TW200919612A - Method and system for low cost inspection - Google Patents

Method and system for low cost inspection Download PDF

Info

Publication number
TW200919612A
TW200919612A TW97131916A TW97131916A TW200919612A TW 200919612 A TW200919612 A TW 200919612A TW 97131916 A TW97131916 A TW 97131916A TW 97131916 A TW97131916 A TW 97131916A TW 200919612 A TW200919612 A TW 200919612A
Authority
TW
Taiwan
Prior art keywords
sub
region
group
separated
image
Prior art date
Application number
TW97131916A
Other languages
Chinese (zh)
Inventor
Ezer Zehava Ben
Ophir Peleg
Original Assignee
Camtek Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camtek Ltd filed Critical Camtek Ltd
Publication of TW200919612A publication Critical patent/TW200919612A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A method for macro inspection, the method includes: (i) concurrently illuminating a current group of spaced apart object sub areas; wherein light reflected in a specular manner from a certain object sub area of the current group of object sub areas is expected to be detected by a certain sensor element of a current group of spaced apart sensor elements that correspond to the current group of spaced apart object sub areas; wherein the object sub areas are spaced apart so as to reduce a probability of a detection of non-specular light from the object; wherein each image sub area comprises multiple pixels; (ii) obtaining image information from the current group of spaced apart sensor elements; and (iii) processing at least a portion of the image information to provide an inspection result.

Description

200919612 九、發明說明: 【發明所眉技領域】 相關申請案 此專利申請案係對於2007年8月22日提申的美國臨時 5專利申請案60/957,186及2007年8月21曰提申的6〇/956 967 主張優先權。 本發明係有關於一種用於低成本檢驗之方法與系統。 發明背景 10 可取得用於晶圓光學檢驗以偵測前侧表面及/或背側 上的缺陷之設備。一般而言,此設備使用光學顯微影像擷 取,其中以高至中等解析度(諸如以色列的坎泰克有限公司 (Camtek Ltd.)的佛康(Falcon)檢驗系統)來偵測缺陷。另一途 徑係為雷射掃描,其中散射圖案中的不規則部被偵測成為 15 缺陷。 上述系統及方法藉由一小區的光來照射晶圓並利用高 解析度光學件、高精確機械件(包括精密X、¥或尺_0階段) 及強力處理器。這將增高這些系統的成本。 日益需要提供能夠偵測諸如缺乏光阻、污染及類似問 20題等“全面”現象之低成本檢驗系統。 曰益需要提供能夠偵測諸如一晶圓背側之整體污染等 全面”現象之低成本檢驗系統。 【明内容^】 發明概要 200919612 本發明揭露一用於巨觀檢驗之方法,該方法包括:同 時地照射一現今群組的經隔開物體次區域;其中以一鏡面 方式自現今群組的物體次區域之一特定物體次區域所反射 的光係預期被㈣於現今群組的經隔開物體次區域之一現 5今群組的經隔開感測器元件之一特定感測器元件所賴測; 其中經隔開物體次區域係被隔開藉以降低伯測到來自物體 的非鏡面光之機率;獲得來自現今群組的經隔開感測器元 件之影像資訊;其中影像資訊包括多重經隔開影像次區 域’其中各影像次區域包括多重像素;及處理影像資訊的 10至少一部分以提供一檢驗結果。 物體次區域係隔開一物體次區域的一寬度之至少一 半。 邊方法可包括啟動一現今群組的經隔開照射元件藉以 同時地照射現今群組的經隔開物體次區域。 。°亥方法可包括獲得來自不同於現今群組的經隔開感測 器元件之另-群組的經隔開感測器元件之影像資訊。 一 5亥方法可包括:選擇下一群組的經隔開物體次區域; 同時地照射下一群組的經隔開物體次區域;其中以-鏡面 方式自下一群組的經隔開物體次區域的一特定次區域所反 20射之光係預期被對應於下一群組的經隔開物體次區域之下 —群組的經隔開感測器元件之—特定感測Hit件所偵測; 其中物體次區域係被隔開藉以降低债測到來自物體的非鏡 面光之機率,獲得來自下一群組的經隔開感測器元件之影 像身訊;及處理影像資訊的至少一部分以提供物體的一評 200919612 價。 該方法可包括重覆下一群組的經隔開物體次區域之選 擇直到獲得來自物體的一整體連續區域之影像資訊為止。 物體的整體連續區域係為物體的一部分;且其中該方 5 法可包括導入一機械運動於物體與感測器之間並重覆同時 地照射、獲得影像資訊及選擇下一群組的經隔開物體次區 域之階段直到獲得來自物體的另一整體連續區域之影像資 訊為止。 該方法可包括重覆下一群組的經隔開物體次區域之選 10 擇直到獲得來自整體物體的影像資訊為止。 該方法可包括選擇一螢幕的照射元件,及啟動螢幕的 經選擇元件藉以照射一現今群組的經隔開物體次區域。螢 幕可為一LCD螢幕、一電漿螢幕或其他螢幕。螢幕之後可 為一擴散器。 15 各影像次區域可包括多重像素,其各代表約0. lmmx 0.1mm的一物體元件。 該方法可包括藉由一包括成像光學件及一成像感測器 的成像系統來獲得影像資訊;其中成像光學件的一光軸係 在一不同於成像感測器中心的點交會於成像感測器的一成 20 像表面。 一用於照射一晶圓之方法,該方法包括:藉由一第一 照射源所產生的光束來照射一彎曲擴散反射表面;其中彎 曲擴散反射表面被定形及定位成可導引至少部分的光束朝 向晶圓;藉由一成像裝置收集自晶圓反射之光束;其中成 7 200919612 像裝置被定位為可降低收集到成像裝置的反射之機率。 該方法可包括照射晶圓的一背側。 該方法可包括藉由一具有一相對於晶圓傾斜並非九十 度傾斜角的光軸之成像裝置來收集光束。 5 彎曲擴散反射表面可具有一相對於晶圓傾斜並非九十 度傾斜角之想像性中央軸線。 該方法可包括將晶圓及一成像裝置的一物鏡定位於接 近彎曲擴散反射表面的相對端。 該方法可包括暗場照射該晶圓。 10 一用於巨觀檢驗之系統,該系統包括:照射裝置,其 構形為可同時地照射一現今群組的經隔開物體次區域;其 中以一鏡面方式自現今群組的物體次區域之一特定物體次 區域所反射之光係預期被對應於現今群組的經隔開物體次 區域之一現今群組的經隔開感測器元件之一特定感測器元 15 件所偵測;其中物體次區域係被隔開藉以降低偵測到來自 物體的非鏡面光之機率;一成像裝置,其構形為可獲得來 自現今群組的經隔開感測器元件之影像資訊,其中影像資 訊包括多重影像次區域,各影像次區域包括多重像素;及 一處理器,其構形為可處理影像資訊的至少一部分以提供 20 一檢驗結果。 物體次區域係被隔開一物體次區域的一寬度之至少一 半。 照射裝置可構形為可啟動一現今群組的經隔開照射元 件藉以同時地照射現今群組的經隔開物體次區域。 200919612 系統可構形為可獲得來自不同於現今群組的經隔開感 測器元件之另一群組的經隔開感測器元件之影像資訊。 系統可構形為可選擇下一群組的經隔開物體次區域; 同時地照射下一群組的經隔開物體次區域;其中以一鏡面 5 方式自下一群組的經隔開物體次區域的一特定物體次區域 所反射之光係預期被對應於下一群組的經隔開物體次區域 之下一群組的經隔開感測器元件之一特定感測器元件所偵 測;其中物體次區域係被隔開藉以降低偵測到來自物體的 非鏡面光之機率;獲得來自下一群組的經隔開感測器元件 10 之影像資訊;及處理影像資訊的至少一部分以提供物體的 一評價。 該系統可構形為可重覆下一群組的經隔開物體次區域 之選擇直到獲得來自物體的一整體連續區域之影像資訊為 止。 15 物體的整體連續區域係為物體的一部分;且其中系統 可包括一用於導入一機械運動於物體與感測器之間的機械 階段且該系統構形為可重覆一同時照射、影像獲得及影像 資訊的至少一部分之製程並選擇下一群組的經隔開物體次 區域直到獲得來自物體的另一整體連續區域之影像資訊為 20 止。 該系統可構形為可重覆下一群組的經隔開感測器元件 之選擇直到獲得來自整體物體的影像資訊為止。 照射裝置可包括一螢幕且系統可選擇被啟動之螢幕的 照射元件藉以照射一現今群組的經隔開物體次區域。螢幕 9 200919612 可為一 LCD螢幕、一電漿螢幕或其他螢幕。螢幕之後可為 一擴散器。 該系統可包括一成像系統,其包括成像光學件及一成 像感測器。成像光學件的光軸可在一不同於成像感測器中 5 心之點交會於成像感測器的一成像表面。 該系統可構形為可照射被成像以提供影像次區域之物 體次區域,其中各次區域包括多重像素,其各代表約0.1mm x0.1mm的一物體元件。 一用於照射一晶圓之系統,該系統包括一第一照射 10 源;一彎曲擴散反射表面;及一成像裝置;其中第一照射 源係照射彎曲擴散反射表面;其中彎曲擴散反射表面被定 形及定位為可導引至少部分的光束朝向晶圓;其中成像裝 置收集自晶圓反射之光束;其中成像裝置被定位為可降低 收集到成像裝置的反射之機率。 15 彎曲擴散反射表面將光束導引朝向晶圓的一背側。 成像裝置的光軸相對於晶圓傾斜並非九十度傾斜角。 彎曲擴散反射表面具有一相對於晶圓傾斜並非九十度 傾斜角之想像性中央轴線。 系統彎曲擴散反射表面具有兩相對端一晶圓被定位於 20 接近一端而一成像裝置的一物鏡則被定位為接近另一端。 該系統可包括暗場照射源。 圖式簡單說明 將連同圖式從下文詳細描述更完整地瞭解及得知本發 明,其中: 10 200919612 第la、lb、2a、2b、5、6及7圖顯示根據本發明不同實 施例之系統及所檢驗物體; 第3a及3b圖顯示根據本發明不同實施例之一物體的影 像; 5 第扣及牝圖顯示根據本發明不同實施例之系統及一物 體的影像; 第8至10圖顯示根據本發明不同實施例之影像處理;及 第11至19圖顯示根據本發明之一照射模組;及 第20至21圖顯示根據本發明不同實施例之方法。 10 【貧施方式】 較佳實施例之詳細說明 、因為實行本發明之裝備大部份係由熟習該技藝者已知 $電子組件及電路構成,將不比如上述所需要者更詳細地 15 、電路、、田節,以瞭解及得知本發明的背後概念且藉以不 會模糊或引開本發明的教導。 述下列.兒明書中’將參照本發明實施例的特定範例來描 申^發明。然而’顯然可作出不同修改及變化而不脫離如 專矛丨範圍所界定之本發明的較寬廣精神與範圍。 2〇 根據本發明的一實施例,提供一低成本巨觀檢驗系統 及方法。根據本發明的一實施例,提供一低成本背側檢驗 系統及方法。 —諸如等晶圓等扁平且光亮物體可被照射及成像以提 或多個影像。易言之,視場可包括完整晶圓或晶圓的 '大部分。 200919612 利用很大像素(各代表約〇 lmmx〇 lmm或更大的一物 體元件)且利用具有有限解析度之光學件可債測到巨觀缺 陷(或諸如製程變異等其他巨觀現象)而不用昂貴硬體(包括 光學件、機械階段及處理器)。 5 此低成本系統可使用於背端&封裝製程中之晶圓的入 進或外出檢,驗或用來沿著軌道步進作巨觀健之軌道經整 合偏離監視。多重系統可以直列方式被整合至製造線中。 為了達成單一或很少數影像抓取中之一鏡面型及大面 積物體的-亮場影像(不同於一線或面積掃描器),照射裝置 10應夠大(大於各抓取中的物體)且具均質性,藉以在此等角度 内提供將以鏡面方式自物體被反射朝向成像裝置之大射 線。 在該例中,成像裝置應自物體被移除以使其不被自我 反射呈現為影像的部份(例外在於當使用一分光器時,其在 15 實行上較為複雜)。 根據一實施例,成像裝置的光轴係垂直於扁平物平 面。此組態顯示於第la及lb圖。成像裝置1〇的光軸u係在 物體50邊界外相茸於物平面15藉以避免自我反射。物體5〇 相對於成像裝置10的光軸11被不對稱地成像。第13及化圖 20中’成像裝置的光軸11垂直於物體50。第1&圖中,照射 裝置12平行於物體50,但第lb圖中,成像裝置1〇的光軸u 相對於物體50傾斜。 根據本發明的一實施例,成像裝置的光軸係相對於扁 平物平面呈傾斜(不垂直)。此組態顯示於第2&及2]3圖。第以 12 200919612 及2b圖中,成像奘里 *展置10的光軸U傾斜(不垂直)於物體50。第 2a圖中,照射奘$ ,、 衣罝12平行於物體5〇,但第2b圖中,成像裝 置10的光軸11相對於物體5〇傾斜。 右成像襄置不平行於扁平物平面,則成像裝置的光軸 可8b在物體邊界内側或外側相交於物平面以避免自我反 射。物體相對於成像裝置的光軸被不對稱地成像。 一成像裴置可包括一攝影機(亦稱為感測器)及成像光 學件。成像光學件的光軸可重合於攝影機的光軸。若維持 此關係’若成像光學件的光軸對於物體呈法向,且若物體 10的整體影像萬—位於攝影機的視場内,則I體影像應被包 括在小於攝影機的視場之一半内。第la圖的組態可提供第 3a圖所示的結果,而第lb圖的組態可提供第讣圖所示的結 果。第3a圖顯示被包括在小於成像裝置1〇的視場(F〇V)3〇 一半内之一圓形物體(諸如晶圓)的一影像32。FOV 30的中 15心點31位於影像32外側。第3b圖顯示被包括在成像裝置10200919612 IX. Description of invention: [Invention field] The related application is for US Provisional Patent Application No. 60/957,186 and August 21, 2007, which were filed on August 22, 2007. 6〇/956 967 claims priority. The present invention relates to a method and system for low cost inspection. BACKGROUND OF THE INVENTION 10 Apparatus for optical inspection of wafers to detect defects on the front side surface and/or back side is available. In general, this device uses optical microscopy images to detect defects at high to medium resolutions (such as the Falcon inspection system from Camtek Ltd., Israel). The other path is a laser scan in which irregularities in the scattering pattern are detected as 15 defects. The system and method utilizes light from a cell to illuminate the wafer and utilize high resolution optics, high precision mechanical components (including precision X, ¥ or ruler stage) and a powerful processor. This will increase the cost of these systems. There is an increasing need to provide low-cost inspection systems that can detect "comprehensive" phenomena such as lack of photoresist, pollution, and similar questions. It is necessary to provide a low-cost inspection system capable of detecting a comprehensive phenomenon such as overall contamination on the back side of a wafer. [Contents of the Invention] Summary of Invention 200919612 The present invention discloses a method for macroscopic inspection, the method comprising: Simultaneously illuminating a sub-region of separated objects of a current group; wherein the light system reflected from a specific object sub-region of one of the sub-regions of the present group in a specular manner is expected to be separated by (4) from the current group One of the sub-regions of the object is now measured by one of the sensor elements of the group of spaced apart sensor elements; wherein the sub-regions of the separated objects are separated to reduce the non-mirror surface from the object The probability of light; obtaining image information of the separated sensor elements from the current group; wherein the image information includes multiple separated image sub-regions, wherein each image sub-region includes multiple pixels; and at least a portion of processing image information 10 To provide a test result. The object sub-region is separated by at least half of a width of an object sub-region. The edge method may include initiating a separated photo of a current group. The component thereby simultaneously illuminates the sub-region of the separated object of the current group. The method can include obtaining separate sensor elements from another group of spaced apart sensor elements different from the current group. The image information may include: selecting a sub-region of the separated object of the next group; simultaneously illuminating the sub-region of the separated object of the next group; wherein the mirror is from the next group The light system that is reflected by a particular sub-region of the sub-region of the separated object is expected to be corresponding to the sub-region of the next group of sub-regions - the sense of the separated sensor elements - the specific sense Detecting the detection of the Hit device; wherein the sub-regions of the object are separated to reduce the probability of detecting non-mirror light from the object, and obtaining the image of the separated sensor elements from the next group; and processing At least a portion of the image information is provided to provide a rating of the object 200919612. The method can include repeating the selection of the sub-region of the separated object of the next group until image information from an integral continuous region of the object is obtained. The continuation area is part of the object; and wherein the method 5 includes introducing a mechanical motion between the object and the sensor and repeating the simultaneous illumination, obtaining image information, and selecting the next group of separated object sub-regions The stage until the image information from another overall continuous region of the object is obtained. The method may include repeating the selection of the separated sub-regions of the next group until image information from the overall object is obtained. The method may include selecting a screen illumination element and a selected component of the activation screen to illuminate a sub-region of the separated object of the current group. The screen may be an LCD screen, a plasma screen or other screen. The screen may be followed by a screen The image sub-region may include multiple pixels, each representing an object component of about 0.1 mm x 0.1 mm. The method may include obtaining an image by an imaging system including an imaging optic and an imaging sensor. Information; wherein an optical axis of the imaging optics intersects a 20-image surface of the imaging sensor at a point different from the center of the imaging sensor. A method for illuminating a wafer, the method comprising: illuminating a curved diffuse reflective surface by a beam generated by a first illumination source; wherein the curved diffuse reflective surface is shaped and positioned to direct at least a portion of the beam Facing the wafer; the light beam reflected from the wafer is collected by an imaging device; wherein the image device is positioned to reduce the probability of reflection collected to the imaging device. The method can include illuminating a back side of the wafer. The method can include collecting the light beam by an imaging device having an optical axis that is tilted at an angle other than ninety degrees with respect to the wafer. 5 The curved diffuse reflective surface can have an imaginative central axis that is not inclined at an angle of ninety degrees with respect to the wafer. The method can include positioning a wafer and an objective lens of an imaging device at opposite ends of the curved diffuse reflective surface. The method can include illuminating the wafer with a dark field. 10 A system for macroscopic inspection, the system comprising: an illumination device configured to simultaneously illuminate a sub-region of separated objects of a current group; wherein the object sub-region of the current group is mirrored The light system reflected by one of the sub-regions of the particular object is expected to be detected by one of the sensor elements corresponding to one of the spaced apart sensor elements of the current group of one of the sub-regions of the current group. Where the sub-regions of the object are separated to reduce the probability of detecting non-specular light from the object; an imaging device configured to obtain image information of the separated sensor elements from the current group, wherein The image information includes a plurality of image sub-regions, each image sub-region comprising a plurality of pixels; and a processor configured to process at least a portion of the image information to provide a test result. The object sub-region is separated by at least half of a width of an object sub-region. The illumination device can be configured to activate a spaced apart illumination element of a current group to simultaneously illuminate the sub-region of the separated object of the current group. The 200919612 system can be configured to obtain image information from spaced apart sensor elements from another group of spaced apart sensor elements that are different from today's groups. The system can be configured to select a sub-region of the separated object of the next group; simultaneously illuminate the sub-region of the separated object of the next group; wherein the separated object from the next group is in a mirror 5 manner The light system reflected by a particular object sub-region of the sub-region is expected to be detected by a particular sensor element corresponding to one of the separated sensor elements of a group below the sub-region of the next group. Measuring; wherein the object sub-regions are separated to reduce the probability of detecting non-specular light from the object; obtaining image information from the next group of spaced apart sensor elements 10; and processing at least a portion of the image information To provide an evaluation of the object. The system can be configured to repeat the selection of the sub-regions of the separated objects of the next group until image information from an overall continuous region of the object is obtained. 15 the entire continuous region of the object is part of the object; and wherein the system can include a mechanical phase for introducing a mechanical motion between the object and the sensor and the system is configured to be re-smooth, simultaneously illuminated, image acquired And processing of at least a portion of the image information and selecting the sub-region of the next group of separated objects until the image information of another overall continuous region from the object is obtained. The system can be configured to repeat the selection of the spaced apart sensor elements of the next group until image information from the overall object is obtained. The illumination device can include a screen and the system can select an illumination element of the activated screen to illuminate a sub-region of the separated object of the present group. Screen 9 200919612 can be an LCD screen, a plasma screen or other screen. It can be a diffuser behind the screen. The system can include an imaging system that includes imaging optics and an imaging sensor. The optical axis of the imaging optic can intersect an imaging surface of the imaging sensor at a point different from the center of the imaging sensor. The system can be configured to illuminate an object sub-region that is imaged to provide an image sub-region, wherein each sub-region includes multiple pixels, each representing an object element of about 0.1 mm x 0.1 mm. a system for illuminating a wafer, the system comprising a first illumination 10 source; a curved diffusion reflective surface; and an imaging device; wherein the first illumination source illuminates the curved diffusion reflective surface; wherein the curved diffusion reflective surface is shaped And positioning to direct at least a portion of the beam toward the wafer; wherein the imaging device collects the beam reflected from the wafer; wherein the imaging device is positioned to reduce the probability of reflections collected to the imaging device. 15 The curved diffuse reflective surface directs the beam toward a back side of the wafer. The optical axis of the imaging device is not tilted at a 90 degree angle with respect to the wafer. The curved diffuse reflective surface has an imaginative central axis that is not inclined at a 90 degree angle with respect to the wafer. The system has a curved diffuse reflective surface having two opposite ends. A wafer is positioned at approximately one end of the wafer and an objective lens of an imaging device is positioned proximate to the other end. The system can include a dark field illumination source. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be more fully understood and understood from the following detailed description of the drawings, wherein: 10 200919612 Figures la, lb, 2a, 2b, 5, 6, and 7 show systems in accordance with various embodiments of the present invention. And the object to be inspected; Figures 3a and 3b show images of an object according to various embodiments of the present invention; 5 The first button and the figure show images of the system and an object according to various embodiments of the present invention; Figures 8 to 10 show Image processing in accordance with various embodiments of the present invention; and Figures 11 through 19 show an illumination module in accordance with the present invention; and Figures 20 through 21 illustrate methods in accordance with various embodiments of the present invention. 10 [Poor Mode] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT, since most of the equipment embodying the present invention is known from the skilled artisan, the electronic components and circuit components will be more detailed than those required by the above. Circuits, and fields are used to understand and understand the concepts behind the present invention and the teachings of the present invention are not obscured or derived. The following description will be made with reference to specific examples of embodiments of the invention. However, it is apparent that various modifications and changes can be made without departing from the broader spirit and scope of the invention as defined by the scope of the invention. 2A In accordance with an embodiment of the present invention, a low cost giant inspection system and method are provided. In accordance with an embodiment of the present invention, a low cost backside inspection system and method is provided. - Flat and shiny objects such as wafers can be illuminated and imaged to extract or multiple images. In other words, the field of view can include the 'majority of a complete wafer or wafer. 200919612 Using large pixels (each representing an object element of about 1mm x 〇lmm or larger) and using optical components with limited resolution to measure macroscopic defects (or other macroscopic phenomena such as process variation) without using Expensive hardware (including optics, mechanical stages and processors). 5 This low-cost system allows for in- or out-out inspection of wafers used in back-end & packaging processes, or to track orbit along the track for giant tracking. Multiple systems can be integrated into the manufacturing line in an inline manner. In order to achieve a bright-field image of a mirror-type and large-area object in a single or very small number of image captures (unlike a line or area scanner), the illumination device 10 should be large enough (greater than the objects in each capture) and It is homogeneous in that it provides a large ray that will be mirrored from the object toward the imaging device in these angles. In this example, the imaging device should be removed from the object so that it is not self-reflecting as part of the image (with the exception that when a beam splitter is used, it is more complicated in 15 implementation). According to an embodiment, the optical axis of the imaging device is perpendicular to the flat surface. This configuration is shown in the first and lb diagrams. The optical axis u of the imaging device 1 is attached to the object plane 15 at the boundary of the object 50 to avoid self-reflection. The object 5 is asymmetrically imaged with respect to the optical axis 11 of the imaging device 10. In the thirteenth and twenty-fifth embodiments, the optical axis 11 of the imaging device is perpendicular to the object 50. In the first & figure, the illuminating device 12 is parallel to the object 50, but in the lbth view, the optical axis u of the imaging device 1 倾斜 is inclined with respect to the object 50. According to an embodiment of the invention, the optical axis of the imaging device is inclined (not perpendicular) with respect to the plane of the flat object. This configuration is shown in Figures 2 & and 2]3. In the figures 12, 2009, 196, and 2b, the optical axis U of the imaging device 10 is tilted (not perpendicular) to the object 50. In Fig. 2a, the illumination 奘$, the clothing 12 is parallel to the object 5〇, but in Fig. 2b, the optical axis 11 of the imaging device 10 is inclined with respect to the object 5〇. The right imaging device is not parallel to the plane of the flat object, and the optical axis 8b of the imaging device can intersect the object plane inside or outside the boundary of the object to avoid self-reflection. The object is asymmetrically imaged relative to the optical axis of the imaging device. An imaging device can include a camera (also referred to as a sensor) and an imaging optics. The optical axis of the imaging optics can coincide with the optical axis of the camera. If the relationship is maintained, 'if the optical axis of the imaging optics is normal to the object, and if the overall image of the object 10 is within the field of view of the camera, the I-body image should be included in less than one-half of the field of view of the camera. The configuration of Figure la provides the results shown in Figure 3a, while the configuration of Figure lb provides the results shown in Figure 。. Figure 3a shows an image 32 that is included in a circular object (such as a wafer) that is less than half the field of view (F〇V) of the imaging device. The center 15 point 31 of the FOV 30 is located outside the image 32. Figure 3b shows that it is included in the imaging device 10

i 的一視場(FOV)30内之圓形物體的影像32。FOV 30的中心 點位於影像32内。 因此,對於一給定光學組態(物體尺寸、成像光學件及 攝影機框架及像素性質)且當盡量加大物體影像尺寸而不 20 變成自我反射時,垂直組態中的潛在幾何解析度係小於傾 斜組態中的潛在幾何解析度。 成像裝置10可包括攝影機l〇a(或其他類型的成像感測 器)及成像光學件l〇b。其顯示於第4a及4b圖中。第4a及4b 圖顯示兩組態,其中成像光學件的光軸被定位成可交會於 13 200919612 (在交點55)物體50外侧的物平面15。 本發明的一實施例中,成像光學件被定位成使其光輛 相對於攝影機框架中心(成像感測器的感測區域中心)被平 移。假設成像光學件視場(FOV)不限於攝影機框架尺寸,則 5在垂直組態中(當攝影機的光軸垂直於物體時),可更加最適 地利用攝影機框架以增高解析度但實質無扭曲地操取5 中的整體物體-如第4b圖所示。第43及仆圖顯示攝影機心 的卿30及物體32的影像。雖然藉由使攝影機光抽相對於 物平面傾斜來獲得第_,第4b圖係在光轴及物平面之間 10 維持一垂直關係時獲得。 為了在單—抓取中擷取-整體鏡面物體的-亮場與 :,照射裝置應相對於錢漁以—鏡面方式照射物體的 各個及每個點。為了達成該作用,照«置應具有—呈經 15 20 延伸角度分佈之大照射面積,其中至少—次組的細點 係照射所有物體點,其中各昭 、'‘’ 物體點呈交又相關。〜射點错由—鏡面光射線與- 切《 a… ^碌。可良好地僧測出具有色料 訊及諸如污漬、邊緣缺陷( 7 構》然而,可能未以高對出項目之特微結 構、特定㈣_痕及其他三维擾動4子等其他特徵結 -5,-^ „ . 維擾動。此類型的特徵纟士構 =有散射中心之特徵,因此 = 所擷取之光射線H鏡面射線。 ⑽ϋ 第聰貞示包括點A51及助52之_物㈣ ㈣被-大面積光源所照射。物體的點U為鏡面性^ 14 200919612 只有鏡面射線(具有與成像模組數值孔徑交叉相關之狹窄 角度分佈)被成像裝置10所擷取以生成一亮點於影像中。這 些射線被包圍在一自照射區域的單點周遭環境出現之狹窄 光圓錐内。 5 物體的點B 52係為一散射中心類型。因此,碰撞點b 52 且自完整照射區域出現之所有光射線係貢獻在成像裝置j 〇 方向中所散射之部分經反射光以生成另一亮點於影像中。 點A及B 51及52之間沒有或只有很低的強烈度對比。其理由 係在於純亮場成像(點A)混合於部份性暗場成像(點b)。 10 提議下列照射系統及方法以達成鏡面點(譬如類型A) 對於散射點(譬如類型B)或非水平鏡面點(類型c)之間的較 高對比。 一物體區域被實質地分成小物體次區域(A〇i),各小次 區域包括多重像素,各像素至少為數十微米寬。各物體次 15區域係與照射裝置12的一照射次區域(α^)交叉相關,故照 射次區域(Aii)幾乎只相對於成像模組藉由鏡面光射線來照 射物體次區域(Ao,)。第6圖中,照射次區域Aii 13係照射物 體次區域(A〇i)23,故成像裝置1〇接收來自物體次區域(A〇i) 的經反射光且未接收(或未接收一實質量)的經散射(暗場) 20光。易言之,物體次區域(Αο〇係被較純粹地亮場照射且未 被(或幾乎未被)暗場照射。一照射次區域可包括一或多個照 射元件。 若物體次區域為扁平且鏡面性,則其被亮場照射的照 射將導致一用於照射物體次區域之亮場影像。若物體次區 15 200919612 域匕括政射點(諸如第7圖的散射點功或非平行鏡面點,其 將相對於鏡面反射更改反射方向且這些點將被成像為較暗 用此方式改良—非鏡面點(其可被歸類為物體中的 缺陷)對於鏡面影像次區域之間的對比。 5 為了產生物體的-完全影像,應照射多重物體次區 域物體-人區域-者在另一者之後被逐一照射。不同的物 體次區域可重疊。在各疊代,與特定物體次區域_交叉 才關之IV像的各別部分係被砍割(從包括物體整體經照射 區域之視场)以生成一亦稱為影像次區域之影像段㈣。所 H)有經砍割影像段陶隨後在彼此旁邊附接在一起以產生整 體物體的影像或物體的一整體連續區域。 第8圖顯示物體50被照射多⑻次,其中在各次期間,將 有關單-物體次區域之影像資訊(此影像資訊亦稱為影像 次區域)列入考慮。因此,藉由砍割第_影像段7〇(1)7〇⑻ 15來處理影像70(1)_70(n)’其各包括對應於單一物體次區域之 單一影像段(影像次區域)Isl-Isn。上述程序可能需要在最後 影像產生前擷取相當多個影像。 20 本發明的-實施例中,-群組的照射次區域被同時地 啟動藉以由一鏡面模式照射一群組的經隔開物體次區域。 物體次區域彼此被分隔一可身為一物體次區域的一比例部 分或大於-物體次區域之間隙。該_方便地為各物體次 區域的約-半尺寸或更大。為此’-群組的經隔開物體次 區域係被一群組的經隔開照射次區域所照射。 藉由只以數次疊代同時地照射·的物體次區域(少 16 200919612 數獲取影像)將能夠產生最後影像且將確保實質未在各原 始次區域的影像中偵測到近暗場射線。許多案例中,其接 近足以藉由單一次區域位置改變模式來產生一影像。 第9圖提供藉由四群組的次區域之此影像產生模式的 5 一範例。 第9圖顯示物體50之四不同群組的經隔開物體次區域 被對應群組的經隔開照射次區域所照射期間之照射的四次 疊代。各疊代期間,與特定群組的物體次區域(A〇i)交叉相 關之各影像中的各別段係被砍割且最後合併在一起以產生 10 最後影像。 一第一疊代期間所獲取之影像80(1)係包括影像段 Isl,l、Isl,3、Isl,5、...Isl,n(合標為 82(1)),其包括一第一 群組的經隔開物體次區域之亮場資訊。 一第二疊代期間所獲取之影像80(2)係包括影像段 15 Is2,l、Is2,2、Is2,2、..·ΐ82,η(合標為 82(1)),其包括不同於 第一群組的經隔開物體次區域之一第二群組的經隔開物體 次區域之亮場資訊。 一第三疊代期間所獲取之影像80(3)係包括影像段 Is3,l、Is3,3、Is3,5、...Is3,n(合標為 82(3)),其包括不同於 20 上述群組的經隔開物體次區域之一第三群組的經隔開物體 次區域之亮場資訊。 一第四疊代期間所獲取之影像80(4)係包括影像段 Is4,l、Is4,2、Is4,3、...Is4,n(合標為82(4)),其包括不同於 上述群組的經隔開物體次區域之一群組的經隔開物體次區 17 200919612 域之亮場資訊。 所有此等影像段係合併以提供一包括Isl...Isn之影像 900。 次區域的群組可某程度地重疊且該砍割可切割比照射 5 次區域更小的段,只要最後組合產生物體的一完整亮場影 像即可。 本發明的另一實施例中,次區域的間際間隙係被砍割 以提供一暗場影像。未被照射次區域所照射、但圍繞(經鏡 面照射)經隔開物體次區域之物體次區域係被(幾乎接近)暗 10 場射線所照射。部分特徵結構(譬如缺陷)藉由暗場照射模式 看起來更清楚。 第10圖顯示四個次區域群組之一案例的範例,其中自 被亮場照射的物體次區域之間的間隙所獲得之兩影像資訊 係自四個原始影像被砍割以添加至物體的一暗場影像。 15 一第一疊代期間所獲取的影像90(1)係包括影像段An image 32 of a circular object within a field of view (FOV) 30 of i. The center point of the FOV 30 is located in the image 32. Therefore, for a given optical configuration (object size, imaging optics and camera frame and pixel properties) and when the object image size is maximized without 20 self-reflection, the potential geometric resolution in the vertical configuration is less than Potential geometry resolution in a tilt configuration. Imaging device 10 can include a camera 10a (or other type of imaging sensor) and imaging optics lb. It is shown in Figures 4a and 4b. Figures 4a and 4b show two configurations in which the optical axis of the imaging optics is positioned to intersect the object plane 15 outside the object 50 at 13 200919612 (at intersection 55). In one embodiment of the invention, the imaging optics are positioned such that their light is displaced relative to the center of the camera frame (the center of the sensing area of the imaging sensor). Assuming that the field of view (FOV) of the imaging optics is not limited to the size of the camera frame, then 5 in the vertical configuration (when the optical axis of the camera is perpendicular to the object), the camera frame can be optimally utilized to increase the resolution but substantially without distortion. Take the whole object in 5 - as shown in Figure 4b. The 43rd and the servant diagrams show the images of the camera 30 and the object 32. Although the _th is obtained by tilting the camera light with respect to the object plane, the 4th picture is obtained while maintaining a vertical relationship between the optical axis and the object plane 10. In order to capture the - bright field and the : of the overall mirror object in the single-grabbing, the illumination device should illuminate each and every point of the object in a mirror-like manner with respect to the money. In order to achieve this effect, the illuminating area with the extended angle distribution of 15 20 is used, and at least the fine points of the sub-group illuminate all the object points, wherein each of the singular and ''' object points are submitted and correlated. ~ Shooting point error - mirror light ray and - cut "a... ^ 碌. It can be well detected with color information and such as stains, edge defects (7 structure), however, may not have high specificity of the project's special microstructure, specific (four) _ marks and other three-dimensional disturbances 4 and other characteristics of the knot -5 , -^ „ . Dimensional perturbation. This type of characteristic gentleman structure = has the characteristics of the scattering center, so = the light ray H mirror ray that is captured. (10) ϋ 贞 贞 包括 包括 A 51 51 51 51 51 51 51 51 A 51 助 助 助 助 助 助 助 助Illuminated by a large area light source. The point U of the object is specular^ 14 200919612 Only specular rays (having a narrow angular distribution cross-correlated with the numerical aperture of the imaging module) are captured by the imaging device 10 to generate a bright spot in the image. These rays are enclosed in a narrow cone of light that appears in a single point surrounding the illuminated area. 5 The point B 52 of the object is of a scattering center type. Therefore, all light that appears at the collision point b 52 and from the complete illumination area The ray system contributes a portion of the scattered light scattered in the imaging device j 〇 direction to generate another bright spot in the image. There is no or only a very low intensity contrast between points A and B 51 and 52. The reason is pure Field imaging (point A) is mixed with partial dark field imaging (point b). 10 The following illumination systems and methods are proposed to achieve specular points (such as type A) for scattering points (such as type B) or non-horizontal mirror points (type c) Higher contrast between. An object region is substantially divided into small object sub-regions (A〇i), each sub-region includes multiple pixels, each pixel being at least tens of micrometers wide. An illumination sub-region (α^) of the illumination device 12 is cross-correlated, so that the illumination sub-region (Aii) illuminates the object sub-region (Ao,) almost exclusively by the specular light ray with respect to the imaging module. In Fig. 6, the illumination The sub-area Aii 13 illuminates the object sub-region (A〇i) 23, so the imaging device 1 receives the reflected light from the object sub-region (A〇i) and does not receive (or does not receive a real mass) of the scattering ( Dark field) 20 light. In other words, the sub-region of the object (the 〇 〇 被 is illuminated by a relatively pure bright field and is not (or hardly) illuminated by the dark field. An illuminating sub-region may comprise one or more illuminating elements. If the sub-region of the object is flat and specular, then the illumination by the bright field will a bright field image for illuminating the sub-region of the object. If the object sub-region 15 200919612 domain includes political points (such as the scattering point work or the non-parallel mirror point of Figure 7, it will change the direction of reflection relative to the specular reflection and These points will be imaged as darker in this way - non-specular points (which can be classified as defects in the object) for contrast between the sub-areas of the specular image. 5 In order to produce a full image of the object, multiple objects should be illuminated Sub-area objects - human areas - are illuminated one after the other. Different object sub-regions can overlap. In each iteration, the individual parts of the IV image that crosses the specific object sub-region are chopped (from the field of view including the entire illuminated area of the object) to generate an image segment (4), also referred to as the image sub-region. H) There are cut-off image segments that are then attached together next to each other to produce an image or an integral continuous region of the object. Figure 8 shows that the object 50 is illuminated for many (8) times, with image information about the single-object sub-region (this image information is also referred to as the image sub-region) being considered during each period. Therefore, the image 70(1)_70(n)' is processed by chopping the first image segment 7〇(1)7〇(8)15, each of which includes a single image segment (image sub-region) corresponding to a single object sub-region Isl -Isn. The above procedure may require capturing a significant number of images before the final image is generated. In an embodiment of the invention, the illumination sub-regions of the - group are simultaneously activated to illuminate a group of spaced object sub-regions by a mirror pattern. The sub-regions of the object are separated from each other as a proportion of a sub-region of the object or a gap greater than the sub-region of the object. This _ is conveniently about - half size or larger for each object sub-region. For this purpose, the separated sub-regions of the group are illuminated by a group of spaced apart sub-regions. By sub-regions of objects that are simultaneously illuminated with only a few iterations (the number of images acquired by the number of 200919612) will be able to produce the final image and will ensure that near-dark field rays are not detected in the images of the original sub-regions. In many cases, it is close enough to produce an image by a single regional position change mode. Figure 9 provides an example of this image generation mode by subgroups of four groups. Figure 9 shows four iterations of the separated sub-regions of four different groups of objects 50 illuminated by the respective sub-regions of the corresponding sub-areas. During each iteration, the individual segments in each of the images associated with the sub-region (A〇i) of the particular group are chopped and finally merged together to produce 10 final images. The image 80(1) acquired during a first iteration includes image segments Is1, 1, Isl, 3, Isl, 5, ... Isl, n (consistent 82(1)), which includes a Bright field information for a group of sub-regions separated by objects. The image 80(2) acquired during a second iteration includes image segments 15 Is2,l, Is2,2, Is2,2, ..·ΐ82, η (consistent 82(1)), which includes different Bright field information for the separated sub-region of the second group of one of the separated sub-regions of the first group. The image 80(3) acquired during a third iteration includes image segments Is3, 1, Is3, 3, Is3, 5, ... Is3, n (consistent 82(3)), which includes different 20 Bright field information of the separated object sub-region of the third group of the separated object sub-regions of the group. The image 80(4) acquired during a fourth iteration includes image segments Is4, 1, Is4, 2, Is4, 3, ... Is4, n (consistent 82(4)), which includes different The bright field information of the separated object sub-region 17 200919612 domain of the group of the separated sub-regions of the above group. All of these image segments are combined to provide an image 900 comprising Isl...Isn. The groups of sub-regions may overlap to some extent and the chopping may cut segments that are smaller than the 5 sub-regions, as long as the final combination produces a complete bright-field image of the object. In another embodiment of the invention, the inter-interstitial gap of the sub-region is chopped to provide a dark field image. Sub-areas of objects that are not illuminated by the sub-area but are surrounded (mirror-irradiated) by the sub-area of the separated object are illuminated by (almost) dark 10 field rays. Some of the features, such as defects, appear to be clearer by the dark field illumination mode. Figure 10 shows an example of a case of one of the four sub-region groups, wherein the two image information obtained from the gap between the sub-regions illuminated by the bright field is chopped from the four original images to be added to the object. A dark field image. 15 Image 90(1) acquired during the first iteration includes image segments

Isl,l、Isl,3、Isl,5、...Isl,n(合標為 82(1)),其包括一第一 群組的經隔開物體次區域之亮場資訊。影像90(1)亦包括諸 如暗場影像段Igln 93(1)及Iglm 94(1)等多重暗場影像段, 其包括自未被包括在第一群組的經隔開物體次區域中之物 20 體次區域所散射之光。 一第二疊代期間所獲取的影像90(2)係包括影像段 Is2,l、Is2,2、Is2,2、_··ΐ82,η(合標為82(1)),其包括不同於 第一群組的經隔開物體次區域之一第二群組的經隔開物體 次區域之亮場資訊。影像90(1)亦包括諸如暗場影像段Igln 18 200919612 93(1)及Iglm 94(1)等多重暗場影 在第一群組的經隔開物體次區 奴,其包括自未被包括 光。影像90(2)亦包括諸如暗場之物體次區域所散射之 等多重暗場影像段,其包括自*未段1咖93(2)及1g2m94(2) 開物體次區域中之物體次區域所第二群組的經隔 一第三疊代期間所獲取的&之、> ° T ^ , T . . T . s τ , 衫像90(3)係包括影像段Isl,l, Isl, 3, Isl, 5, ... Isl, n (consistent 82 (1)), which includes bright field information of a first group of separated sub-regions. Image 90(1) also includes multiple dark field image segments, such as dark field image segments Igln 93(1) and Iglm 94(1), including from sub-regions of separated objects that are not included in the first group. The light scattered by the sub-region of the object 20. The image 90(2) acquired during a second iteration includes image segments Is2, 1, Is2, 2, Is2, 2, _·· ΐ 82, η (consistent 82 (1)), which includes Bright field information for the separated sub-region of the second group of the first group of separated sub-regions. Image 90(1) also includes multiple dark field shadows such as dark field image segments Igln 18 200919612 93(1) and Iglm 94(1) in the first group of separated object sub-region slaves, including since not included Light. Image 90(2) also includes multiple dark field image segments scattered by sub-regions of the dark field, including sub-regions of objects in the sub-region of the object segment from the zero segment 93 (2) and 1 g2 m94 (2) The &> ° T ^ , T . . T . s τ , and the shirt image 90 (3) acquired by the second group during the third and third iterations include image segments.

Is3,l、Is3,3、Is3,5、…Is3,n(合辨从 π為82(3)),其包括不同於 上述群組的經隔開物體次區域之〜忽— 〜第三群組的經隔開物體 次區域之亮場資訊。影像90(3)亦幻上 10 15 v.. 包括諸如暗場影像段Ig3n 93(3)等多重暗場影像段,其包括自 g未被包括在第三群組的 經隔開物體次區域中之物體次區域所散射之光。 -第四疊代期間所獲取的影像9(J係包括影像段 Is4,h IS4,2、賊3、._.Is4,n(合標為82(4)),其包括不同於 上述群組的經隔開物體·_人區域之一群組的經隔開物體次區 域之亮場資訊。影像9〇(4)亦包括諸如暗場影像段ig4m 94(4) 等多重暗場影像段’其包括自未被包括在第四群組的經隔 開物體次區域中之物體次區域所散射之光。 所有這些暗場影像段可被合併以提供一包括暗場影像 段之影像。 20 不同群組的經隔開物體次區域之照射係需要一可構形 式照射裝置或一照射裝置及一可構形式空間濾器的一組合 或甚至可構形式照射裝置及一可構形式空間濾器的一組 合。照射裝置亦可具有調整光強烈度及藉由改變光的頻譜 分佈作照射(不同光色)之能力。 200919612 照射裝置可為一LCD螢幕。一擴散器被放置在LCD螢 幕與物體之間且特別被放置成很緊鄰於LCD螢幕藉以擴散 個別LCD胞元的單一性(singularity),其原本可能干涉到影 像。處理器及一顯示板係控制螢幕以饋送不同的經顯示圖 5案。圖案可被很快地交換(由於一LCD螢幕的快速響應)。圖 案可能設計成以控制式時程、強烈度、色彩及形狀作照射。 系統可照射及獲取整體物體的影像(或者是被分散於 整體物體上方之群組的經隔開物體次區域)但未必如此。嬖 如,若物體(或者是被分散於物體的一段上方之群組的經隔 10開物體次區域)一次,系統可照射及獲取僅一段的影像。後 者案例巾,可在物體與黯光學件之料人频運動藉以 改變受檢閱的物體段。後者組態可容許使用一更不佔體積 的照射及成像配置。若使用相同攝影機,後者組態可提供 相對於前者組態更好之解析度。 15 歧態的範例係為—被放置在1轉階段上之圓形物 體(譬如-晶圓)。階段旋轉一特定角度以改變物體位置。— 範例中,物體在四段中被擷取,各段包括晶圓的約四分之 一。在該例巾,P皆段在各四分之一棟取之間旋轉9〇。。對於 各四刀之實4產生—亮場影像及—暗場影像之先前程序 20且最後四影像被合併以生成完整物體影像。 本發明的-實施例中’亮場照射裳置為擴散反射圓錐 表面的一段。此實施例揭露於第丨丨至^圖。表面被一並未 直接照射物體之外部照射源所照射。來自擴散表面的經反 射光係照射扁平物體以生成物體的1場影像(但非純粹 20 200919612 明亮)。 本發明的另一實施例中,可實行歪斜的暗场照射。知、 射源相對於物平面以一淺角度傾斜被定位。 暗場成像的此組態係適合成像諸如未經圖案化的晶圓 5或晶圓背側等物體。 ' 本發明的一實施例中,亮場照射裝置係為擴散反射彎 曲(實質圓錐形)表面的一段。 此實施例揭露於第11至19圖。第11及12圖顯示照射模 組的一殼體1101及照射模組的一頂覆蓋件1102。頂覆蓋件 10 1102具有一開口(顯示第16圖),其上放置有一晶圓。第13 圖顯示頂覆蓋件1102、及攝影機1300。攝影機1300被定位 在物鏡1220下方,物鏡1220則被定位在擴散反射彎曲表面 11〇〇下方。第14及15圖為攝影機1300、物鏡1220、擴散反 射彎曲表面1100、暗場照射元件1200及頂覆蓋件1102之側 15 视圖。第16圖顯示頂覆蓋件11〇2的開口 1112及三個被設置 \ j 非近開口 1112邊緣且支撐一晶圓(未圖不)之支撐元件Is3,l, Is3,3, Is3,5,...Is3,n (coincidence from π is 82(3)), which includes the sub-regions of the separated objects different from the above group~~--the third group Bright field information for the sub-regions of the separated objects. The image 90(3) is also singularly 10 15 v.. includes multiple dark field image segments such as the dark field image segment Ig3n 93(3), including sub-regions of separated objects that are not included in the third group from g Light scattered by the sub-region of the object in the medium. - image 9 acquired during the fourth iteration (J series includes image segment Is4, h IS4, 2, thief 3, ._. Is4, n (consistent 82 (4)), which includes a different from the above group Bright field information of the separated sub-regions of a group of separated objects · _ human regions. Image 9 〇 (4) also includes multiple dark field image segments such as dark field image segment ig4m 94 (4) It includes light scattered from sub-regions of objects that are not included in the sub-region of the separated object of the fourth group. All of these dark field segments can be combined to provide an image including dark field segments. The illumination of the sub-regions of the group of separated objects requires a combination of a configurable illumination device or an illumination device and a configurable spatial filter, or a combination of a configurable illumination device and a configurable spatial filter. The illumination device can also have the ability to adjust the intensity of the light and to illuminate (different light colors) by changing the spectral distribution of the light. 200919612 The illumination device can be an LCD screen. A diffuser is placed between the LCD screen and the object. Specially placed in close proximity to the LCD screen to spread The singularity of the LCD cell, which may have interfered with the image. The processor and a display panel control the screen to feed different displayed pictures. The pattern can be quickly exchanged (due to the speed of an LCD screen) The pattern may be designed to illuminate in a controlled time course, intensity, color, and shape. The system can illuminate and acquire an image of the entire object (or a sub-area of separated objects that are dispersed over the entire object) But this is not necessarily the case. For example, if an object (or a sub-area of 10 groups of objects that are scattered over a section of the object) is used once, the system can illuminate and acquire only one segment of the image. The object and the optical movement of the optical element are used to change the segment of the object being examined. The latter configuration allows for a less volumetric illumination and imaging configuration. If the same camera is used, the latter configuration provides a configuration relative to the former. A better resolution. 15 The paradigm is a circular object (such as a wafer) placed in a 1 turn phase. The phase is rotated by a specific angle to change Body position.— In the example, the object is captured in four segments, each segment including about a quarter of the wafer. In this case, the P segments are rotated 9 turns between each quarter. For each of the four-knife 4 generation - the bright field image and the previous program 20 of the dark field image and the last four images are combined to generate a complete object image. In the embodiment of the invention, the 'bright field illumination is set to diffuse reflection A section of the conical surface. This embodiment is disclosed in Figures 。. The surface is illuminated by an external source that is not directly illuminating the object. The reflected light from the diffusing surface illuminates the flat object to produce a field image of the object. (But not purely 20 200919612 bright). In another embodiment of the invention, a dark field illumination of skew can be performed. The source is located at a shallow angle with respect to the object plane. This configuration of dark field imaging is suitable for imaging objects such as the unpatterned wafer 5 or the back side of the wafer. In one embodiment of the invention, the bright field illumination device is a segment of a diffusely reflective curved (substantially conical) surface. This embodiment is disclosed in Figures 11 to 19. Figures 11 and 12 show a housing 1101 of the illumination module and a top cover 1102 of the illumination module. The top cover 10 1102 has an opening (shown in Figure 16) on which a wafer is placed. Figure 13 shows the top cover 1102 and the camera 1300. The camera 1300 is positioned below the objective lens 1220 and the objective lens 1220 is positioned below the diffusely reflective curved surface 11〇〇. Figures 14 and 15 are views of the camera 1300, the objective lens 1220, the diffuse reflective curved surface 1100, the dark field illumination element 1200, and the side cover 1102. Figure 16 shows the opening 1112 of the top cover 11〇2 and the three support members that are disposed at the edge of the opening 1112 and supporting a wafer (not shown).

Ul!,晶圓一但被放置在支撐元件1111上則可密封住開口 U12或至少幾乎完全地關閉開口。第16圖亦顯示暗場照射 元件1200、攝影機13〇〇、物鏡1220及擴散反射彎曲表面 2〇 U〇0。第17及18圖顯示攝影機1300、暗場照射元件12〇〇、 物鏡1220、開口 1202及擴散反射彎曲表面11〇〇。請注意多 重開口可被界定於不同區位及/或不同高度。譬如,第17圖 顯示一較大開口 1202,其上可支撐有一較大晶圓。進—步 請注意,單一開口可支撐不同尺寸的晶圓一若適當的話提 21 200919612 供有支撐元件。 =圖提供嶋一同_之詳細圖示。 擴散反射彎曲表面u㈨ 的昭斛-从, ’、破啫如並未直接照射晶圓 所照射 凡120及1 130等外部照射源(亦稱為第-照射源) 擴散反射·彎曲表面1 1 〇〇带士 U形成一部份開啟圓錐。其相對 於-垂直於晶圓的想像性轴線呈傾斜。利用圓錐中的開口 藉由ϋ射源來照射擴散反射彎曲表面1100。 第19圖中’將第-照射源顯示為包括位居擴散反射彎 1〇曲表面1100中間下方之-組的光源(諸如發光二極體)以及 位居晶圓之間及擴散反射彎曲表面11〇〇上方之三組的光源 1130。擴散反射彎曲表面u⑻的想像性轴線朝向圓雜開口 傾斜。 可藉由啟動一或多個位於擴散反射彎曲表面1100上邊 15緣與晶圓之間的光源1200來獲得歪斜暗場照射。這些光源 1200被配置在一對應於擴散反射彎曲表面11〇〇上邊緣的徑 向形狀之徑向形態中。 這些光源可相對於成像裝置的物平面以一淺角度傾斜 被定位。 20 來自擴散表面的經反射光係照射晶圓(或另一爲平物 體)以生成物體的一亮場影像(由於擴散’影像不純粹為一亮 場影像)° 暗場成像可適合用來成像諸如未經圖案化的晶圓或晶 圓背側等物體。 22 200919612 第20圖顯示根據本發明的一實施例之方法2000。 方法2000開始係為同時地照射一現今群組的經隔開物 體次區域之階段2010。以鏡面方式自現今群組的次區域之 一特定次區域所反射之光係預期被對應於現今群組的經隔 5 開物體次區域之一現今群組的經隔開感測器元件之一特定 感測器元件所偵測。物體次區域係被隔開藉以降低偵測到 來自物體的非鏡面光之機率。物體次區域係被隔開一次區 域的寬度之至少一半。 階段2 010可包括啟動一現今群組的經隔開照射元件藉 10 以同時地照射現今群組的經隔開物體次區域。這些照射元 件可為LCD螢幕的像素,其後為一擴散器。單一照射元件 顯示於第6圖。 · 階段2010之後係為獲得來自現今群組的經隔開感測器 元件之影像資訊之階段2020。階段2020可包括獲得物體的 15 一區域之影像資訊一該區域包括被鏡面式照射之一群組的 物體次區域且可包括相鄰區域。 各物體次區域(A〇i)可與照射裝置的一照射次區域(AiJ 交叉相關,所以照射次區域(Ai〇相對於成像模組僅幾乎藉 由鏡面射線來照射物體次區域(A〇i)。物體次區域(A〇i)被更 2〇 純粹地亮場照射且不被(或幾乎不被)暗場射線所照射。 已自一物體次區域Aoi散射的光將很少有機會被一“覆 蓋住”區域Aoj之感測元件所收集。 階段2020之後係為處理影像資訊的至少一部分以提供 一檢驗結果之階段2030。 23 200919612 根據本發明的一實施例,階段3030包括處理影像資訊 的至少一部分之階段3〇32,其包括對應於現今群組的經隔 開物體次區域之一群組的影像次區域。各影像次區域包括 多重像素。這些像素可為數十個微米寬及甚至更大。各像 5素—人區域可包括多重像素,其各代表約O.lmmxO.1mm或更 大的一物體元件。 檢驗結果可提供一巨觀現象的指示但未必如此。巨觀 現象可為巨觀缺陷、及類似物。經偵測巨觀現象的尺寸係 取決於藉由據以獲得影像資訊之一成像裝置的像素之相對 1〇 k大尺寸。相對較大的像素可降低施加系統的成本。 階段2030可包括(藉由砍割)忽略掉自不屬於現今群組 的經隔開物體次區域之物體次區域所獲得的影像資訊。這 可包括移除(或降低)暗場資訊。 方法2000可包括獲得來自不同於現今群組的經隔開感 15測器兀件之另一群組的經隔開感測器元件之影像資訊的階 段2040。這可被視為獲得暗場資訊。另一群組可代表現今 群組的經隔開物體次區域的構件之間的間隙。因此,雖然 經砍割影像段(I Si)代表亮場資訊,其他影像段(諸如IgnJgm) 代表暗場資訊。在階段2040之前可為階段2010而之後可為 20處理影像資訊的至少一部分以提供一檢驗結果之階段 2030。在此例中,階段2〇3〇可包括處理影像資訊的至少— 部分之階段2034,其包括對應於另一群組的經隔開物體次 區域之一群組的影像次區域。各影像次區域包括多重像 素。這些像素可為數十微米寬及甚至更大。各影像次區域 24 200919612 可包括多重像素,其各代表約O.lmmxO.lmm或更大的一物 體元件。另一群組的次區域可包括現今群組的次區域之次 區域之間的間隙。這些間隙可小於該群組的現今次區域之 次區域,但未必如此。 5 階段2030可包括施加階段2032及2034兩者。 方法2000可用來照射一整體晶圓或晶圓的至少一整體 段。因此,一現今群組的經隔開物體次區域被照射之後, 另一群組的經隔開物體次區域(稱為下一群組的經隔開物 體次區域)係被照射。可重覆直到整體物體(或物體的一整體 10 段)被照射且其相關影像資訊被處理為止。 為此’階段2040之後可為決定是否進行先前階段 (2010、2020、2030及選用性2040)的另一疊代之階段2050。 階段2050可包括決定進行階段2〇1〇、2020及2030之另 一疊代一直到晶圓的一預定部分被成像為止。 15 若階段2〇5〇決定進行另一重覆,則其後係為選擇另一 群組的經隔開物體次區域且跳到階段2〇1〇之階段2〇6〇。階 段2060的多次重覆可在另一者之後提供一群組的經隔開物 體次區域之一選擇直到獲得來自物體的一整體連續區域之 影像資訊為止。整體連續區域可為晶圓的一部分或整體晶 20 圓。 , 階段2010、2020及2030的下個疊代期間,另一群組的 經隔開次區域將被照射且可獲取與該另—群組的經隔開次 區域相關之影像資訊。 若另一群組稱為下一群組的經隔開次區域,則階段 25 200919612 2010的下個疊代係包括同時地照射下—群組的經 次區域;其中以鏡面方式自下一群組的經隔開物體:欠:趙 之一特定物體次區域所反射之光係預期被對應於下二區蜂 的經隔開物體次區域之下一群組的經隔開感測器元件=、、·且 5特定感測|§兀件所偵測;其中物體次區域係被隔開藉以降 低偵測到來自物體的非鏡面光之機率。階段2020的^個疊 代將包括獲得來自下—群組的經隔開感測器元件之影像資 訊。階段2030的下個疊代將包括處理影像資訊的至少一部 分以提供物體的一評價。 1〇 階段2060可包括將一機械運動導入物體與感測器之間 藉以照射屬於晶圓的另一段之次區域。 第21圖顯示根據本發明的一實施例之方法2100。 方法2100開始係為藉由一第一照射源所產生的光束來 知射一彎曲擴散反射表面之階段211〇。彎曲擴散反射表面 15被疋形及定向成可導引至少部分的光束朝向晶圓。此彎曲 擴散元件反射表面顯示於第丨丨至^圖。彎曲擴散反射表面 形成一部份開啟圓錐,其具有一大於其下開口的上開口。 曰曰圓被放置在彎曲擴散反射表面上方,如第16圖的一圓形 開口所顯示。 2〇 階段2110之後係為藉由一成像裝置來收集自晶圓反射 的光束之階段2120。成像裝置被定位成可降低收集到成像 裝置的反射之機率。 成像裝置本身可自晶圓被反射。為了防止此反射,成 像裝置的光軸可相對於晶圓呈傾斜(呈並非九十度的傾斜 26 200919612 角)且幫曲擴散反射表面被定形及定位成可將此等反射導 引至用以導引光朝向成像裝置之物鏡外。彎曲擴散反射表 面可方便地具有-想像性巾央赠,其相對於晶圓傾斜不 是九十度的傾斜角。 在階段2110之前可將晶圓定位於彎曲擴散反射表面上 方及定位一物鏡’其後為彎曲擴散反射表面下方之成像裝 置。 10 15 20 πζιυυ# 1已括暗場照射該晶圓之階段213〇。階段 2130之後可為類比於藉由—成像裝置收集來自晶圓之光束 的階段2020之階段2140。 方法21〇〇亦包存蓉於經收集光束來處理成像裝置所產 生之至ν部分的偵測信號。該處理可包括污染分析、巨觀 缺陷偵測、及類似物。 述方法可提供晶圓的低成本檢驗,且特別是一晶圓 的一2或-未經圖案化的晶圓之低成本檢驗。 、—般熟習該技藝者將可對於此處所述者作出變異、修 其他實打方式而不脫離如中請專利範圍所界定之本 發明的精神與範圍。 + 只a 2 m技藝者瞭解上《作的魏之_邊界 二::性。多重操作的機能可合併成單-操作,及/或單 例能可被分佈於額外操作中。並且,替代性實施 中更改操作次序。重案例’且可在不同其他實施例 口此’請_此處所騎的_?、是_性質,事實 27 200919612 上可實行許多其他可達成相同機能的架構。在一抽象但仍 限定性的意義下,可達成相同機能的任何組件配置實質上 係為“相關聯”藉以達成所想要的機能。因此,此處合併達 成一特定機能之任兩組件可被視為彼此“相關聯”藉以達成 5 所想要的機能,而無關乎架構或中間組件。同理,依此相 關聯的任兩組件亦可被視為彼此“操作性連接”或“操作性 耦合”以達成所想要的機能。 然而,亦可能具有其他修改、變異、及替代方式。為 此,以示範性而非限制性意義來看說明書及圖式。 10 “包含”用語並未排除出現申請專利範圍所列舉以外的 其他元件或步驟。請瞭解用語可在適當環境下交換藉以使 此處所述的本發明實施例譬如能夠在此處所顯示或另作描 述以外之其他定向中操作。 尚且,此處的“一(a)”或“一(an)”用語被定義為一或不只 15 一個。並且,申請專利範圍中諸如“至少一”及“一或多”等 介紹性片語不應詮釋為意味著不定冠詞“一(a)”或“一(an)” 所介紹的另一請求項元件將含有此經介紹請求項元件的任 何特定請求項限制於只含有一個此元件的發明,即便當相 同請求項包括介紹性片語“一或多’’或“至少一”及不定冠詞 20 諸如“一(a)”或“一(an)”時亦然。同理對於使用定冠詞而言亦 成立。除非另外指明,諸如“第一”及“第二”等用語係用來 任意地區分此等用語所描述的元件。因此,這些用語未必 用來代表此等元件的時間性或其他優先作用。互異的請求 項中引述特定措施之唯一事實並不代表無法利用這些措施 28 200919612 的一組合。 I:圖式簡單說明3 第la、lb、2a、2b、5、6及7圖顯示根據本發明不同實 施例之系統及所檢驗物體; 5 第3a及3b圖顯示根據本發明不同實施例之—物體的影 像; 第4a及4b圖顯示根據本發明不同實施例之系統及—物 體的影像; 第8至10圖顯示根據本發明不同實施例之影像處理;及 10 第11至19圖顯示根據本發明之一照射模組;及 第2 0至21圖顯示根據本發明不同實施例之方法。 【主要元件符號說明】 10…成像裝置 5l·..點A 10M300·..攝影機 52…點B 10b…成像光學件 55…交點 11…成像裝置的光軸 70(1)-70⑻…影像段 12…照射裝置 80(1)…第一昼峨間戶權寻之景分象 13…照射次區域Aij 80(2)…第二*^月間所獲得 15…物平面 80(3)…第三鲞fA激間所獲得之景嫁 23…物體次區域丨八〇彳 80(4)…第四疊代期間所獲得之影$ 30…視場(FOV) 90(1)· ··第一疊代期間所獲得的影像 31…FOV的中心點 90(2)…第二4代期間所獲得的影像 32…影像 90(3)…第三疊代^間所獲得的影像 50…物體 90(4)· ··第四疊代期間所獲得的影像 29 200919612 900" 1100. 1101· 1102. 1111· 1112· 1120· 1130. 1200. •影像 ••擴散反射彎曲表面 ••殼體 ••頂覆蓋件 ••支撐元件 ••頂覆蓋件的開口 ••照射元件 ••光源 ••暗場照射元件 1202…開口 1220…物鏡 2000,2100···方法 2010,2020,2030,2032,2034,2040, 2050,2060,2110,2120,2130,2140, 3030,3032···階段 Μ…照射次區域 A〇j···小物體次區域 30Ul!, once the wafer is placed on the support member 1111, the opening U12 can be sealed or at least almost completely closed. Fig. 16 also shows the dark field illumination element 1200, the camera 13A, the objective lens 1220, and the diffuse reflection curved surface 2〇 U〇0. Figures 17 and 18 show camera 1300, dark field illumination element 12A, objective lens 1220, opening 1202, and diffuse reflective curved surface 11A. Please note that multiple openings can be defined in different locations and/or different heights. For example, Figure 17 shows a larger opening 1202 on which a larger wafer can be supported. Step-by-step Note that a single opening can support wafers of different sizes and, if appropriate, 21 200919612 for supporting components. = Figure provides a detailed illustration of _ together. Diffuse reflection of the curved surface u (9) of the 斛 斛 - , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The belt U forms a partial opening cone. It is tilted relative to the imaginary axis perpendicular to the wafer. The diffusely reflecting curved surface 1100 is illuminated by a sputum source using an opening in the cone. In Fig. 19, 'the first illumination source is shown as a light source (such as a light-emitting diode) including a group located below the middle of the diffuse reflection curved 1 tortuous surface 1100, and between the wafers and the diffuse reflection curved surface 11 Three sets of light sources 1130 above. The imaginary axis of the diffuse reflection curved surface u (8) is inclined toward the circular opening. Skewed dark field illumination can be obtained by activating one or more light sources 1200 located between the edge 15 of the diffusely reflective curved surface 1100 and the wafer. These light sources 1200 are disposed in a radial configuration corresponding to the radial shape of the upper edge of the diffusely reflecting curved surface 11 . These light sources can be positioned at a shallow angle with respect to the object plane of the imaging device. 20 The reflected light from the diffused surface illuminates the wafer (or another flat object) to produce a bright field image of the object (since the diffused 'image is not purely a bright field image) ° Dark field imaging is suitable for imaging Such as unpatterned wafers or objects on the back side of the wafer. 22 200919612 Figure 20 shows a method 2000 in accordance with an embodiment of the present invention. Method 2000 begins with the phase 2010 of simultaneously illuminating a sub-region of the separated body of a present group. The light system reflected from a particular sub-region of one of the sub-regions of the current group in a specular manner is expected to correspond to one of the spaced apart sensor elements of the current group of one of the sub-regions of the current group Detected by a specific sensor component. The object sub-regions are separated to reduce the probability of detecting non-specular light from the object. The object sub-region is separated by at least half of the width of the primary region. Stage 2 010 can include a spaced apart illumination element that initiates a current group borrowing 10 to simultaneously illuminate the separated object sub-region of the current group. These illumination elements can be pixels of the LCD screen followed by a diffuser. A single illumination element is shown in Figure 6. • Stage 2010 is followed by a phase 2020 of obtaining image information from the sensor groups of the current group. Stage 2020 can include obtaining image information for a region of the object 15 - the region includes a sub-region of the object that is mirror-illuminated and can include adjacent regions. The sub-area of each object (A〇i) can be cross-correlated with an illumination sub-area of the illumination device (AiJ, so the sub-area is illuminated (Ai〇 is only irradiated by the mirror ray with respect to the imaging module sub-area (A〇i) The sub-region (A〇i) of the object is illuminated by a brighter field and is not illuminated by (or hardly) by dark field rays. Light that has been scattered from an object sub-region Aoi will have few chances to be A collection of "covering" areas Aoj is collected. Stage 2020 is followed by a stage 2030 of processing at least a portion of the image information to provide a test result. 23 200919612 In accordance with an embodiment of the invention, stage 3030 includes processing image information. At least a portion of the stage 3〇32, which includes an image sub-region corresponding to a group of spaced object sub-regions of the current group. Each image sub-region includes multiple pixels. The pixels may be tens of micrometers wide and Even larger. Each of the five-human regions may include multiple pixels, each of which represents an object element of about 0.1 mm x 0.1 mm or larger. The test results may provide an indication of a giant phenomenon but not necessarily. The macroscopic defect, and the like. The size of the detected macroscopic phenomenon depends on the relative size of the pixel of the imaging device obtained by obtaining the image information. The relatively large pixel can reduce the application system. The cost of stage 2030 may include (by chopping) ignoring image information obtained from sub-regions of objects that are not part of the current sub-region of the current group. This may include removing (or reducing) darkfield information. Method 2000 can include obtaining stage 2040 of image information from the separated sensor elements of another group of spaced apart sensor elements that are different from the current group. This can be considered to obtain a dark field. Information. Another group can represent the gap between the components of the subgroup of the separated objects in this group. Therefore, although the cut image segment (I Si) represents the bright field information, other image segments (such as IgnJgm) represent Dark field information. Stage 2030 may be provided for stage 2010 and then at least a portion of the image information may be provided for stage 2030. In this example, stage 2〇3〇 may include at least processing image information.A stage 2034 includes an image sub-region corresponding to one of the group of spaced apart object sub-regions. Each image sub-region includes multiple pixels. The pixels may be tens of microns wide and even larger. Each of the image sub-regions 24 200919612 may include multiple pixels, each of which represents an object element of about 0.1 mm x 0.1 mm or larger. The sub-region of another group may include a gap between sub-regions of the sub-region of the current group. These gaps may be less than the sub-region of the current sub-region of the group, but this is not necessarily the case. 5 Stage 2030 may include both application stages 2032 and 2034. Method 2000 may be used to illuminate at least one integral segment of an integrated wafer or wafer. . Thus, after the sub-regions of the separated objects of one group are illuminated, the sub-regions of the separated objects of another group (referred to as the sub-regions of the next group of sub-groups) are illuminated. It can be repeated until the entire object (or an entire 10 segments of the object) is illuminated and its associated image information is processed. To this end, stage 2040 can be followed by another stage 2050 of deciding whether to proceed with the previous stage (2010, 2020, 2030, and optional 2040). Stage 2050 can include determining another iteration of stages 2〇1, 2020, and 2030 until a predetermined portion of the wafer is imaged. 15 If stage 2〇5〇 decides to make another repeat, it is followed by selecting the separated sub-region of the other group and jumping to the stage 2〇6〇 of stage 2〇1〇. Multiple repetitions of stage 2060 may provide for selection of one of a group of spaced object sub-regions after the other until image information from an integral continuous region of the object is obtained. The overall continuous region can be a part of the wafer or a single crystal 20 circles. During the next iteration of stages 2010, 2020, and 2030, the separated sub-regions of the other group will be illuminated and image information associated with the separated sub-regions of the other group may be acquired. If the other group is referred to as the separated sub-region of the next group, then the next iteration of phase 25 200919612 2010 includes sub-regions that simultaneously illuminate the group - the mirrors from the next group Group of separated objects: owed: one of Zhao's specific object sub-regions is reflected by a group of spaced apart sensor elements that are expected to correspond to the sub-regions of the next two areas. , , and 5 specific sensing | § detection of the component; wherein the object sub-region is separated to reduce the probability of detecting non-specular light from the object. The iterations of stage 2020 will include obtaining image information from the lower-group separated sensor elements. The next iteration of stage 2030 will include processing at least a portion of the image information to provide an evaluation of the object. The stage 2060 can include directing a mechanical motion between the object and the sensor to illuminate a sub-region belonging to another segment of the wafer. Figure 21 shows a method 2100 in accordance with an embodiment of the present invention. The method 2100 begins by sensing a phase 211 弯曲 of a curved diffuse reflective surface by a beam of light generated by a first source of illumination. The curved diffuse reflective surface 15 is shaped and oriented to direct at least a portion of the beam toward the wafer. The reflective surface of the curved diffusing element is shown in the figure 丨丨 to ^. The curved diffuse reflective surface forms a portion of the open cone having an upper opening that is larger than its lower opening. The round circle is placed over the curved diffuse reflective surface as shown by a circular opening in Figure 16. 2〇 Stage 2110 is followed by stage 2120 of collecting light beams reflected from the wafer by an imaging device. The imaging device is positioned to reduce the chance of reflections collected to the imaging device. The imaging device itself can be reflected from the wafer. To prevent this reflection, the optical axis of the imaging device can be tilted relative to the wafer (in an angle of not less than ninety degrees 26 200919612) and the curved diffuse reflective surface can be shaped and positioned to direct such reflections to The guiding light is directed outside the objective lens of the imaging device. The curved diffuse reflection surface can be conveniently provided with an imaginative towel that is not inclined at a 90 degree angle with respect to the wafer. Prior to stage 2110, the wafer can be positioned over the curved diffuse reflective surface and positioned behind an objective lens' followed by an imaging device beneath the curved diffuse reflective surface. 10 15 20 πζιυυ# 1 has included the stage 213〇 of the dark field illumination of the wafer. Stage 2130 can be followed by a phase 2140 that is analogous to the phase 2020 of collecting light beams from the wafer by the imaging device. Method 21 also includes storing the collected beam to process the detection signal generated by the imaging device to the ν portion. This treatment may include contamination analysis, macroscopic defect detection, and the like. The method provides low cost inspection of wafers, and in particular, low cost inspection of a wafer or a non-patterned wafer. It will be appreciated that those skilled in the art will be able to devise variations and modifications of the invention as described herein without departing from the spirit and scope of the invention as defined by the scope of the claims. + Only a 2 m artist knows the "Weizhi_Boundary 2:: Sex." The functions of multiple operations can be combined into a single-operation, and/or a single instance can be distributed among additional operations. Also, the order of operations is changed in an alternative implementation. The case can be implemented in different other embodiments. The _?, _ nature, and the fact that 27 200919612 can implement many other architectures that can achieve the same function. In an abstract but still limiting sense, any component configuration that achieves the same function is essentially "associated" to achieve the desired function. Thus, any two components that are combined here to achieve a particular function can be considered "associated" with each other to achieve the desired function, regardless of the architecture or intermediate components. Similarly, any two components associated therewith can also be considered to be "operatively coupled" or "operatively coupled" to each other to achieve the desired function. However, there may be other modifications, variations, and alternatives. To this end, the description and drawings are to be considered in a 10 The word “comprising” does not exclude elements or steps other than those listed in the scope of the patent application. It is to be understood that the terminology may be interchanged in an appropriate environment so that the embodiments of the invention described herein can operate in other orientations than those shown herein or otherwise described. Moreover, the terms "a" or "an" are used herein to mean one or more than one. Also, an introductory phrase such as "at least one" and "one or more" in the scope of the patent application should not be construed as meaning another claim that is described in the indefinite article "a" or "an". An element limits any particular claim containing the described claim element to an invention that contains only one such element, even when the same claim includes the introductory phrase "one or more" or "at least one" and the indefinite article 20 such as “A (a)” or “an (an)” is also true. The same is true for the use of definite articles. Unless otherwise specified, terms such as “first” and “second” are used to arbitrarily distinguish between Elements such as those described in the terms. Therefore, these terms are not necessarily used to represent the temporal or other prioritization of such elements. The mere fact that a particular measure is recited in a mutually different claim does not mean that the measure cannot be utilized 28 200919612 I: Schematic description of the drawings 3 Figures la, lb, 2a, 2b, 5, 6 and 7 show systems and objects inspected according to various embodiments of the invention; 5 Figures 3a and 3b show different implementations in accordance with the present invention. - images of objects; Figures 4a and 4b show images of systems and objects in accordance with various embodiments of the present invention; Figures 8 through 10 show image processing in accordance with various embodiments of the present invention; and 10 Figures 11 through 19 show An illumination module according to the present invention; and Figures 20 to 21 show a method according to various embodiments of the present invention. [Main component symbol description] 10... Imaging device 5l... Point A 10M300.. Camera 52... B 10b...imaging optics 55...intersection 11...optical axis 70(1)-70(8) of the imaging device...image segment 12...illumination device 80(1)...first diurnal quest to find the image 13...illumination times The area Aij 80(2)...the second *^ month obtained 15...the object plane 80(3)...the third 鲞fA excitement obtained the marriage 23...the object sub-region 丨八〇彳80(4)...fourth The image obtained during the iterations is $30...field of view (FOV) 90(1)···the center point 90(2) of the image 31...FOV obtained during the first iteration...the second generation Image 32...image 90(3)...image 50 obtained between the third iterations...object 90(4)···image obtained during the fourth iteration 29 20091 9612 900" 1100. 1101· 1102. 1111· 1112· 1120· 1130. 1200. • Image • Diffuse reflection curved surface • • Housing • • Top cover • • Support element • • Top cover opening • • Irradiation Components • Light source • Dark field illumination element 1202... Opening 1220... Objective lens 2000, 2100··· Method 2010, 2020, 2030, 2032, 2034, 2040, 2050, 2060, 2110, 2120, 2130, 2140, 3030, 3032 ··· Stage Μ...Immediate sub-area A〇j···Small object sub-area 30

Claims (1)

200919612 十、申請專利範圍: 1. 一種用於巨觀檢驗之方法,該方法包括: 同時地照射一現今群組的經隔開物體次區域;其中 以一鏡面方式自該現今群組的經隔開物體次區域之一 特定物體次區域所反射的光係預期被對應於該現今群 組的經隔開物體次區域之一現今群組的經隔開感測器 讀之-特定感廳元件所⑽;其中該等經隔開物體 次區域係被隔開藉以降低價測到來自該物體的非鏡面 光之機率; 獲得來自該現今群組的經隔開感測器元件之影像 貝。fl ’其中$影像資訊包括多重經隔開影像次區域;其 中各影像次區域包括多重像素;及 處理該影像資訊的至少—部分以提供—檢驗結果。 申'•月專利範圍第1項之方法,其中該等物體次區域係 被隔開-物體次區域的_寬度之至少一半。 3.如申請翻_第丨項之枝,其包含啟動—現今群組 的、1隔開照射%件藉以同時地照射該現今群組的經隔 開物體次區域。 $ :叫專利圍第}項之方法,包括獲得來自不同於該 、群、、且的經隔開感測器元件之另一群組的經隔開感 測器元件之影像資訊。 5·如中請專利範圍第1項之方法,包含: 選擇下-群組的經隔開物體次區域; 同時地照射該下—群組的經隔開物體次區域;其中 31 200919612 X鏡面方式自該下一群組的經隔開物體次區域的一 特疋次區域所反射之光係預期被對應於該下一群組的 體次區域之下—群組的經隔開感測器元件之 5 —特定感測11元件所制;其中該等物體次區域係被隔 5 ㈣以降低_到來自該物體的非鏡©光之機率; 獲得來自該下一群組的經隔開感測器元件之影像 資訊;及 處理該影像資訊的至少一部分以提供該物體的一 評價。 1〇 6_如中請專利範圍第5項之方法,包含重覆下-群組的經 隔開物體次區域之選擇直到獲得來自該物體的一整體 連續區域之影像資訊為止。 。申明專利範圍第6項之方法’其中該物體的整體連續 1 輯係為該物體的-部分;且其中該方法包括導入一機 15 械運動,該物體與該感測器之間並重覆該等同時地照 射獲传衫像貧訊及選擇下一群組的經隔開物體次區域 μ又直到獲彳寸來自該物體的另—整體連續區域之影 像資訊為止。 8. 如巾請專利範圍第5項之方法,包含重覆下—群組的經 _體次區域之選擇直職得來自該隸物體的影 像資訊為止。 9. 如申請專利範圍第旧之方法,包含選擇_lcd榮幕的 照射元件,及啟動該LCD螢幕的經選擇元件藉以照射— 現今群組的經隔開物體次區域。 32 200919612 ι〇·如申明專利氣圍第j項之方法其中該各影像次區域包 3夕重像素,其各代表約G.lmmxG.lmm的-物體元件。 11·-種用於照射—晶圓之方法,該方法包含: 藉由一第一照射源所產生的光束來照射一彎曲擴散 5 反射表面’其中該’料擴散反射表面被定形及^位成可 導引至少部分的該等光束朝向該晶圓;及 藉由一成像裝置收集自該晶圓反射之光束;其中該 成像裝置被定位為可降低收集到該成像裝置的反射之機 率。 12_如申吻專利範圍第11項之方法,包含照射該晶圓的一背 側。 13.如申請專利範圍第丨丨項之方法,包含藉由一具有一相對 於該晶圓傾斜並非九十度傾斜角的光軸之成像裝置來 收集光束。 15丨4·如申請專利範圍第Η項之方法,其中該彎曲擴散反射表 面具有一相對於該晶圓傾斜並非九十度傾斜角之想像 性中央軸線。 15.如申請專利範圍第丨丨項之方法,包含將該晶圓及一物鏡 疋位於接近該彎曲擴散反射表面的相對端。 20 I6.如申請專利範圍第11項之方法,進一步包含暗場照射該 晶圓。 17.—種用於巨觀檢驗之系統,該系統包含: 照射裝置,其構形為可同時地照射一現今群組的經 隔開物體次區域;其中以一鏡面方式自該現今群組的物 33 200919612 體次區域之一特定物體次區域所反射之光係預期被對應 於該現今群組的經隔開物體次區域之一現今群組的經隔 開感測器元件之一特定感測器元件所偵測;其中該等物 體次區域係被隔開藉以降低彳貞測到來自該物體的非鏡面 5 光之機率; 一成像裝置,其構形為可獲得來自該現今群組的經 隔開感測器元件之影像資訊,其中該影像資訊包含多重 影像次區域,各該影像次區域包含多重像素;及 一處理器,其構形為可處理該影像資訊的至少—部 10 分以提供一檢驗結果。 18.如申請專利範圍第17項之系統,其中該等物體次區域係 被隔開一物體次區域的一寬度之至少一半。 19 如申請專利範圍第17項之系、统,其中該照射纟置構形為 可啟動一現今群組的經隔開照射元件藉以同時地照射 15 該現今群組的經隔開物體次區域。 20. 如申請專利範圍第17項之系統,其構形為可獲得來自不 同於該現今群組的經隔開感測器元件之另一群組的經 隔開感測器元件之影像資訊。 21. 如申請專利範圍第17項之系統,其構形為可選擇下一群 2〇 組的經隔開物體次區域; 同時地照射該下一群組的經隔開物體次區域;其中 以一鏡面方式自該下一群組的經隔開物體次區域的— 特定物體次區域所反射之光係預期被對應於該下一群 組的經隔開物體次區域之下一群組的經隔開感測器元 34 200919612 件之一特定感測器元件所偵測;其中該等物體次區域係 被隔開藉以降低偵測到來自該物體的非鏡面光之機率; 獲得來自該下一群組的經隔開感測器元件之影像 資訊;及 5 處理該影像資訊的至少一部分以提供該物體的一 評價。 22.如申請專利範圍第21項之系統,其構形為可重覆下一群 組的經隔開物體次區域之選擇直到獲得來自該物體的 整體連續區域之影像資訊為止。 23· 申研專利範圍第22項之系統,其中該物體的整體連續 區域係為該物體的一部分;且其中該系統包含一用於導 入一機械運動於該物體與該感測器之間的機械階段且 該系統構形為可重覆-同時照射、影像獲得及該影像資 Μ 凡的至少。卩分之製程及選擇下一群組的經隔開物體 15 :欠區域直到獲得來自該物體的另-整體連續區域之影 像資訊為止。 —申明專利㈣第21項之系統’包含重覆下__群組的經 同開物體-人區域之選擇直到獲得來自該整體物體的影 像資訊為止。 〇 25_如中請專利範圍第_之系統,其中該照射裝置包含一 ⑶勞幕且其中該裝置構形為可選擇被啟動之-LCD 。幕的”、、射7L件藉以照射—現今群組的經隔開物體次 區域。 26.如申料利範㈣17項之⑽,其中該系統構形為可照 35 200919612 射將被成像的物體次區域以提供影像次區域,其中各影 像次區域包含多重像素,其各代表約0.1 mmxO. 1 mm的一 物體元件。 27. —種用於照射一晶圓之系統,該系統包含: 5 一第一照射源; 一彎曲擴散反射表面;及 一成像裝置; 其中該第一照射源係照射該彎曲擴散反射表面;其 中該彎曲擴散反射表面被定形及定位為可導引至少部 10 分的該等光束朝向該晶圓; 其中該成像裝置收集自該晶圓所反射之光束;其中 該成像裝置被定位為可降低收集到該成像裝置的反射 之機率。 28. 如申請專利範圍第27項之系統,其中該彎曲擴散反射表 15 面將光束導引朝向該晶圓的一背側。 29. 如申請專利範圍第27項之系統,其中該成像裝置的一光 軸相對於該晶圓傾斜並非九十度的傾斜角。 30. 如申請專利範圍第27項之系統,其中該彎曲擴散反射表 面具有一相對於該晶圓傾斜並非九十度的傾斜角之想 20 像性中央轴線。 31. 如申請專利範圍第27項之系統,其中該系統係支撐該晶 圓於該彎曲擴散反射表面上方且其中一物鏡之後係為 該成像裝置並被定位於該彎曲擴散反射表面下方。 32. 如申請專利範圍27項之系統,進一步包含一暗場照射 36 200919612 源。 33. 如申請專利範圍第1項之方法,包含藉由一包含成像光 學件及一成像感測器的成像系統獲得影像資訊;其中該 等成像光學件的一光軸在一不同於該成像感測器的一 5 中心之點交會於該成像感測器的一成像表面。 34. 如申請專利範圍第1項之方法,包含選擇一螢幕的照射 元件,及啟動該螢幕的經選擇元件藉以照射一現今群組 的經隔開物體次區域。 35. 如申請專利範圍第17項之系統,其中該成像裝置包含成 10 像光學件及一成像感測器;其中該等成像光學件的一光 轴在一不同於該成像感測器的一中心之點交會於該成 像感測器的一成像表面。 36. 如申請專利範圍第17項之系統,其中該照射裝置包含一 螢幕,其中該系統構形為可選擇一螢幕的元件,及啟動 15 該螢幕的經選擇元件藉以照射一現今群組的經隔開物 體次區域。 37200919612 X. Patent application scope: 1. A method for macroscopic inspection, the method comprising: simultaneously illuminating a sub-region of a separated object of a current group; wherein the mirror is separated from the current group The light system reflected by the particular object sub-region of one of the open object sub-regions is expected to be read by the spaced-apart sensor of the current group of one of the separated object sub-regions of the current group-specific sensor element (10); wherein the separated sub-regions are separated to reduce the probability of detecting non-specular light from the object; obtaining images of the spaced apart sensor elements from the current group. Fl' wherein the image information includes multiple separated image sub-regions; wherein each image sub-region includes multiple pixels; and at least a portion of the image information is processed to provide a test result. The method of claim 1 wherein the sub-regions of the objects are separated by at least half of the width of the sub-region of the object. 3. If the application is turned over, it includes a start-to-current group of 1 spaced-apart illumination to simultaneously illuminate the intervening object sub-region of the current group. $: A method of the patented item, comprising obtaining image information from spaced apart sensor elements of another group of spaced apart sensor elements different from the group, and. 5. The method of claim 1, wherein: the sub-region of the separated object of the lower-group is selected; and the sub-region of the separated object of the lower-group is simultaneously illuminated; wherein 31 200919612 X mirror mode The light system reflected from a particular sub-region of the next group of spaced object sub-regions is expected to correspond to the sub-region of the sub-group of the sub-group 5 - a specific sensing 11 element; wherein the object sub-regions are separated by 5 (four) to reduce the probability of _ to the non-mirror light from the object; obtaining separated sensing from the next group Image information of the component; and processing at least a portion of the image information to provide an evaluation of the object. 1 〇 6_ The method of claim 5, wherein the selection of the sub-region of the separated object of the sub-group is repeated until image information from a contiguous region of the object is obtained. . A method of claim 6 wherein the overall continuous sequence of the object is a portion of the object; and wherein the method includes introducing a machine 15 motion, the object and the sensor repeating the same At the same time, the sub-region μ of the separated object is irradiated and the image of the next sub-region of the next group is selected until the image information from the other continuous region of the object is obtained. 8. If the method of claim 5 of the patent scope is included, the selection of the sub-region of the sub-group of the sub-group is directly derived from the image information of the object. 9. The method of claiming the oldest aspect of the patent includes the selection of the illuminating element of the _lcd, and the selected element that activates the LCD screen to illuminate the sub-region of the separated object of the current group. 32 200919612 〇 〇 如 申 申 申 申 申 申 如 专利 如 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利11. A method for illuminating a wafer, the method comprising: illuminating a curved diffusion 5 by a light beam generated by a first illumination source; wherein the diffusion surface of the material is shaped and positioned At least a portion of the beams are directed toward the wafer; and the beam reflected from the wafer is collected by an imaging device; wherein the imaging device is positioned to reduce the probability of reflections collected to the imaging device. 12_ The method of claim 11, wherein the back side of the wafer is illuminated. 13. The method of claim 2, wherein the beam is collected by an imaging device having an optical axis that is inclined at an angle of not ninety degrees with respect to the wafer. The method of claim 2, wherein the curved diffuse reflectance mask has an imaginative central axis that is not inclined by a 90 degree angle with respect to the wafer. 15. The method of claim </ RTI> wherein the wafer and an objective lens are disposed at opposite ends of the curved diffuse reflective surface. 20 I6. The method of claim 11, further comprising dark field illumination of the wafer. 17. A system for use in a macroscopic inspection, the system comprising: an illumination device configured to simultaneously illuminate a sub-region of a spaced object of a current group; wherein the mirror is from the current group The light system reflected by one of the sub-regions of the particular sub-region is expected to be specifically sensed by one of the spaced apart sensor elements of the current group of one of the separated sub-regions of the current group. Detected by the component; wherein the sub-regions of the objects are separated to reduce the probability of detecting non-specular 5 light from the object; an imaging device configured to obtain a passage from the current group Separating image information of the sensor component, wherein the image information includes multiple image sub-regions, each of the image sub-regions comprising multiple pixels; and a processor configured to process at least a portion of the image information Provide a test result. 18. The system of claim 17, wherein the sub-regions of the objects are separated by at least half of a width of an object sub-region. 19. The system of claim 17, wherein the illumination device is configured to initiate a current group of spaced apart illumination elements to simultaneously illuminate 15 of the present group of spaced object subregions. 20. The system of claim 17 wherein the system is configured to obtain image information from spaced apart sensor elements of another group of spaced apart sensor elements that are different from the current group. 21. The system of claim 17, wherein the system is configured to select a sub-region of separated objects of the next group of 2 groups; simultaneously illuminate the sub-region of the separated objects of the next group; The specular mode of the light system reflected from the sub-region of the next object of the next sub-region of the object is expected to be corresponding to the subgroup of the sub-region of the next group. Open sensor element 34 200919612 one of the detector elements detected; wherein the object sub-regions are separated to reduce the probability of detecting non-specular light from the object; a set of image information separated by the sensor elements; and 5 processing at least a portion of the image information to provide an evaluation of the object. 22. The system of claim 21, wherein the configuration is such that the selection of the sub-regions of the separated objects of the group of groups is repeated until image information from the overall continuous region of the object is obtained. The system of claim 22, wherein the entire continuous area of the object is part of the object; and wherein the system includes a mechanism for introducing a mechanical motion between the object and the sensor At the stage and the system is configured to be repeatable - at the same time, at least for illumination, image acquisition, and imagery. Divide the process and select the next group of separated objects 15 : Under-area until the image information from the other-continuous continuous area of the object is obtained. - The system of claim 21 (4) contains the selection of the same object-person area of the __ group until the image information from the whole object is obtained. 〇 25_ The system of claim </ RTI> wherein the illuminating device comprises a (3) screen and wherein the device is configured to be selectively activated - LCD. The curtain's ",, and 7L parts are used to illuminate the sub-regions of the separated objects of today's group. 26. As stated in the application of Lifan (4), item 17 (10), where the system is configured to photograph the objects to be imaged according to 35 200919612 The region provides an image sub-region, wherein each image sub-region comprises multiple pixels, each representing an object component of about 0.1 mm x 0.1 mm. 27. A system for illuminating a wafer, the system comprising: An illumination source; a curved diffusion reflective surface; and an imaging device; wherein the first illumination source illuminates the curved diffusion reflective surface; wherein the curved diffusion reflective surface is shaped and positioned to direct at least a portion of the 10 A beam of light is directed toward the wafer; wherein the imaging device collects a beam of light reflected from the wafer; wherein the imaging device is positioned to reduce the probability of reflections collected to the imaging device. 28. A system as claimed in claim 27 , wherein the curved diffuse reflection table 15 faces the light beam toward a back side of the wafer. 29. The system of claim 27, wherein the image forming device The axis is inclined at an angle of not less than ninety degrees with respect to the wafer. 30. The system of claim 27, wherein the curved diffuse reflective surface has a tilt angle that is not ninety degrees relative to the wafer. The system of claim 27, wherein the system supports the wafer above the curved diffuse reflection surface and one of the objective lenses is followed by the imaging device and positioned at the bend The diffuse reflective surface is underneath. 32. The system of claim 27, further comprising a dark field illumination 36 200919612 source. 33. The method of claim 1, comprising an imaging optics and an imaging sensation The imaging system of the detector obtains image information; wherein an optical axis of the imaging optics intersects an imaging surface of the imaging sensor at a point different from a center of the imaging sensor. The method of claim 1, comprising selecting a illuminating component of the screen, and actuating the selected component of the screen to illuminate a sub-region of the separated object of the present group 35. The system of claim 17, wherein the imaging device comprises 10 image optics and an imaging sensor; wherein an optical axis of the imaging optics is different from the imaging sensor A central point of intersection of an imaging surface of the imaging sensor. 36. The system of claim 17, wherein the illumination device comprises a screen, wherein the system is configured to select a screen component, And launching 15 the selected component of the screen to illuminate a sub-region of the separated object of the current group.
TW97131916A 2007-08-21 2008-08-21 Method and system for low cost inspection TW200919612A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95696707P 2007-08-21 2007-08-21
US95718607P 2007-08-22 2007-08-22

Publications (1)

Publication Number Publication Date
TW200919612A true TW200919612A (en) 2009-05-01

Family

ID=40380221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131916A TW200919612A (en) 2007-08-21 2008-08-21 Method and system for low cost inspection

Country Status (2)

Country Link
TW (1) TW200919612A (en)
WO (1) WO2009024978A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
CN113272639A (en) * 2020-03-30 2021-08-17 深圳市海谱纳米光学科技有限公司 Method for extracting spectral information of substance to be detected

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778702B2 (en) 2009-08-17 2014-07-15 Nanda Technologies Gmbh Method of inspecting and processing semiconductor wafers
JP5211083B2 (en) * 2010-01-19 2013-06-12 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, network device, and mobile communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196782B2 (en) * 2000-09-20 2007-03-27 Kla-Tencor Technologies Corp. Methods and systems for determining a thin film characteristic and an electrical property of a specimen
JP4091079B2 (en) * 2003-11-14 2008-05-28 オリンパス株式会社 Multispectral imaging device, multispectral illumination device
TWI296705B (en) * 2004-12-24 2008-05-11 Innolux Display Corp Device and method for inspecting a matrix substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
CN113272639A (en) * 2020-03-30 2021-08-17 深圳市海谱纳米光学科技有限公司 Method for extracting spectral information of substance to be detected
CN113272639B (en) * 2020-03-30 2023-10-27 深圳市海谱纳米光学科技有限公司 Method for extracting spectral information of substance to be detected

Also Published As

Publication number Publication date
WO2009024978A3 (en) 2010-03-04
WO2009024978A2 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US8098372B2 (en) Optical inspection tool featuring multiple speed modes
KR101945927B1 (en) System and method for detecting defects on a specular surface with a vision system
JP6291418B2 (en) Optical measurement arrangements and related methods
CN105308949B (en) Image acquiring device, image acquiring method and recording medium
TW200919612A (en) Method and system for low cost inspection
US20120061554A1 (en) Quantitative differential interference contrast (dic) microscopy and photography based on wavefront sensors
WO2010024067A1 (en) Defect inspection method, and defect inspection device
JP2012073275A (en) Inspection device for optical surface characteristic and inspection method thereof
CN101124453A (en) System for 2-D and 3-D vision inspection
JP2009053132A (en) Defect inspection method and defect inspection device
TW200827709A (en) Apparatus for wafer inspection
US11493454B2 (en) System and method for detecting defects on a specular surface with a vision system
RU2540453C2 (en) Microscope, imaging device and imaging system
TW201003062A (en) Image capturing system and method for the analysis of image data
JP2001509251A (en) Apparatus for detection of point of impact of arrow on target
JP2014029336A (en) Observation device and observation method
CN110388885A (en) For optically SHAPE DETECTION and/or the method and apparatus for checking object
EP3140638A1 (en) Illumination system, inspection tool with illumination system, and method of operating an illumination system
JP2012013614A (en) Specular inspection method and specular inspection device
JP2020041800A (en) Visual inspection device and inspection system
JP2006258778A (en) Method and device for inspecting surface defect
JP2003185593A (en) Visual examination device for wafer
Tagawa et al. 8-D reflectance field for computational photography
JP6508763B2 (en) Surface inspection device
CN107132231A (en) Lighting device and check device