TW200919402A - Display apparatus and imaging system using the same - Google Patents

Display apparatus and imaging system using the same Download PDF

Info

Publication number
TW200919402A
TW200919402A TW097125097A TW97125097A TW200919402A TW 200919402 A TW200919402 A TW 200919402A TW 097125097 A TW097125097 A TW 097125097A TW 97125097 A TW97125097 A TW 97125097A TW 200919402 A TW200919402 A TW 200919402A
Authority
TW
Taiwan
Prior art keywords
light
illumination
sub
illuminating
spectrum
Prior art date
Application number
TW097125097A
Other languages
Chinese (zh)
Inventor
Hiroyuki Maru
Osamu Yuki
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200919402A publication Critical patent/TW200919402A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

Provided is a display apparatus including multiple light emitting devices, in which each of the light emitting devices includes a reflective layer and a light emitting layer which are stacked, using interference between light directed from the light emitting layer to the reflective layer so as to be reflected by the reflective layer and light directed from the light emitting layer in the direction opposite to the reflective layer, and in which the multiple light emitting devices include a first light emitting device, a second light emitting device having a light emission color different from the first light emitting device, and a third light emitting device having the same emission spectrum as a spectrum in which light emission of the first light emitting device and light emission of the second light emitting device are mixed.

Description

200919402 九、發明說明 【發明所屬之技術領域】 本發明係有關顯示設備及使用此顯示設備之成像系 統。 【先前技術】 近來,已經積極地進行有機電致發光(有機EL)的 發展。 舉例來說,日本專利申請公開第2003 -272857號揭示 一白色有機EL裝置,其包含被堆疊之藍色(B)發光層及 黃色(Y)或紅色(R)發光層。 除此之外,已知有一種能夠發出彩色光之顯示設備, 其包含發出紅色、綠色(G)及藍色之材料,和形成且堆 疊於基板上之有機層,以便形成以矩陣之形式排列的子像 素。 已知有一種具有類似之色彩組態的彩色矩陣型顯示設 備,此顯示設備包含一發出白色(w)的材料及一形成和 堆疊於基板上之有機層以便形成矩陣’而R,G和B的濾 色器係堆疊於有機層上。 此外,也已知有一種矩陣型顯示設備,除了具有濾色 器的上述R,G和B子像素之外’該矩陣型顯示設備包含 不具有濾色器的W子像素’所以R,G,B和W子像素實 施彩色設備。舉例來說’美國專利桌6,5 7 0,5 8 4號揭示一 包含多於R, 〇和B顏色之子像素的顯示設備。 -4- 200919402 美國專利第6,570,584號揭示一驅動這種裝置之方 法,其中,R發光裝置、G發光裝置、B發光裝置和W發 光裝置的發光係根據計算而相混合,使得能夠產生所想要 的顏色。 另一方面,日本專利申請公開第2006-163068號敘 述’因爲藉由發光材料所獲得到之白色的色品彩度 (chromaticity )在許多情況中並不是真正之白色的目標 色品彩度,所以必須將用於顏色匹配之RGB單位(unit ) 像素的發光添加到用於白色顯示之單位(unit )像素的發 光。日本專利申請公開第2006-163068號也揭示一種訊號 處理方式,其中,當W像素之發光色品彩度與白色的目 標色品彩度不同時,使RGB輸入訊號混合。 從上面的敘述中,可能會認爲,當 W子像素之發光 色品彩度被設定於白色的目標色品彩度,以便適合於R + G+B子像素群組之發光色品彩度時,不需要將用於顏色 匹配(配色)之R + G + B子像素群組的發光混合到用於 白色顯示之W子像素的發光。 然而,在沒有使用干涉(干擾)之發光(PL發光等 等)的情況中,同色異譜(metamerism)發生在當其用做 爲發光顏色時。即使當發光顏色被混合時,相同的顏色出 現。舉例來說,準備一 “發光,其中,以某一速率來混合 用做爲子像素之發光裝置的發光”,及一“來自同色異譜之 子像素的發光,雖然該發光具有和該發光之混合頻譜的頻 譜形狀不同的頻譜形狀,其中,以某一速率來混合用做爲 -5- 200919402 子像素之發光裝置的發光”。 在下面的敘述中,該”發光,其中,以某一速率來混 合用做爲子像素之發光裝置的發光」被簡稱爲“子像素群 組的混合光”,該“來自同色異譜之子像素的發光,雖然該 發光具有和該發光之混合頻譜的頻譜形狀不同的頻譜形 狀,其中,以某一速率來混合用做爲子像素之發光裝置的 發光”被簡稱爲“來自同色異譜之子像素的發光”。 除此之外,藉由使用“+”來表示具有不同的發光顏色 之子像素的多個發光之組合。舉例來說,R子像素、G子 像素、和B子像素之發光的組合被稱爲“R+G+B子像素 群組的發光”。 注意,子像素意指能夠控制發光的開(on )和關 (off)及發光的層次(gradation)之發光裝置的單位,像 素爲一組的子像素,且意指彩色顯示的最小單位。 當那些發光被混合而沒有千擾時,“子像素群組的混 合光”和“來自同色異譜之子像素的發光”的各個發光具有 相同的CIE色品彩度座標做爲其混合光(在下文中被簡稱 爲“色品彩度座標”)。 然而,在使用介於來自發光裝置之發光與來自反射板 (reflector plate )之反射光間之干擾的顯示設備的情況 中,“子像素群組的混合光”和“來自同色異譜之子像素的 發光”具有不同的色品彩度座標。 這是因爲在包含干擾結構之顯示設備中,於某種條件 下,由於干擾所造成之光的強度具有依據波長之特性。因 -6- 200919402 此,在其中發射出光之不同頻譜的上述發光的情況中’干 擾後的頻譜被調變,使得自該光譜之整數値所計算出的色 品彩度座標也被改變。 在其中具有同色異譜之不同頻譜的w子像素係提供 做爲補充光,舉例來說,給B + Y子像素群組的情況中’ 干擾後的頻譜被調變,使得自該光譜之整數値所計算出的 色品彩度座標也被改變。 除此之外,因爲兩種發光之頻譜彼此不同’所以當R + G + B子像素群組的發光與W子像素的發光間之混合比 値被改變時,干擾後的頻譜也被改變。 除此之外,當視角係自顯示表面之法線方向傾斜而使 得干擾條件被改變時,B + Y子像素群組之發光的色品彩 度和 W子像素之發光的色品彩度被改變,以便彼此不 同。200919402 IX. Description of the Invention [Technical Field] The present invention relates to a display device and an imaging system using the same. [Prior Art] Recently, development of organic electroluminescence (organic EL) has been actively conducted. For example, Japanese Patent Application Publication No. 2003-272857 discloses a white organic EL device comprising a stacked blue (B) light-emitting layer and a yellow (Y) or red (R) light-emitting layer. In addition to this, there is known a display device capable of emitting colored light, which comprises a material emitting red, green (G) and blue, and an organic layer formed and stacked on a substrate so as to be formed in a matrix form. Subpixels. There is known a color matrix type display device having a similar color configuration, the display device comprising a material that emits white (w) and an organic layer formed and stacked on a substrate to form a matrix 'R, G and B The color filters are stacked on the organic layer. Further, there is also known a matrix type display device which, in addition to the above-described R, G and B sub-pixels having a color filter, "the matrix type display device includes a W sub-pixel having no color filter" so R, G, The B and W sub-pixels implement a color device. For example, U.S. Patent No. 6,5,705, 584 discloses a display device comprising sub-pixels of more than R, 〇 and B colors. -4-200919402 US Patent No. 6,570,584 discloses a method of driving such a device, wherein the illumination of the R illumination device, the G illumination device, the B illumination device, and the W illumination device are mixed according to calculations, so that desired s color. On the other hand, Japanese Patent Application Publication No. 2006-163068 describes that 'because the chromaticity of white obtained by the luminescent material is not a true white target chromaticity in many cases, The luminescence of the RGB unit (pixel) pixels for color matching must be added to the luminescence of the unit pixels for white display. Japanese Patent Application Publication No. 2006-163068 also discloses a signal processing method in which RGB input signals are mixed when the chromaticity of the illuminating color of the W pixel is different from that of the white target chromaticity. From the above description, it may be considered that when the illuminating chromaticity of the W sub-pixel is set to the target chromaticity of the white chromaticity, so as to be suitable for the luminescent color chromaticity of the R + G + B sub-pixel group. At this time, it is not necessary to mix the luminescence of the R + G + B sub-pixel group for color matching (color matching) to the luminescence of the W sub-pixel for white display. However, in the case where no interference (interference) of light (PL illumination or the like) is used, metamerism occurs when it is used as a light-emitting color. The same color appears even when the illuminating colors are mixed. For example, preparing a "lighting, wherein the light of the light-emitting device used as a sub-pixel is mixed at a certain rate", and a light-emitting of the sub-pixel from the metamerism, although the light has a mixture with the light. The spectral shape of the spectrum has a different spectral shape in which the illumination of the light-emitting device of the -5 - 200919402 sub-pixel is mixed at a certain rate. In the following description, the "light emission, in which light is mixed as a light-emitting device of a sub-pixel at a certain rate" is simply referred to as "mixed light of a sub-pixel group", which is "sub-pixel from metamerism" Illumination, although the illumination has a spectral shape different from the spectral shape of the mixed spectrum of the illumination, wherein the illumination of the illumination device used as a sub-pixel at a certain rate is simply referred to as "subpixel from metamerism" Illumination." In addition to this, a combination of a plurality of light-emitting lights having sub-pixels having different light-emitting colors is represented by using "+". For example, the combination of the illumination of the R sub-pixel, the G sub-pixel, and the B sub-pixel is referred to as "the illumination of the R+G+B sub-pixel group." Note that the sub-pixel means a unit of a light-emitting device capable of controlling on (on) and off (emission) of light emission and gradation of light emission, the pixel being a group of sub-pixels, and means a minimum unit of color display. When those luminescences are mixed without interference, the respective luminescence of "mixed light of sub-pixel group" and "light emission of sub-pixel from metamerism" have the same CIE chromaticity chroma coordinates as their mixed light (hereinafter It is referred to as “color chromaticity coordinates”. However, in the case of using a display device interposed between the light emission from the light-emitting device and the reflected light from the reflector plate, "mixed light of sub-pixel groups" and "sub-pixels from meta-spectra "Lighting" has different chromaticity chroma coordinates. This is because in a display device including an interference structure, under certain conditions, the intensity of light due to interference has a characteristic according to wavelength. Since -6-200919402, in the case of the above-described luminescence in which different spectra of light are emitted, the spectrum after the interference is modulated such that the chromaticity coordinates calculated from the integer 値 of the spectrum are also changed. A w sub-pixel system in which different spectra of metamerism are provided as supplemental light, for example, in the case of a B + Y sub-pixel group, the 'interfered spectrum is modulated such that an integer from the spectrum The color chromaticity coordinates calculated by 値 are also changed. In addition, since the spectrums of the two kinds of light rays are different from each other', when the mixing ratio 发光 between the light emission of the R + G + B sub-pixel group and the light of the W sub-pixel is changed, the spectrum after the interference is also changed. In addition, when the viewing angle is tilted from the normal direction of the display surface such that the interference condition is changed, the chromaticity of the luminescent color of the B + Y sub-pixel group and the chromaticity of the illuminating of the W sub-pixel are Change so that they are different from each other.

在上述日本專利申請公開第2006-163068號中,在R + G + B子像素群組+ W子像素的情況中,爲了顏色匹配 而發射R及/或G及/或B的光。依據此控制,色品彩度能 夠互相匹配。然而,因爲兩種發光之頻譜彼此不同,所以 當R + G + B子像素群組的發光與W子像素的發光間之混 合比値被改變時,干擾後的頻譜也被改變。 除此之外,按照和上述實例相同的方式,當視角係自 顯示表面之法線方向傾斜而使得干擾條件被改變時,r + G + B子像素群組之發光的色品彩度和w子像素之發光的色 品彩度被改變,以便彼此不同。 200919402 因此,甚至當“子像素群組的混合光”之色品彩度座標 和“來自同色異譜之子像素的發光”之色品彩度座標被組合 而形成同色異譜時,自干擾後之顯示設備的顯示表面所獲 得到之色品彩度座標可偏離自當頻譜係偏移時的期望値 (expected value) 〇 注意,也在被敘述爲先前技術之濾色器型R,G,B和 W顯示設備中,配置在白色矩陣基板上之R,G和B濾色 器可使個別的波長範圍縮短。因此,甚至當R,G和B發 光裝置之發光被混合時,混合光之頻譜並不與沒有濾色器 之W子像素之發光的頻譜匹配。 【發明內容】 本發明之目的在於提供一使用干擾之顯示設備,其 中’“子像素的混合光”和“來自同色異譜之子像素的發光” 能夠被混合’以便具有相同的發光顏色。除此之外,本發 明之另一目的在於提供一使用此顯示設備之成像系統。 依據本發明,提供有一包含多個發光裝置之顯示設 備’其中’該等發光裝置各自包含被堆疊之一反射層及一 發光層’使用從該發光層被導引至該反射層以便被該反射 層所反射的光,與在和該反射層相反的方向上從該發光層 被導引的光之間的千擾,且其中,該多個發光裝置包含一 第一發光裝置、一具有與該第一發光裝置不同的發光顏色 之弟一發光裝置、及一具有和其中混合有該第一發光裝置 之發光和該第二發光裝置之發光的頻譜相同的發射頻譜之 -8- 200919402 第三發光裝置。 依據本發明’有可能獲得到混合光,但沒有由於該千 擾而導致之色品彩度偏移。換言之,也在使用干擾之顯示 設備中’“子像素群組的混合光,,和“來自同色異譜之子像 素的發光”能夠被混合,以便具有相同的發光顏色。 除此之外,甚至當“子像素的混合光”和“來自同色異 譜之子像素的發光”被混合,且在它們之間具有經改變的 混合比時,在干擾後所獲得到之光的色品彩度座標並不改 變。 此外,甚至當自顯示表面的法線方向傾斜而使得干擾 條件改變時,在干擾後所獲得到之光的色品彩度座標並不 改變。 本發明之其他特徵及樣態將會從下面參照附圖之代表 性實施例的說明而變得明顯。 【實施方式】 敘述依據本發明之顯示設備和使用此顯示設備之成像 系統。 在敘述依據本發明之顯示設備和使用此顯示設備之成 像系統之前,首先確認上述相關顯示設備之問題於下。 製造具有圖21所例舉之垂直結構的R,G,B和W發 光裝置,以實現圖2 0所例舉之子像素的配置。在此’數 字21表示TFT基板、數字22表示TFT、數字23表示汲 極、數字24表示源極、數字25表示陽極、數字26表示 200919402 電洞運送層、數字27表示電子運送層、數字28表示裝置 隔離層、數字29表示R有機層、數字3〇表示陰極、數字 31表示G有機層、數字32表示b有機層、數字33表示 白色有層、及數字表示偏振光(p〇larizati〇n)膜。 、庄意’那些發光装置被控制而彼此具有獨立的發光量,如 圖22所例舉者。 R,G,B和W發光裝置各自具有如圖9所例舉之裝置 結構。在此’數字10表示玻璃基板、數字n表示具有反 射性質之金屬陽極(反射電極)、數字12表示電洞運送 層、數字13表示發光層、數字14表示電子運送層、數字 15表示電子注入層、及數字16表示透明的導電陰極(透 明電極)。 當發光層中的電子和電洞再結合時,發光裝置發射出 對其材料而言係獨特的光。在此時機,因爲發射向透明電 極1 6的光和來自反射電極11的光相干擾,所以來自透明 電極16的光變成具有和材料本身之PL發光顏色不同的發 光顏色。 具有圖3中所例舉之PL (光致發光)頻譜形狀的R 發光材料、具有圖4中所例舉之PL頻譜形狀的G發光材 料和具有圖5中所例舉之P L頻譜形狀的B發光材料分別 被使用做爲R,G和B發光裝置(子像素)的發光層13。 另一方面,具有圖23中所例舉之PL頻譜形狀的W 發光材料被使用做爲W子像素的發光層13。在此’W子 像素之發光層1 3的材料係藉由混合B和Y發光材料來予 -10- 200919402 以製備,使得其P L頻譜具有如圖2 3所例舉之形狀。 當不考慮干擾效應時’那兩種類型(R+G+B子像素 群組之發光和B+Y子像素(W子像素)之發光)之白色 PL發光的色品彩度座標具有如表1及2中所例舉之同色 異譜(metamerism )。 表1 X Y 0.321608939 0.334687128In the above-mentioned Japanese Patent Application Laid-Open No. 2006-163068, in the case of the R + G + B sub-pixel group + W sub-pixel, R and/or G and/or B light is emitted for color matching. According to this control, the chromaticity of the chromaticity can match each other. However, since the spectrums of the two kinds of luminescence are different from each other, when the mixing ratio 发光 between the luminescence of the R + G + B sub-pixel group and the luminescence of the W sub-pixel is changed, the spectrum after the interference is also changed. In addition, in the same manner as the above example, when the viewing angle is tilted from the normal direction of the display surface such that the interference condition is changed, the chromaticity of the illuminating color of the r + G + B sub-pixel group and w The chromaticity of the luminescence of the sub-pixels is changed so as to be different from each other. 200919402 Therefore, even when the chromaticity coordinates of the "mixed light of sub-pixel group" and the chromaticity coordinates of the "light from the sub-pixel of the meta-spectra" are combined to form metamerism, self-interference The chromaticity chroma coordinates obtained from the display surface of the display device may deviate from the expected value when the spectrum is shifted. Note that the color filter types R, G, B, which are also described as prior art. In the W display device, the R, G, and B color filters disposed on the white matrix substrate can shorten the individual wavelength ranges. Therefore, even when the illuminating lights of the R, G, and B illuminating devices are mixed, the spectrum of the mixed light does not match the spectrum of the illuminating of the W sub-pixels without the color filter. SUMMARY OF THE INVENTION An object of the present invention is to provide a display device using interference in which ''mixed light of sub-pixels') and "light-emitting of sub-pixels from metamerism" can be mixed' so as to have the same light-emitting color. In addition, another object of the present invention is to provide an imaging system using the display device. According to the present invention, there is provided a display device comprising a plurality of light-emitting devices, wherein the light-emitting devices each comprise a reflective layer and a light-emitting layer are stacked from the light-emitting layer to the reflective layer for reflection by the light-emitting layer The light reflected by the layer is disturbed by light guided from the light emitting layer in a direction opposite to the reflective layer, and wherein the plurality of light emitting devices comprise a first light emitting device, a light-emitting device of different illuminating colors of the first illuminating device, and an emission spectrum having the same spectrum as that of the illuminating device in which the illuminating device of the first illuminating device and the illuminating device of the second illuminating device are mixed - -8-200919402 Device. According to the present invention, it is possible to obtain mixed light, but there is no chromaticity shift due to the disturbance. In other words, the mixed light of the 'sub-pixel group, and the 'light emission from the meta-spectral sub-pixels' can also be mixed in the display device using interference so as to have the same light-emitting color. The "mixed light of sub-pixels" and the "lights from sub-pixels of metamerism" are mixed, and when there is a changed mixing ratio between them, the chromaticity coordinates of the light obtained after the interference are not Furthermore, even when the interference condition changes due to the inclination of the normal direction of the display surface, the chromaticity coordinates of the light obtained after the interference do not change. Other features and aspects of the present invention will The following is a description of a representative embodiment of the accompanying drawings. [Embodiment] A display device and an imaging system using the same are described. The display device according to the present invention and the use of the display device are described. Before the imaging system, first confirm the problem of the above related display device. The R, G, B and W illuminating devices having the vertical structure exemplified in Fig. 21 are manufactured. To realize the configuration of the sub-pixels illustrated in Fig. 20. Here, 'number 21 denotes a TFT substrate, numeral 22 denotes a TFT, numeral 23 denotes a drain, numeral 24 denotes a source, numeral 25 denotes an anode, and numeral 26 denotes 200919402 Hole transport layer, numeral 27 denotes electron transport layer, numeral 28 denotes device isolation layer, numeral 29 denotes R organic layer, numeral 3 denotes cathode, numeral 31 denotes G organic layer, numeral 32 denotes b organic layer, numeral 33 denotes white Layers and numbers represent polarized light (P〇larizati〇n) films. Zhuangyi 'those illuminators are controlled to have independent illuminances, as exemplified in Figure 22. R, G, B and W illuminators Each has a device structure as exemplified in Fig. 9. Here, numeral 10 denotes a glass substrate, numeral n denotes a metal anode (reflective electrode) having a reflective property, numeral 12 denotes a hole transport layer, numeral 13 denotes a light-emitting layer, and numerals 14 denotes an electron transport layer, numeral 15 denotes an electron injection layer, and numeral 16 denotes a transparent conductive cathode (transparent electrode). When electrons and holes in the light-emitting layer are recombined, the light-emitting device The light that is unique to the material is emitted. At this time, since the light emitted to the transparent electrode 16 interferes with the light from the reflective electrode 11, the light from the transparent electrode 16 becomes the PL light color having the material itself. Different luminescent colors. R luminescent material having the PL (photoluminescence) spectral shape exemplified in FIG. 3, G luminescent material having the PL spectral shape exemplified in FIG. 4, and having the exemplified in FIG. The B luminescent material of the PL spectrum shape is used as the luminescent layer 13 of the R, G, and B illuminating devices (sub-pixels), respectively. On the other hand, the W luminescent material having the PL spectral shape exemplified in Fig. 23 is used. The light-emitting layer 13 of the W sub-pixel. The material of the light-emitting layer 13 of the 'W sub-pixel is prepared by mixing the B and Y luminescent materials to be used in order to make the PL spectrum as shown in FIG. The shape of the example. When the interference effect is not considered, the chromaticity coordinates of the white PL illumination of the two types (the illumination of the R+G+B sub-pixel group and the illumination of the B+Y sub-pixel (W sub-pixel)) have the same table. Metamerism as exemplified in 1 and 2. Table 1 X Y 0.321608939 0.334687128

R+G+B 表2 X Y 0.321608939 0.334687128 測量有關針對干擾效應所考慮之R + G + B子像素群 組之發光和W子像素之發光的色品彩度座標’白色色品 彩度座標之各者係例舉於表3及4中。 表3 X Y 0.29981 0.3501R+G+B Table 2 XY 0.321608939 0.334687128 Measure the chromaticity coordinates of the chromaticity coordinates of the luminescence of the R + G + B sub-pixel group and the illumination of the W sub-pixels considered for the interference effect Examples are shown in Tables 3 and 4. Table 3 X Y 0.29981 0.3501

R+G+B (具有干擾) 表4 X Y 0.31428 0.38418R+G+B (with interference) Table 4 X Y 0.31428 0.38418

B+Y 俱有干擾) 當在材料本身之PL發光方面不考慮干擾效應時’ R + G+B子像素群組之發光和W子像素之發光具有同色異譜 的色品彩度座標。然而’至於針對干擾效應所考慮之來自 -11 - 200919402 子像素的光,R + G + B子像素群組之發光的色品彩度座標 係與W子像素之發光的色品彩度座標偏離。 因此,當同色異譜之R+G+B子像素群組的發光僅 與W子像素之發光相混合時,使用千擾之顯示設備不能 夠獲得到所想要之白色的色品彩度座標。 干擾後之R + G + B子像素群組之發光的頻譜係例舉 於圖1 0中,且干擾後之W子像素之發光的頻譜係例舉於 圖24中。當混合那些頻譜時,能夠獲得到如圖25所例舉 之頻譜的發光。因爲此形狀係不同於圖10和24中所例舉 之形狀的各個形狀,所以可了解到不能夠獲得到所想要之 白色的色品彩度座標。 因此,本發明之顯示設備包含多個發光裝置,其包含 堆疊之反射層和發光層,其中,各個發光裝置使用從發光 層導引至反射層以便被反射層所反射之光與在和反射層相 反的方向上係導引自發光層之光間的干擾。除此之外,顯 示設備具有一結構,該結構包含一第一發光裝置、一具有 不同於第一發光裝置之發光顏色的第二發光裝置、及一具 有和其中混合有第一發光裝置之發光和第二發光裝置之發 光的頻譜相同的發射頻譜之第三發光裝置。 換言之,藉由混合第一發光裝置之發光和第二發光裝 置之發光所獲得到之發光(亦即,“子像素群組的混合 光”)的頻譜具有實質上和第三發光裝置之發光(亦即, “來自同色異譜之子像素的發光”)的頻譜相同的形狀。 實現上述結構之特定方法係如下。 -12- 200919402 (1) 第一發光裝置和第二發光裝置係連續地堆疊在 基板上,第三發光裝置係配置在基板上。 (2) 第一發光裝置、第二發光裝置和第三發光裝置 係配置在基板上’第三發光裝置係由具有第一發光裝置之 發射頻譜的發光材料和具有第二發光裝置之發射頻譜的發 光材料所構成。 在上述結構(2)中’亦即,第一發光裝置和第二發 光裝置之子像素係分開配置,且子像素係互相連接以便構 成第三發光裝置。 注意,第一發光裝置、第二發光裝置和第三發光裝置 的結構並不限於上述結構,有可能藉由組合具有和“子像 素的混合光”相同之頻譜的發光材料而獲得到“第三發光裝 置之發光”。 在此,相同之頻譜(形狀)意謂一條件,在此條件 中,發光波長之峰値的數目在“子像素群組的混合光,,與 “來自同色異譜之子像素的發光”之間係相同的,所有的峰 波長係在±5 nm的範圍之內,並且所有其一半寬度係在±5 nm的範圍之內。 在以下所述之各個實施例中,R和G發光裝置分別被 使用做爲第一發光裝置和第二發光裝置,並且增加B發光 裝置。此外,W發光裝置被使用做爲第三發光裝置。 (實例1 ) 此例係有關具有上述結構(1 )之顯示設備。 -13- 200919402 包含在圖1之色品彩度座標中所例舉之R,G及B發 光裝置的R+G+B子像素群組和在圖2之色品彩度座標 中所例舉之W子像素被並列地配置在顯示表面的區域 中。在此,圖2中所例舉之W子像素的色品彩度座標係 和圖1中所例舉之W子像素的色品彩度座標相同。在此 顯示設備中,目標白色具有在圖1及圖2中所例舉之色品 彩度座標。 在下文中,將會更詳細地敘述色品彩度座標之發光材 料的頻譜間之關係。 R發光材料具有圖3中所例舉之PL頻譜形狀,G發 光材料具有圖4中所例舉之PL頻譜形狀,且B發光材料 具有圖5中所例舉之PL頻譜形狀。除此之外,R + G + B 子像素群組之發光的PL頻譜具有圖6中所例舉之形狀。 W子像素的發光係適於具有和圖6中所例舉之PL頻 譜相同的頻譜,其中,R, G及B發光裝置的發光係以預 定的比率混合。因此,那兩種類型之白色P L發光的色品 彩度座標爲同色異譜,且具有相同的頻譜形狀,其係圖7 中所例舉之R+G+B子像素群組的發光與圖8中所例舉 之W子像素的發光間之頻譜的關係。 使用那些材料來製造具有圖9中所例舉之裝置結構、 使用干擾的發光裝置。包含具有上述裝置結構之R,G及 B發光裝置之R+g+B子像素群組的白色發光和W子像 素的白色發光之頻譜具有圖10中所例舉之形狀。各個之 色品彩度座標被測量,且發現到千擾後之白色的色品彩度 -14- 200919402 座標在其間係相同的,如同表5中所例舉者。 表5 X Y 0.31871 0.3892 R+G+B (具有干擾) 另一方面’干擾後之光混合的頻譜具有如圖n中所 例舉之形狀。此頻譜之白色的色品彩度座標係例舉於表6 中。 表6 X Y 0.31871 0.3892 R+G+B+W 俱有干擾) 這樣,當頻譜形狀係相同時,白色座標並不偏移於當 W子像素的發光係和使用干擾之R + G + B子像素群組的 發光相混合之時,這也可以被應用於表示圖23中所例舉 之上述頻譜形狀的W子像素之發光的情況,並且相同的 效果能夠獲得於當其他子像素係包含有B和γ發光裝置而 使得其混合頻譜能夠是相同之時。如同自此可了解到的, 子像素的數目可以是1, 2,…n(n爲整數),祇要顏色被 混合而產生另一顏色。 採用下面所述之結構,以便使上述之第一發光裝置之 發光和第二發光裝置之發光的混合頻譜與第三發光裝置之 發光的頻譜相匹配。 也就是說,製造具有下面結構之像素的顯示設備。像 -15- 200919402 素爲子像素群組和W發光裝置之組合,在該子像素群組 中,如同圖12中所例舉的’ R,G及B發光裝置被垂直地 堆疊,而在W發光裝置中,如同圖13中所例舉的,具有 和R+G+B子像素群組之發光的混合頻譜相同頻譜的發 光材料被堆疊。圖I4例舉顯示設備之子像素的配置,且 在此爲了容易了解而配置兩個像素。 在圖形中,數字26表示玻璃基板,數字27表示用以 致使干擾之反射板(reflector plate),數字32表示由例 如I Τ Ο或IZ ◦之透明氧化物導電材料所做的透明導電層, 數字20表示透明電極’數字21表示用以注入及轉移電洞 於發光層中之層,數字23表示B發光層,且數字24表示 R發光層。數字25表示G發光層,且數字22表示用以注 入及轉移來自陰極之電子於發光層中的層,數字28表示 即將被供應至B發光裝置之驅動電流,數字29表示即將 被供應至R發光裝置之驅動電流,數字30表示即將被供 應至G發光裝置之驅動電流,且數字31表示即將被供應 至W子像素之驅動電流。換言之,R+G+B子像素群組 具有堆疊發光材料之結構’且w子像素也具有堆疊發光 材料之結構。注意,發光裝置可以是有機發光裝置(有機 EL元件),使得具有相當簡單結構之薄的顯示設備能夠 被形成。 在具有上述結構之顯示設備中’ R+G+B子像素群組 之發光的混合頻譜係與W子像素之發光的頻譜相同。因 此,R+G+B子像素群組之發光和W子像素之發光具有 -16- 200919402 相同的頻譜。結果,由於r+g+b子像素群組之發光和 w子像素之發光的混合,甚至是使用干擾之顯示設備也不 會造成白色偏移。 (實例2 ) 本例係有關具有上述結構(2)之顯示設備。 爲了使第一發光裝置之發光和第二發光裝置之發光的 混合頻譜與第三發光裝置之發射頻譜相匹配,製造具有子 像素之配置的顯示設備,在該子像素之配置中,R, G及B 發光裝置和做爲 W子像素之R’,G’及B’發光裝置被組 合’如问圖15中所例舉的。 換言之,所製造之顯示設備具有像素,各像素爲包含 R, G及B發光裝置之子像素和包含R’,G’及B’發光裝置 之W子像素的組合,其中配置著具有和R+G+B子像素 群組之發光的混合頻譜相同頻譜的發光材料。 R, G及B發光裝置和R’,G’及B’發光裝置具有如圖9 中所例舉的裝置結構。 配置於一平面上之R,G及B子像素係供應有個別的 驅動電流,如同圖1 6 A中所例舉的’以便發光。除此之 外,做爲W子像素之R’,G’及B’發光裝置被串聯連接, 且同時供應有驅動電流,如同圖1 6 B中所例舉的,以便發 光。 因此,R+G+B子像素群組之發光和W子像素之發 光具有相同的頻譜’並且,由於R+G+B子像素群組之 -17- 200919402 發光和W子像素之發光的混合,甚至是使用干擾之顯示 設備也不會造成白色偏移。 依據圖15中所例舉之子像素的配置,雖然R, G及B 子像素和R,,G’及B’發光裝置係配置在基板的其中一側 上,但是有可能將R’,G’及B’發光裝置配置在基板的另一 側上,在R,G及B子像素之下的個別位置處。 本例之發光裝置也可以是有機發光裝置(有機EL裝 置),使得具有相當簡單結構之薄的顯示設備能夠被形 成。 (實例3 ) 本例敘述甚至當觀看顯示設備的角度(視角)改變 時’因爲R+G+B子像素群組之發光顏色和W子像素之 發光顏色以相同的方式改變,所以在發光顏色之間不會造 成任何的色品彩度差異。 類似於上面的敘述,測量包含具有圖9所例舉之裝置 結構的R,G及B發光裝置、使用與額外之B發光裝置的 干擾效應之子像素群組之白色發光和W子像素之白色發 光的色品彩度座標,白色發光的色品彩度座標分別被例舉 於表7和8中。在R,G及B發光裝置之發光被混合的情 況中,色品彩度座標係如同表3中所例舉的。相反地,當 B發光裝置之發光被進一步混合於R, G及B發光裝置之 發光時’獲得到表7中所例舉之同色異譜,其係和表8中 所例舉之子像素之發光的色品彩度座標相同。 -18- 200919402 表7 X Y 0.31428 0.38418 R+G+B (具有干擾) 表8 X Y 0.31428 0.38418B+Y has interference) When the interference effect is not considered in the PL illumination of the material itself, the illumination of the R+G+B sub-pixel group and the illumination of the W sub-pixel have the same-color chromaticity chroma coordinates. However, as for the light from -11 - 200919402 sub-pixels considered for the interference effect, the chromaticity chromaticity coordinates of the luminescence of the R + G + B sub-pixel group deviate from the chromaticity chromaticity coordinates of the illuminating of the W sub-pixel . Therefore, when the illumination of the heterochromic R+G+B sub-pixel group is only mixed with the illumination of the W sub-pixel, the display device using the interference cannot obtain the desired white chromaticity coordinate coordinate. . The spectrum of the luminescence of the R + G + B sub-pixel group after the interference is exemplified in Fig. 10, and the spectrum of the illuminating of the W sub-pixel after the interference is exemplified in Fig. 24. When those spectra are mixed, luminescence to the spectrum as exemplified in Fig. 25 can be obtained. Since this shape is different from the respective shapes of the shapes exemplified in Figs. 10 and 24, it can be understood that the desired color chromaticity coordinates of the white color cannot be obtained. Accordingly, the display device of the present invention includes a plurality of light emitting devices including a stacked reflective layer and a light emitting layer, wherein each of the light emitting devices uses light that is guided from the light emitting layer to the reflective layer to be reflected by the reflective layer and the reflective layer In the opposite direction, the interference between the light from the light-emitting layer is guided. In addition, the display device has a structure including a first light emitting device, a second light emitting device having a different color of light emitted from the first light emitting device, and a light having a first light emitting device mixed therein a third illumination device having the same emission spectrum as the spectrum of the illumination of the second illumination device. In other words, the spectrum of the illumination obtained by mixing the illumination of the first illumination device and the illumination of the second illumination device (ie, the "mixed light of the sub-pixel group") has substantially the illumination of the third illumination device ( That is, the spectrum of "light emission from sub-pixels of metamerism" has the same shape. The specific method for realizing the above structure is as follows. -12- 200919402 (1) The first light-emitting device and the second light-emitting device are continuously stacked on the substrate, and the third light-emitting device is disposed on the substrate. (2) the first illuminating device, the second illuminating device, and the third illuminating device are disposed on the substrate. The third illuminating device is composed of a luminescent material having an emission spectrum of the first illuminating device and an emission spectrum having the second illuminating device. Made up of luminescent materials. In the above structure (2), that is, the sub-pixels of the first light-emitting device and the second light-emitting device are separately disposed, and the sub-pixels are connected to each other to constitute the third light-emitting device. Note that the structures of the first light-emitting device, the second light-emitting device, and the third light-emitting device are not limited to the above-described structures, and it is possible to obtain "third by combining luminescent materials having the same spectrum as the "mixed light of sub-pixels" The illumination of the illuminating device". Here, the same spectrum (shape) means a condition in which the number of peaks of the light-emitting wavelength is between "the mixed light of the sub-pixel group, and the "light emission from the sub-pixel of the meta-spectrum" The same, all peak wavelengths are within ±5 nm, and all half of their width is within ±5 nm. In each of the embodiments described below, the R and G illuminators are respectively The first light-emitting device and the second light-emitting device are used, and the B-light-emitting device is added. Further, the W light-emitting device is used as the third light-emitting device. (Example 1) This example relates to a display device having the above structure (1) -13- 200919402 The R+G+B sub-pixel group of the R, G and B illuminators exemplified in the chromaticity coordinates of Figure 1 and the chromaticity coordinates of Figure 2 The W sub-pixels are arranged side by side in the area of the display surface. Here, the chromaticity coordinate coordinate of the W sub-pixel exemplified in FIG. 2 and the chromaticity of the W sub-pixel exemplified in FIG. The chroma coordinates are the same. In this display device, the target white has the same in Figure 1 and Figure 2. The color chromaticity coordinates are hereinafter described. In the following, the relationship between the spectra of the luminescent materials of the chromaticity coordinates will be described in more detail. The R luminescent material has the PL spectrum shape exemplified in Fig. 3, and the G luminescent material has The PL spectrum shape illustrated in Fig. 4, and the B luminescent material has the PL spectrum shape exemplified in Fig. 5. In addition, the PL spectrum of the luminescence of the R + G + B sub-pixel group has the spectrum of Fig. 6 The shape of the W sub-pixel is adapted to have the same spectrum as the PL spectrum exemplified in Fig. 6, wherein the illumination of the R, G and B illumination devices is mixed at a predetermined ratio. The chromaticity chroma coordinates of the two types of white PL luminescence are metamerism and have the same spectral shape, which is the luminescence of the R+G+B sub-pixel group exemplified in FIG. The relationship between the spectrums of the illuminations of the W sub-pixels is exemplified. Those materials are used to fabricate the light-emitting device having the device structure illustrated in Fig. 9 and using interference. The R, G, and B light-emitting devices having the above-described device structure are included. White light of R+g+B sub-pixel group and white light of W sub-pixel The spectrum of light has the shape exemplified in Fig. 10. The chromaticity coordinates of each chromaticity are measured, and the chromaticity of the chromaticity of the chromaticity of the white is found to be the same as in the following, as shown in Table 5. Table 5 XY 0.31871 0.3892 R+G+B (with interference) On the other hand, the spectrum of the mixed light after interference has the shape as illustrated in Figure n. The white color of this spectrum The coordinate system is shown in Table 6. Table 6 XY 0.31871 0.3892 R+G+B+W Interference) Thus, when the spectrum shape is the same, the white coordinates are not offset from the illumination system of the W sub-pixel. When the illuminating phase of the R + G + B sub-pixel group is disturbed, this can also be applied to the case of illuminating the W sub-pixel representing the above-described spectral shape exemplified in FIG. 23, and the same effect can be obtained. Obtained when the other sub-pixels contain B and gamma illumination devices such that their mixed spectrum can be the same. As can be appreciated from this, the number of sub-pixels can be 1, 2, ... n (n is an integer) as long as the colors are mixed to produce another color. The structure described below is employed to match the mixed spectrum of the illumination of the first illumination device and the illumination of the second illumination device to the spectrum of illumination of the third illumination device. That is, a display device having pixels of the following structure is fabricated. Like -15-200919402, a combination of sub-pixel groups and W-lighting devices, in which the 'R, G, and B illuminators as exemplified in FIG. 12 are stacked vertically, and In the light-emitting device, as exemplified in FIG. 13, luminescent materials having the same spectrum as the mixed spectrum of the luminescence of the R+G+B sub-pixel group are stacked. Figure I4 illustrates the configuration of the sub-pixels of the display device, and two pixels are configured here for ease of understanding. In the figure, numeral 26 denotes a glass substrate, numeral 27 denotes a reflector plate for causing interference, and numeral 32 denotes a transparent conductive layer made of a transparent oxide conductive material such as I Τ or IZ ,, numerals 20 denotes a transparent electrode 'number 21 denotes a layer for injecting and transferring a hole in the light-emitting layer, numeral 23 denotes a B light-emitting layer, and numeral 24 denotes an R light-emitting layer. Numeral 25 denotes a G luminescent layer, and numeral 22 denotes a layer for injecting and transferring electrons from the cathode in the luminescent layer, numeral 28 denotes a driving current to be supplied to the B illuminating device, and numeral 29 denotes a supply to be supplied to the R illuminating The drive current of the device, numeral 30 indicates the drive current to be supplied to the G light-emitting device, and numeral 31 indicates the drive current to be supplied to the W sub-pixel. In other words, the R+G+B sub-pixel group has a structure of stacked luminescent materials' and the w sub-pixels also have a structure of stacked luminescent materials. Note that the light-emitting device may be an organic light-emitting device (organic EL element), so that a thin display device having a relatively simple structure can be formed. In the display device having the above structure, the mixed spectrum of the light emission of the 'R+G+B sub-pixel group is the same as the spectrum of the light emission of the W sub-pixel. Therefore, the light emission of the R+G+B sub-pixel group and the light emission of the W sub-pixel have the same spectrum as -16-200919402. As a result, even a display device using interference does not cause a white shift due to the mixing of the light of the r+g+b sub-pixel group and the light emission of the w sub-pixel. (Example 2) This example relates to a display device having the above structure (2). In order to match the mixed spectrum of the illumination of the first illumination device and the illumination of the second illumination device with the emission spectrum of the third illumination device, a display device having a configuration of sub-pixels is produced, in the configuration of the sub-pixel, R, G And the B illuminating device and the R', G' and B' illuminating devices as W sub-pixels are combined as exemplified in FIG. In other words, the manufactured display device has pixels, each pixel being a combination of sub-pixels including R, G, and B light-emitting devices and W sub-pixels including R', G', and B' light-emitting devices, wherein R+G is disposed. +B sub-pixel group illuminating mixed spectrum of luminescent material of the same spectrum. The R, G and B illuminators and the R', G' and B' illuminators have the device structure as exemplified in Fig. 9. The R, G, and B sub-pixels disposed on a plane are supplied with individual drive currents, as exemplified in Fig. 16A for illumination. In addition, the R', G' and B' illuminating devices as W sub-pixels are connected in series, and at the same time, a driving current is supplied, as exemplified in Fig. 16B, to emit light. Therefore, the illumination of the R+G+B sub-pixel group and the illumination of the W sub-pixel have the same spectrum' and, due to the mixture of the -17-200919402 illumination of the R+G+B sub-pixel group and the illumination of the W sub-pixel Even a display device that uses interference does not cause a white offset. According to the configuration of the sub-pixels illustrated in FIG. 15, although the R, G, and B sub-pixels and the R, G', and B' light-emitting devices are disposed on one side of the substrate, it is possible to use R', G'. And the B' illuminating device is disposed on the other side of the substrate at individual locations below the R, G, and B sub-pixels. The light-emitting device of this example may also be an organic light-emitting device (organic EL device), so that a thin display device having a relatively simple structure can be formed. (Example 3) This example describes that even when the angle (viewing angle) of the viewing display device is changed, 'because the illuminating color of the R+G+B sub-pixel group and the illuminating color of the W sub-pixel are changed in the same manner, the illuminating color There will be no difference in chroma color between the colors. Similar to the above description, the R, G, and B illuminating devices including the device structure exemplified in FIG. 9, the white illuminating of the sub-pixel group using the interference effect with the additional B illuminating device, and the white illuminating of the W sub-pixel are measured. The chromaticity chromaticity coordinates and the white luminescent chromaticity coordinates are exemplified in Tables 7 and 8, respectively. In the case where the luminescence of the R, G, and B illuminators is mixed, the chromaticity chroma coordinates are as exemplified in Table 3. Conversely, when the luminescence of the B illuminating device is further mixed with the illuminating of the R, G and B illuminating devices, the homochromatic spectroscopy exemplified in Table 7 is obtained, which is the luminescence of the sub-pixels exemplified in Table 8. The chromaticity coordinates are the same. -18- 200919402 Table 7 X Y 0.31428 0.38418 R+G+B (with interference) Table 8 X Y 0.31428 0.38418

B+Y (具有干擾) 在此情況下,在使用如上所述之干擾的顯示設備中’ 在從R+G+B(+B)子像素之發光與同色異譜中之W子 像素之發光間之色品彩度座標的組合之値改變混合比率的 情況中,不能夠獲得到所想要的色品彩度座標。 除此之外,視角係傾斜自顯示表面的法線方向,而同 時測量在〇度和6 0度處,標示有圖1 7中所例舉之頻譜之 R+G+B(+B)子像素群組之發光與在〇度和60度處, 標示有圖18中所例舉之頻譜之w子像素之發光的色品彩 度座標。甚至當B發光裝置被添加而使得顯示設備之色品 彩度座標變成同色異譜時’不能夠獲得到所想要之白色的 色品彩度座標於當視角係傾斜自顯示表面的法線方向,而 使得千擾條件改變時。 表9 X -| Y 〇度 0.31428 0.38418 60度 5729 ~~ 0.32267 R+G+B (具有干擾) 表10 X ' ^ Y 〇度 0.314T8 0.38418 60度 0.28?9~~~~ 0.32223B+Y (with interference) In this case, in the display device using the interference as described above, the illumination of the W sub-pixel in the luminescence and metamerism from the R+G+B(+B) sub-pixel In the case where the combination of the chromaticity coordinates of the chromaticity changes the mixing ratio, the desired chromaticity chromaticity coordinates cannot be obtained. In addition, the viewing angle is inclined from the normal direction of the display surface, while measuring the R+G+B(+B) of the spectrum exemplified in Fig. 17 at the twist and 60 degrees. The illuminance of the pixel group and the chromaticity chromaticity coordinates of the luminescence of the w sub-pixels of the spectrum exemplified in FIG. 18 are indicated at the twist and 60 degrees. Even when the B illuminating device is added such that the chromaticity chroma coordinates of the display device become metameric, 'the chromaticity coordinates of the desired white color cannot be obtained when the viewing angle is inclined from the normal direction of the display surface. When the disturbance condition is changed. Table 9 X -| Y 0.3 0.31428 0.38418 60 degrees 5729 ~~ 0.32267 R+G+B (with interference) Table 10 X ' ^ Y 0.3 0.314T8 0.38418 60 degrees 0.28? 9~~~~ 0.32223

B+Y (具有干擾) -19- 200919402 因此,如同上述實例1中所例舉者,標示有圖 例舉之色品彩度座標之R+G+B子像素群組的發 合光)係配置相鄰於標示有圖2中所例舉之色品彩 之W子像素的發光。在此,圖2中所例舉之W子 發光的色品彩度座標係和圖1中所例舉之W色品 標相同。在此顯示設備中,目前白色具有圖1及圖 例舉之W色品彩度座標。 在下文中,將更詳細地敘述色品彩度座標之發 間之頻譜的關係。 R發光材料具有圖3中所例舉之PL頻譜形狀 光材料具有圖4中所例舉之PL頻譜形狀,且B發 具有圖5中所例舉之PL頻譜形狀。除此之外,R -子像素群組之發光的PL頻譜具有圖6中所例舉之形 W子像素的發光係適於具有和圖6中所例舉之 譜相同的頻譜’其中,R,G及B發光裝置的發光 定的比率混合。因此,那兩種類型之白色PL發光 彩度座標爲同色異譜,且具有相同的頻譜形狀,其 中所例舉之R+G+B子像素群組的發光與圖8中 之W子像素的發光間之頻譜的關係。 在此情況下,在使用如上所述之干擾的顯示設 也在從R+G+B子像素之發光與同色異譜中之w 之發光間之色品彩度座標的組合之値改變混合比率 中’能夠獲得到所想要的色品彩度座標。 除此之外’視角係傾斜自顯示表面的法線方向 1中所 光(混 度座標 像素之 彩度座 2中所 光材料 ,G發 光材料 f G + B 狀。 PL頻 係以預 的色品 係圖7 所例舉 備中, 子像素 的情況 ,而同 -20- 200919402 時測量在〇度和6 0度處,R + G + B子像素群組之發光與 在〇度和6 0度處,w子像素之發光的色品彩度座標。針 對R+G+B子像素群組之發光與W子像素之發光的結果 係例舉於表1 1中。至於具有圖1 9中所例舉之頻譜的混合 光’甚至當視角係傾斜自顯示表面的法線方向時,也能夠 獲得到所想要之白色的色品彩度座標,使得干擾條件改 變 。 适是因爲當R+G+B子像素群組之混合頻譜改變連 同視角的改變時,W像素之頻譜也類似地改變。因此,甚 至當R + G + B子像素群組之發光之混合頻譜的改變與W 子像素之發光之頻譜的改變被加總在一起時,W像素之頻 譜係以和R + G + B子像素群組之發光之混合頻譜相同的 方式改變。 表11 X Y 〇度 0.31871 0.3892 60度 0.29 0.32267 (具有干擾) R+G+B+Y (具有干擾)B+Y (with interference) -19- 200919402 Therefore, as exemplified in the above example 1, the combination of the R+G+B sub-pixel group of the illustrated chromaticity chroma coordinates is configured. The illumination is adjacent to the W sub-pixel labeled with the color chromaticity exemplified in FIG. 2. Here, the color chromaticity coordinate system of the W sub-light exemplified in Fig. 2 is the same as the W color standard exemplified in Fig. 1. In this display device, the white color currently has the W color chroma coordinates of Fig. 1 and the illustration. In the following, the relationship of the spectrum between the chrominance coordinates will be described in more detail. The R luminescent material has the PL spectral shape exemplified in Fig. 3, the optical material has the PL spectral shape exemplified in Fig. 4, and the B luminescence has the PL spectral shape exemplified in Fig. 5. In addition, the illuminating PL spectrum of the R-sub-pixel group has the illuminating system of the W sub-pixel exemplified in FIG. 6 adapted to have the same spectrum as that exemplified in FIG. 6 where R The G and B illuminators are mixed in a ratio of luminescence. Therefore, the two types of white PL illuminance chroma coordinates are metamerism and have the same spectral shape, wherein the illuminating R+G+B sub-pixel group and the W sub-pixel of FIG. The relationship between the spectrum of the light. In this case, the display ratio using the interference as described above also changes the blending ratio after the combination of the chromaticity coordinates between the luminescence of the R+G+B sub-pixel and the luminescence of the h in the metamerism. In the 'can get the desired color chromaticity coordinates. In addition, the 'viewing angle is the light that is inclined from the normal direction 1 of the display surface (the light material in the chromatographic seat 2 of the mixed coordinate pixel, the G luminescent material f G + B. The PL frequency is in the pre-color Figure 7 shows the case of sub-pixels in the example of the sub-pixel, and measured at twentieth and 60 degrees at -20-200919402, the luminescence of the R + G + B sub-pixel group and the enthalpy and 60 degrees The chromaticity chroma coordinates of the light of the w sub-pixels. The results of the light emission of the R+G+B sub-pixel group and the light emission of the W sub-pixel are exemplified in Table 11. As for the image in FIG. The mixed light of the exemplary spectrum 'even when the viewing angle is tilted from the normal direction of the display surface, the desired white chromaticity chroma coordinates can be obtained, so that the interference conditions change. Suitable because when R+G When the mixed spectrum change of the +B sub-pixel group changes with the angle of view, the spectrum of the W pixel also changes similarly. Therefore, even when the mixed spectrum of the illumination of the R + G + B sub-pixel group is changed with the W sub-pixel When the changes in the spectrum of the luminescence are summed together, the spectrum of the W pixels is combined with the R + G + B sub-pixels. The mixed spectrum of the group's illumination changes in the same way. Table 11 X Y 0.3 0.31871 0.3892 60 degrees 0.29 0.32267 (with interference) R+G+B+Y (with interference)

R+G+B 本例之發光裝置也可以是有機發光裝置(有機EL元 件),使得具有相當簡單結構之薄的顯示設備能夠被形 成。 (實例4 ) 能夠製造一成像系統(例如,數位相機)而包含具有 -21 - 200919402 上述結構之顯示設備做爲顯示部件,使得具有上述功效之 成像系統能夠被實現。 雖然本發明已經參照代表性實施例來做說明’但將會 了解到本發明並非僅限於所揭示之代表性實施例,下面之 申請專利範圍的範疇係依據最寬廣的解釋’以便包含所有 如此之修正及等同的結構和功能。 【圖式簡單說明】 圖1係R,G和B發光裝置之發光與其混合光之CIE 色品彩度座標圖。 圖2係W發光裝置之CIE色品彩度座標圖。 圖3係R發光材料之PL頻譜圖。 圖4係G發光材料之PL頻譜圖。 圖5係B發光材料之PL頻譜圖。 圖6係R + G + B子像素群組之混合光的PL頻譜圖。 圖7係R + G + B子像素群組之發射頻譜圖。 圖8係W子像素群組之發射頻譜圖。 圖9係例舉發光裝置之結構的圖形。 圖10係使用干擾之顯示設備中之R+G+B子像素群 組的發射頻譜圖。 圖11係使用干擾之顯示設備中之R+G+B+W子像 素群組的發射頻譜圖。 圖12圖係例舉使用干擾、具有垂直堆疊結構之R+G + B子像素群組之結構的圖形。 -22- 200919402 圖13係例舉使用干擾、具有垂直堆疊結構之W像素 之結構的圖形。 圖14係例舉使用干擾、具有垂直堆疊結構之R,G,B 和W子像素之配置的圖形。 圖1 5係例舉使用干擾、具有平面結構之R,G,B和W (R ’ + G ’ + B ’)子像素之配置的圖形。 圖16係例舉具有平面結構之R,G, B和W發光裝置 之驅動的圖形。 圖17係例舉在0度和60度處’使用千擾之顯不設備 之R + G + B ( + B)子像素群組的發射頻譜圖。 圖18係例舉在0度和60度處,使用干擾之顯示設備 之W(B+Y)子像素的發射頻譜圖。 圖19係例舉在0度和60度處,使用干擾之顯示設備 之r+G+Β子像素群組和W(B+Y)子像素的發射頻譜 圖。 圖20係例舉R, G,B和W子像素之相關配置的圖 形。 圖2 1係例舉顯示設備之相關垂直結構的圖形。 圖22係用以驅動相關之R, G,B和W發光裝置之等 效電路的圖形。 圖23係W子像素之PL頻譜圖。 圖24係例舉使用干擾之顯示設備中之W子像素的發 射頻譜圖°R+G+B The light-emitting device of this example may also be an organic light-emitting device (organic EL element), so that a thin display device having a relatively simple structure can be formed. (Example 4) It is possible to manufacture an imaging system (e.g., a digital camera) and a display device having the above structure of -21 - 200919402 as a display member, so that an imaging system having the above-described effects can be realized. While the invention has been described with respect to the preferred embodiments of the embodiments of the invention, the invention Corrected and equivalent structure and function. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a CIE chromaticity coordinate coordinate diagram of the illuminating light of the R, G, and B illuminating devices and the mixed light thereof. Fig. 2 is a CIE color chroma coordinate diagram of the W light-emitting device. Figure 3 is a PL spectrogram of the R luminescent material. Figure 4 is a PL spectrogram of a G luminescent material. Figure 5 is a PL spectrogram of a B luminescent material. Figure 6 is a PL spectrogram of mixed light of a group of R + G + B sub-pixels. Figure 7 is an emission spectrum diagram of a group of R + G + B sub-pixels. FIG. 8 is an emission spectrum diagram of a W sub-pixel group. Fig. 9 is a view showing a structure of a light-emitting device. Figure 10 is a graph of the emission spectrum of a R+G+B sub-pixel group in a display device using interference. Figure 11 is a diagram of the emission spectrum of a group of R+G+B+W sub-pixels in a display device using interference. Figure 12 is a diagram illustrating the structure of an R+G + B sub-pixel group having interference, a vertically stacked structure. -22- 200919402 Fig. 13 is a diagram showing a structure using interference, a W pixel having a vertical stacked structure. Fig. 14 is a diagram showing a configuration using interference, R, G, B, and W sub-pixels having a vertical stack structure. Fig. 15 is a diagram showing the configuration of a sub-pixel using R, G, B and W (R ' + G ' + B '') having interference, a planar structure. Fig. 16 is a view showing the driving of the R, G, B and W light-emitting devices having a planar structure. Figure 17 is a diagram showing the emission spectrum of a group of R + G + B ( + B) sub-pixels of the device using the interference at 0 degrees and 60 degrees. Fig. 18 is a diagram showing an emission spectrum of a W (B + Y) sub-pixel of a display device using interference at 0 degrees and 60 degrees. Fig. 19 is a diagram showing emission spectra of r+G+Β sub-pixel groups and W(B+Y) sub-pixels of a display device using interference at 0 and 60 degrees. Fig. 20 is a diagram showing an arrangement of related configurations of R, G, B and W sub-pixels. Figure 2 is a diagram showing the relative vertical structure of the display device. Figure 22 is a diagram of an equivalent circuit for driving associated R, G, B and W illumination devices. Figure 23 is a PL spectrum diagram of a W sub-pixel. Figure 24 is a diagram showing the emission spectrum of W sub-pixels in a display device using interference.

圖25係例舉使用干擾之顯示設備中之R+G+B+W -23- 200919402 子像素的發射頻譜圖。 【主要元件符號說明】 1 〇 :玻璃基板 1 1 :金屬陽極 1 2 :電洞運送層 1 3 :發光層 14 :電子運送層 1 5 :電子注入層 1 6 :透明的導電陰極(透明電極) 21 : TFT基板 22 :薄膜電晶體 2 3 :汲極 24 :源極 2 5 :陽極 26 :電洞運送層 27 :電子運送層 2 8 :裝置隔離膜 29 : R有機層 3 0 :陰極 3 1 : G有機層 3 2 : B有機層 3 3 :白色有機層 3 4 _·偏振光膜 -24- 200919402 2 6 :玻璃基板 2 7 :反射板 3 2 :透明導電層 2 0 :透明電極 2 1 :用以注入及轉移電洞於發光層中之層 23 : B發光層 24 : R發光層 2 5 : G發光層 22 :用以注入及轉移來自陰極之電子於發光層中的層 2 8 :即將被供應至B發光裝置之驅動電流 29 :即將被供應至R發光裝置之驅動電流 3 0 :即將被供應至G發光裝置之驅動電流 3 1 :即將被供應至W子像素之驅動電流 -25-Fig. 25 is a diagram showing an emission spectrum of R+G+B+W -23- 200919402 sub-pixels in a display device using interference. [Description of main component symbols] 1 〇: glass substrate 1 1 : metal anode 1 2 : hole transport layer 1 3 : light-emitting layer 14 : electron transport layer 1 5 : electron injection layer 1 6 : transparent conductive cathode (transparent electrode) 21 : TFT substrate 22 : thin film transistor 2 3 : drain 24 : source 2 5 : anode 26 : hole transport layer 27 : electron transport layer 2 8 : device isolation film 29 : R organic layer 3 0 : cathode 3 1 : G organic layer 3 2 : B organic layer 3 3 : white organic layer 3 4 _·polarized film-24- 200919402 2 6 : glass substrate 2 7 : reflector 3 2 : transparent conductive layer 2 0 : transparent electrode 2 1 : layer 23 for injecting and transferring holes in the light-emitting layer: B light-emitting layer 24: R light-emitting layer 2 5 : G light-emitting layer 22: layer for injecting and transferring electrons from the cathode into the light-emitting layer 2 8 : The driving current 29 to be supplied to the B light-emitting device: the driving current 3 0 to be supplied to the R light-emitting device: the driving current 3 1 to be supplied to the G light-emitting device: the driving current to be supplied to the W sub-pixel -25 -

Claims (1)

200919402 十、申請專利範圍 1.一種包括一基板和多個發光裝置之顯示設備,其 中: 該等發光裝置各自包括被堆疊之一反射層及一發光 層,使用從該發光層被導引至該反射層以便被該反射層所 反射的光,與在和該反射層相反的方向上從該發光層被導 引的光之間的干擾;以及 該多個發光裝置包括一第一發光裝置、一具有與該第 一發光裝置不同的發光顏色之第二發光裝置、及一具有和 其中混合有該第一發光裝置之發光和該第二發光裝置之發 光的頻譜相同的發射頻譜之第三發光裝置。 2 .如申請專利範圍第1項之顯示設備,其中: 該第一發光裝置和該第二發光裝置被連續堆疊於該基 板上;以及 該第三發光裝置係配置於該基板上。 3 .如申請專利範圍第1項之顯示設備,其中,該第一 發光裝置、該第二發光裝置和該第三發光裝置係分別配置 於該基板上。 4.如申請專利範圍第1項之顯示設備,其中,即使當 視角係自顯示表面之法線方向傾斜時,該第一發光裝置之 發光和該第二發光裝置之發光的混合光與該第三發光裝置 之發光的混合頻譜以和該第一發光裝置之發光、該第二發 光裝置之發光和該第三發光裝置之發光之混合光的混合頻 譜之改變相同的方式改變。 -26- 200919402 5 .如申請專利範圍第1項之顯示設備,其中,該第三 發光裝置之發光顏色爲白色。 6.如申請專利範圍第1項之顯示設備,其中,該發光 裝置爲有機發光裝置。 7 . —種成像系統,其包括如申請專利範圍第1項之顯 示設備做爲顯示部件。 8. —種包括多個發光裝置之顯示設備,其中: 該等發光裝置各自包含被堆疊之一反射層及一發光 層,使用從該發光層被導引至該反射層以便被該反射層所 反射的光,與在和該反射層相反的方向上從該發光層被導 引的光之間的干擾;以及 該多個發光裝置包含一第一發光裝置、一具有與該第 一發光裝置不同的發光顏色之第二發光裝置、一具有與該 第一發光裝置及該第二發光裝置不同的發光顏色之第三發 光裝置、及一具有和其中混合有該第一發光裝置、該第二 發光裝置和該第三發光裝置之發光的頻譜相同的發射頻譜 之第四發光裝置。 9. 如申請專利範圍第8項之顯示設備,其中,該一發 光裝置、該第二發光裝置和該第三發光裝置之發光顏色分 別爲紅色、綠色和藍色,且該第四發光裝置之發光顏色爲 白色。 -27-200919402 X. Patent Application Area 1. A display device comprising a substrate and a plurality of light-emitting devices, wherein: the light-emitting devices each comprise a reflective layer and a light-emitting layer stacked, from which the light-emitting layer is guided to a reflective layer for interference between light reflected by the reflective layer and light guided from the light-emitting layer in a direction opposite to the reflective layer; and the plurality of light-emitting devices including a first light-emitting device, a second illuminating device having a different illuminating color from the first illuminating device, and a third illuminating device having an emission spectrum identical to a spectrum in which the illuminating light of the first illuminating device and the illuminating portion of the second illuminating device are mixed . 2. The display device of claim 1, wherein: the first illuminating device and the second illuminating device are continuously stacked on the substrate; and the third illuminating device is disposed on the substrate. 3. The display device of claim 1, wherein the first illuminating device, the second illuminating device, and the third illuminating device are respectively disposed on the substrate. 4. The display device of claim 1, wherein the illumination of the first illumination device and the illumination of the illumination of the second illumination device are different when the viewing angle is inclined from a normal direction of the display surface The mixed spectrum of the illumination of the three illumination devices is changed in the same manner as the change in the mixed spectrum of the illumination of the first illumination device, the illumination of the second illumination device, and the illumination of the illumination of the third illumination device. -26-200919402. The display device of claim 1, wherein the third illuminating device has a white color. 6. The display device of claim 1, wherein the illuminating device is an organic illuminating device. An imaging system comprising the display device as in the first aspect of the patent application as a display member. 8. A display device comprising a plurality of illumination devices, wherein: each of the illumination devices comprises a reflective layer and a light-emitting layer stacked, from which the light-emitting layer is guided to the reflective layer for use by the reflective layer The reflected light is interfered with light guided from the light emitting layer in a direction opposite to the reflective layer; and the plurality of light emitting devices comprise a first light emitting device, one having a different color from the first light emitting device a second illuminating device of the illuminating color, a third illuminating device having a illuminating color different from the first illuminating device and the second illuminating device, and a first illuminating device and the second illuminating device And a fourth illumination device of the emission spectrum of the same spectrum as the illumination of the third illumination device. 9. The display device of claim 8, wherein the illumination colors of the illumination device, the second illumination device, and the third illumination device are red, green, and blue, respectively, and the fourth illumination device The illuminating color is white. -27-
TW097125097A 2007-07-06 2008-07-03 Display apparatus and imaging system using the same TW200919402A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007178089 2007-07-06
JP2008142260A JP2009037215A (en) 2007-07-06 2008-05-30 Display device and imaging device using the same

Publications (1)

Publication Number Publication Date
TW200919402A true TW200919402A (en) 2009-05-01

Family

ID=40247879

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097125097A TW200919402A (en) 2007-07-06 2008-07-03 Display apparatus and imaging system using the same

Country Status (4)

Country Link
JP (1) JP2009037215A (en)
KR (1) KR100963135B1 (en)
CN (1) CN101346020B (en)
TW (1) TW200919402A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056016A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Color display device and method of manufacturing the same
TWI563873B (en) 2011-02-11 2016-12-21 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and display device
JP5735162B1 (en) * 2014-07-18 2015-06-17 Lumiotec株式会社 Organic electroluminescent device and lighting device
US20180277712A1 (en) * 2017-03-24 2018-09-27 Sitronix Technology Corp. Color light source structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150083A (en) 2003-10-24 2005-06-09 Pentax Corp White organic electroluminescent element
US7560862B2 (en) * 2004-10-22 2009-07-14 Eastman Kodak Company White OLEDs with a color-compensated electroluminescent unit
KR100605112B1 (en) * 2004-11-03 2006-07-31 (주)그라쎌 Organic light emitting diodes

Also Published As

Publication number Publication date
JP2009037215A (en) 2009-02-19
KR100963135B1 (en) 2010-06-15
KR20090004732A (en) 2009-01-12
CN101346020A (en) 2009-01-14
CN101346020B (en) 2010-11-03

Similar Documents

Publication Publication Date Title
US7772757B2 (en) White-light electro-luminescent device with improved efficiency
TWI580031B (en) Color conversion layer, organic light emitting device, and liquid crystal display panel
JP5339572B2 (en) Multicolor LED backlight with color compensated clusters near the edge
JP2020123592A (en) Rgbw oled display for extended lifetime and reduced power consumption
US9443913B2 (en) Method of tuning display chromaticity by mixing color filter materials and device having mixed color filter materials
US8994056B2 (en) LED-based large area display
KR101270187B1 (en) Electro-luminescent display with additional primaries and adjustable white point
CN104716167B (en) A kind of organic elctroluminescent device, its preparation method and display device
TWI280074B (en) Lighting apparatus and liquid crystal display apparatus
US11917886B2 (en) Electronic device
JP2019045841A (en) Display and method for manufacturing the same
US20100188322A1 (en) Color display unit
CN108054286B (en) Electroluminescent device, display device and manufacturing method thereof
CN107851968A (en) With the ray structure to the selective carrier injection in multiple active layers
TWI536360B (en) Method for driving quad-subpixel display
WO2005048366A3 (en) Full colour organic display with colour filter technology with suitable white emitter material and applications thereof
CN110289295A (en) A kind of display panel and display device
JPH04284395A (en) White organic el element
US20070096632A1 (en) Parallel Full-Color Organic Light-Emitting Display Device and a Manufacturing Method Thereof
TW200919402A (en) Display apparatus and imaging system using the same
TWI295900B (en) Method for improving color-shift of serially connected organic electroluminescence device
US8183767B2 (en) Display apparatus and imaging system using the same
US20180350291A1 (en) Pixel structure
TWI467527B (en) Display device
TWI546952B (en) Electroluminescent display panel