地 放置在一第一破裂機械裝置上方,以及該第一致動器係建 構成接收來自該系統控制器的指令,並升高該第一破裂機 9 200919761 械裝置。 在本發明的另一實施例中,一種用於劃分一經部分處 理的太陽能電池元件的方法,其包括接收一具有一處理表 面的基板;在該處理表面上形成一矽層;在該處理表面上 形成該矽層之後,將該基板劃分成第一和第二區塊;以及 將該第一區塊傳送到下一站中,以進行進一步處理。 在本發明的另一實施例中,一種用於製造太陽能電池 元件的系統包括一基板接收模組、一組合工具、一背接觸 沉積室、一基板劃分模組以及一系統控制器,該基板接收 模組適於接收一基板,該組合工具具有一適於在基板的表 面上沉積一含矽層的處理室,該背面接觸沉積室係建構成 在基板的表面上沉積一背面接觸層,該基板劃分模組係建 構成將基板劃分成兩個或多個區塊,以及該系統控制器係 用於控制和協調基板接收模組、組合工具、處理室、背面 接觸沉積室以及基板劃分模組中各個的功能。 在本發明的又一實施例中,一種處理太陽能電池元件 的方法包括清洗一基板,以從該基板的表面去除一或多個 污染物;在基板表面上沉積一光吸收層;從基板之表面上 的一區域移除至少一部分的光吸收層;在基板的表面上沉 積一背面接觸層;將基板劃分成兩個或多個區塊;在該些 區塊中之一者的表面上進行一邊緣消除處理;將一背玻璃 基板接合到該些區塊中之一者的表面,以形成一複合結 構;以及將一接線盒貼附到該複合結構。 10 200919761 【實施方式】 本發明的實施例大致涉及到一種用於形成太陽能電池 元件的系統,其係使用適於在形成太陽能電池元件中進行 一個或多個製程的處理模組。在一實施例中,該系統適於 形成薄膜太陽能電池元件,其係藉由接收大的未經處理的 基板,並進行多次沉積、材料去除、清洗、劃分、接合和 測試製程,以形成多個完成的、功能性的且經測試的太陽 能電池元件,此時可將其裝載運送到終端用戶,在所需位 置處進行安裝以產生電力。在一實施例中,該系統能夠接 收單一個大的未經處理的基板,並製造多個較小太陽能電 池元件。在一實施例中,該系統能夠改變由單一個大基板 所製造的太陽能電池元件尺寸,而不需手動地移動或改變 任何系統模組。雖然以下討論主要描述了矽薄膜太陽能電 池元件的形成,但是由於在此描述的設備和方法也可用於 形成、測試和分析其他類型的太陽能電池元件’諸如瓜-V型太陽能電池、薄膜疏屬化合物(chalcogenide)太陽能電 池(例如C1GS,CdTe電池)、非晶或奈米晶矽太陽能電池、 光化學型太陽能電池(例如染料敏化型的)、晶矽太陽能電 池、有機型太陽能電池或其他相似的太陽能電池元件,因 此該結構並非旨在限制本發明的範圍。 該系統通常是用來形成由自動材料控管系統互連之太 陽能電池元件的自動處理模組和自動化設備的設置。在一 個實施例中,該系統是完全自動化的太陽能電池元件生產 線,其係設計成降低和/或消除人為互動和/或勞力密集處 11 200919761 理步驟的需求,以改善元件可靠性、製程可重複性以及形 成製程的營運成本。在一種結構中,該系統適於由單個大 基板形成多個矽薄膜太陽能電池元件,且通常包括:一適 於接收進入基板的基板接收模組、一或多個具有至少一適 於在基板處理表面上沉積含矽層之處理室的吸收層沉積組 合工具、一或多個適於在基板的處理表面上沉積背面接觸 層的背面接觸沉積室、 一或多個適於從每個基板處理表面去除材料的材料去 除室、一或多個用於將經處理基板劃分成多個較小之經處 理基板的劃分模組、太陽能電池封裝裝置,適合於加熱和 將複合太陽能電池結構暴露至較大氣壓力更大之壓力下的 熱壓處理(a u t 〇 c 1 a v e )模組、一接線盒貼附區域,以貼附 能使太陽能電池連接到外部構件的連接元件、以及一或多 個適於測試每一完全形成的太陽能電池元件並證明其合格 的品質保證模組。該一或多個品質保證模組通常包括太陽 能模擬器,參數測試模組以及分流錯接(s h u n t b u s t)和鑑定 模組(qualification module)。 第1圖示出了處理順序10 0的一個實施例,其含有多 個步驟(即步驟1 0 2 - 1 4 2 ),每一步驟都用於使用在此描述 的新穎的太陽能電池生產線2 0 0形成太陽能電池元件。處 理順序1 0 0中的結構、處理步驟數目以及處理步驟順序並 非旨在限制在此描述的本發明的範圍。第2圖是生產線2 0 0 之一實施例的平面圖,其旨在示出一些典型處理模組和通 過系統進行的處理流程,以及系統設計的其他相關方面, 12 200919761 且因而其非限制此述的本發明範圍。 總之,系統控制器2 9 0可用於控制在太陽能電池生產 ^ 線2 0 0中的一個或多個構件。該系統控制器2 9 0通常被設 - 計成利於整個太陽能電池生產線200的控制和自動化,且 通常包括··中央處理單元(CPU )(未示出),記憶體(未 示出),和支援電路(或1/0)(未示出)。CPU可以是用在 工業裝置中的任何形式電腦處理器中的一種,用於控制各 〆. 種系統功能、基板移動、室處理和支援硬體(例如,感測 器、機械手臂、馬達、燈等),並監控程序(例如基板支援 溫度,電源變數,室處理時間,I/O信號等)。記憶體連接 到CPU,且可以是一個或多個容易獲得的記憶體,諸如區 域或遠端的隨機存取記憶體(RAM )、唯讀記憶體(ROM )、 軟碟、硬碟或任何其他形式的數位記憶體。軟體指令和資 料可編碼並存儲在記憶體中用於指示C P U。支援電路也連 接到CPU用於以習知方式支援處理器。該支援電路可包括 缓存(cache)、電源、時鐘電路、輸入/輸出電路、子系統等。 •; 系統控制器2 9 0可讀的程式(或電腦指令)決定了在基板 上執行哪一項任務。較佳地,程式是系統控制器2 9 0可讀 的軟體,其包括程式碼以執行與移動、支撐和/或放置基板 的監測、執行和控制相關的任務,以及在太陽能電池生產 ' 線2 0 0中實施的各種處理方法任務和各種室處理方法步 驟。在一個實施例中,系統控制器2 9 0也含有用於局部控 制太陽能電池生產中一或多個模組的多個可編程邏輯控制 器(programmable logic controllers, PCL),和處理整個太 13 200919761 陽能電池生產線的高階策略移動、排程和運行的材料處理 系統控制器(例如PLC或標準電腦)。系統控制器、分配 控制結構以及用於此述一或多個實施例的其他系統控制結 構的實例可在美國臨時專利申請案序號No. 60/9 6 7,077中 發現,其以引用方式併入本文。 能使用繪示於第1圖中之處理順序而形成的太陽能電 池3 0 0例示以及於太陽能電池生產線2 0 0中所繪示的構件 係於第3A-3E圖中示出。第3A圖是能在下述系統中形成 和分析的單接面(single juetion)非晶或微晶梦太陽能電池 3 0 0的簡化示意圖。如第3 A圖所示,該單接面非晶或微晶 矽太陽能電池3 0 0係朝向光源或太陽輻射3 0 1定向。太陽 能電池300通常包括基板302諸如玻璃基板、聚合物基板、 金屬基板或其他合適的基板,其上形成有薄膜。在一個實 施例中,基板302是尺寸約為2200 mm X 2600 mm x 3 mm 的玻璃基板。太陽能電池300還包括在基板302上方形成 的第一透明導電氧化物(transparent conducting oxide, TCO )層3 10 (例如氧化鋅(ZnO )、氧化錫(SnO ))、在 第一 TCO層310上方形成的第一 p-i-n接合320、在第一 p-i-n接合320上形成的第二TCO層340、以及在第二TCO 層3 4 0上形成的背接觸層3 5 0。為了通過增強光捕獲提高 光吸收,基板和/或其上形成的一個或多個薄膜可選擇地通 過濕氣 '電漿、離子和/或機械處理來形成特定結構。例如, 在第3 A圖中所示出的實施例中,建構第一 TCO層3 1 0, 且沉積於其上方的後續薄膜通常採用其下的表面構形。在 14 200919761 一結構中,第一 p-i-n接合320可包括p型非晶矽層322、 形成在P型非晶矽層322上的本質型非晶矽層324、以及 形成在本質型非晶石夕層324上的η型微晶石夕層326。在一 個實例中,Ρ型非晶矽層3 2 2可形成為約6 0 Α至約3 0 0 A 之間的厚度,本質型非晶矽層324可形成為約1 5 00A和約 3 5 0 0 A之間的厚度,和η型微晶半導體層3 2 6可形成為約 1 0 0 Α至約4 0 0 Α之間的厚度。背面接觸層3 5 0可包括但不 限於一選自由Al、Ag、Ti、Cr、Au、Cu、Pt、其合金及其 組合物所構成之一群組的材料。 第3 B圖是太陽能電池3 0 0實施例的示意圖,太陽能電 池300為朝向光或太陽輻射301定向的多接面 (multi-juction)太陽能電池。太陽能電池300包括具有薄膜 形成於其上的基板3 0 2,諸如玻璃基板、聚合物基板、金 屬基板或其他合適基板。太陽能電池300還包括形成在基 板302上方的第一透明導電氧化物(TCO)層310、形成 在第一 TC0層310上的第一 p-i-n接合320、形成在第一 p-i-n接合320上的第二p-i-n接合330 '形成在第二p-i-n 接合330上的第二TCO層340,以及形成在第二TC0層 3 4 0上的背接觸層3 5 0。於第3 B圖中所示之實施例中,建 構第一 T C 0層3 1 0,且沉積在其上方的後續薄膜通常跟隨 其下方的表面構形。第一 p - i - η接合3 2 0包括ρ型非晶矽 層3 2 2、形成在ρ型非晶矽層3 2 2上的本質型非晶矽層 3 2 4、和形成在本質型非晶矽層3 2 4上的η型微晶矽層 3 2 6。在一個實例中,ρ型非晶矽層3 2 2可形成為約6 0 Α至 15 200919761 約3 00人之間的厚度,本質型非晶矽層3 24可形成為約 1 5 00A和約3500A之間的厚度,和η型微晶半導體層326 可形成為約1 00Α至约400Α之間的厚度。第二p-i-n接合 3 3 0可包括p型微晶矽層3 3 2、形成在p型微晶矽層3 3 2 上的本質型微晶矽層3 3 4、和形成在本質型微晶矽層3 3 4 上的η型非晶石夕層3 3 6。在一例示中,p型微晶石夕層3 3 2 可形成為1 0 0 Α至約4 0 0 Α之間的厚度,本質型微晶矽層 3 3 4可形成為約1 0 0 0 0 A和約3 0 0 0 0 A之間的厚度,和η型 非晶矽層3 3 6可形成為約1 0 0 Α至約5 0 0 Α之間的厚度。背 接觸層3 5 0可包括但不限於一選自由Al、Ag、Ti、Cr、Au、 Cu、Pt、其合金及其組合物所構成之一群組的材料。 第3C圖是示意性示出已在生產線200中製造之所形成 的太陽能電池3 00之背表面例示的平面圖。第3 D圖是第 3 C圖中所示之部分太陽能電池3 0 0的側截面視圖(見截面 A-A )。雖然第3 D圖示出了與第3 A圖中所述結構相似的 單接面電池的截面,但是其非旨在限制此述的本發明範圍。 如第3C和3D圖中所示,太陽能電池300可含有基板 302、太陽能電池元件部件(例如元件符號3 1 0-3 50 )、一 個或多個内部電連接(例如側面匯流排(s i d e b u s s ) 3 5 5、 交叉匯流排(cross buss) 356)、接合材料層360、背玻璃 基板3 6 1以及接線盒3 7 0。接線盒3 7 0通常含有通過側面 匯流排3 5 5和交叉匯流排3 5 6電連接到部分太陽能電池 3 0 0的兩個連接點3 7 1、3 7 2,其與背接觸層3 5 0以及太陽 能電池3 0 0的主動區電通訊。在以下討論中為了避免混淆 16 200919761 在基板3 02上特別進行的相關操作,通常將具有一或多個 沉積層(例如元件符號3 1 0 - 3 5 0 )和/或一或多個内部電連 接(例如側面匯流排3 5 5,交叉匯流排3 5 6 )設置於其上的 基板3 0 2,稱作元件基板3 0 3。相似地,已經通過接合層 3 60接合到背玻璃基板3 6 1的元件基板3 03則稱作複合太 陽能電池結構3 04。 第3E圖為太陽能電池300的示意性截面圖,其示出用 於在太陽能電池300中形成單個電池382A-382B之不同的 經劃線之區域。如第3 E圖中所示,太陽能電池3 0 0包括 透明基板302、第一 TCO層310、第一 p-i-n接合320和背 接觸層3 5 0。進行三次雷射劃線步驟,以產生溝槽3 8 1 A、 381B和381C,這通常是形成高效太陽能電池元件所需要 的。儘管在基板302上一起形成,但是單個電池382A和 3 82B通過形成在背接觸層3 5 0和第一 p-i-n接合320中的 絕緣溝槽3 8 1 C相互隔離。此外,溝槽3 8 1 B形成在第一 p-i-n 接合3 2 0中,以使背接觸層3 5 0與第一 TC O層3 1 0電接觸。 在一個實施例中,通過在沉積第一 p-i-n接合320和背接 觸層350之前,雷射劃線去除一部分第一 TC0層310,來 形成絕緣溝槽3 8 1 A。相似地,在一個實施例中,通過在沉 積背接觸層3 50之前,雷射劃線去除一部分的第一 p-i-n 接合3 2 0在第一 p - i - η接合3 2 0中形成溝槽3 8 1 B。雖然於 第3 Ε圖中示出了單接面型太陽能電池,但是該結構並非 旨在限制此述本發明的範圍。 17 200919761 一般太陽能電池形成製程順序 參考第1和2圖,製程順序1 0 0通常始於步驟1 0 2, ' 該步驟中將基板3 0 2裝載到在太陽能電池生產線2 0 0中的 . 裝載模組202中。在一個實施例中,以「原始」的狀態接 收基板3 0 2,這種狀態下基板3 02的邊緣、整體尺寸和/或 清潔(c 1 e a η 1 i n e s s )未經良好地控制。接收「原始」基板 3 0 2降低了在形成太陽能元件之前準備和存儲基板3 0 2的 / . 成本,且由此降低了太陽能電池元件成本,設備成本以及 最終形成之太陽能電池元件的製造成本。但是’通常’在 步驟102中「原始」基板被接收到系統中之前,接收已有 沉積在基板3 02表面上之透明導電氧化物(TC Ο )層(例 如第一 T C Ο層3 1 0 )的「原始」基板3 0 2是有利的。如果 導電層(諸如TCO層)未沉積在「原始」基板表面上,那麼 需要在基板3 0 2表面上進行以下將討論的前接觸沉積步驟 (步驟1 0 7 )。 在一個實施例中,以相繼的方式將基板3 02或3 03裝 C i 載到太陽能電池生產線200中,且由此不使用晶舟盒或批 次形式的基板裝載系統。在製程順序中移動到下一步驟之 前,需基板自晶舟盒卸載、經處理以及之後送回到晶舟盒 之晶舟盒形式和/或批次裝載類型的系統,其耗費時間,且 ' 降低了太陽能電池生產線產量。批次處理的使用不利於本 發明的某些實施例,諸如由單個基板製造多個太陽能電池 元件。此外,使用批次形式處理順序一般會妨礙通過生產 線之基板的非同步流動(asynchronous flow)的使用’而基 18 200919761 板的非同步流動被認為在穩定狀態處理期間,以及當一個 或多個模组為了維修或者因錯誤條件而關閉時,可提供改 善的基板產量。通常,當一個或多個處理模組因維修而關 閉時’或者甚至在正常操作期間,由於排序和裝载基板需 要相當顯著的額外時間’因此批次或者晶舟盒為主的方案 不能實現此述的生產線的產量。 在下一步驟(步驟1 04)中’製備基板302的表面以防止 在稍後製程中的產率問題。在步驟1 〇4的一個實施例中, 將基板插入到用於製備基板302或303邊緣的前端基板接 合模組204中’以降低損壞,諸如在後續處理期間發生破 裂或產生顆粒的可能性。對基板3 02或3 03的損傷會影響 元件產率以及製造可用太陽能電池元件的成本。在_個實 施例中’前端接合模組2 0 4用於磨圓或者斜切(b e v e丨)基板 3 0 2或3 0 3的邊緣。在一個實施例中,金剛石摻結帶 (diamond impregnated belt)或盤用於自基板 3 02 或 3 03 的邊緣研磨材料。在另一實施例中,磨輪、噴砂或者雷射 剝蝕技術用於從基板3 02或3 0 3邊緣去除材料。 接下來,將基板302或303傳送到清洗模組206,其 中在基板302或303上進行步驟106或基板清洗步驟,以 去除從其表面上發現的任何污染物。一般污染物可包括在 基板形成製程(例如玻璃製造製程)期間,和/或裝運或存 儲基板302或3 03期間’沉積在基板302或303上的材料。 通常,清洗模組2 0 6使用濕式化學洗滌和清洗步驟以去除 任何不要的污染物。 19 200919761 在一個例示中,可進行如下的清洗基板3 02或3 03的 處理。首先,基板302或303從傳輸台或者自動裝置281 • 進入到清洗模組2 0 6的污染物去除區。通常,系統控制器 2 9 0為進入到清洗模組2 〇 6的每個基板3 0 2設立計時。污 染物去除區利用乾的圓柱形刷結合真空系統,以從基板 302的表面移走並提取出污染物。接下來,在清洗模組206 中的傳送器將基板3 0 2或3 0 3傳輸到預清洗區,於此處喷 (t 灑管將溫度例如是5 0 °C的熱DI水,從DI水加熱器施放到 基板3 02或3 03表面上。通常,由於元件基板3 03具有設 置於其上的TCO層,且由於TCO層通常是電子吸收材料, 因此DI水用以避免可能污染物的任何痕跡以及TCO層的 離子化。接下來,經清洗的基板3 0 2、3 0 3進入沖洗區。在 沖洗區中’基板3 0 2或3 0 3用刷子(例如貝綸)和熱水進 行濕式清洗。在一些情況下,清潔劑(例如AlconoxTM、 Citrajet丁M、DetojetTM、TranseneTM、和 Basic HTM)、表面 活性劑、p H調節劑以及其他清洗化學試劑可用於從基板表 C; 面清洗和去除不要的污染物和顆粒。水再循環系統再循環 熱的水流。接下來’在清洗模組2 0 6的最後清洗區中,在 環境溫度下用水清洗基板3 0 2或3 0 3以去除污染物的任何 痕跡。最後,在乾燥區中’使用鼓風機用熱空氣乾燥基板 " 3 02或3 03。在一種結構中,在完成乾燥製程之後,使用去 離子棒(deionization bar )以從基板3〇2或3 03去除電荷。 在接下來的步驟、或步驟1 〇 8中,個別的電池通過劃 線處理相互電隔離。在TCO表面和/或裸玻璃表面上的污 20 200919761 染物顆粒能夠干擾劃線程序。在雷射劃線中,例如,如果 雷射光束穿過該顆粒,則其不能劃出連續的線,且將導致 電池之間的短路。此外,在劃線之後存在於電池的經劃線 圖案和/或TCO上的任何顆粒碎片,都會引起分流和層之 間的不均勻性。因此,通常需要充分限定且充分維持的製 程,以確保在整個製造製程中去除了污染物。在一個實施 例中,清洗模組206可從位於加州Santa Clara市的應用材 料股份有限公司的能源和環境解決部門獲得。 參考第1和2圖,在一個實施例中,在進行步驟1 0 8 之前,將基板3 02傳輸到前端處理模組(第2圖中未示出), 其中在基板302上進行前接觸形成製程或步驟107。在一 個實施例中,前端處理模組與以下討論的處理模組2 1 8相 似。在步驟1 0 7中,一個或多個基板前接觸形成步驟包括 一個或多個製備、蝕刻和/或材料沉積步驟,其用於在裸太 陽能電池基板3 02上形成前接觸區域。在一個實施例中, 步驟107通常包括一個或多個PVD步驟,其用於在基板 3 0 2的表面上形成前接觸區域。在一個實施例中,前接觸 區含有透明導電氧化物(TCO )層,其可含有選自由鋅 (Zn)、I呂(A1)、銦(In)、和錫(Sn)所構成之一群組的 金屬元素。在一個實例中,氧化鋅(ZnO )用於形成至少 一部分的前接觸層。在一個實施例中,前端處理模組是 ATONtm PVD 5.7工具,可從加州Santa Clara市的應用材 料股份有限公司獲得,於其中進行一個或多個處理步驟, 以沉積前接觸形成臺階。在另一個實施例中,一個或多個 21 200919761 CVD步驟用於在基板302表面上形成前接觸區域。 接下來’將元件基板3 0 3傳輸到劃線模組2 〇 8, 具中 在元件基板3 0 3上進行步驟1 〇 8或者前接觸隔離步 將元件基板303的不同區域相互電隔離。在步驟1〇8中 通過使用材料去除步驟(諸如雷射剝蝕處理),從元 基板 3 03表面去除材料。步驟108的成功標準是實現良 野的電 池-電池和電池-邊緣隔離,同時最小化劃線面 & 個 實施例中’使用鈥:鈒酸鹽(Nd:YV〇4)雷射源從 1干基板 3 03表面剝蝕材料,以形成使元件基板3〇3的一區域和 一區域電隔離的線。在一個實施例中,在步驟i 〇 Μ間使 用的雷射劃線製程使用1 〇 6 4 n m波長脈衝雷射,以圖案化 在基板302上積的材料以隔離構成太陽能電池的每 一個單獨電池(例如參考電池3 82A和3 82B)。在—個實 施例中,使用從位於加州Santa Clara市的應用材料股份有 限公司獲得的5 7m2基板雷射劃線模組,以提供簡單可靠 的光學元件和基板運動,用於精確電隔離元件基板303表 面的區Μ。tV ϋ , ^ , 在另一個實施例中’使用水喷射切割工具或金 岡1J石查1丨@ '·' 以隔離元件基板303表面上的各個區域。在一 態樣令,备μ 望通過使用有效溫度控制硬艘纟且件,確保進入 劃線模紐9HQ - ' 。 之元件基板3 0 3的溫度是在從約2 〇 至約2 6 C之間餘閱 内的溫度’該溫度控制硬體組件含有電阻加熱 器和/或;^ β " 1 ρ構件(例如熱交換器’熱電元件)。在一個實 施例中,备沙 。 听望將元件基板303的溫度控制在至約25 + /_〇 5 22 200919761 接下來,將元件基板3 0 3傳輪到清洗模組2 1 〇,其中 在進行了電池隔離步驟(步驟108)之後,在元件基板303 上進行步驟1 1 〇或預沉積基板清洗步驟,以去除在元件基 板3 0 3表面上發現的任何污染物。通常,在進行電池隔離 步驟之後’清洗模組2 1 0使用濕式化學洗滌和清洗步驟, 以去除在元件基板3 0 3表面上所發現的任何不要的污染 物。在一個實施例中,在元件基板3 〇 3上進行與上文步驟 1 0 6中所述之處理相似的清洗處理’以去除元件基板3 〇 3 表面上的任何污染物。 接下來’將元件基板3 0 3傳輸到處理模組2丨2,於其 中在元件基板3 0 3上進行包括一個或多個光吸收劑 (photoabsorber)沉積步驟的步驟U2。在步驟112中,一個 或多個光吸收劑沉積步驟可包括一個或多個製備、蝕刻和/ 或材料沉積步驟,其可用於形成太陽能電池元件的各個區 域。步驟112通常包括一系列的子處理步驟,其用於形成 一個或多個PM-η接合。在一個實施例中,一個或多個p_i_n 接合包括非晶矽和/或微晶矽材料。通常,一個或多個處理 步驟在處理模組212中所取珀从 . Α Λ T W知現的一個或多個組合工具(例 如組合工具2 1 2 A - 2 1 2 D ) Φ推> J中進订’以形成在元件基板303 上所形成之太陽能電池元株„ 电凡件中的一層或多層。在一個實施 例中,在將元件基板3 0 3傳給&丨^人 1寻输到組合工具212A-212D中的 (accumulator) 2 1 2A 元件係形成為包括多個 接面(tandem junction 一或多者之前’將其傳輸到儲存器 在一個實施例中’如果太陽能電池 接面’諸如第3B圖中示出的堆疊式 23 200919761 太陽能電池3 0 0,則在處理模組2 1 2中的組合工具2 1 2 A適 合於形成第一 ρ-ί-η接合320,而組合工具212B-212D被 建構成形成第二p-i-n接合3 3 0。關於用以沉積p-i-n接合 中一層或多層的硬體和處理方法之資訊在2008年7月23 曰提交的美國專利申請序號No.12/178,289〔代理人案號# APPM 11709.P3〕和2008年7月9曰提交的美國專利申請 序號Ν〇·12/170,387〔代理人案號#APPM 11710〕中有進 一步描述,在此通過引用方式將二者併入本文。 在處理順序1 0 0的一個實施例中,在進行了步驟1 1 2 之後,進行冷卻步驟或者步驟113。冷卻步驟通常用於穩 定元件基板3 0 3的溫度’以確保隨後.處理步驟中每個元件 基板3 0 3所經歷的處理條件是可重複的。通常,退出處理 模組212之元件基板303的溫度可在攝氏溫度上有多度的 變化,且超出溫度50。(:,這會引起隨後處理步驟和太陽能 電池性能的變化。 在一個貫施例中 之基板支撐位置的一個或多個中,進行冷卻步驟丨13。在 生產線的一結構中,如第2圖中所示,經處理的元件基板 303係設置在儲存器211B的一者中達一段所需時間,以控 制元件基板303的溫度。在一個實施例中,在通過生產線 繼續下游步驟之前’系統控制器290用於通過儲存器 控制元件基板303的放置、計時和移動,以控制元件基板 3 0 3的溫度。 接下來,將元件基板3 03傳輸到劃線模組214,於其 24 200919761 中在元件基板 元件基板3 0 3 通過使用材料 3 03表面去除. (Nd:YV〇4 ) 陽能電池和下 應用材料股份 以進行精確的 間進行的雷射 化沉積在元件 池3 00的單個 通過使用雷射 3 8 1 B。在另一 線’以隔離太 希望通過使用 2 1 4之元件基 圍内的溫度, 卻構件(例如 望將元件基板 於一個實 劃線模組2 1 4 儲存器2 1 1 C 1 至2 1 8,和/或 關閉或者不能 303上進行步驟114或互連形成步驟以將 表面的各個區域彼此電隔離。在牛跑^ 夕驟114中, 去除步驟(諸如雷射剝蝕製程),你_ w上 夂疋件基扳 材料。在—個實施例中’使用敍·執酸鹽 雷射源自基板表面剝蝕材料,以 %成將一太 一個電隔離的線。在一個實施例中,使用從 有限公司獲得的5.7m2基板雷射劃線模組攸 劃線製程。在一個實施例中,名也 长步驟1 0 8期 劃線製程使用532nm波長脈衝雷射,以圖案 基板3 03上的材料,從而隔離構成太陽能電 電池。如第則中所示,卜個實施:中, 劃線製程在第一 p-i-n接合中形成溝槽200919761 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention generally relate to a production line module for forming solar cell components of various sizes. [Prior Art] Photovoltaic (PV) components or solar cells are components that convert sunlight into DC C DC electrical power. A typical thin film PV element or thin film solar cell has one or more p-i-n junctions. Each p-i-n junction includes a p-type layer, an intrinsic layer, and an n-type layer. When the ρ-i-η junction of a solar cell is exposed to sunlight (consisting of the energy of a photon), sunlight is converted into electricity by the PV effect. Solar cells can be embedded in larger solar arrays. Solar arrays can be fabricated by attaching a large number of solar cells and bonding them to a panel with specific frames and connectors. Generally, a thin film solar cell includes an active region or a photoelectric conversion unit, and a transparent conductive oxide (TCO) film provided as a front electrode and/or a back electrode. The photoelectric conversion unit includes a 石-type 夕 layer, an η-type fragment layer, and an intrinsic type (i-type) sap layer between the p-type and the η-type sap. Several types of ruthenium films, including microcrystalline silicon film (pc-Si), amorphous australis (α-Si), and polycrystalline cation (po) y-Si, can be used to form P-type, n-type, and/or i-type layers of the photoelectric conversion unit. The backside electrode can contain one or more conductive layers. There is a need for an improved process for forming a solar cell that has good interface contact, low contact resistance, and provides high overall performance. As traditional energy prices rise, there is a need for a low-cost way to generate electricity using low-cost solar cells. Conventional solar cell systems. The process is labor intensive and has a variety of interferences that can affect line production, solar cell cost, and component yield. For example, for a particular application, a particular solar cell component size is required. Conventional solar cell production lines can only manufacture single-sized solar cell components, or require significant downtime to manually convert the solar cell production line process to fit different substrate sizes and fabricate solar cell components of different sizes. Therefore, there is a need for a manufacturing process capable of implementing all stages to produce a production line of solar cell components of a plurality of sizes from a single large substrate. SUMMARY OF THE INVENTION In an embodiment of the invention, a module for dividing a solar cell component includes an inlet conveyor, a scribing mechanism, a first placement mechanism, and a first actuator, the inlet The transmitter is configured to receive an instruction from a system controller and to transmit a solar cell component to a scribe line of the module, the scribe mechanism being configured to receive an instruction from the control unit and a pattern is drawn into a first surface of the solar cell component, the first placement mechanism is configured to receive an instruction from the system controller and accurately position the lined solar cell component in a first crack Above the mechanism, and the first actuator is configured to receive an instruction from the system controller and raise the first rupture machine 9 200919761. In another embodiment of the present invention, a method for dividing a partially processed solar cell component, comprising: receiving a substrate having a processing surface; forming a germanium layer on the processing surface; After forming the germanium layer, the substrate is divided into first and second blocks; and the first block is transferred to the next station for further processing. In another embodiment of the present invention, a system for manufacturing a solar cell component includes a substrate receiving module, a combination tool, a back contact deposition chamber, a substrate dividing module, and a system controller, the substrate receiving The module is adapted to receive a substrate, the combination tool having a processing chamber adapted to deposit a germanium-containing layer on a surface of the substrate, the back contact deposition chamber being configured to deposit a back contact layer on the surface of the substrate, the substrate The partitioning module is constructed to divide the substrate into two or more blocks, and the system controller is used for controlling and coordinating the substrate receiving module, the combination tool, the processing chamber, the back contact deposition chamber, and the substrate dividing module. Various functions. In still another embodiment of the present invention, a method of processing a solar cell component includes cleaning a substrate to remove one or more contaminants from a surface of the substrate; depositing a light absorbing layer on the surface of the substrate; Removing an area of at least a portion of the light absorbing layer; depositing a back contact layer on the surface of the substrate; dividing the substrate into two or more blocks; performing a surface on one of the blocks An edge removal process; bonding a back glass substrate to a surface of one of the blocks to form a composite structure; and attaching a junction box to the composite structure. 10 200919761 [Embodiment] Embodiments of the present invention generally relate to a system for forming a solar cell element using a processing module suitable for performing one or more processes in forming a solar cell element. In one embodiment, the system is adapted to form a thin film solar cell component by receiving a large unprocessed substrate and performing multiple deposition, material removal, cleaning, partitioning, bonding, and testing processes to form multiple A completed, functional, and tested solar cell component can now be loaded and transported to an end user for installation at the desired location to generate electricity. In one embodiment, the system is capable of receiving a single large unprocessed substrate and fabricating a plurality of smaller solar cell components. In one embodiment, the system is capable of varying the size of solar cell components fabricated from a single large substrate without the need to manually move or change any of the system modules. Although the following discussion primarily describes the formation of tantalum thin film solar cell components, the apparatus and methods described herein can also be used to form, test, and analyze other types of solar cell components such as melon-V solar cells, thin film submerged compounds. (chalcogenide) solar cells (eg C1GS, CdTe cells), amorphous or nanocrystalline solar cells, photochemical solar cells (eg dye-sensitized), wafer solar cells, organic solar cells or other similar Solar cell components are therefore not intended to limit the scope of the invention. The system is typically used to form automated processing modules and automation equipment for solar cells that are interconnected by an automated material handling system. In one embodiment, the system is a fully automated solar cell component production line designed to reduce and/or eliminate the need for human interaction and/or labor intensive steps to improve component reliability and process repeatability. Sexuality and the operating costs of forming a process. In one configuration, the system is adapted to form a plurality of tantalum thin film solar cell elements from a single large substrate, and generally includes: a substrate receiving module adapted to receive the incoming substrate, one or more having at least one suitable for processing in the substrate An absorbing layer deposition assembly tool for depositing a processing chamber containing a ruthenium layer on the surface, one or more back contact deposition chambers adapted to deposit a back contact layer on the processing surface of the substrate, one or more suitable for processing the surface from each substrate a material removal chamber for removing material, one or more partitioning modules for dividing the processed substrate into a plurality of smaller processed substrates, a solar cell packaging device suitable for heating and exposing the composite solar cell structure to a relatively high pressure A hot-pressed (aut 〇c 1 ave ) module under pressure, a junction box attachment area for attaching a connecting element that enables the solar cell to be connected to an external component, and one or more suitable for testing Each fully formed solar cell component demonstrates its qualified quality assurance module. The one or more quality assurance modules typically include a solar energy simulator, a parametric test module, and a shunt fault (s h u n t b u s t) and a qualification module. Figure 1 shows an embodiment of a processing sequence 100 comprising a plurality of steps (i.e., steps 1 0 2 - 1 4 2 ), each step for using the novel solar cell production line 20 described herein. 0 forms a solar cell element. The structure, the number of processing steps, and the order of processing steps in the processing sequence 1000 are not intended to limit the scope of the invention described herein. 2 is a plan view of one embodiment of a production line 200, which is intended to illustrate some typical processing modules and process flows through the system, as well as other related aspects of system design, 12 200919761 and thus without limitation The scope of the invention. In summary, system controller 290 can be used to control one or more components in solar cell production line 200. The system controller 290 is typically designed to facilitate control and automation of the entire solar cell production line 200, and typically includes a central processing unit (CPU) (not shown), memory (not shown), and Support circuit (or 1/0) (not shown). The CPU can be one of any type of computer processor used in industrial devices for controlling various system functions, substrate movement, chamber processing, and supporting hardware (eg, sensors, robots, motors, lights) Etc.), and monitor programs (such as substrate support temperature, power supply variables, room processing time, I / O signals, etc.). The memory is connected to the CPU and can be one or more readily available memory such as regional or remote random access memory (RAM), read only memory (ROM), floppy disk, hard drive or any other Form of digital memory. Software instructions and information can be encoded and stored in memory to indicate C P U. The support circuit is also connected to the CPU for supporting the processor in a conventional manner. The support circuit can include a cache, a power supply, a clock circuit, an input/output circuit, a subsystem, and the like. • The program (or computer command) readable by the System Controller 290 determines which task is performed on the base unit. Preferably, the program is a software readable by the system controller 2000, which includes code to perform tasks related to monitoring, performing, and controlling the movement, support, and/or placement of the substrate, and in the solar cell production line 2 Various processing method tasks and various chamber processing method steps implemented in 0 0. In one embodiment, the system controller 900 also includes a plurality of programmable logic controllers (PCLs) for locally controlling one or more modules in solar cell production, and processing the entire tera 13 200919761 A high-end strategy for moving, scheduling, and operating material handling system controllers (such as PLCs or standard computers) on the solar cell production line. Examples of system controllers, distribution control structures, and other system control structures for one or more of the embodiments described herein can be found in U.S. Provisional Patent Application Serial No. 60/9, 6, 077, incorporated herein by reference. . The solar cell 300 shown in the processing sequence shown in Fig. 1 and the components shown in the solar cell production line 2000 are shown in Figs. 3A-3E. Figure 3A is a simplified schematic of a single junction amorphous or microcrystalline solar cell 300 that can be formed and analyzed in the system described below. As shown in Fig. 3A, the single junction amorphous or microcrystalline solar cell 300 is oriented toward the source or solar radiation 310. The solar cell 300 typically includes a substrate 302 such as a glass substrate, a polymer substrate, a metal substrate, or other suitable substrate having a thin film formed thereon. In one embodiment, substrate 302 is a glass substrate having a size of approximately 2200 mm X 2600 mm x 3 mm. The solar cell 300 further includes a first transparent conducting oxide (TCO) layer 3 10 (eg, zinc oxide (ZnO), tin oxide (SnO)) formed over the substrate 302, formed over the first TCO layer 310. A first pin bond 320, a second TCO layer 340 formed on the first pin bond 320, and a back contact layer 350 formed on the second TCO layer 300. In order to enhance light absorption by enhancing light trapping, the substrate and/or one or more of the films formed thereon may alternatively be formed into a particular structure by moisture 'plasma, ion and/or mechanical processing. For example, in the embodiment illustrated in Figure 3A, the first TCO layer 310 is constructed and the subsequent film deposited thereon generally employs a surface configuration thereunder. In a structure of 14 200919761, the first pin bond 320 may include a p-type amorphous germanium layer 322, an intrinsic amorphous germanium layer 324 formed on the p-type amorphous germanium layer 322, and an intrinsic amorphous rock eve An n-type microcrystalline layer 326 on layer 324. In one example, the germanium-type amorphous germanium layer 32 can be formed to a thickness of between about 60 Å and about 30,000 A, and the intrinsic amorphous germanium layer 324 can be formed to be about 1,500 Å and about 3 5 The thickness between 0 0 A, and the n-type microcrystalline semiconductor layer 3 2 6 may be formed to a thickness of between about 100 Å and about 4,000 Å. The back contact layer 350 may include, but is not limited to, a material selected from the group consisting of Al, Ag, Ti, Cr, Au, Cu, Pt, alloys thereof, and combinations thereof. Figure 3B is a schematic illustration of an embodiment of a solar cell 300 that is a multi-juction solar cell oriented toward light or solar radiation 301. The solar cell 300 includes a substrate 306 having a thin film formed thereon, such as a glass substrate, a polymer substrate, a metal substrate, or other suitable substrate. The solar cell 300 further includes a first transparent conductive oxide (TCO) layer 310 formed over the substrate 302, a first pin bond 320 formed on the first TC0 layer 310, and a second pin formed on the first pin bond 320. Bonding 330' forms a second TCO layer 340 on the second pin bond 330, and a back contact layer 350 on the second TC0 layer 340. In the embodiment illustrated in Figure 3B, the first T C 0 layer 3 10 is constructed and the subsequent film deposited thereon generally follows the surface configuration beneath it. The first p - i - η junction 3 2 0 includes a p-type amorphous germanium layer 3 2 2, an intrinsic amorphous germanium layer 3 2 4 formed on the p-type amorphous germanium layer 32 2, and is formed in an intrinsic type The n-type microcrystalline germanium layer on the amorphous germanium layer 3 2 4 is 3 2 6 . In one example, the p-type amorphous germanium layer 32 2 can be formed to a thickness of between about 30,000 Å and about 15 2009 1976, and the intrinsic amorphous germanium layer 3 24 can be formed to be about 1,500 Å and about The thickness between 3500A, and the n-type microcrystalline semiconductor layer 326 may be formed to a thickness of between about 100 Å and about 400 Å. The second pin bonding 3 30 may include a p-type microcrystalline germanium layer 3 3 2, an intrinsic microcrystalline germanium layer 3 3 4 formed on the p-type microcrystalline germanium layer 3 3 2 , and an intrinsic microcrystalline germanium formed thereon. The n-type amorphous slab layer 3 3 6 on layer 3 3 4 . In an example, the p-type microcrystalline layer 3 3 2 may be formed to a thickness between 100 Å and about 4,000 Å, and the intrinsic microcrystalline 3 layer 3 3 4 may be formed to be about 1 0 0 0 The thickness between 0 A and about 3 0 0 0 A, and the n-type amorphous germanium layer 3 3 6 may be formed to a thickness of between about 100 Å and about 5,000 Å. The back contact layer 350 can include, but is not limited to, a material selected from the group consisting of Al, Ag, Ti, Cr, Au, Cu, Pt, alloys thereof, and combinations thereof. Fig. 3C is a plan view schematically showing the back surface of the solar cell 300 which has been fabricated in the production line 200. Figure 3D is a side cross-sectional view of a portion of the solar cell 300 shown in Figure 3C (see section A-A). Although Figure 3D shows a cross section of a single junction cell similar to that described in Figure 3A, it is not intended to limit the scope of the invention as described herein. As shown in Figures 3C and 3D, solar cell 300 can include substrate 302, solar cell component components (e.g., component symbols 3 1 0-3 50 ), one or more internal electrical connections (eg, side buss 3 ) 5 5. Cross buss 356), bonding material layer 360, back glass substrate 361, and junction box 370. The junction box 370 generally has two connection points 3 7 1 , 3 7 2 which are electrically connected to the partial solar cell 300 via the side busbars 355 and the crossbars 3 5 6 , which are in contact with the back contact layer 3 5 0 and active area communication of solar cell 300. In the following discussion, in order to avoid confusion, the related operations specifically performed on the substrate 301 of 200919761 will typically have one or more deposited layers (eg, component symbols 3 1 0 - 3 5 0 ) and/or one or more internal The substrate 3 0 2 on which the connection (for example, the side bus bar 3 5 5 and the cross bus bar 3 5 6 ) is disposed is referred to as an element substrate 303. Similarly, the element substrate 303 which has been bonded to the back glass substrate 361 by the bonding layer 3 60 is referred to as a composite solar cell structure 304. Figure 3E is a schematic cross-sectional view of solar cell 300 showing the different scribed regions used to form individual cells 382A-382B in solar cell 300. As shown in Fig. 3E, the solar cell 300 includes a transparent substrate 302, a first TCO layer 310, a first p-i-n junction 320, and a back contact layer 350. Three laser scribing steps are performed to create trenches 3 8 1 A, 381B, and 381C, which are typically required to form high efficiency solar cell components. Although formed together on the substrate 302, the individual cells 382A and 382B are isolated from each other by the insulating trenches 38 1 C formed in the back contact layer 350 and the first p-i-n junction 320. Further, a trench 3 8 1 B is formed in the first p-i-n junction 320 to electrically contact the back contact layer 350 with the first TC O layer 310. In one embodiment, the insulating trenches 38 1 A are formed by removing a portion of the first TC0 layer 310 by laser scribing prior to depositing the first p-i-n bond 320 and the back contact layer 350. Similarly, in one embodiment, the trench 3 is removed in the first p - i - η junction 3 2 0 by removing a portion of the first pin bond 3 2 0 before depositing the back contact layer 350 8 1 B. Although a single junction solar cell is shown in Figure 3, this configuration is not intended to limit the scope of the invention as described. 17 200919761 General solar cell formation process sequence Referring to Figures 1 and 2, the process sequence 1 0 0 usually begins in step 1 0 2, 'In this step, the substrate 3 0 2 is loaded into the solar cell production line 2000. Loading In module 202. In one embodiment, the substrate 3 0 2 is received in a "raw" state in which the edge, overall size and/or cleaning (c 1 e a η 1 i n e s s ) of the substrate 302 are not well controlled. Receiving the "raw" substrate 3 0 2 reduces the cost of preparing and storing the substrate 3 0 2 before forming the solar element, and thereby reducing the cost of the solar cell element, the cost of the device, and the manufacturing cost of the finally formed solar cell element. But 'generally' receives a layer of transparent conductive oxide (TC Ο ) already deposited on the surface of substrate 302 (eg, first TC layer 3 1 0 ) before the "raw" substrate is received into the system in step 102. The "raw" substrate 300 is advantageous. If a conductive layer (such as a TCO layer) is not deposited on the "original" substrate surface, then a front contact deposition step (step 107), which will be discussed below, is performed on the surface of the substrate 306. In one embodiment, the substrate 302 or 03 is loaded into the solar cell production line 200 in a sequential manner, and thus the wafer loading system in the form of a wafer cassette or batch is not used. Before moving to the next step in the process sequence, the substrate is unloaded from the boat box, processed, and then returned to the wafer cassette form and/or batch loading type of the system, which is time consuming and ' Reduced production of solar cell production lines. The use of batch processing is detrimental to certain embodiments of the invention, such as fabricating a plurality of solar cell elements from a single substrate. In addition, the use of batch form processing sequences generally hinders the use of asynchronous flow through the substrate of the production line' while the non-synchronous flow of the base 18 200919761 plate is considered during steady state processing, and when one or more modes Improved substrate yield can be provided when the group is shut down for repair or due to fault conditions. Typically, when one or more processing modules are shut down due to maintenance 'or even during normal operation, there is a significant additional time required to sort and load the substrate', so batch or wafer box-based solutions cannot achieve this. The production line of the production line. The surface of the substrate 302 was prepared in the next step (step 104) to prevent yield problems in a later process. In one embodiment of step 1 〇 4, the substrate is inserted into the front end substrate assembly module 204 for preparing the edge of the substrate 302 or 303 to reduce damage, such as the possibility of cracking or particle formation during subsequent processing. Damage to the substrate 03 or 03 can affect component yield and the cost of manufacturing available solar cell components. In the embodiment, the front end joint module 220 is used for rounding or beveling (b e v e丨) the edge of the substrate 3 0 2 or 300. In one embodiment, a diamond impregnated belt or disk is used for the edge abrasive material from the substrate 03 or 03. In another embodiment, a grinding wheel, sand blasting or laser ablation technique is used to remove material from the edge of the substrate 03 or 300. Next, substrate 302 or 303 is transferred to cleaning module 206, where step 106 or substrate cleaning steps are performed on substrate 302 or 303 to remove any contaminants found on its surface. Typical contaminants can include materials deposited on substrate 302 or 303 during substrate formation processes (e.g., glass manufacturing processes), and/or during shipment or storage of substrate 302 or 303. Typically, the cleaning module 206 uses a wet chemical washing and washing step to remove any unwanted contaminants. 19 200919761 In one illustration, the following process of cleaning the substrate 032 or 303 can be performed. First, the substrate 302 or 303 enters the contaminant removal zone of the cleaning module 206 from the transfer station or robot 281. Typically, the system controller 290 sets the timing for each of the substrates 3 0 2 that enter the cleaning module 2 〇 6 . The stain removal zone utilizes a dry cylindrical brush in combination with the vacuum system to remove and extract contaminants from the surface of the substrate 302. Next, the conveyor in the cleaning module 206 transfers the substrate 3 0 2 or 3 0 3 to the pre-cleaning zone where it is sprayed (t sprinkling the temperature, for example, 50 ° C of hot DI water from DI The water heater is applied to the surface of the substrate 03 or 303. Typically, since the element substrate 303 has a TCO layer disposed thereon, and since the TCO layer is typically an electron absorbing material, DI water is used to avoid possible contaminants. Any traces and ionization of the TCO layer. Next, the cleaned substrate 3 0 2, 3 0 3 enters the rinse zone. In the rinse zone 'substrate 3 0 2 or 3 0 3 with a brush (eg Belon) and hot water Wet cleaning. In some cases, detergents (such as AlconoxTM, Citrajet D, DetojetTM, TranseneTM, and Basic HTM), surfactants, pH regulators, and other cleaning chemistries can be used to remove the substrate from the surface of the substrate; Clean and remove unwanted contaminants and particles. The water recirculation system recycles the hot water stream. Next, in the final cleaning zone of the cleaning module 206, the substrate is washed with water at ambient temperature for 3 0 2 or 3 0 3 To remove any traces of contaminants. Finally, at In the dry zone, 'Using a blower to dry the substrate with hot air" 03 or 03. In one configuration, after the drying process is completed, a deionization bar is used to remove the charge from the substrate 3〇2 or 303. In the next step, or step 1 〇8, individual cells are electrically isolated from each other by scribing. Stain on TCO surface and/or bare glass surface 200919761 Dye particles can interfere with scribing procedures. In the line, for example, if a laser beam passes through the particle, it cannot draw a continuous line and will cause a short circuit between the cells. Furthermore, a scribe line pattern and/or TCO present in the battery after scribing Any particle fragments on it can cause shunting and non-uniformity between the layers. Therefore, a well-defined and well-maintained process is often required to ensure that contaminants are removed throughout the manufacturing process. In one embodiment, the cleaning die Group 206 is available from the Energy and Environmental Solutions department of Applied Materials, Inc., located in Santa Clara, Calif. Referring to Figures 1 and 2, in one embodiment, steps are taken Prior to 1 0 8 , the substrate 302 is transferred to a front end processing module (not shown in FIG. 2), wherein a front contact forming process or step 107 is performed on the substrate 302. In one embodiment, the front end processing module and The processing module 2 1 8 discussed below is similar. In step 107, one or more substrate front contact formation steps include one or more fabrication, etching, and/or material deposition steps for use in a bare solar cell substrate The front contact area is formed on 312. In one embodiment, step 107 generally includes one or more PVD steps for forming a front contact area on the surface of the substrate 306. In one embodiment, the front contact region contains a transparent conductive oxide (TCO) layer, which may contain a group selected from the group consisting of zinc (Zn), Ilu (A1), indium (In), and tin (Sn). Set of metal elements. In one example, zinc oxide (ZnO) is used to form at least a portion of the front contact layer. In one embodiment, the front end processing module is an ATONtm PVD 5.7 tool available from Applied Materials, Inc. of Santa Clara, Calif., in which one or more processing steps are performed to form a step prior to deposition. In another embodiment, one or more of the 21 200919761 CVD steps are used to form a front contact area on the surface of the substrate 302. Next, the element substrate 303 is transferred to the scribing module 2 〇 8, and the step 1 〇 8 or the front contact isolation step is performed on the element substrate 309 to electrically isolate different regions of the element substrate 303 from each other. The material is removed from the surface of the substrate 303 by using a material removal step such as a laser ablation treatment in the step 〇8. The success criteria for step 108 is to achieve battery-battery and battery-edge isolation of Liangye while minimizing the scribe line & embodiment using '鈥: citrate (Nd: YV〇4) laser source from 1 The dry substrate 303 surface is ablated to form a line that electrically isolates a region of the element substrate 3〇3 from a region. In one embodiment, the laser scribing process used in step i uses a pulse laser of 1 〇 6 4 nm wavelength to pattern the material deposited on the substrate 302 to isolate each individual cell constituting the solar cell. (For example, refer to batteries 3 82A and 3 82B). In one embodiment, a 57 7 m2 substrate laser scribing module obtained from Applied Materials, Inc., located in Santa Clara, Calif., is used to provide simple and reliable optical components and substrate motion for precise electrically isolating component substrates. 303 surface area. tV ϋ , ^ , In another embodiment, the water jet cutting tool or the metal enamel is used to isolate the respective regions on the surface of the element substrate 303. In the same way, it is hoped that by using the effective temperature to control the hard-hull and the pieces, it is guaranteed to enter the stencil die 9HQ - '. The temperature of the component substrate 310 is a temperature between about 2 约 and about 2 6 C. The temperature control hardware component contains an electrical resistance heater and/or a ^β " 1 ρ component (for example) Heat exchanger 'thermoelectric element'. In one embodiment, sand is prepared. Listening to control the temperature of the element substrate 303 to about 25 + / _ 〇 5 22 200919761 Next, the element substrate 303 is transferred to the cleaning module 2 1 〇, in which the battery isolation step is performed (step 108) Thereafter, a step 1 1 〇 or a pre-deposit substrate cleaning step is performed on the element substrate 303 to remove any contaminants found on the surface of the element substrate 310. Typically, after the battery isolation step, the cleaning module 210 uses a wet chemical washing and cleaning step to remove any unwanted contaminants found on the surface of the element substrate 310. In one embodiment, a cleaning process similar to that described in the above step 106 is performed on the element substrate 3 〇 3 to remove any contaminants on the surface of the element substrate 3 〇 3 . Next, the element substrate 303 is transferred to the process module 2丨2, in which step U2 including one or more photoabsorber deposition steps is performed on the element substrate 303. In step 112, the one or more light absorber deposition steps can include one or more fabrication, etching, and/or material deposition steps that can be used to form various regions of the solar cell component. Step 112 typically includes a series of sub-processing steps for forming one or more PM-n junctions. In one embodiment, the one or more p_i_n junctions comprise an amorphous germanium and/or microcrystalline germanium material. Typically, one or more processing steps are taken from the processing module 212 by one or more combination tools (eg, combination tool 2 1 2 A - 2 1 2 D ) that are known to be Φ push > J The middle portion is formed to form one or more layers of the solar cell element formed on the element substrate 303. In one embodiment, the element substrate 3 0 3 is transmitted to & The accumulator 2 1 2A component that is fed into the combination tool 212A-212D is formed to include a plurality of junctions (the one or more of the tandem junctions before 'transfer to the reservoir in one embodiment' if the solar cell junction 'A stacked type 23 200919761 solar cell 300 shown in FIG. 3B, then the combination tool 2 1 2 A in the processing module 2 1 2 is adapted to form a first p-ί-η junction 320, and the combination The tools 212B-212D are constructed to form a second pin bond 330. Information regarding the hardware and processing methods used to deposit one or more layers of the pin bond is disclosed in U.S. Patent Application Serial No. 12, filed on Jul. 23, 2008. /178,289[Agent Case #APPM 11709.P3] and July 9, 2008 Further description is provided in U.S. Patent Application Serial No. 12/170,387, the entire disclosure of which is incorporated herein by reference. After step 1 1 2 is performed, a cooling step or step 113 is performed. The cooling step is generally used to stabilize the temperature of the element substrate 310 to ensure that the processing conditions experienced by each of the element substrates 300 in the subsequent processing steps are Reproducible. Typically, the temperature of the component substrate 303 exiting the processing module 212 can vary somewhat in degrees Celsius and exceed the temperature of 50. (: This causes subsequent processing steps and changes in solar cell performance. In one or more of the substrate support positions in the embodiment, a cooling step 进行13 is performed. In one structure of the production line, as shown in Fig. 2, the processed element substrate 303 is disposed in one of the reservoirs 211B. A period of time is required to control the temperature of the component substrate 303. In one embodiment, the system controller 290 is used to store by continuing the downstream step through the production line. The device controls the placement, timing, and movement of the element substrate 303 to control the temperature of the element substrate 303. Next, the element substrate 303 is transferred to the scribe line module 214, which is in the element substrate substrate 3 0 in 2009 200919761. 3 by using material 3 03 surface removal. (Nd:YV〇4) cation battery and under-application material shares for precise inter-laser deposition in the component cell 300 00 single pass using laser 3 8 1 B . In another line 'is isolated, it is desirable to use the temperature in the base of the component of 2 1 4, but the components (for example, the component substrate is in a solid scribing module 2 1 4 reservoir 2 1 1 C 1 to 2 1 8 And/or closing or failing to perform step 114 or interconnect forming steps to electrically isolate the various regions of the surface from each other. In the cow run 114, the removal step (such as a laser ablation process), you _ w夂疋 基 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The company obtained a 5.7m2 substrate laser scribing module 攸 scribing process. In one embodiment, the name is also a long-term step 108 process using a 532nm wavelength pulsed laser to pattern the material on the substrate 03. Thereby constituting the solar battery. As shown in the fourth embodiment, the scribe process forms a groove in the first pin bond.

實施例中,使用水噴射切割工 S 丹或金剛石劃 陽能電池表面上的各個區域。. ^ 在一態樣中, 有效溫度控制硬體組件,確俘 啤保進入劃線模組 板3 03的溫度是在從約2〇t至約26七之門範 該溫度控制硬體組件含有電阻加熱器和二 熱交換器、熱電元件)。在-個實施例中,希 3 0 3的溫度控制在至約2 5 + / _ 〇 . $亡。 施例中’ 1陽能電池生產·線200具有設置在 之後的至少一個儲存器2U。在製造期間, T用於提供將預備好的基板供應至接觸沉積 提供聚集區域,在這菫丄里吐紋 甘乂晨’如果接觸沉積室2 I 8 跟上劃線模組2 1 4 ίΛ太曰 , 斗的產夏’則能存儲來自處 25 200919761 理模組2 1 2的基板。於一個實施例中,通常希望監控和/ 或積極控制退出儲存器2 11 C的基板溫度,以確保背接觸 形成步驟〗20的結果可重複。在—態樣中,希望確保退出 儲存器211C或到達接觸沉積室218的基板溫度是從約2〇 C至約26 C之間範圍内的溫度。在一個實施例中,希望控 制基板溫度至約25 + /-〇.5。(:。在一個實施例中,希望設置 能保留至少約8 0個基板的一個或多個儲存器2丨丨c ^ 接下來,將凡件基板3 0 3傳輸到處理模組2丨8,於其 中在元件基板303上進行—個或多個基板#接觸形成步 驟:或步驟"8。在步驟u",一個或多個基板背接觸 形成步驟可I括用於形成太陽能電池元件之背接觸區域的 -個或多個製備、蝕刻和/或材料沉積步驟。在一個實施例 中’步驟118通常包括用於在元件基板303表面上形成背 接觸層3 50的一個或多個pVD步驟。在一個實施例中,可 使用-個或多個PVD步驟,以形成含有選自由鋅(Μ、 錫(W、銘(A1)、鋼(CU)、銀(Ag)、鎳(Ni)、和飢 V所構成之一群組之金屬層的背接觸區域。在一個實 例中,氧化鋅(Zn〇 ) + # Α Λ )或鎳釩合金(mv)用於形成至少— :=觸層3〇5。在一個實施例中,使用從位於加州 ara市的應用材料股份有限公司獲得的AT0Ntm P:D一V工具進行一個或多個處理步驟。在另一個實施例 中’-個或多個CVD步驟可用於在 成背接觸層3 5 0。 在一個實施例中 太陽能電池生產線2〇〇具有在處理 26 200919761 模組2 1 8之後設置的至少一個儲存器2丨丨。在生產期門, 储存器21 1D可用於提供將準備好的基板供應至劃線^組 22〇,和/或提供收集區,在這裏如果劃線模組22〇關閉或 者不能跟上處理模組2!8的產量’則能存儲來自處理j莫組 2U的基板。於一個實施例中,通常希望監控和/或有效控 制退出儲存器2UD的基板溫度’以確保背接觸形成步驟 120的結果可重複。在一態樣中,希望確保退出儲存器 或到達劃線模組220的基板溫度是從約2〇t至約26^之間 範圍内的溫度。在一個實施例中,希望控制基板溫度至約 25 + /-〇.5°C »在一個實施例中,希望設置能保留至少约⑽ 個基板的一個或多個儲存器2 11 C。 接下來,將元件基板303傳輸到處理模组22〇,於其 中在元件基板303上進行步驟12〇或背接觸隔離步驟,以 將基板表面上所含的多個太陽能電池相互電隔離。在步驟 1 20中’使用材料去除步驟(諸如雷射剝蝕製程),從基板 表面去除材料。在一個實施例中,使用斂:叙酸鹽 (Nd:YV〇4)雷射源從元件基板303表面剝餘材料,以形 成將一個太陽能電池和下一個電隔離的線。在一個實施例 中’使用從應用材料股份有限公司獲得的5.7m2基板雷射 劃線模組,以精確劃線元件基板3 0 3的所需區域。在一個 實施例中,步驟120期間進行的雷射劃線製程使用532nm 波長脈衝雷射’以圖案化設置在元件基板3 〇 3上的材料, 以隔離構成太陽能電池3 00的單個電池。如第3 E圖中所 示的,在一個實施例中,通過使用雷射劃線製程,將溝槽 27 200919761 381C形成在第一 p-i-n接合320和背接觸層350中。在 態樣中,希望通過使用有效溫度控制硬體組件確保進入 線模组2 2 0的元件基板溫度是在約2 0 °C至約2 6 °C之間範 内的溫度,該溫度控制硬體組件含有電阻加熱器和/或冷 構件(例如熱交換器、熱電元件)。在一個實施例中,希 控制基板溫度為約25 + /-0.5°C。 接下來,將元件基板3 0 3傳輸到品質保證模組2 2 2 於其中在元件基板3 0 3上進行步驟1 2 2或品質保證和/或 流去除步驟(shunt removal step),以確保在基板表面上 成的元件滿足所希望的品質標準,以及在一些情況下校 所形成元件中的缺陷。在步驟1 2 2中,探針元件通過使 一個或多個基板接觸探針,以用於測試所形成太陽能電 元件的品質和材料特性。在一個實施例中,品質保證模 222在太陽能電池的p-i-n接合處放出低亮度光,且使用 個或多個探針來測試電池輸出,從而確定所形成太陽能 池元件的電特性。如果模組在所形成元件中檢測到缺陷 則其採取校正動作以修復元件基板3 0 3上所形成太陽能 池中的缺陷。在一個實施例中,如果發現短路或其他相 缺陷,則希望產生基板表面上區域間的反向偏壓,以控 和/或校正太陽能電池元件的一個或多個具缺陷的形成H 域。在校正製程期間,反向偏壓通常傳輸一夠高而足以 太陽能電池中的缺陷被校正的電壓。在一個實例中,如 在元件基板3 0 3理應隔離的區域之間發現短路,則反向 壓的強度會被升高至引起隔離區域間的區域中導電元件 劃 圍 卻 望 分 形 正 用 池 组 電 電 似 制 使 果 偏 改 28 200919761 變相位、分解、或以一些方式改變的程度,以消除 電短路的強度。在製程順序1 00的一個實施例中, 證模組222和工廠自動化系統一起使用,以解決在 證測試期間在所形成的元件基板3 0 3中發現的品質 一種情況下,元件基板3 03可被送回處理順序中的 以允許在元件基板303上重新進行一個或多個製造 (例如背接觸隔離步驟(步驟1 2 0 )),以通過經處 基板3 0 3校正一個或多個品質問題。 接下來,元件基板3 03係選擇地被傳輪到基板 組2 2 4,於其中使用基板劃分步驟1 2 4將元件基板 割為多個較小元件基板3 0 3,以形成多個較小太陽 元件。在步驟124的一個實施例中,元件基板303 到基板劃分模組224中,其使用CNC玻璃切割工j 切割和劃分元件基板3 0 3,從而形成所需尺寸的太 池元件。在一個實施例中’元件基板3 0 3被插入到 組2 2 4中,其使用玻璃劃線工具以精確刻劃元件基 的表面。元件基板3 0 3接著沿著所劃的線破裂,以 成太陽能電池元件所需的希望尺寸和數量的部分。 在一個實施例中,太陽能電池生產線2 0 0適合 (步驟1〇2 )和處理5.7m2或更大的基板3 02或者 板3 03。於一個實施例中,在步驟124期間,這些 基板3 02被部分地處理且之後被劃分成四個1.4m2 基板3 0 3。在一個實施例中,系統被設計成處理大 板 303 (例如 TCO 塗覆的 2200mmx2600mmx3mm 或降低 品質保 品質保 問題。 上游, 步驟 理元件 劃分模 3 0 3切 能電池 被插入 t以精確 陽能電 切割模 .板 303 ,產生完 於接收 元件基 大面積 的元件 元件基 的玻璃) 29 200919761 並產生各種尺寸的太陽能電池元件而不需要另外的裝置或 處理步驟。目前,非晶矽(β - S丨)薄膜工廠必須具有一條 用於每一種不同尺寸太陽能電池元件的生產線。在本發明 中,製造線能快速轉換以製造不同尺寸的太陽能電池元 件。在本發明的一態樣中’製造線能通過在單個大基板上 形成太陽能電池元件’且之後劃分該基板以形成更優選尺 寸的太陽能電池,來提供高的太陽能電池元件產量,這通 常以百萬瓦/每年測量。 在生產線200的一個實施例中’線的前端(front end of the line, FEOL )(例如步驟1 02- 1 22 )被設計成處理大面積 元件基板303(例如220〇mmx2000mm ),線的後端(back end ofthe line,BEOL)被設計成進一步處理通過使用劃分製 程形成的大面積元件基板3 03或多個較小元件基板303。 在該結構中,剩餘的製造線接收並進一步處理各種尺寸。 具單一輸入而在輸出處的彈性於太陽能薄膜工業中是獨一 無二的,且在資本支出中提供顯著的節約。由於太陽能電 池元件製造商能購買較大數量的單一玻璃尺寸以製造各種 尺寸模組,因此用於輸入玻璃的材料成本也較低。 在一個實施例中,步驟1 〇 2 -1 2 2可被建構成使用適於 在大元件基板3 03 (諸如2200mmx2600mmx3mm玻璃元件基 板3 0 3)上進行製程步驟的設備’和往前的步驟1 2 4能適合 於製造各種較小尺寸太陽能電池元件,而不需要另外的設 備。在另一實施例中,步驟1 2 4被設置在步驟1 2 2之前的 製程順序200中,以便能劃分最初的大元件基板3 03,以 30 200919761 形成多個個別的太陽能電池,之後一次一個地或者成一組 的(即一次兩個或多個)對其進行測試和表徵 (characterized)。這種情況下,步驟102- 1 2 1被建構成使用 適合於在大元件基板303(諸如2200mmx2600mmx3mm破@ 基板)上實施製程步驟的設備,且往前的步驟124和122 適合於製造各種較小尺寸的模組,而不需另外的設備。以 下在標題為“基板劃分模组和製程”的部分中將呈現出示 / : 範性基板劃分模組2 2 4更詳細的描述。 參照回第1和2圖,元件基板3 0 3接下來被傳輸到封 口機(seamer)/邊緣消除模組226,於其中使用基板表面和 邊緣製備步驟126以製備元件基板303的不同表面,以防 止稍後在製程中的產率問題。在步驟1 2 6的一個實施例 中’元件基板3 0 3被插入到封口機/邊緣消除模組2 2 6中以 製備元件基板303的邊緣,從而塑形和製備元件基板303 的邊緣。元件基板3 03邊緣的損傷會影響元件產率以及製 造可用太陽能電池元件的成本。在另一實施例中,封口機/ 邊緣消除模組226用於從元件基板3 03邊緣(例如1 〇mm ) 去除所沉積材料,以提供用於在元件基板3 0 3和背侧玻璃 • 之間形成可靠密封的區域(即以下討論的步驟1 3 4 -1 3 6 )。 從元件基板3 0 3邊緣去除材料也可利於防止在最終形成的 太陽能電池中的電短路。 在—個實施例中,金剛石摻結帶用於從元件基板303 邊緣區域研磨所沉積材料。在另一實施例中,磨輪用於從 元件基板3 0 3的邊緣區域研磨所沉積材料。在另一實施例 31 200919761 令’雙磨輪用於從元件基板3 0 3邊緣去除所沉積材料。在 又一實施例中’可使用喷砂或雷射剝蝕技術以從元件基板 3 0 3邊緣去除所沉積材料。在一態樣中,封口機/邊緣消除 . 模組226用於通過使用塑形磨輪、傾斜且對準的帶式砂磨 機和/或砂輪’磨圓或斜切元件基板3 〇 3邊緣。 接下來’將元件基板303傳輸到預筛選(pre_screen) 模組228,於其中在元件基板303上進行可選的預篩選步 f . 驟128 ’以確保在基板表面上形成的元件滿足所需的品質 標準。在步驟12 8中’發光光源和探針元件用於通過使用 一個或多個基板接觸探針測試所形成的太陽能電池元件的 輸出。如果模組2 2 8在所形成元件中檢測到缺陷,則其能 多句採取校正動作或者將太陽能電池廢棄。 接下來’將元件基板3 0 3傳輪到清洗模組2 3 〇,於其 中在進行步驟122·128之後’在元件基板303上進行步驟 130或預疊層(pre-laminated)基板清洗步驟,以去除在基板 303表面上發現的任何污染物。通常,在進行所有電池隔 if 離步驟之後,清洗模組230使用濕式化學洗滌和清洗步 驟,以去除在基板表面上發現的任何不要的污染物。在— • 個實施例中,在基板303上進行與步驟丨06中所述之製程 相似的清洗製程,以去除基板303表面上的任何污染物。 . 接下來,將基板303傳輸到接合引線附加模組23 i, 於其中在基板3〇3上進行步驟131或接合引線附加步驟。 步驟13 1用於附加將各外部電構件連接至所形成的太陽能 電池元件所需的各引線/導線。通常,接合引線附加模組 32 200919761 2 3 1是自動引線接合工具,其有助於用以可靠且快速地形 成眾多互連,常需要該些互連以形成在生產線2 0 0中所形 成的大太陽能電池。 在一個實施例中,接合引線附加模組2 3 1用於在所形成的 背接觸區域上形成側匯流排3 5 5 (第3 C圖)和交又匯流排 3 5 6 (步驟1 1 8 )。該結構中,側面匯流排3 5 5可以是導電 材料,其可被固定、接合和/或熔融到在背接觸區域中發現 的背接觸層3 5 0上,以形成良好電接觸。在一個實施例中, 側面匯流排3 5 5和交叉匯流排3 5 6每一個都包括金屬帶, 諸如銅帶、鎳塗覆的銀帶、銀塗覆的鎳帶、錫塗覆的銅帶、 鎳塗覆的銅帶,或可承載由太陽能電池傳輸的電流,或者 可靠地接合到背接觸區域中金屬層的其他導電材料。在一 個實施例中,金屬帶寬在約2 m m和約1 0 m m之間,和厚度 在約1 m m和約3 m m之間。在接合處電連接到側面匯流排 3 5 5的交叉匯流排3 5 6能通過使用絕緣材料3 5 7 (諸如絕緣 帶)與太陽能電池的背接觸層電隔離。每個交叉匯流排3 5 6 的端部通常都具有一個或多個用於將側面匯流排3 5 5和交 叉引線3 5 6連接至接線盒3 70中所發現之電連接的導線, 其用於將所形成的太陽能電池連接到其他外部電構件。焊 接匯流排至薄膜太陽能模組的其他資訊在美國臨時專利申 請案序號N〇.60/967,077、美國臨時專利申請案序號 No . 6 1 /0 2 3,8 1 0和在美國臨時專利申請案序號 No.61/032,005中公開,在此通過引用方式將其併入本文。 在下一步驟、即步驟1 3 2中,製備接合材料3 6 0 (第 33 200919761 3 D圖)和背玻璃”基板3 6 1,用於傳輸到太陽能電池形 成製程(即製程順序i 〇〇 )中。製備製程通常在玻璃貯存 模組232中進行’這通常都包括材料製備模組23 2A、破璃 裝載模組2 3 2 B和玻璃清洗模組2 3 2 C。背玻璃基板3 6 1通 過使用疊層製程(以下討論的步驟134)接合到上述步驟 1〇2_步驟130中形成的元件基板3 03上。一般地,步驟132 需要製備將被設置在背玻璃基板361和元件基板3〇3上所 /儿積層之間的聚合物材料’以形成氣密性密封,從而防止 在其使用期限期間環境損害太陽能電池。參考第2圖,步 驟1 3 2通常包括一系列子步驟’其中在材料製備模組2 3 2 A 中製備接合材料36〇,此時接合材料36〇被設置在元件基 板303上方’背玻璃基板361被裝載到裝載模組232B中, 、L使用β洗模組2 3 2 C而沖洗’且背玻璃基板3 6 1被 設置在接合材料360和元件基板3 03上方。 在—個實施例中’材料製備模組232Α適合於接收薄 片形式的接奋。,Λ ( 恢。材枓3 60,且進行一次或多次切割操作,以 提供接合材料’諸如聚乙烯丁醛(polyvinyl butyral,PVB ) 者"乙稀醋7 1^. / G 歸(ethylene vinyl acetate,EVA),其尺寸 系 4乍 #破璃和在元件基板3〇3上所形成的太陽能電 池間,形成可I κ 1 & ί 、封。一般地,當使用聚合物的接合材料 360時,希望;f* & 。 二制太陽能電池生產線2 0 0的溫度(例如1 6 -1 8 °C )和相對渴厗 …度(例如RH20-22% ),於此太陽能電池生產 線200將儲在姑*In the examples, various areas on the surface of the water jet cutter S Dan or diamond solar cells are used. ^ In one aspect, the effective temperature control hardware component, the temperature of the capture of the beer into the scribing module plate 03 is in the range of from about 2 〇t to about 26 VII. The temperature control hardware component contains Resistance heater and two heat exchangers, thermoelectric elements). In one embodiment, the temperature of the Hz 3 is controlled to about 2 5 + / _ 〇 . In the embodiment, the '1 solar battery production line 200' has at least one reservoir 2U disposed thereafter. During manufacture, T is used to provide a prepared substrate to the contact deposition to provide a gathering area, in which the smear is smothered in the morning. 'If the contact deposition chamber 2 I 8 is followed by the scribing module 2 1 4 ίΛ too, The summer of the bucket can store the substrate from the 25 200919761 module 2 1 2 . In one embodiment, it is generally desirable to monitor and/or actively control the substrate temperature exiting reservoir 2 11 C to ensure that the results of back contact formation step 20 are repeatable. In the aspect, it is desirable to ensure that the temperature of the substrate exiting the reservoir 211C or reaching the contact deposition chamber 218 is a temperature ranging from about 2 〇 C to about 26 C. In one embodiment, it is desirable to control the substrate temperature to about 25 + / - 〇.5. (: In one embodiment, it is desirable to provide one or more reservoirs 2c that can retain at least about 80 substrates. Next, the workpiece substrate 300 is transferred to the processing module 2丨8, One or more substrate #contact forming steps are performed on the element substrate 303: or step " 8. In step u", one or more substrate back contact forming steps may be included for forming the back of the solar cell element One or more preparation, etching, and/or material deposition steps of the contact area. In one embodiment, 'step 118 generally includes one or more pVD steps for forming a back contact layer 350 on the surface of element substrate 303. In one embodiment, one or more PVD steps may be used to form a composition selected from the group consisting of zinc (Μ, tin (W, Ming (A1), steel (CU), silver (Ag), nickel (Ni), and The back contact area of the metal layer of a group consisting of hunger V. In one example, zinc oxide (Zn〇) + # Α Λ or nickel vanadium alloy (mv) is used to form at least — := contact layer 3〇 5. In one embodiment, obtained from Applied Materials, Inc., located in Ara, California The resulting ATNOtm P:D-V tool performs one or more processing steps. In another embodiment, one or more CVD steps can be used to form the back contact layer 350. In one embodiment, the solar cell production line 2〇〇 has at least one reservoir 2丨丨 disposed after processing 26 200919761 module 2 1 8 . In the production gate, the reservoir 21 1D can be used to supply the prepared substrate to the scribing group 22〇, And/or providing a collection area where the substrate from the processing module 2! 8 can be stored if the scribing module 22 is closed or cannot follow the yield of the processing module 2! 8. In one embodiment, it is generally desirable Monitoring and/or effective control of exiting the substrate temperature of the reservoir 2UD to ensure that the results of the back contact formation step 120 are repeatable. In one aspect, it is desirable to ensure that the substrate temperature exiting the reservoir or reaching the scribing module 220 is from about a temperature in the range between 2 〇t and about 26 。 In one embodiment, it is desirable to control the substrate temperature to about 25 + / - 〇 .5 ° C » In one embodiment, it is desirable to reserve at least about (10) One or more reservoirs of the substrate 2 11 C. Next, the element substrate 303 is transferred to the processing module 22, in which the step 12 or back contact isolation step is performed on the element substrate 303 to electrically isolate the plurality of solar cells contained on the surface of the substrate from each other. The material is removed from the surface of the substrate using a material removal step, such as a laser ablation process, in step 1200. In one embodiment, a smear:Nd:YV〇4 laser source is used from the element substrate 303. The surface is stripped of material to form a line that electrically isolates one solar cell from the next. In one embodiment, 'using a 5.7 m2 substrate laser scribing module obtained from Applied Materials, Inc. to accurately scribe the element substrate 3 0 3 required area. In one embodiment, the laser scribing process performed during step 120 uses a 532 nm wavelength pulsed laser to pattern the material disposed on the element substrate 3 〇 3 to isolate the individual cells that make up the solar cell 300. As shown in Fig. 3E, in one embodiment, trenches 27 200919761 381C are formed in first p-i-n junction 320 and back contact layer 350 by using a laser scribing process. In the aspect, it is desirable to ensure that the temperature of the component substrate entering the wire module 220 is a temperature within a range of about 20 ° C to about 26 ° C by using an effective temperature control hardware component, which controls the hard The body assembly contains an electrical resistance heater and/or a cold member (eg, a heat exchanger, a thermoelectric element). In one embodiment, the substrate temperature is controlled to be about 25 + / - 0.5 °C. Next, the component substrate 310 is transferred to the quality assurance module 2 2 2 in which the step 1 2 2 or the quality assurance and/or the shunt removal step are performed on the component substrate 310 to ensure The components formed on the surface of the substrate meet the desired quality criteria and, in some cases, the defects in the formed components. In step 122, the probe element is used to test the quality and material properties of the formed solar device by contacting one or more substrates with the probe. In one embodiment, the quality assurance module 222 emits low intensity light at the p-i-n junction of the solar cell and uses one or more probes to test the battery output to determine the electrical characteristics of the formed solar cell elements. If the module detects a defect in the formed component, it takes corrective action to repair the defect in the solar cell formed on the component substrate 300. In one embodiment, if a short or other phase defect is found, it is desirable to create a reverse bias between the regions on the surface of the substrate to control and/or correct one or more defective forming H domains of the solar cell component. During the calibration process, the reverse bias typically transmits a voltage high enough to correct defects in the solar cell. In one example, if a short circuit is found between the areas where the element substrate 310 should be isolated, the strength of the reverse voltage is raised to cause the conductive elements to be drawn in the area between the isolated areas, but the fractal pool is expected to be used. The electric-electricity-like bias causes 28 200919761 to change the phase, decompose, or change in some way to eliminate the strength of the electrical short circuit. In one embodiment of the process sequence 100, the module 222 is used with a factory automation system to address the quality found in the formed component substrate 310 during the test, the component substrate 03 Returned to the processing sequence to allow one or more fabrications (eg, back contact isolation steps (step 1 2 0)) to be performed again on the component substrate 303 to correct one or more quality issues by passing the substrate 310 . Next, the element substrate 303 is selectively transferred to the substrate group 2 2 4, wherein the substrate substrate is cut into a plurality of smaller element substrates 305 using the substrate dividing step 142 to form a plurality of smaller Solar component. In one embodiment of step 124, component substrate 303 is incorporated into substrate partitioning module 224, which uses a CNC glass cutter j to cut and divide component substrate 303 to form a sized cell component of the desired size. In one embodiment, the 'element substrate 300' is inserted into the group 2 2 4, which uses a glass scribing tool to accurately scribe the surface of the element base. The element substrate 303 is then broken along the line drawn to form the desired size and number of portions required for the solar cell component. In one embodiment, the solar cell production line 200 is suitable (step 1〇2) and processes the substrate 032 or plate 303 of 5.7 m2 or greater. In one embodiment, during step 124, the substrates 302 are partially processed and then divided into four 1.4 m2 substrates 300. In one embodiment, the system is designed to handle large plates 303 (eg TCO coated 2200mm x 2600mm x 3mm or to reduce quality and quality assurance issues. Upstream, step component division mode 3 0 3 cut energy cells are inserted t to precise solar energy Cutting die plate 303, which produces a glass element based on a large area of the receiving element base. 29 200919761 and produces solar cell elements of various sizes without the need for additional devices or processing steps. Currently, amorphous germanium (β-S丨) thin film factories must have a production line for each of the different sizes of solar cell components. In the present invention, the manufacturing line can be quickly converted to manufacture solar cell elements of different sizes. In one aspect of the invention, a 'manufacturing line can provide high solar cell component yield by forming a solar cell element on a single large substrate and then dividing the substrate to form a more preferred size solar cell, which is typically 10,000 watts per year. In one embodiment of the production line 200, the 'front end of the line (FEOL) (eg, steps 102-2 22) is designed to process a large area element substrate 303 (eg, 220 〇 mm x 2000 mm), the back end of the line The back end of the line (BEOL) is designed to further process the large-area element substrate 303 or the plurality of smaller element substrates 303 formed by using the dividing process. In this configuration, the remaining manufacturing lines receive and further process various sizes. The flexibility of having a single input at the output is unique in the solar film industry and provides significant savings in capital expenditures. Since solar cell component manufacturers can purchase a larger number of single glass sizes to make modules of various sizes, the material cost for input glass is also lower. In one embodiment, step 1 〇2 -1 2 2 can be constructed using a device adapted to perform a processing step on a large component substrate 03 (such as a 2200 mm x 2600 mm x 3 mm glass element substrate 303) and a previous step 1 2 4 can be adapted to manufacture a variety of smaller size solar cell components without the need for additional equipment. In another embodiment, step 1 2 4 is set in the process sequence 200 before step 1 2 2 so that the original large-element substrate 303 can be divided, and a plurality of individual solar cells are formed at 30 200919761, one at a time. The ground or group (ie two or more at a time) is tested and characterized. In this case, step 102-1 1 is constructed to use a device suitable for performing the process steps on the large component substrate 303 (such as 2200 mm x 2600 mm x 3 mm broken @ substrate), and the preceding steps 124 and 122 are suitable for manufacturing various smaller steps. Dimensional modules without additional equipment. A more detailed description of the / / exemplary substrate division module 2 2 4 will be presented in the section titled "Substrate Dividing Modules and Processes". Referring back to Figures 1 and 2, component substrate 303 is next transferred to a sealer/edge removal module 226 where substrate surface and edge preparation step 126 is used to prepare different surfaces of component substrate 303. Prevent productivity problems in the process later. In an embodiment of the step 126, the element substrate 303 is inserted into the sealer/edge elimination module 2 26 to prepare the edge of the element substrate 303, thereby shaping and preparing the edge of the element substrate 303. Damage to the edge of the component substrate 3 03 affects component yield and the cost of manufacturing available solar cell components. In another embodiment, the sealer/edge removal module 226 is used to remove deposited material from the edge of the component substrate 03 (eg, 1 〇mm) to provide for use on the component substrate 300 and the backside glass. A region that forms a reliable seal (ie, steps 1 3 4 -1 3 6 discussed below). Removal of material from the edge of the component substrate 310 also facilitates prevention of electrical shorts in the resulting solar cell. In one embodiment, a diamond doped ribbon is used to grind the deposited material from the edge regions of the component substrate 303. In another embodiment, a grinding wheel is used to grind the deposited material from the edge region of the component substrate 300. In another embodiment 31 200919761, the 'double grinding wheel' is used to remove the deposited material from the edge of the element substrate 300. In yet another embodiment, sandblasting or laser ablation techniques can be used to remove deposited material from the edge of the component substrate 300. In one aspect, the sealer/edge is eliminated. The module 226 is used to round or chamfer the edge of the component substrate 3 通过 3 by using a shaped grinding wheel, a slanted and aligned belt sander and/or a grinding wheel. Next, the component substrate 303 is transferred to a pre-screen module 228 where an optional pre-screening step f is performed on the component substrate 303 to ensure that the components formed on the surface of the substrate meet the requirements. Quality standards. In step 128, the illuminating light source and probe element are used to test the output of the formed solar cell element by using one or more substrate contact probes. If the module 2 28 detects a defect in the formed component, it can take corrective action or discard the solar cell in multiple sentences. Next, 'the component substrate 303 is transferred to the cleaning module 2 3 〇, after performing step 122·128, 'the step 130 or the pre-laminated substrate cleaning step is performed on the element substrate 303, To remove any contaminants found on the surface of the substrate 303. Typically, after all of the cell isolation steps are performed, the cleaning module 230 uses a wet chemical washing and cleaning step to remove any unwanted contaminants found on the surface of the substrate. In the embodiment, a cleaning process similar to that described in step 丨06 is performed on the substrate 303 to remove any contaminants on the surface of the substrate 303. Next, the substrate 303 is transferred to the bonding wire attaching module 23 i where the step 131 or the bonding wire attaching step is performed on the substrate 3〇3. Step 13 1 is for attaching each lead/wire required to connect each external electrical component to the formed solar cell component. In general, the bond wire add-on module 32 200919761 2 3 1 is an automated wire bonding tool that facilitates the formation of numerous interconnects reliably and quickly, often requiring interconnections to form in the production line 2000. Large solar cells. In one embodiment, the bond wire attaching module 231 is configured to form a side busbar 3 5 5 (FIG. 3C) and a crossbar busbar 3 5 6 on the formed back contact region (step 1 1 8) ). In this configuration, the side busbars 355 may be electrically conductive materials that may be fixed, bonded and/or fused to the back contact layer 350 found in the back contact region to form a good electrical contact. In one embodiment, the side busbars 455 and the crossbars 365 each comprise a metal strip, such as a copper strip, a nickel coated silver strip, a silver coated nickel strip, a tin coated copper strip. The nickel coated copper strip may carry currents transmitted by the solar cells or other conductive materials that are reliably bonded to the metal layer in the back contact region. In one embodiment, the metal bandwidth is between about 2 m and about 10 m, and the thickness is between about 1 m and about 3 m. The cross busbars 3 5 6 electrically connected to the side busbars 3 5 5 at the junction can be electrically isolated from the back contact layer of the solar cell by using an insulating material 3 5 7 such as an insulating tape. The ends of each of the crossbars 3 5 6 typically have one or more wires for connecting the side bus bars 35 5 and the cross wires 356 to the electrical connections found in the junction box 3 70 for use. The formed solar cell is connected to other external electrical components. Other information on welding busbars to thin film solar modules is disclosed in U.S. Provisional Patent Application Serial No. 60/967,077, U.S. Provisional Patent Application Serial No. 6 1 /0 2 3,8 1 0 and US Provisional Patent Application It is disclosed in the Serial No. 61/032,005, which is incorporated herein by reference. In the next step, step 133, a bonding material 306 (33th 200919761 3D) and a back glass substrate 316 are prepared for transmission to the solar cell forming process (ie, process sequence i 〇〇) The preparation process is usually carried out in the glass storage module 232. This typically includes a material preparation module 23 2A, a glass loading module 2 3 2 B, and a glass cleaning module 2 3 2 C. The back glass substrate 3 6 1 It is bonded to the element substrate 303 formed in the above-described step 1〇2_step 130 by using a lamination process (step 134 discussed below). Generally, the step 132 needs to be prepared to be disposed on the back glass substrate 361 and the element substrate 3. The polymeric material 'between/small layer 〇3 to form a hermetic seal to prevent environmental damage to the solar cell during its lifetime. Referring to Figure 2, step 133 typically includes a series of sub-steps ' The bonding material 36 is prepared in the material preparation module 2 3 2 A. At this time, the bonding material 36 is disposed above the element substrate 303. The back glass substrate 361 is loaded into the loading module 232B, and the L uses the β cleaning module. 2 3 2 C while flushing' The back glass substrate 361 is disposed above the bonding material 360 and the element substrate 303. In one embodiment, the 'material preparation module 232' is adapted to receive the sheet form of the enthusiasm. Λ (recovery material 枓 3 60, And one or more cutting operations are performed to provide a bonding material such as polyvinyl butyral (PVB) "ethylene vinyl acetate (EVA), the size of which is 4乍#The glass is formed between the solar cells formed on the element substrate 3〇3, and can be formed as I κ 1 & ί. Generally, when the bonding material 360 of the polymer is used, it is desirable; f* & The temperature of the solar cell production line of the two-system solar cell (for example, 16-1.8 ° C) and the relative thirst... (for example, RH20-22%), the solar cell production line 200 will be stored in the cellar*

廿钱合材料3 6 0並將其整合於太陽能電池元件 中,以確保為姑X 供合模組2 3 4中形成的接合屬性可重複,且 34 200919761 聚合物材料的尺寸是穩定的。通常希望在用於溫度和濕度 受控區域(例如T = 6-8°C,RH 20-22% ) t之前存儲接合 材料。當形成大的太陽能電池時’在接合元件中各構件的 么差疊置(步驟134)是個問題’因此需要精確控制接合 材料特性和切割製程公差,以確保形成可靠的氣密密封。 在一個實施例中’由於PVB的UV穩定性、濕氣抵抗性、 熱迴圈、良好的US防火等級、與Inti Building Code的一 致性、低成本和可重新利用的熱塑特性,因此使用P V B是 有利的。在步驟1 3 2的一部分中,接合材料3 6 0使用自動 機械裝置傳輸且放置到元件基板3 03的背接觸層3 5 0 '侧 面匯流排355(第3C圖)、和交叉匯流排356(第3C圖) 元件上方。元件基板3 0 3和接合材料3 6 0於是被放置以接 收背玻璃基板3 6 1,能通過使用與放置接合材料3 6 0相同 的自動機械裝置或者第二自動機械裝置將其設置於其上。 在一個實施例中,在將背玻璃基板3 6丨放置在接合材 料3 6 0上方之前,對背玻璃基板3 6丨進行一個或多個製備 步驟,以確保隨後的密封製程和根據需要所形成的最後太 陽能產品。在一種情況下,背破螭基板3 6 i以「原始」狀 態被接收’「原始」狀態下沒有充分地控制基板36丨的邊 緣、整體尺寸和/或清潔。接收「 原始」基板降低了在形成The composite material 306 is integrated into the solar cell component to ensure that the bonding properties formed in the gutta-X supply module 243 are repeatable, and 34 200919761 The size of the polymeric material is stable. It is often desirable to store the bonding material prior to use in temperature and humidity controlled areas (e.g., T = 6-8 ° C, RH 20-22%) t. When forming a large solar cell, the overlap of the components in the joint element (step 134) is a problem. Therefore, it is necessary to precisely control the joint material characteristics and the cutting process tolerance to ensure a reliable hermetic seal is formed. In one embodiment 'Using PVB for UV stability, moisture resistance, thermal loop, good US fire rating, consistency with Inti Building Code, low cost and reusable thermoplastic properties, PVB is used It is beneficial. In a portion of step 132, the bonding material 360 is transported using an automated mechanical device and placed on the back contact layer 350' of the element substrate 303's side busbar 355 (FIG. 3C), and the crossbar 356 ( Figure 3C) Above the component. The element substrate 303 and the bonding material 306 are then placed to receive the back glass substrate 361, which can be placed thereon by using the same robotic mechanism or second robot as the bonding material 610. . In one embodiment, one or more preparation steps are performed on the back glass substrate 36 prior to placing the back glass substrate 36 on top of the bonding material 360 to ensure subsequent sealing processes and formation as needed. The last solar product. In one case, the back-breaking substrate 3 6 i is received in the "raw" state. The "original" state does not adequately control the edge, overall size, and/or cleaning of the substrate 36 . Receiving the "original" substrate reduces the formation

玻璃基板清洗步驟之前, 1 3 2的一個實施例中,在進行背 在接合模組(例如封口機2 0 4 ) 35 200919761 中製備背玻璃基板361表面和邊緣。在步驟232的下一子 步驟中,將背玻璃基板3 6 1傳輸到清洗模組2 3 2 B ’於其中 在基板361上進行基板清洗步驟,以去除在基板361表面 上發現的任何污染物。一般污染物包栝在基板形成製程(例 如玻璃製造製程)期間和/或裝運基板3 6 1期間沉積在基板 3 6 1上的材料。通常,清洗模組2 3 2 B使用濕式化學洗滌或 沖洗步驟以去除上述的任何不要的泞染物。製備的背玻璃 基板(back glass substrate) 361此時通過使用自動化機械 裝置設置在接合材料和部分元件基板303上方。 接下來 材料360傳 層步驟以將 中形成的元 聚乙稀丁駿 背側玻璃基 件和在接合 到結構以形 基板3 6 1和 3〇4 (第 3D 主動區。在 少一個孔通 許部分交又 未來步驟( 區域製作電 ’將元件基板303、背破璃基板361以及接合 輸到接合模組234,於其中進行步驟134或疊 背側玻璃基板3 6 1接合到於上述步驟1 〇 2 _丨3 〇 件基板上。在步驟1 3 4中,接合材料3 6 0 (諸如 (PVB )或者乙烯醋酸乙烯(EVA ))被夾置在 板3 6 1和元件基板3 〇3之間。使用各種加熱元 模組2 3 4中發現的其他元件,將熱和壓力施加 成接合且密封的元件。元件基板3〇3、背玻璃 接合材料360由此形成了複合太陽能電池結構 圖),其至少部分地密封了太陽能電池元件的 個貫施例中,形成在背破璃基板3 6 1中的至 過接合材肖360保持至少部分未被覆蓋,以允 匯流排3 5 6或側面匯流排3 55保持暴露,以在 即步驟1 3 8 )中對太陽能電池結構3 〇4的這些 連接。 36 200919761 接下來’將複合太陽能電池結構304傳輸到熱壓處理 模組236中’於其中對複合太陽能電池結構3〇4進行步驟 136或熱塵處理步驟’以去除在接合結構中捕獲的氣體並 確保在步驟1 34期間形成的良好接合。在步驟丨34中,將 經接合的太陽能電池結構304插入到熱壓處理模組的處理 區域中’在這裏傳輸熱和高壓氣體以降低捕獲氣體量,並 提高在元件基板3 〇 3、背玻璃基板 接合特性。在熱壓處理中進行的處理也用於確保玻璃和接 口層(即PVB層)中的應力受到進一步控制,卩防止往後 因接合/疊層製程期間所引入的應力造纟氣密密封故障或 玻璃故障。在-個實施例中,希望加熱元件基板3〇3、背 玻璃基板361和接合材肖36。至引起所形成太陽能電池結 構3〇4中一個或多個構件中應力釋放的溫度。 接下來,將太陽能| 電池、’Ό構3 04傳輸到接線盒連接模 組2 3 8中,於其中在所 y成的太險能電池結構3 04上進行 接線盒連接步驟I 3 8。>止 丁 , 在步驟138中所使用的接線盒連接 拉组238用以在部分所二 设民皿運接 T形成的太陽能電池上裝配桩绐人 370 ( ^ 3C ® ^ ”上裝配接線盒 、配的接線盒3 7 0用竹骆;鱼拉丨& 成的太陽能電池的外部 、連接到所形 力網)與在步冑13 i期問_'構件(諸如其他太陽能電池或電 間的介面。在一個實施θ %成之内部電連接點(諸如導線)之 連接點371、3 72,以例中’接線盒”0含有-個或多個 統地連接到其他外邹- 《的太陽肊電池能容易地且系 接下來,將太陽::二傳輸所產生的電功率。 /釔構3〇4傳輪到元件測試模組 37 200919761 240,於其中在太陽能電池結構304上進行元件篩選(device s c r e e n i n g )和分析步驟1 4 0,以確保形成在太陽能電池結 構3 04表面上的元件滿足所需的品質標準。在一個實施例 中,元件測試模組2 4 0是太陽能類比模組,其用於驗證一 個或多個所形成太陽能電池的輸出合格並對其進行測試。 在步驟1 4 0中,發光源和探針元件用於通過使用一個或多 個自動化構件,測試所形成太陽能電池元件的輸出,該自 動化構件適合於製作與在接線盒3 7 0中端子的電接觸。如 果模組在所形成元件中檢測到缺陷,則其能採取校正動作 或能將太陽能電池廢棄。 接下來,將太陽能電池結構3 0 4傳輸到支援結構模組 24 1,於其中在太陽能電池結構3 04上進行支援結構安裝步 驟141,以提供完成的太陽能電池元件,其具有一個或多 個連接到使用步驟1 02- 1 40所形成的太陽能電池結構3 04 之安裝元件,從而完成在用戶位置能容易安裝且快速組裝 的太陽能電池元件。 接下來,將太陽能電池結構3 0 4傳輸到卸載模組2 4 2, 於其中在基板上進行步驟1 42或元件卸載步驟,以從太陽 能電池生產線2 0 0去除所形成的太陽能電池。 在太陽能電池生產線2 0 0的一個實施例中,在生產線 中的中的一個或多個區域係設置在清潔室環境中,以降低 或防止污染物影響太陽能電池元件產率和可使用壽命。在 一個實施例中,如第2圖中所示,在模組周圍設置級別為 1 0 0 0 0的清潔室空間2 5 0,用於進行步驟1 0 8至1 1 8和步驟 38 200919761 130-134 ° 基板劃分模組和處理 在基板劃分步驟1 24期間進行的基板劃分模組 處理順序用於將大的、部分經處理的元件基板3 〇 3 有一個或多個薄矽獏沉積於其上的基板)劃分成兩 個元件基板3 0 3,以進一步處理成太陽能模組。在 施例中’基板劃分模組接收2600mmx2200mm的元 303並將其劃分成兩個i300mmx2200mm的元件基 以進一步處理。在一個實施例中,基板劃分模組接 2600mmx2200mm的元件基板3 03並將其劃分成兩, 26OOmmx 1100mm的元件基板303,以進一步處理t 實施例中,基板劃分模組接收2600mmx2200mm的 板303並將其劃分成四個i300mmxll00mm的元件 303,以進一步處理。 在一個實施例中,系統控制器2 9 0 (第2圖) 基板劃分模組224所製造之元件基板3 〇 3的區塊的 尺寸。因此’系統控制器2 9 0將指令發送到順序1 圖)中的所有下游處理,用於協調對下游模組的處 整’從而不論所製造之區塊的尺寸,以適應並進__ 由基板劃分模組所製造之元件基板3 〇 3的區塊。 第4A-4E圖是根據基板劃分模組224的一個實 分元件基板3 0 3之順序的頂視平面示意圖。參考第 入口傳送器4 1 0傳送元件基板3 〇 3至劃線台4 2 〇。 實施例中’元件基板3 03具有薄膜沉積於其上的 224和 (即具 個或多 一個實 件基板 板 3〇3, 收 (i '在一個 元件基 基板 制由 數量和 00 (第 1 .理和調 步處理 施例劃 4Α圖, 在一個 ;—側是 39 200919761 中,劃線機械裝置424 線輪。在一個實施例中 I:,諸如雷射劃線骏置 ,應當注意’劃線裝置 之處理表面上的任何瞄 J #订棋,並清楚地在下 線。 面向上的。劃線傳 以進行劃線。在劃 元件基板303的經 在元件基板3 0 3上 口傳送器4 1 0 '劃! 系統控制器290 (; 序1〇〇 (第1圖)1 在一個實施例 置,諸如機械的劃 424是光學劃線裝: 線裝置424的類塑 積在元件基板3 0 3 方玻璃之上表面劃 經劃線的元件 部分傳輸到交叉傳 系統控制器290,‘ 器422配合,以適 性示出了根據本發 303的製程。參考 係放在滾軸426上 在滾軸4 2 6上方。 基板303下表面接 圖中之示意性描述 表面沿著所劃的線 送态422在劃線台 線台4 2 0中,如第 程式化的劃分,經 表面上劃出圖案。 泉傳送器422和畫,j 者2圖)而控制且 尹其他操作配合。 是機械的劃線裝 ’劃線機械裝置 。無論所採用劃 必須完全割穿沉 基板3 03此時經由劃線台傳送器422被 輸台43 0上,如第4C圖中所示。經由 ί吏第一傳輸台傳送器4 3 2與劃線台傳送 當放置元件基板303。第5A-5C圖示意 明一個實施例用於破裂經劃線元件基板 第4 C和5 Α圖’經劃線的元件基板3 〇 3 方’以使沿著X軸劃出的線被直接設置 滚軸4 2 6此時被升高且被設置成與元件 觸,如第5 B圖中示意性所示。如第5 C ,滚轴426被升高,向元件基板303下 且垂直於元件基板303的平面施加一個 20中放置元件基板 4β圖中所示,根據 $ 線機械裝置424 在—個實施例中,入 '線機1械裳置424經由 相互配合,以及與順 40 200919761 抬升力’致使沿著所劃線完全地破裂。 在一個實施例中’滾軸426是延伸元件基板303長度 的填裝墊料的柱形滾軸。滚軸426通過致動器428升高。 於一個實施例中’致動器428是電力的、水力的或者是氣 動式馬達。在一個實施例中,致動器428可以是水力的或 氣動式圓筒。在一個實施例中’致動器4 2 8通過系統控制 器290控制和調節。 接下來,如第4D圖中所示’基板元件3〇3的第一區 塊303A經由第一傳輸傳送器432被完全裝載到交又傳輸 台(crosstr an sfer station) 430 中。接下來,第二傳輸傳 送器434與退出傳送器440結合,將第一區塊3〇3a部分 地傳送入退出傳送器440上,如第4E圖中所示。第二傳 輸台傳送器434經由系統控制器290與退出傳送器440配 合’以適當放置元件基板區塊303A。參考第4E和5A圖, 經劃線劃分的元件基板3 0 3 A被放置在滚軸4 2 6上方以, 使沿著Y軸劃出的線直接位於滾轴4 2 6上方。此時升高滾 軸426並將其設置成與所劃分的元件基板303A的下表面 接觸,如第5 B圖中示意性所示。如第5 C圖中示意性所描 述的’升高滾軸426,以沿著所劃的線並垂直於元件基板 區塊303A的平面,對元件基板區塊303A的下表面施加抬 升力’以造成沿著所劃之線完全的破裂。因而,基板區塊 3 0 3 A被劃分成兩個較小元件基板區塊3 0 3 C和3 0 3 D。此時 每個基板區塊3 0 3 C和3 0 3 D經由第二傳輸傳送器4 3 4和退 出傳送器440被傳輸到後續的模組中,以進一步處理。接 41 200919761 著對元件基板區塊303B重複上述處理。 儘管上述實施例示出了用於將單個基板元件3 0 3劃分 成四個較小區塊的製程和裝置,但是,很明顯通過調整劃 線機械裝置4 2 4僅在X軸或Y軸上劃單條線,和僅進行單 次破裂處理,也同樣可完成將單個基板元件3 0 3劃分成兩 個較小區塊之實施例。 雖然前述内容針對本發明的實施例,但是可設計出本 發明其他和進一步的實施例而不脫離其基本範圍,且其範 圍由申請專利範圍限定。 【圖式簡單說明】 因此,為了可以詳細理解本發明的以上所述特徵,下 面將參照附圖中示出的實施例,對本發明的以上簡要敍述 進行更具體的描述。然而,應該注意,附圖中只示出了本 發明典型的實施例,因此不能認為其是對本發明範圍的限 定,本發明可以允許其他等同的有效實施例。Prior to the glass substrate cleaning step, in one embodiment of the 133, the surface and edges of the back glass substrate 361 are prepared in a backing bonding module (e.g., a sealing machine 205) 35 200919761. In the next sub-step of step 232, the back glass substrate 361 is transferred to the cleaning module 2 3 2 B ' in which the substrate cleaning step is performed on the substrate 361 to remove any contaminants found on the surface of the substrate 361. . The general contaminant material is deposited on the substrate 316 during the substrate forming process (e.g., glass manufacturing process) and/or during the shipping substrate 361. Typically, the cleaning module 2 3 2 B uses a wet chemical washing or rinsing step to remove any unwanted contaminants as described above. The prepared back glass substrate 361 is now disposed over the bonding material and a portion of the element substrate 303 by using an automated mechanical device. Next, the material 360 is passed through a layer of steps to form the element in the polyethylene backside glass substrate and bonded to the structure to form the substrate 3 6 1 and 3〇4 (the 3D active region. Partially and in a future step (area making electricity), the element substrate 303, the back glass substrate 361, and the bonding glass are transferred to the bonding module 234, in which step 134 or the stacked back glass substrate 316 is bonded to the above step 1 2 _ 丨 3 on the substrate. In step 134, a bonding material 306 (such as (PVB) or ethylene vinyl acetate (EVA)) is sandwiched between the board 361 and the element substrate 3 〇3 Using the other elements found in the various heating element modules 234, heat and pressure are applied as bonded and sealed components. The element substrate 3〇3, the back glass bonding material 360 thus forms a composite solar cell structure diagram) In a single embodiment in which the solar cell element is at least partially sealed, the over-bonding material 360 formed in the back-grain substrate 361 remains at least partially uncovered to allow the busbar 365 or side-side confluence Row 3 55 remains exposed to step 1 3 8) These connections to the solar cell structure 3 〇4. 36 200919761 Next, 'transfer the composite solar cell structure 304 into the autoclaving module 236' in which the composite solar cell structure 3〇4 is subjected to step 136 or a hot dust treatment step to remove the gas trapped in the bonded structure and Ensure a good bond formed during step 134. In step 丨34, the bonded solar cell structure 304 is inserted into the processing region of the autoclave module 'where heat and high pressure gas are transferred to reduce the amount of trapped gas, and the element substrate 3 〇 3, back glass is raised. Substrate bonding characteristics. The treatment performed in the autoclaving process is also used to ensure that the stresses in the glass and interface layers (ie, the PVB layer) are further controlled to prevent future seals from leaking due to stresses introduced during the bonding/lamination process or Glass failure. In one embodiment, it is desirable to heat the element substrate 3〇3, the back glass substrate 361, and the bonding material shawl 36. The temperature at which stress is released in one or more of the formed solar cell structures 3〇4. Next, the solar cell, the battery, and the 33 04 are transferred to the junction box connection module 2 3 8 where the junction box connection step I 3 8 is performed on the yoke energy battery structure 304. <Terminal, the junction box used in step 138 is connected to the pull group 238 for assembling the junction box on the solar cell formed by the part of the two sets of the container transport T (^ 3C ® ^ ) , with the junction box 3 7 0 with bamboo Luo; fish pull 丨 & into the outside of the solar cell, connected to the shape of the force network) and in the step i _ 'components (such as other solar cells or electricity room) Interfaces 371, 3 72 in an implementation of θ % of internal electrical connection points (such as wires), in the example 'junction box' 0 contains one or more connections to other external Zou - The solar cell battery can easily and subsequently transfer the electric power generated by the sun::2 to the component test module 37 200919761 240, in which component screening is performed on the solar cell structure 304. (device screening) and analysis step 140 to ensure that the components formed on the surface of the solar cell structure 304 meet the required quality standards. In one embodiment, the component test module 240 is a solar analog module. It is used to verify one or more The output forming the solar cell is qualified and tested. In step 140, the illumination source and probe element are used to test the output of the formed solar cell component by using one or more automated components, the automation component being suitable for Electrical contact is made with the terminals in the junction box 307. If the module detects a defect in the formed component, it can take corrective action or can discard the solar cell. Next, the solar cell structure 300 is transmitted. To the support structure module 241, wherein a support structure mounting step 141 is performed on the solar cell structure 304 to provide a completed solar cell component having one or more connections to the use of steps 102-1-40. The solar cell structure 3 04 mounts the components, thereby completing the solar cell components that can be easily installed and quickly assembled at the user's location. Next, the solar cell structure 300 is transferred to the unloading module 2 4 2, where it is performed on the substrate. Step 1 42 or component unloading step to remove the formed solar cell from the solar cell production line 200. In one embodiment of a solar cell production line 200, one or more of the zones in the production line are disposed in a clean room environment to reduce or prevent contaminants from affecting solar cell component yield and useful life. In the embodiment, as shown in FIG. 2, a clean room space 2 50 with a level of 1 0 0 0 0 is set around the module for performing steps 1 0 8 to 1 18 and step 38 200919761 130-134 The substrate dividing module and the processing of the substrate dividing module processing sequence performed during the substrate dividing step 14 are used to deposit one or more thin layers of the large, partially processed component substrate 3 〇 3 thereon. The substrate is divided into two element substrates 303 for further processing into solar modules. In the example, the substrate division module receives a 2300 mm x 2200 mm element 303 and divides it into two i300 mm x 2200 mm element bases for further processing. In one embodiment, the substrate dividing module is connected to the 2600 mm×2200 mm element substrate 303 and divided into two, 26 00 mm×1100 mm element substrates 303 for further processing. In the embodiment, the substrate dividing module receives the 2600 mm×2200 mm plate 303 and It is divided into four i300 mm x ll00 mm elements 303 for further processing. In one embodiment, the system controller 290 (Fig. 2) is the size of the block of the component substrate 3 〇 3 manufactured by the substrate dividing module 224. Therefore, all the downstream processing in the 'system controller 290 sends the instruction to the sequence 1 diagram' is used to coordinate the rectification of the downstream module's regardless of the size of the block being manufactured to accommodate the __ The block of the element substrate 3 〇 3 manufactured by the module is divided. 4A-4E is a top plan view showing the sequence of a real component substrate 310 of the substrate dividing module 224. Referring to the first inlet conveyor 4 10 , the element substrate 3 〇 3 is transferred to the scribe line 4 2 〇. In the embodiment, the 'element substrate 303 has a film deposited thereon 224 and (i.e., one or more of a real substrate plate 3〇3, received (i' in a component base substrate made up of number and 00 (1st. And the pacing process is shown in Fig. 4, in one; the side is 39 200919761, the scribing mechanism 424 reel. In one embodiment I:, such as laser scribing, should pay attention to the 'dash Any aiming on the processing surface of the device, and clearly in the lower line. Face up. The line is passed for scribing. On the element substrate 303 of the element substrate 303, the port transmitter 4 1 0 'Scratch! System Controller 290 (; Sequence 1 (1) 1 In one embodiment, such as mechanical stroke 424 is optical scribing: line device 424 is molded on component substrate 3 0 3 The portion of the surface of the square glass that has been scored by the scribe line is transferred to the cross-over system controller 290, which cooperates to properly illustrate the process according to the present invention 303. The reference frame is placed on the roller 426 on the roller 4 2 6 above. The lower surface of the substrate 303 is schematically depicted along the surface of the surface. The lined state 422 is drawn in the scribe line station 410, such as the first stylized division, and the pattern is drawn on the surface. The spring transmitter 422 and the picture, the figure of the figure 2) are controlled and the other operations are matched. It is a mechanical scribing device's scribing mechanism. It must be completely cut through the sinking plate 3 03 regardless of the stroke used. At this time, it is transmitted to the table 43 0 via the scribing table conveyor 422, as shown in Fig. 4C.吏 The first transfer station conveyor 423 is transported with the scribe line when the component substrate 303 is placed. 5A-5C is a schematic view of an embodiment for rupturing the scribe element substrate 4 C and 5 The scribed element substrate 3 〇3 square 'so that the line drawn along the X axis is directly set to the roller 4 2 6 is now raised and placed in contact with the element, as shown in Figure 5B As shown in FIG. 5C, the roller 426 is raised, and a component 20 placed in the plane of the element substrate 303 and perpendicular to the plane of the element substrate 303 is placed as shown in the figure of the element substrate 4β, according to the line mechanism 424. In the example, the 'line machine 1 slings 424 through the mutual cooperation, and with the shun 40 200919761 lifting force' caused along the The score line is completely broken. In one embodiment, the 'roller 426 is a cylindrical roller that fills the length of the element substrate 303. The roller 426 is raised by the actuator 428. In one embodiment The actuator 428 is an electric, hydraulic or pneumatic motor. In one embodiment, the actuator 428 can be a hydraulic or pneumatic cylinder. In one embodiment, the actuator 4 28 is controlled by the system. The controller 290 controls and regulates. Next, the first block 303A of the 'substrate element 3'3 as shown in Fig. 4D is completely loaded into the cross-transfer station 430 via the first transfer conveyor 432. Next, the second transport transmitter 434 is combined with the exit transmitter 440 to partially transfer the first block 3〇3a to the exit transmitter 440 as shown in Fig. 4E. The second transfer station transmitter 434 is coupled to the exit conveyor 440 via the system controller 290 to properly place the element substrate block 303A. Referring to Figures 4E and 5A, the underlined element substrate 3 0 3 A is placed over the roller 4 2 6 such that the line drawn along the Y axis is directly above the roller 4 26 . At this time, the roller shaft 426 is raised and placed in contact with the lower surface of the divided element substrate 303A as schematically shown in Fig. 5B. The 'upward roller 426' as schematically illustrated in Fig. 5C applies a lifting force to the lower surface of the element substrate block 303A along the line drawn and perpendicular to the plane of the element substrate block 303A. Causes complete rupture along the line drawn. Thus, the substrate block 3 0 3 A is divided into two smaller element substrate blocks 3 0 3 C and 3 0 3 D. At this time, each of the substrate blocks 3 0 3 C and 3 0 3 D is transferred to the subsequent modules via the second transfer conveyor 434 and the exit conveyor 440 for further processing. The above processing is repeated for the element substrate block 303B. Although the above embodiment shows a process and apparatus for dividing a single substrate element 3003 into four smaller blocks, it is apparent that the adjustment of the scribing mechanism 4 2 4 is only performed on the X-axis or the Y-axis. A single line, and only a single rupture process, can also accomplish the same example of dividing a single substrate element 030 into two smaller blocks. While the foregoing is directed to embodiments of the present invention, the invention may BRIEF DESCRIPTION OF THE DRAWINGS In the following, the above summary of the invention will be described in more detail with reference to the embodiments illustrated in the drawings. It is to be understood, however, that the invention is not limited to the embodiments of the invention

第1圖示出了根據此述一實施例,用於形成太陽能電 池元件的製程順序。 第2圖示出了根據此述一實施例,太陽能電池生產線 的平面圖。 第3 A圖是根據此述一實施例,薄膜太陽能電池元件 的側視截面圖。 第3 B圖是根據此述一實施例,薄膜太陽能電池元件的 側視截面圖。 42 200919761 第3 C圖是根據此述一實施例,複合太陽能電池結構的 平面圖。 第3D圖是第3C圖的截面A-A的截面圖。 第3 E圖是根據此述一實施例,薄膜太陽能電池元件的 側視截面圖。 第4A-4E圖繪示根據本發明的一個實施例,劃分模組 順序的示意性平面圖。 第5 A - 5 C圖是根據本發明一個實施例,繪示劃分基板 順序之部分劃分模組的示意性側視圖。 [主 .要 元件符號說明】 100 處 理順序 102 步 驟 104 步 驟 106 步 驟 107 步 驟 108 步 驟 110 步 驟 112 步 驟 113 步 驟 114 步 驟 118 步 驟 120 步 驟 122 步 驟 124 步 驟 126 步 驟 128 步 驟 130 步 驟 13 1 步 驟 132 步 驟 134 步 驟 136 步 驟 13 8 步 驟 140 步 驟 14 1 步 驟 43 200919761 1 4 2步驟 2 00生產線 2 0 2裝載模組 2 0 4前端基板接合模組 2 0 6清洗模組 2 0 8劃線模組 2 1 0清洗模組 2 1 1儲存器 2 1 1 A儲存器 2 1 1 B儲存器 21 1C儲存器 2 1 1 D儲存器 2 1 2處理模組 2 1 2 A組合工具 2 1 2 B組合工具 2 1 2 C組合工具 2 1 2 D組合工具 2 1 4劃線模組 2 1 8接觸沉積室 2 2 0劃線模組 2 2 2品質保證模組 2 24基板劃分模組 2 2 6邊緣消除模組 2 2 8預篩選模組 2 3 0清洗模組 23 1接合引線附加模組 232玻璃貯存模組 232A材料製備模組 232B玻璃裝載模組 2 3 2 C玻璃清洗模組 2 3 4接合模組 2 3 6熱壓處理模組 2 3 8接線盒連接模組 2 4 0元件測試模組 241支援結構模組 2 4 2卸載模組 2 5 0清潔室空間 281自動裝置 2 9 0系統控制器 3 00太陽能電池 3 0 1太陽輻射 3 02基板 3 0 3元件基板 3 03 A第一區塊 3 0 3 B元件基板區塊 3 0 3 C元件基板區塊 3 0 3 D元件基板區塊 3 0 4複合太陽能電池結構 44 200919761 3 10 第一透明導電氧化物層 320 第一 p-i-n接合 322 p型非晶矽層 324 本質型 非晶矽層 326 η型微晶矽層 330 第二p- _i-n接合 332 ρ型微晶矽層 334 本質型 微晶矽層 336 η型非晶矽層 340 第二TCO層 350 背接觸層 355 側面匯 流排 356 交叉匯流排 357 絕緣材 料 360 接合材料層 361 背玻璃 基板 370 接線盒 37 1 連接點 372 連接點 381 A溝槽 3 8 1 B溝槽 381 C溝槽 382A電池 382Β電池 410 入口傳送器 420 劃線台 422 劃線傳送器 424 劃線機 械裝置 426 滚軸 428 致動器 430 交叉傳輸台 432 第一傳 輸傳送器 434 第二傳輸台傳送器 440 退出傳 送器 45Figure 1 illustrates a process sequence for forming a solar cell component in accordance with one embodiment described herein. Figure 2 shows a plan view of a solar cell production line in accordance with an embodiment of the invention. Figure 3A is a side cross-sectional view of a thin film solar cell element in accordance with an embodiment of the present invention. Figure 3B is a side cross-sectional view of a thin film solar cell element in accordance with one embodiment of the present invention. 42 200919761 Figure 3C is a plan view of a composite solar cell structure in accordance with an embodiment of the invention. Fig. 3D is a cross-sectional view of section A-A of Fig. 3C. Figure 3E is a side cross-sectional view of a thin film solar cell element in accordance with one embodiment of the present invention. 4A-4E are schematic plan views showing the sequence of division modules in accordance with one embodiment of the present invention. 5A-5C is a schematic side view showing a partial division module for dividing a substrate sequence according to an embodiment of the present invention. [Main. Element Symbol Description] 100 Processing Order 102 Step 104 Step 106 Step 107 Step 108 Step 110 Step 112 Step 113 Step 114 Step 118 Step 120 Step 122 Step 124 Step 126 Step 128 Step 130 Step 13 1 Step 132 Step 134 Step 136 Step 13 8 Step 140 Step 14 1 Step 43 200919761 1 4 2 Step 2 00 Production Line 2 0 2 Loading Module 2 0 4 Front End Substrate Engagement Module 2 0 6 Cleaning Module 2 0 8 Scribing Module 2 1 0 Cleaning Module 2 1 1 reservoir 2 1 1 A reservoir 2 1 1 B reservoir 21 1C reservoir 2 1 1 D reservoir 2 1 2 processing module 2 1 2 A combination tool 2 1 2 B combination tool 2 1 2 C combination tool 2 1 2 D combination tool 2 1 4 scribe module 2 1 8 contact deposition chamber 2 2 0 scribe module 2 2 2 quality assurance module 2 24 substrate division module 2 2 6 edge elimination module 2 2 8 pre-screening module 2 3 0 cleaning module 23 1 bonding lead additional module 232 glass storage module 232A material preparation module 232B glass loading module 2 3 2 C glass cleaning module 2 3 4 bonding module 2 3 6 hot pressing Module 2 3 8 junction box connection module 2 4 0 component test module 241 support structure module 2 4 2 unloading module 2 5 0 clean room space 281 automatic device 2 9 0 system controller 3 00 solar battery 3 0 1 Solar radiation 3 02 substrate 3 0 3 element substrate 3 03 A first block 3 0 3 B element substrate block 3 0 3 C element substrate block 3 0 3 D element substrate block 3 0 4 composite solar cell structure 44 200919761 3 10 First transparent conductive oxide layer 320 First pin bond 322 p-type amorphous germanium layer 324 intrinsic amorphous germanium layer 326 n-type microcrystalline germanium layer 330 second p-_i-n junction 332 p-type crystallite矽 layer 334 essential microcrystalline germanium layer 336 n-type amorphous germanium layer 340 second TCO layer 350 back contact layer 355 side bus bar 356 cross bus bar 357 insulating material 360 bonding material layer 361 back glass substrate 370 junction box 37 1 connection Point 372 Connection Point 381 A Trench 3 8 1 B Trench 381 C Groove 382A Battery 382 Β Battery 410 Inlet Transmitter 420 Scribe Table 422 Scribe Transmitter 424 Scribe Mechanism 426 Roller 428 Actuator 430 Cross Transmission Taiwan 432 first pass The second conveyor 434 exits the transfer station 440 transfer conveyor 45

Claims (1)

200919761 十、申請專利範圍: 1. 一種用於劃分太陽能電池元件的模組,其包括 一入口傳送器,其係建構成接收來自一系統控制器的 指令,並將一太陽能電池元件傳送到該模組的一劃線台中; 一劃線機械裝置,其係建構成接收來自該系統控制器 的指令,並將一圖案劃入該太陽能電池元件的一第一表面 中; 一第一放置機械裝置,其係建構成接收來自該系統控 制器的指令,並將該經劃線的太陽能電池元件精確地放置 在一第一破裂機械裝置上方;以及 一第一致動器,其係建構成接收來自該系統控制器的 指令,並升高該第一破裂機械裝置。 2. 如申請專利範圍第1項的模組,更包括: 一交叉傳輸台,其具有一傳送器和一第二放置機械裝 置,其中該傳送器係設置成從該第一放置機械裝置接收該 太陽能電池元件的一區塊,且其中該第二放置機械裝置係 建構成接收來自該系統控制器的指令,並將該太陽能電池 元件的該區塊精確地放置在一第二破裂機械裝置上方; 一第二致動器,其係建構成接收來自該系統控制器的 指令,並升高該第二破裂機械裝置;以及 一退出傳送器,其係設置成接收該太陽能電池元件之 該區塊的一部分。 46 200919761 3 .如申請專利範圍第2項的模組,其中該第一和第二破裂 機械裝置是延長的滚軸。 4.如申請專利範圍第3項的模組,其中該第一破裂機械裝 置沿著一第一軸延伸,和該第二破裂機械裝置沿著一第二 軸延伸,且其中該第一和第二軸大體上相互垂直。 5 .如申請專利範圍第1項的模組,其中該劃線機械裝置是 一機械劃線輪。 6. 如申請專利範圍第1項的模組,其中劃線機械裝置是一 雷射劃線元件。 7. —種劃分一經部分處理之太陽能電池元件的方法,其包 括: 接收一具有一處理表面的基板; 在該處理表面上形成一石夕層; 在該處理表面上形成該矽層之後,將該基板劃分成一 第一和一第二區塊;以及 將該第一區塊傳送到一下一站中,以進行進一步處理。 8 .如申請專利範圍第7項的方法,其中該劃分該基板之步 驟包括: 在該處理表面上形成該矽層之後,將一第一線劃入該 47 200919761 基板的一表面;以及 啟動一破裂機械裝置以沿著該第一線破裂該基板。 9.如申請專利範圍第8項的方法,其中該劃出一第一線之 步驟包括將一線完全劃穿該矽層且劃入該處理表面中。 1 〇.如申請專利範圍第8項的方法,更包括將一第二線劃 入該處理表面中,其中該第二線大體上垂直於該第一線。 11.如申請專利範圍第10項的方法,更包括將該基板的該 第一區塊放置到與一第二破裂機械裝置相鄰,以使該第二 劃線大體上與該第二破裂機械裝置的一軸成一直線。 1 2 ·如申請專利範圍第1 1項的方法,更包括啟動該第二破 裂機械裝置,以沿著該第二劃線破裂該第一區塊。 1 3 ·如申請專利範圍第1 1項的方法,其中該處理表面具有 一大於約1.4m2的表面積。 14 · 一種製造太陽能電池元件的系統,包括: 一基板接收模組,其適於接收一基板; 一組合工具,其具有一適於在該基板的一表面上沉積 一含矽層的處理室; 一背接觸沉積室,其係建構成在該基板的一表面上沉 48 200919761 積一背接觸層; 一基板劃分模組,其係建構成將該基板劃分成兩個或 多個區塊;以及 一系統控制器,用於控制和協調該基板接收模組、該 組合工具、該處理室、該背接觸沉積室和該基板劃分模組 各個的功能。 1 5.如申請專利範圍第1 4項的系統,其中該基板劃分模組 包括一 CNC玻璃切割器。 1 6.如申請專利範圍第1 4項的系統,其中該基板劃分模組 包括一劃線台、一破裂台、以及一放置機械裝置,該劃線 台係建構成將一線劃入該基板之一表面中,該破裂台係建 構成沿著該線破裂該基板,該放置機械裝置用於放置該基 板,以使該劃入該基板中的線大體上對準該破裂機械裝置。 1 7.如申請專利範圍第1 6項的系統,其中該基板劃分模組 更包括一第二放置機械裝置,用於將該基板之該些區塊中 的一者放置至與一第二破裂機械裝置相鄰,以使該第二破 裂機械裝置大體上對準劃入該基板中的一第二線。 1 8. —種處理一太陽能電池元件的方法,包括: 清洗一基板,以從該基板的一表面移除一或多個污染 物; 49 200919761 在該基板的表面上沉積一光吸收層; 從該基板之表面上的一區域去除至少一部分的光吸收 層; 在該基板的表面上沉積一背接觸層; 將該基板劃分成兩或多個區塊, 在該些區塊中之一者的表面上進行一邊緣消除處理; 將一背玻璃基板接合到該些區塊中之一者的表面,以 形成一複合結構;以及 將一接線盒貼附到該複合結構。 1 9 ·如申請專利範圍第1 8項的方法,其中該劃分基板之步 驟包括以一 CNC玻璃切割器切割該基板。 2 〇.如申請專利範圍第1 8項的方法,其中該劃分基板之步 驟包括將一第一線劃入該基板中,使該第一線對準一第一 破裂機械裝置,並沿該第一線破裂該基板。 2 1 .如申請專利範圍第2 0項的方法,其中該劃分基板之步 驟更包括將一第二線劃入該基板中,使該第二線對準一第 二破裂機械裝置,並沿該第二線破裂該基板,其中該第一 線大體上垂直於該第二線。 50200919761 X. Patent Application Range: 1. A module for dividing a solar cell component, comprising an inlet conveyor configured to receive an instruction from a system controller and to transfer a solar cell component to the module a scribing station; a scribing mechanism configured to receive an instruction from the system controller and to map a pattern into a first surface of the solar cell component; a first placement mechanism, Constructed to receive instructions from the system controller and to accurately position the lined solar cell component over a first rupturing mechanism; and a first actuator configured to receive therefrom The system controller commands and raises the first rupture mechanism. 2. The module of claim 1, further comprising: a cross transfer station having a conveyor and a second placement mechanism, wherein the conveyor is configured to receive the first placement mechanism a block of solar cell elements, and wherein the second placement mechanism is configured to receive an instruction from the system controller and accurately place the block of the solar cell element over a second rupture mechanism; a second actuator configured to receive an instruction from the system controller and to raise the second rupturing mechanism; and an exit conveyor configured to receive the block of the solar cell component portion. 46 200919761 3. The module of claim 2, wherein the first and second rupturing mechanisms are elongated rollers. 4. The module of claim 3, wherein the first rupture mechanism extends along a first axis, and the second rupture mechanism extends along a second axis, and wherein the first and the The two axes are substantially perpendicular to each other. 5. The module of claim 1, wherein the scribing mechanism is a mechanical scribing wheel. 6. The module of claim 1, wherein the scribing mechanism is a laser scribing element. 7. A method of dividing a partially processed solar cell component, comprising: receiving a substrate having a processing surface; forming a layer on the processing surface; forming the layer on the processing surface, The substrate is divided into a first block and a second block; and the first block is transferred to the next station for further processing. 8. The method of claim 7, wherein the step of dividing the substrate comprises: after forming the layer on the processing surface, marking a first line into a surface of the 47 200919761 substrate; and starting a A rupture mechanism is used to rupture the substrate along the first line. 9. The method of claim 8 wherein the step of drawing a first line comprises completely traversing a line through the layer and into the treated surface. The method of claim 8, further comprising dividing a second line into the processing surface, wherein the second line is substantially perpendicular to the first line. 11. The method of claim 10, further comprising placing the first block of the substrate adjacent to a second rupture mechanism such that the second scribe line substantially corresponds to the second rupture mechanism One axis of the device is in line. 1 2 - The method of claim 11, further comprising activating the second breaking mechanism to rupture the first block along the second scribe line. The method of claim 11, wherein the treated surface has a surface area greater than about 1.4 m2. A system for manufacturing a solar cell component, comprising: a substrate receiving module adapted to receive a substrate; a combination tool having a processing chamber adapted to deposit a germanium-containing layer on a surface of the substrate; a back contact deposition chamber, which is constructed to sink on a surface of the substrate 48 200919761 a back contact layer; a substrate dividing module, the structure of which is divided into two or more blocks; A system controller for controlling and coordinating functions of the substrate receiving module, the combination tool, the processing chamber, the back contact deposition chamber, and the substrate dividing module. 1 5. The system of claim 14, wherein the substrate dividing module comprises a CNC glass cutter. 1 6. The system of claim 14 wherein the substrate dividing module comprises a scribing table, a rupture table, and a placement mechanism configured to divide a line into the substrate. In a surface, the rupture station is configured to rupture the substrate along the line, the placement mechanism for positioning the substrate such that the line drawn into the substrate is substantially aligned with the rupturing mechanism. 1. The system of claim 16 wherein the substrate dividing module further comprises a second placement mechanism for placing one of the blocks of the substrate to a second rupture The mechanical devices are adjacent such that the second rupturing mechanism is substantially aligned with a second line drawn into the substrate. 1 8. A method of processing a solar cell component, comprising: cleaning a substrate to remove one or more contaminants from a surface of the substrate; 49 200919761 depositing a light absorbing layer on a surface of the substrate; An area on a surface of the substrate removes at least a portion of the light absorbing layer; depositing a back contact layer on a surface of the substrate; dividing the substrate into two or more blocks, one of the blocks An edge removal process is performed on the surface; a back glass substrate is bonded to the surface of one of the blocks to form a composite structure; and a junction box is attached to the composite structure. The method of claim 18, wherein the step of dividing the substrate comprises cutting the substrate with a CNC glass cutter. 2. The method of claim 18, wherein the step of dividing the substrate comprises: lining a first line into the substrate, aligning the first line with a first rupturing mechanism, and along the A line ruptures the substrate. The method of claim 20, wherein the step of dividing the substrate further comprises dividing a second line into the substrate, aligning the second line with a second breaking mechanism, and along the The second line ruptures the substrate, wherein the first line is substantially perpendicular to the second line. 50
TW097133226A 2007-08-31 2008-08-29 Production line module for forming multiple sized photovoltaic devices TW200919761A (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US96707707P 2007-08-31 2007-08-31
US2030408P 2008-01-10 2008-01-10
US2321408P 2008-01-24 2008-01-24
US2373908P 2008-01-25 2008-01-25
US2381008P 2008-01-25 2008-01-25
US3200508P 2008-02-27 2008-02-27
US3493108P 2008-03-07 2008-03-07
US3669108P 2008-03-14 2008-03-14
US4360008P 2008-04-09 2008-04-09
US4485208P 2008-04-14 2008-04-14

Publications (1)

Publication Number Publication Date
TW200919761A true TW200919761A (en) 2009-05-01

Family

ID=44727216

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097133232A TW200919762A (en) 2007-08-31 2008-08-29 Photovoltaic production line
TW097133226A TW200919761A (en) 2007-08-31 2008-08-29 Production line module for forming multiple sized photovoltaic devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW097133232A TW200919762A (en) 2007-08-31 2008-08-29 Photovoltaic production line

Country Status (1)

Country Link
TW (2) TW200919762A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403738B (en) * 2009-06-18 2013-08-01 Au Optronics Corp Test apparatus, trimming module thereof and manufacturing method for solar cell

Also Published As

Publication number Publication date
TW200919762A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
US8024854B2 (en) Automated solar cell electrical connection apparatus
US20090077804A1 (en) Production line module for forming multiple sized photovoltaic devices
US8049521B2 (en) Solar parametric testing module and processes
US8138782B2 (en) Photovoltaic cell solar simulator
US20100273279A1 (en) Production line for the production of multiple sized photovoltaic devices
US20090287446A1 (en) Photovoltaic cell reference module for solar testing
US20100047954A1 (en) Photovoltaic production line
US8231431B2 (en) Solar panel edge deletion module
US20100071752A1 (en) Solar Cell Module Having Buss Adhered With Conductive Adhesive
US8065784B2 (en) Apparatus for forming an electrical connection on a solar cell
US20090188603A1 (en) Method and apparatus for controlling laminator temperature on a solar cell
US7908743B2 (en) Method for forming an electrical connection
US20110005458A1 (en) Method and apparatus for improving scribe accuracy in solar cell modules
US8227723B2 (en) Solder bonding method and apparatus
WO2010151364A1 (en) Method and apparatus for inspecting scribes in solar modules
US20110008947A1 (en) Apparatus and method for performing multifunction laser processes
CN101541486A (en) Production line module for forming multiple sized photovoltaic devices
US20110053307A1 (en) Repatterning of polyvinyl butyral sheets for use in solar panels
TW200919761A (en) Production line module for forming multiple sized photovoltaic devices