TW200918965A - Polarization converter and projection illumination device - Google Patents

Polarization converter and projection illumination device Download PDF

Info

Publication number
TW200918965A
TW200918965A TW96140156A TW96140156A TW200918965A TW 200918965 A TW200918965 A TW 200918965A TW 96140156 A TW96140156 A TW 96140156A TW 96140156 A TW96140156 A TW 96140156A TW 200918965 A TW200918965 A TW 200918965A
Authority
TW
Taiwan
Prior art keywords
polarization
lens
lens array
beam splitter
light
Prior art date
Application number
TW96140156A
Other languages
Chinese (zh)
Inventor
Sung-Nan Chen
Original Assignee
Young Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Young Optics Inc filed Critical Young Optics Inc
Priority to TW96140156A priority Critical patent/TW200918965A/en
Publication of TW200918965A publication Critical patent/TW200918965A/en

Links

Landscapes

  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

A polarization converter includes a first lens array for splitting a parallel un-polarized light beam into a plurality of parallel light beams, a second lens array for focusing the parallel light beams, a plurality of reflectors arranged between the first and the second lens array, a polarization beam splitting array and a plurality of retardation members. The polarization beam splitting array includes a plurality of first polarization beam splitting units and second polarization beam splitting units, the first and the second polarization beam splitting units are alternately arranged with each other. Each of the first and the second polarization beam splitting units has a beam splitting film, the beam splitting films of two adjacent first polarization beam splitting unit and second polarization beam splitting unit have a mirror symmetry relationship. The first polarization beam splitting unit is configured to split the focused light beam from the second lens array into a first polarization state light bean and a second polarization state light beam, allow the first polarization state light beam to pass through the beam splitting film thereof and reflect the second polarization state light beam to an adjacent second polarization beam splitting unit. Each of the retardation members is configured to convert the second polarization state light beam reflected back the adjacent second polarization beam splitting array by the corresponding reflector to be a first polarization state light beam and thereby the converted first polarization state light beam can pass through the beam splitting film of the adjacent second polarization beam splitting unit.

Description

200918965 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種偏極化轉換器及投影光源裝置,且特別 是有關於一種可用於液晶投影機的偏極化轉換器及投影光源裝 置。 【先前技術】 參見圖4 ’習用液晶投影機用的投影光源裝置5〇包括·一 光源51、一第一透鏡陣列52、一第二透鏡陣列53、一偏極化 轉換器54及一聚光透鏡55。其中,投影光源裝置5〇用以將 來自光源51之光線轉換爲P極化光或s極化光,以提供液晶 投影機所需之極化光。光源51用以提供一平行光。第一透鏡 陣列52與第二透鏡陣列53用以將來自光源51的光線聚焦至 偏極化轉換器54。 其中,偏極化轉換器54包括由複數個偏極化分光鏡 (Polarization Beam Splitter,PBS)所組成之偏極化分光鏡陣列 542、 複數個擋光片541、以及複數個二分之一波長延遲膜 543。 其中,擋光片541係形成於偏極化分光鏡陣列542之一 受光面處;二分之一波長延遲膜543具有與擋光片541相對應 之形狀’並形成於撐光片541之相對受光面的出光面處。經由 第一透鏡陣列52及第二透鏡陣列53聚焦之光線必須設計至兩 個擋光片541之間的空隙處,使得光線能不受擋光片541之阻 擋而通過偏極化分光鏡陣列542,經由偏極化分光鏡陣列542 之彼此平行的分光膜544及反射膜545之設計可分離出P極化 光及S極化光,詳細地說,分光膜544分離出P極化光及s 極化光後’ P極化光直接穿過分光膜544射出,S極化光則係 200918965 設計成射至反射膜545反射後,再經由二分之一波長延遲膜 543而轉換成P極化光射出。因此,經由偏極化轉換器54可 將來自光源51的光線轉換成p極化光。 然而’上述之偏極化轉換器54由於其分光原理使原始p 極化光與將S極化光轉換成之p極化光的光程不同,自偏極化 轉換器54射出後經由聚光透鏡55聚焦時會有誤差,故無法提 昇影像品質;且為了保持影像的品質,上述之第二透鏡陣列 53所射出之每一光束必須精確地進入偏極化轉換器54之兩個 擋光片541之間的空隙處,且必須聚焦於每一分光膜544上, 故偏極化轉換器54與第二透鏡陣列53的前後左右的位置誤差 會均會影響投影光源裝置50的整體出光亮度與品質,因而偏 極化轉換盗54必須精確對位以使得經由第二透鏡陣列53聚焦 之光線位於其擋光片541之空隙間,如此將增加整體之製造難 度進而導致製造成本增加。 【發明内容】 本發明提供一種偏極化轉換器,其可具較低的製造難度而 可減少製造成本。 本發明還提供一種投影光源裝置,其可具較低的製造難度 而可減少製造成本。 y本發明的其他目的和優點可以從本發明所揭露的技術特 徵中得到進一步的瞭解。 —為達上述之一或部份或全部目的或是其他目的,本發明— =施例提出-種偏極化轉換器,其包含:—第—透鏡陣列、— =^鏡_、複油反射單元、—偏極化分光列、以及 Ϊ遲膜。其中’第—透鏡陣列用於將—非極化光束分成 、’仃光束。第二透鏡陣列用於將來自該第一透鏡陣列的 7 200918965 複數個平行光束聚焦為複數個聚焦光束。偏極化分光鏡陣列包 括複數個第一偏極化分光鏡以及複數個與第一偏極化分光鏡 交替配置的第二偏極化分光鏡,每一第一偏極化分光鏡及第二 偏極化分光鏡分別包含有一分光膜,第一偏極化分光鏡的分光 膜與苐二偏極化分光鏡的分光膜鏡射配置;第一偏極化分光鏡 用於從來自第二透鏡陣列的聚焦光束中分離出一第一偏極化 光以及一與第一偏極化光之偏極化方向實質垂直的第二偏極 化光’其中第一偏極化分光鏡之分光膜允許第一偏極化光穿透 並反射第二偏極化光至與第一偏極化分光鏡相鄰之第二偏極 化分光鏡。複數個反射单元分別配置於第一透鏡陣列與第二透 鏡陣列之間的不同位置,用以將射出第二偏極化分光鏡的第二 偏極化光反射回第二偏極化分光鏡。複數個延遲膜用於將射出 第一偏極化分光鏡的第二偏極化光的偏極化方向轉換成與第 一偏極化光的偏極化方向相同,以使第二偏極化光穿透第二偏 極化分光鏡的分光膜而射出偏極化分光鏡陣列。 在本發明的較佳實施例中,該些反射單元分別位於第一透 鏡陣列之兩兩透鏡單元之凹部的相鄰處上。 本發明另一實施例提出一種投影光源裝置,其包含:一光 源、一上述之偏極化轉換器以及一聚光鏡組。光源用於提供一 非極化光束;偏極化轉換器用於將非極化束轉換成一極^光 束;聚光鏡組用於將極化光束收聚後投影至一光閥以調變出一 影像光束。 二因將反射單元配置於第一及第二透鏡陣列之間、以及採用 交互兩兩鏡射的偏極化分光鏡陣列結構,因此從第二透鏡陣列 出射的聚焦光束不會被反射單元阻擒,從而可降低第二透鏡陣 列與偏極化分練陣列的對位難度,進而可達成降低製造難度 8 200918965 來減少製造成本之目的,且由於偏極化分光鏡_中在第一偏 極化分光鏡與第二偏極化分光_之光束的行進光程互為鏡 射’使自兩者射出之P極化光束其行進光程實質上為相同,可 使投影光源裝置之影像品質更佳。 ▲為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂’下文特舉較佳實施例,並配合所㈣式,作詳細說明如下。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在以下配 合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以 下實施例中所提到的方向用語,例如:上、下、左、右、前或後 等’僅是參相加圖式的方向。因此,使㈣方向用語是用來說 明並非用來限制本發明。 參見圖1,本發明第一實施例提供的偏極化轉換器1〇,適用 於-投★影光職置’肋減—雜化絲。偏極化轉換器1〇包 括·-第-透鏡陣列11、-第二透鏡陣列12、複數個反射單元13、 -偏極化分光鏡陣列14、複數個四分之—波艇遲膜15、以及一 第三透鏡陣列16。 第透鏡陣列11用於將一非極化(Un_p〇iarizecj)入射光束 分成複數個相對較小的平行光束。具體而言,第一透鏡陣列u可 包括複數個透鏡單元112,每—透鏡單元係為―凹凸透鏡,用於將 入射至其上的非極化光束聚焦成一相對較小的平行光束並入射至 第二透鏡陣列12。 第二透鏡陣列12用於將來自第一透鏡陣列n的複數個平行 光束聚焦為複數個聚焦光束。具體而言,第二透鏡陣列12可包括 複數個第-透鏡單元122及複數個第二透鏡單元124,第—透鏡單 兀122與第二透鏡單元124交替配置。第一透鏡單元122用於聚 200918965 焦來自第一透鏡陣列u的平行光束並入射至偏極化分光鏡陣列 14。 複數個反射單元13分別配置於第一透鏡陣列n與第二透鏡 陣列12之間的不同位置。具體而言,反射單元13分別配置於與 其對應之第二透鏡陣列12的第二透鏡單元124和第一透鏡陣列n 之間。 複數個四分之一波長延遲膜15配置於第一透鏡陣列11與第 一透鏡之間。具體而言,每一四分之一波長延遲膜可分別配置與 其對應之第二透鏡陣列12的第二透鏡單元124和反射單元13之 間。 偏極化分光鏡陣列14包括複數個第一偏極化分光鏡142以及 複數個第二偏極化分光鏡144。第一偏極化分光鏡142與第二偏極 化为光鏡144父替配置。每一第一偏極化分光鏡142包括兩個經 由斜面連接的稜鏡單元以及位於兩棱鏡單元的斜面之間的分光膜 1422。每一第二偏極化分光鏡144包括兩個經由斜面連接的稜鏡 單元以及位於兩棱鏡單元的斜面之間的分光膜1442。第一偏極化 分光鏡142的分光膜1422與第二偏極化分光鏡144的分光膜1442 鏡射配置,分光膜1422與分光膜1442可具有相同的分光特性, 其允許第一偏極化光(例如,p極化光)穿透並反射與第一偏極化 光之偏極化方向實質垂直的第二偏極化光(例如,s極化光)。 第一偏極化分光鏡142係用於從來自第二透鏡陣列12的第一 透鏡單元122的聚焦光束中分離出p極化光以及s極化光;第一 偏極化分光鏡142的分光膜1422允許P極化光穿透,並反射s極 化光至與第一偏極化分光鏡142相鄰的第二偏極化分光鏡144。第 二透鏡陣列12的第二透鏡單元124用於使射出第二偏極化分光 鏡144的S極化光收聚為大致平行。反射單元13用以將射出第二 200918965 偏極化分光鏡144的S極化光反射回第二偏極化分光鏡144。延 遲膜用於將射出第二偏極化分光鏡144的S極化光的偏極化方 向轉換成與P極化光的偏極化方向相同,從而形成p極化光(如 圖1中虛線所示),以使由S極化光轉換成的P極化光穿透第二偏 極化分光器144的分光膜1442而射出偏極化分光鏡陣列14。 第三透鏡陣列16配置於偏極化分光鏡陣列14的出光面一 側。第三透鏡陣列16主要係用於配合第二透鏡陣列12及第一透 鏡陣列11,用以均勻化入射至偏極化轉換器1〇的非極化光。 本發明第一實施例中,由於將反射單元13配置於第一 11 透鏡陣列及第二透鏡陣列12之間,以及採用第一偏極化分光 鏡142的分光膜1422與第二偏極化分光鏡144的分光膜1442 鏡射配置的偏極化分光鏡陣列14結構,因此從第二透鏡陣列 12出射的聚焦光束不會被反射單元13阻擋,從而可降低第二 透鏡陣列12與偏極化分光鏡陣列14的對位難度,進而可達成 降低製造難度來減少製造成本之目的。 進一步的,於一實施例中,每一反射單元13分別配置於 與其對應之第二透鏡陣列12的第二透鏡單元124和第一透鏡 陣列11之間’且位於第一透鏡陣列11之兩兩透鏡單元112之 凹部的相鄰處上,並使透鏡單元122與透鏡單元124具有相同 的光學性質。由於偏極化分光鏡陣列Η的第一偏極化分光鏡 142的分光膜1422和第二偏極化分光鏡144的分光膜1442鏡 射配置,因此’非極化光束之S極化光,在透鏡單元122及第 一偏極化分光鏡142内的行進光程;與被第一偏極化分光鏡 M2之分光膜1422反射後的S極化光,在第二偏極化分光鏡 144及透鏡單元124内的行進光程,兩者S極化光的行進光程 實質上互為鏡像。並且使得,非極化光束之p極化光,通過透 200918965 鏡單元122、第一偏極化分光鏡142的分光膜1422、第一偏極 化分光鏡142及第三透鏡陣列16的行進光程;與如前所述被 反射單元13反射並經過兩次四分之一波長延遲膜15因而被轉 換極性的P極化光,其通過透鏡單元124、第一偏極化分光鏡 144的分光膜1442、第一偏極化分光鏡144及第三透鏡陣列 16的行進光程,兩者p極化光的行進光程實質上互為鏡像。 於是’從第一偏極化分光鏡142直接射出的p極化光與經由第 二偏極化分光鏡144射出的轉換後的p極化光在空間分佈上相 同’從而可提升後續之投影的成像品質。 參見圖2,本發明第二實施例提供的偏極化轉換器2〇,其 與第一實施例中的偏極化轉換器1〇具有基本相同的結構配 置,亦包括:一第一透鏡陣列11、一第二透鏡陣列12、複數 個反射早元13、一偏極化分光鏡陣列14、複數個四分之一波 長延遲膜15、以及一第三透鏡陣列16。不同之處在於:第二 透鏡陣列12緊貼於第一透鏡陣列n,從而可降低第二透鏡陣 列12與第一透鏡陣列11的對位難度,進而可進一步降低整個 偏極化轉換器20的製造難度以降低其製造成本。 參見圖3,本發明第三實施例提供的投影光源裝置4〇,用 以向一光閥,例如液晶光閥60提供極化光(p〇larized Light)。 其包括一光源41、一上述之偏極化轉換器1〇、以及一聚光鏡 組43。光源41用以向偏極化轉換器10提供一非極化光束, 由偏極化轉換器1〇將光源41提供的非極化光束轉換成一極化 光束,同時加以均勻化’並經由聚光鏡組43收聚後投影至液 晶光閥60以調變出一影像光束,供後續之投影鏡頭(未圖示) 投影出影像。 本領域技術人員可以理解的是,投影光源裝置4〇中的偏 12 200918965200918965 IX. The invention relates to a polarization converter and a projection light source device, and more particularly to a polarization converter and a projection light source device which can be used for a liquid crystal projector . [Prior Art] Referring to FIG. 4, a projection light source device for a conventional liquid crystal projector includes a light source 51, a first lens array 52, a second lens array 53, a polarization converter 54, and a concentrating light. Lens 55. The projection light source device 5 is configured to convert the light from the light source 51 into P-polarized light or s-polarized light to provide polarized light required by the liquid crystal projector. Light source 51 is used to provide a parallel light. The first lens array 52 and the second lens array 53 are used to focus the light from the light source 51 to the polarization converter 54. The polarization converter 54 includes a polarization beam splitter array 542 composed of a plurality of Polarization Beam Splitters (PBS), a plurality of light blocking plates 541, and a plurality of half wavelengths. Delay film 543. The light blocking sheet 541 is formed on one of the light receiving surfaces of the polarizing beam splitter array 542; the half wavelength retardation film 543 has a shape corresponding to the light blocking sheet 541 and is formed on the light supporting sheet 541. The light-emitting surface of the light-receiving surface. The light focused by the first lens array 52 and the second lens array 53 must be designed to the gap between the two light blocking sheets 541 so that the light can pass through the polarizing beam splitter array 542 without being blocked by the light blocking sheet 541. The P-polarized light and the S-polarized light can be separated by the design of the splitting film 544 and the reflective film 545 which are parallel to each other of the polarizing beam splitter array 542. In detail, the P-polarized light and the s are separated by the splitting film 544. After the polarized light, the P-polarized light is directly emitted through the spectroscopic film 544, and the S-polarized light is designed to be reflected by the reflective film 545 and then converted into the P-polarized light via the half-wave retardation film 543. Shoot out. Therefore, light from the light source 51 can be converted into p-polarized light via the polarization converter 54. However, the polarization converter 54 described above differs in the optical path of the p-polarized light from the original p-polarized light due to its splitting principle, and is emitted from the polarization converter 54 after being emitted. When the lens 55 is in focus, there is an error, so that the image quality cannot be improved; and in order to maintain the image quality, each of the light beams emitted by the second lens array 53 must accurately enter the two light blocking plates of the polarization converter 54. The gap between the 541 and the focus must be focused on each of the light splitting films 544. Therefore, the positional errors of the front and rear of the polarization converter 54 and the second lens array 53 may affect the overall brightness of the projection light source device 50. The quality, and thus the polarization of the pirates 54 must be accurately aligned such that the light focused via the second lens array 53 is located between the gaps of its light blocking sheets 541, which increases the overall manufacturing difficulty and thus increases manufacturing costs. SUMMARY OF THE INVENTION The present invention provides a polarization converter that can have lower manufacturing difficulty and can reduce manufacturing costs. The present invention also provides a projection light source device which can have a lower manufacturing difficulty and can reduce manufacturing costs. Other objects and advantages of the present invention will become apparent from the technical features disclosed herein. - In order to achieve one or a part or all of the above or other purposes, the present invention - the embodiment proposes a polarization converter comprising: - a first lens array, - = ^ mirror _, re-oil reflection Unit, - polarized beam splitting column, and helium retardation film. Where the 'first lens array' is used to split the -unpolarized beam into a '仃 beam. A second lens array is used to focus the plurality of parallel beams from the first lens array 7 200918965 into a plurality of focused beams. The polarized beam splitter array includes a plurality of first polarization beam splitters and a plurality of second polarization beam splitters alternately arranged with the first polarization beam splitter, each of the first polarization beam splitters and the second The polarized beamsplitters respectively comprise a light splitting film, a splitting film of the first polarizing beam splitter and a splitting mirror of the second polarizing beam splitter; the first polarizing beam splitter is used for the second lens Separating a first polarized light and a second polarized light substantially perpendicular to a polarization direction of the first polarized light in the focused beam of the array, wherein the splitting film of the first polarizing beam splitter allows The first polarized light penetrates and reflects the second polarized light to a second polarizing beam splitter adjacent to the first polarizing beam splitter. A plurality of reflecting units are respectively disposed at different positions between the first lens array and the second lens array for reflecting the second polarized light emitted from the second polarizing beam splitter back to the second polarizing beam splitter. a plurality of retardation films for converting a polarization direction of the second polarized light emitted from the first polarization beam splitter to be the same as a polarization direction of the first polarization light, so that the second polarization The light penetrates the beam splitting film of the second polarizing beam splitter to emit the polarizing beam splitter array. In a preferred embodiment of the invention, the reflecting units are respectively located adjacent to the recesses of the two lens units of the first lens array. Another embodiment of the present invention provides a projection light source device comprising: a light source, a polarization converter as described above, and a concentrating mirror assembly. The light source is used to provide a non-polarized beam; the polarization converter is used to convert the non-polarized beam into a beam; the concentrating mirror is used to collect the polarized beam and project it to a light valve to modulate an image beam. . Second, because the reflective unit is disposed between the first and second lens arrays, and the polarized beam splitter array structure that is mirrored by the two mirrors is used, the focused beam emitted from the second lens array is not blocked by the reflective unit. Therefore, the alignment difficulty of the second lens array and the polarization polarization training array can be reduced, thereby achieving the purpose of reducing the manufacturing difficulty 8 200918965 to reduce the manufacturing cost, and since the polarization polarization mirror _ is in the first polarization The traveling optical paths of the beam splitter and the second polarized beam splitting mirror are mirrored each other, so that the P-polarized light beams emitted from the two are substantially the same in optical path length, and the image quality of the projection light source device can be better. . The above and other objects, features, and advantages of the present invention will become more apparent and understood <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, for example, up, down, left, right, front or back, etc., are merely directions in which the reference is added. Therefore, the use of the (4) directional terminology is not intended to limit the invention. Referring to Fig. 1, a polarization converter 1〇 provided by a first embodiment of the present invention is suitable for use in a projection-and-reduction-to-rib reduction-hybrid wire. The polarization converter 1 〇 includes a - lens array 11 , a second lens array 12 , a plurality of reflection units 13 , a polarization polarization beam splitter array 14 , a plurality of quarters - a wave retarder 15 , And a third lens array 16. The first lens array 11 is for dividing a non-polarized (Un_p〇iarizecj) incident beam into a plurality of relatively small parallel beams. Specifically, the first lens array u may include a plurality of lens units 112, each of which is a "convex lens" for focusing a non-polarized light beam incident thereon into a relatively small parallel beam and incident on The second lens array 12. The second lens array 12 is for focusing a plurality of parallel beams from the first lens array n into a plurality of focused beams. Specifically, the second lens array 12 may include a plurality of first lens units 122 and a plurality of second lens units 124, and the first lens unit 122 and the second lens unit 124 are alternately arranged. The first lens unit 122 is for collecting the parallel light beams of the first lens array u from the 200918965 focus and incident on the polarization beam splitter array 14. A plurality of reflecting units 13 are disposed at different positions between the first lens array n and the second lens array 12, respectively. Specifically, the reflection units 13 are respectively disposed between the second lens unit 124 and the first lens array n of the second lens array 12 corresponding thereto. A plurality of quarter-wave retardation films 15 are disposed between the first lens array 11 and the first lens. Specifically, each of the quarter-wave retardation films may be disposed between the second lens unit 124 and the reflection unit 13 of the second lens array 12 corresponding thereto. The polarization beam splitter array 14 includes a plurality of first polarization beam splitters 142 and a plurality of second polarization beam splitters 144. The first polarization beam splitter 142 and the second polarization are configured as a light mirror 144 parent. Each of the first polarization beam splitters 142 includes two pupil units connected by a bevel and a beam splitting film 1422 between the slopes of the prism units. Each of the second polarization beam splitters 144 includes two 稜鏡 cells connected via a ramp and a beam splitting film 1442 between the slopes of the prism cells. The beam splitting film 1422 of the first polarization beam splitter 142 and the beam splitting film 1442 of the second polarization beam splitter 144 are mirrored, and the beam splitting film 1422 and the beam splitting film 1442 can have the same spectral characteristics, which allows the first polarization. Light (eg, p-polarized light) penetrates and reflects a second polarized light (eg, s-polarized light) that is substantially perpendicular to the polarization direction of the first polarized light. The first polarization beam splitter 142 is for separating p-polarized light and s-polarized light from the focused beam from the first lens unit 122 of the second lens array 12; the split of the first polarization beam splitter 142 The film 1422 allows P-polarized light to penetrate and reflects s-polarized light to a second polarization beam splitter 144 adjacent to the first polarization beam splitter 142. The second lens unit 124 of the second lens array 12 is for collecting the S-polarized light emitted from the second polarization beam splitter 144 to be substantially parallel. The reflecting unit 13 is configured to reflect the S-polarized light emitted from the second 200918965 polarizing beam splitter 144 back to the second polarizing beam splitter 144. The retardation film is used to convert the polarization direction of the S-polarized light emitted from the second polarization beam splitter 144 to be the same as the polarization direction of the P-polarized light, thereby forming p-polarized light (as shown by the dotted line in FIG. 1). As shown, the P-polarized light converted into S-polarized light is transmitted through the beam splitting film 1442 of the second polarization beam splitter 144 to exit the polarization beam splitter array 14. The third lens array 16 is disposed on one side of the light-emitting surface of the polarization beam splitter array 14. The third lens array 16 is mainly used to fit the second lens array 12 and the first lens array 11 for homogenizing the non-polarized light incident on the polarization converter 1〇. In the first embodiment of the present invention, the reflective unit 13 is disposed between the first 11 lens array and the second lens array 12, and the splitting film 1422 and the second polarized light splitting of the first polarizing beam splitter 142 are used. The beam splitting film 1442 of the mirror 144 mirrors the configuration of the polarization beam splitter array 14 so that the focused beam emitted from the second lens array 12 is not blocked by the reflecting unit 13, thereby reducing the second lens array 12 and the polarization The alignment difficulty of the beam splitter array 14 can further reduce the manufacturing difficulty and reduce the manufacturing cost. Further, in an embodiment, each of the reflective units 13 is disposed between the second lens unit 124 and the first lens array 11 of the second lens array 12 corresponding thereto and is located at two of the first lens arrays 11 The recesses of the lens unit 112 are adjacent to each other, and the lens unit 122 has the same optical properties as the lens unit 124. Since the beam splitting film 1422 of the first polarizing beam splitter 142 of the polarization polarizing mirror array 镜 and the beam splitting film 1442 of the second polarizing beam splitter 144 are mirror-arranged, the S-polarized light of the non-polarized beam, The traveling optical path in the lens unit 122 and the first polarization beam splitter 142; and the S-polarized light reflected by the light splitting film 1422 of the first polarization beam splitter M2, in the second polarization beam splitter 144 And the traveling optical path in the lens unit 124, the traveling optical paths of the two S-polarized lights are substantially mirror images of each other. And, the p-polarized light of the non-polarized beam passes through the traveling light of the 200918965 mirror unit 122, the splitting film 1422 of the first polarizing beam splitter 142, the first polarizing beam splitter 142, and the third lens array 16. And a P-polarized light that is reflected by the reflecting unit 13 and passed through the quarter-wave retardation film 15 and thus converted in polarity, which is split by the lens unit 124 and the first polarization beam splitter 144. The traveling optical paths of the film 1442, the first polarization beam splitter 144, and the third lens array 16 are substantially mirror images of the traveling optical paths of the p-polarized light. Thus, the 'p-polarized light directly emitted from the first polarization beam splitter 142 is spatially identical to the converted p-polarized light emitted through the second polarization beam splitter 144', thereby improving the subsequent projection. Imaging quality. Referring to FIG. 2, a polarization converter 2A according to a second embodiment of the present invention has substantially the same structural configuration as the polarization converter 1〇 in the first embodiment, and includes: a first lens array. 11. A second lens array 12, a plurality of reflective elements 13, a polarization polarizing beam splitter array 14, a plurality of quarter-wave retarding films 15, and a third lens array 16. The difference is that the second lens array 12 is in close contact with the first lens array n, so that the alignment difficulty of the second lens array 12 and the first lens array 11 can be reduced, thereby further reducing the entire polarization converter 20 Manufacturing difficulty to reduce its manufacturing costs. Referring to Fig. 3, a projection light source device 4A according to a third embodiment of the present invention is provided for supplying a light valve (e.g., liquid crystal light valve 60) with polarized light (p〇larized light). It comprises a light source 41, a polarization converter 1〇 as described above, and a concentrating mirror 43. The light source 41 is configured to provide a non-polarized beam to the polarization converter 10, and the non-polarized beam provided by the light source 41 is converted into a polarized beam by the polarization converter 1 , while being homogenized 'via the concentrating mirror 43 is assembled and projected to the liquid crystal light valve 60 to modulate an image beam for projection by a subsequent projection lens (not shown). Those skilled in the art can understand that the projection light source device 4〇 is biased 12 200918965

極化轉換器1 〇亦可變更展一 A 換哭20,Jipt# ,.、本矣月第—貧施例提供的偏極化轉 u其㈣可達成本發明之目的。 本二然較佳實施例揭露如上,然其並非用以限定 内,χ當可作此m藝者,在不脫離本發明之精神和範圍 範圍所界定者為準。另外本發明的 麦Polarization converter 1 〇 can also change the exhibition A to change the cry 20, Jipt#,., this month's first-poor polarization provided by the poor example of the (u) can reach the purpose of the invention. The present invention is not limited to the above-described embodiments, and is intended to be inconsistent with the scope of the invention. In addition, the wheat of the present invention

Hr二不須達成本發明所揭露之全部目的或優崎i 非用來和標聰是絲獅專繼搜尋之用,並 非用末限制本發明之權利範圍。 【圖式簡單說明】 意圖 圖1為本發明第—實_提供的偏極化轉換ϋ的結構示 意圖 圖2為本發明第二實施例提供的偏極化轉換器的結構示 〇 意圖 圖4為㈣之投影光源裝置的結構示意圖 【主要元件符號說明】 10、20 :偏極化轉換器 11 :第一透鏡陣列 112 :透鏡單元 12 :第二透鏡陣列 122 :第一透鏡單元 124 :第二透鏡單元 13 :反射單元 14 ·偏極化分光鏡陣列 圖3為本發明第三實施例提供的投影光源裝置的結構示 13 200918965 142 :第一偏極化分光鏡 1422、1442 :分光膜 144 :第二偏極化分光鏡 15 :四分之一波長延遲膜 16 :第三透鏡陣列 40 :投影光源裝置 41 :光源 43 :聚光鏡組 60 :液晶光閥 50 :投影光源裝置 51 :光源 52 :第一透鏡陣列 53 :第二透鏡陣列 54 :偏極化轉換器 541 :檔光片 542 :偏極化分光鏡陣列 543 :二分之一波長延遲膜 544 :分光膜 545 :反射膜 55 :聚光透鏡 14Hr 2 does not have to achieve all of the objects disclosed in the present invention or is not intended to be used in conjunction with Benedictine, and is not intended to limit the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a polarization conversion converter provided by a first embodiment of the present invention. FIG. 2 is a schematic diagram showing a structure of a polarization converter provided by a second embodiment of the present invention. FIG. (4) Schematic diagram of the projection light source device [Description of main components] 10, 20: polarization converter 11: first lens array 112: lens unit 12: second lens array 122: first lens unit 124: second lens Unit 13: Reflecting unit 14 · Polarizing beam splitter array FIG. 3 is a structural diagram of a projection light source device according to a third embodiment of the present invention. 200918965 142: First polarizing beam splitter 1422, 1442: Beam splitting film 144: Bipolar polarization beam splitter 15 : Quarter wave retardation film 16 : Third lens array 40 : Projection light source device 41 : Light source 43 : Condenser group 60 : Liquid crystal light valve 50 : Projection light source device 51 : Light source 52 : First Lens array 53: second lens array 54: polarization converter 541: light-shifting plate 542: polarizing beam splitter array 543: half-wave retardation film 544: beam splitting film 545: reflecting film 55: collecting lens 14

Claims (1)

200918965 十、申請專利範圍: 1、 一種偏極化轉換器,適用於一投影光源裝置,用以極性化 一非極化光束,其包含: 一第一透鏡陣列,用於將該非極化光束分成複數個平行光 束; 一第一透鏡陣列,用於將來自該第一透鏡陣列的該些平行 光束聚焦為複數個聚焦光束; 一偏極化分光鏡陣列,其包括複數個第一偏極化分光鏡以 及複數個與該些第一偏極化分光鏡交替配置的第二偏極化分 光鏡,每一該第一偏極化分光鏡及該第二偏極化分光鏡分別包 含有一分光膜,該第一偏極化分光鏡的該分光膜與該第二偏極 化分光鏡的該分光膜鏡射配置,該第一偏極化分光鏡係用於從 來自該第二透鏡陣列的該聚焦光束中分離出一第一偏極化光 以及一與該第一偏極化光之偏極化方向實質垂直的第二偏極 化光,其中該第一偏極化分光鏡之該分光膜允許該第一偏極化 光穿透’並反射該第二偏極化光至與該第一偏極化分光鏡相鄰 的該第二偏極化分光鏡; 4 複數個反射單元,其分別地配置於該第一透鏡陣列與該第 二透鏡陣列之間的不同位置,用以將射出該些第二偏極化分光 鏡的該些第二偏極化光反射回該些第二偏極化分光鏡;以及 複數個延遲膜,用於將射出該些第二偏極化分光鏡的該些第 二偏極化光的偏極化方向轉換成與該些第一偏極化光的偏極 化方向相同,以使該些第二偏極化光穿透該些第二偏極化分光 鏡的該些分光膜而射出該偏極化分光鏡陣列。 2、 如申請專利範圍第1項所述之偏極化轉換器,其中每一該 延遲膜係為一四分之一波長延遲膜,其配置於與其對應的該反 15 200918965 射單元和該第二透鏡陣列之間。 3、如申請專職㈣2項所述之偏極化轉鮮, 透鏡陣列包括複數個第—透鏡單元及複數個與該二二 =替配置的第二透鏡單元’該些第一透鏡單元;㈡ 自以第-透鏡_賴些平行光束,難第二透鏡單元 ^該光制料第二偏極化錢聚為以 」 早(配置於與其職'之該第二透鏡陣列的該 第一透鏡單元和該第一透鏡陣列之間,每一該四分之 遲膜配置於與其對應_反射單元和該第二的 二透鏡單元之間。 干幻的忒弟 4、如申請專利範圍第3項所述之偏極化轉換器,其中該第一 透鏡陣列包括複數個透鏡單元,每一該透鏡單元係為一^凸透 鏡。 5、 如申請專利範圍第4項所述之偏極化轉換器,其中每一該 透鏡單元具有一凹部,該些反射單元分別位於該第一透鏡陣列 之該些透鏡單元之該些凹部的相鄰處上。 % 6、 如申請專利範圍第1項所述之偏極化轉換器,其包含一第 二透鏡陣列,該第三透鏡陣列配置於該偏極化分光鏡陣列之一 出光面之一側。 7、 如申請專利範圍第1項所述之偏極化轉換器,其中該第— 偏極化光係為P極化光,該第二偏極化光係為8極化光。 8、 一種投影光源裝置,用於向一光閥提供一極化光,該投影 光源裝置包含: 一光源’用於提供一非極化光束; 一偏極化轉換器,其包括: 一第一透鏡陣列,用於將該非極化光束分成複數個平行光 16 200918965 束; 一第二透鏡陣列,用於將來自該第一透鏡陣列的該些平行 光束聚焦為複數個聚焦光束; — 一偏極化分光鏡陣列,其包括複數個第一偏極化分光鏡以 及複數個與該些第一偏極化分光鏡交替配置的第二偏極化分 光鏡’每一該第一偏極化分光鏡及該第二偏極化分光鏡分別包 含有一分光膜,該第一偏極化分光鏡的該分光膜與該第二偏極 化分光鏡的該分光膜鏡射配置,該第一偏極化分光鏡用於從來 自該第二透鏡陣列的該聚焦光束中分離出一第一偏極化光以 及一與該第一偏極化光之偏極化方向實質垂直的第二偏極化 光,其中該第一偏極化分光鏡之該分光膜允許該第一偏極化光 穿透,並反射該第二偏極化光至與該第一偏極化分光鏡相鄰的 該第二偏極化分光鏡; 複數個反射卓元’其分別地配置於該第一透鏡陣列與該第 二透鏡陣列之間的不同位置’用以將射出該些第二偏極化分光 鏡的該些第二偏極化光反射回該些第二偏極化分光鏡;以及 複數個延遲膜’用於將射出該些第二偏極化分光鏡的該些 第二偏極化光的偏極化方向轉換成與該些第一偏極化光的偏 極化方向相同’以使該些第二偏極化光穿透該些第二偏極化分 光鏡的該些分光膜而射出該偏極化分光鏡陣列;以及 一聚光鏡組’用於將該些第一偏極化光收聚後投影至該光 閥,以調變出一影像光束。 9、 如申請專利範圍第8項所述之投影光源裝置,其中每一該 延遲膜係為一四分之一波長延遲膜,其配置於與其對應的該反 射單元和該第二透鏡陣列之間。 10、 如申請專利範圍第9項所述之投影光源裝置,其中該第二 17 200918965 透鏡陣列包括複數個第一透鏡單元及複數個與該些第一透鏡 單元父替配置的弟一透鏡單元,該些第一透鏡單元用於聚焦來 自該第一透鏡陣列的該些平行光束,該些第二透鏡單元用於使 射出該些第二偏極化分光鏡的該些第二偏極化光收聚為大致 平行,每一該反射單元配置於與其對應之該第二透鏡陣列的該 第二透鏡單元和該第一透鏡陣列之間,每一該四分之一波長延 遲膜配置於與其對應的該反射單元和該第二透鏡陣列的該第 二透鏡單元之間。 11、 如申請專利範圍第10項所述之投影光源裝置,其中該第 一透鏡陣列包括複數個透鏡單元,每一該透鏡單元分別係為一 凹凸透鏡。 12、 如申請專利範圍第丨丨項所述之投影光源裴置,其中每一 该透鏡單元具有一凹部,該些反射單元分別位於該第一透鏡陣 列之該些透鏡單元之該些凹部的相鄰處上。 13、 如申請專利範圍第8項所述之投影光源裝置’其中該偏極 化轉換器還包括一第三透鏡陣列’該第三透鏡陣列配置於該偏 極化分光鏡陣列的一出光面之一側。 14、 如申請專利範圍第8項所述之投影光源裝置,其中該第一 偏極化光係為P極化光,該第二偏極化光係為S極化光。 18200918965 X. Patent Application Range: 1. A polarization converter suitable for a projection light source device for polarizing an unpolarized beam, comprising: a first lens array for dividing the non-polarized beam into a plurality of parallel beams; a first lens array for focusing the parallel beams from the first lens array into a plurality of focused beams; and a polarization polarization beam splitter array comprising a plurality of first polarization polarization beams a mirror and a plurality of second polarization beam splitters arranged alternately with the first polarization beam splitters, each of the first polarization beam splitter and the second polarization beam splitter respectively comprising a light splitting film The splitting film of the first polarization beam splitter and the beam splitting mirror of the second polarizing beam splitter are configured to be used for the focusing from the second lens array Separating a first polarized light and a second polarized light substantially perpendicular to a polarization direction of the first polarized light, wherein the splitting film of the first polarizing beam splitter allows The first polarization Passing through and reflecting the second polarized light to the second polarizing beam splitter adjacent to the first polarizing beam splitter; 4 a plurality of reflecting units respectively disposed on the first lens array a different position from the second lens array for reflecting the second polarized beams that emit the second polarization beam splitters back to the second polarization beam splitters; and a plurality of delays a film, configured to convert a polarization direction of the second polarized lights that are emitted from the second polarization beam splitters to be the same as a polarization direction of the first polarized lights, so that the The second polarized light penetrates the splitting films of the second polarizing beamsplitters to emit the polarizing beam splitter array. 2. The polarization converter of claim 1, wherein each of the retardation films is a quarter-wave retardation film disposed in the opposite of the reverse 15 200918965 firing unit and the first Between the two lens arrays. 3. If applying for the polarization of the full-time (4) item 2, the lens array includes a plurality of lenticular lens units and a plurality of second lens units of the second and second configurable configurations; (2) With the first lens _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Between the first lens arrays, each of the four quarters of the film is disposed between the corresponding _reflecting unit and the second two lens unit. The phantom brother 4, as described in claim 3 a polarization converter, wherein the first lens array comprises a plurality of lens units, each of the lens units being a convex lens. 5. The polarization converter according to claim 4, wherein each The lens unit has a concave portion, and the reflective units are respectively located adjacent to the concave portions of the lens units of the first lens array. The magnetic polarization described in claim 1 a converter comprising a second lens The third lens array is disposed on one side of one of the light-emitting surfaces of the polarizing beam splitter array. 7. The polarization converter according to claim 1, wherein the first-polarized light It is a P-polarized light, and the second polarized light is an 8-polarized light. 8. A projection light source device for providing a polarized light to a light valve, the projection light source device comprising: a light source Providing a non-polarized beam; a polarization converter comprising: a first lens array for dividing the non-polarized beam into a plurality of parallel beams 16 200918965 beam; a second lens array for The parallel beams of the first lens array are focused into a plurality of focused beams; a polarization polarization beam splitter array comprising a plurality of first polarization beam splitters and a plurality of first polarization beam splitters Alternatingly disposed second polarization beam splitters each of the first polarization beam splitter and the second polarization beam splitter respectively comprise a light splitting film, the light splitting film of the first polarizing beam splitter and the The splitting of the second polarization beam splitter a mirroring configuration, the first polarization beam splitter is configured to separate a first polarized light and a polarization direction of the first polarized light from the focused beam from the second lens array a substantially perpendicular second polarized light, wherein the light splitting film of the first polarizing beam splitter allows the first polarized light to penetrate and reflect the second polarized light to the first polarized light The second polarizing beam splitter adjacent to the splitting mirror; a plurality of reflecting elements are respectively disposed at different positions between the first lens array and the second lens array for emitting the plurality of The second polarized light of the two polarization mirrors is reflected back to the second polarization beam splitters; and the plurality of retardation films are used to emit the second polarization beam splitters Converting the polarization direction of the two polarized lights into the same direction as the polarization directions of the first polarized lights, so that the second polarized lights penetrate the second polarizing beamsplitters The polarizing film emits the polarizing beam splitter array; and a condensing lens group 'for the first partial After pinching the projection of light to the light valve to modulate the light beam an image. 9. The projection light source device of claim 8, wherein each of the retardation films is a quarter-wave retardation film disposed between the reflective unit and the second lens array corresponding thereto. . 10. The projection light source device of claim 9, wherein the second 17 200918965 lens array comprises a plurality of first lens units and a plurality of lens units associated with the first lens unit. The first lens unit is configured to focus the parallel light beams from the first lens array, and the second lens units are configured to receive the second polarized light beams emitted from the second polarization beam splitters Converging substantially parallel, each of the reflecting units is disposed between the second lens unit and the first lens array of the second lens array corresponding thereto, and each of the quarter-wave retardation films is disposed corresponding thereto Between the reflective unit and the second lens unit of the second lens array. 11. The projection light source device of claim 10, wherein the first lens array comprises a plurality of lens units, each of the lens units being a meniscus lens. 12. The projection light source device of claim 2, wherein each of the lens units has a recess, and the reflective units are respectively located in the recesses of the lens units of the first lens array. On the neighbor. 13. The projection light source device of claim 8, wherein the polarization converter further comprises a third lens array disposed on a light-emitting surface of the polarization beam splitter array One side. 14. The projection light source device of claim 8, wherein the first polarized light is P-polarized light and the second polarized light is S-polarized light. 18
TW96140156A 2007-10-25 2007-10-25 Polarization converter and projection illumination device TW200918965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96140156A TW200918965A (en) 2007-10-25 2007-10-25 Polarization converter and projection illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96140156A TW200918965A (en) 2007-10-25 2007-10-25 Polarization converter and projection illumination device

Publications (1)

Publication Number Publication Date
TW200918965A true TW200918965A (en) 2009-05-01

Family

ID=44726935

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140156A TW200918965A (en) 2007-10-25 2007-10-25 Polarization converter and projection illumination device

Country Status (1)

Country Link
TW (1) TW200918965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460204A (en) * 2014-11-14 2015-03-25 苏州佳世达光电有限公司 Projecting device
TWI509345B (en) * 2011-07-29 2015-11-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509345B (en) * 2011-07-29 2015-11-21
CN104460204A (en) * 2014-11-14 2015-03-25 苏州佳世达光电有限公司 Projecting device

Similar Documents

Publication Publication Date Title
TWI471603B (en) Optical element, color combiner, method of combining light, and image projector
US7190519B1 (en) Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
JP3273955B2 (en) Image projection device
TWI579596B (en) Spatially-interleaved polarization converter for lcos display and method for converting input light beam having multiple linear polarization states to output light beam having single common polarization state
US20140176818A1 (en) Hybrid polarizing beam splitter
JP2012509512A (en) Color synthesizer for polarization conversion
JP2013535018A (en) Polarized projection light irradiator
JP2014092663A5 (en) Optical system, polarization separating / combining element, and display device
JP2012509506A (en) Color synthesizer for polarization conversion
JP2001013584A (en) Reflection type projection device
JP4353287B2 (en) projector
TW434444B (en) Projection display and illuminating optical system for it
US10088743B2 (en) Polarization conversion element and projector
JP2007537461A (en) Multiple lamp illumination system with polarization recovery and integration
TW200918965A (en) Polarization converter and projection illumination device
JP2003107220A5 (en)
JP2004185033A5 (en)
TWI384160B (en) Illumination system and projection apparatus using the same
JP7257599B2 (en) Light source device and projection type image display device
JP2001337204A (en) Fly eye lens and projection type liquid crystal display device using the same
US20090103179A1 (en) Projection device with polarization converter
US20040190149A1 (en) Image projection system and polarizing beam splitter
JPH07146474A (en) Polarization converting optical system of projection type liquid crystal display device
TW200810567A (en) LCD projector system with improved image performance
JPH10319349A (en) Polarized light converting element and projecting device using the same