TW200918685A - Method and apparatus to prewet wafer surface for metallization from electrolyte solutions - Google Patents

Method and apparatus to prewet wafer surface for metallization from electrolyte solutions Download PDF

Info

Publication number
TW200918685A
TW200918685A TW96141054A TW96141054A TW200918685A TW 200918685 A TW200918685 A TW 200918685A TW 96141054 A TW96141054 A TW 96141054A TW 96141054 A TW96141054 A TW 96141054A TW 200918685 A TW200918685 A TW 200918685A
Authority
TW
Taiwan
Prior art keywords
liquid
wafer
layer
steam
electrolyte
Prior art date
Application number
TW96141054A
Other languages
Chinese (zh)
Other versions
TWI366610B (en
Inventor
Yue Ma
David Wang
Original Assignee
Acm Res Shanghai Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acm Res Shanghai Inc filed Critical Acm Res Shanghai Inc
Priority to TW096141054A priority Critical patent/TWI366610B/en
Publication of TW200918685A publication Critical patent/TW200918685A/en
Application granted granted Critical
Publication of TWI366610B publication Critical patent/TWI366610B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention improves wetting between electrolyte solutions and a wafer surface when contacting each other by pre-implementing a liquid adsorption layer on the entire front surface of the wafer prior to a metal disposition process. The pre-implemented liquid adsorption layer is realized by transporting vaporized liquid molecules from vapor phase at an elevated temperature (relative to wafer) and condensing them onto the wafer surface.

Description

200918685 九、發明說明: 【發明所屬之技術領域】 [0 0 0 2 ]本發明關於爲用於電化學或化學沈積金屬層前 的晶片的表面浸潤’更具體地說,關於預浸潤晶片表面。 [ 00 04 ]超大規模積體(ULSI)電路中的先進互連結構 部分是由電化學或化學(也稱爲“electr〇lessly” )沈 積方法製造,該電化學或化學沈積製程從一或多種電解= 中把金屬材料,通常是銅’沈積在晶片表面。在沈積過程 中,首先把一乾燥的晶片浸入一電解液溶液中,或把一電 解液噴灑在一乾燥的晶片上’但這樣可能會遇到幾個問 題:其中-個嚴重的問題是晶片表面被電解液不完全地浸 /V致在久有破電解液接觸到的地方無法沈積金屬層。由 二種機制所引起的與浸潤相關的缺陷,通常表現爲沈積膜 的缺失以及在诵$ 、致m + 、 和溝槽内出現大的孔穴和未被填充的 刀而上述缺陷將會導致大量的器件報廢。 理::05]電解液和晶片之間不完全的浸潤是-種表面物 ,並且可能由許多影響電解液和晶片的表面性質的 有:,數所導致。舉幾個例子,晶片表面和含有各種類型 之:一的電解液之間的相容性、晶片被電鑛或化學鐘 工蓺牛2觸到的%境、電解液的老化、在處理流程中當前 =驟和之前的1步驟之間的等待時間,之前的 y鄉可上乂 I 〇 士 彳 層薄的金屬層或研磨以使得金屬和電 5 200918685 介質部分暴露。該等待時間尤其重要’因爲在這段時間内 晶片表面的氧化會棱大地改變晶片的表面性質。 [0006 ] —種改善沈積銅的晶片表面浸潤的方法是在電 化學沈積设備上實施預浸潤步驟,如^國專利申請案us 20 04/_9644和US 2007/7223323所揭示的。根據這種 方法,晶片首先在使用去離子水(DIW)的旋轉_潤濕一乾 燥(SRD)模組中進行預先浸潤。要用旋轉速率(RPM )和 去離子水(DIW)流迷的組合來提高在晶片表面的水覆蓋。 預濕後’當它被浸入_電鑛電解液的時候,該晶片表面應 當攜帶一薄的水層。對金屬膜沈積設備添加預浸潤腔體增 加了其整體規模並需要更大的空間來安裝相應裝置。 [〇m]另一種達成所述預浸潤層的方法是使用位於電 鑛處理模組㈣内置去離子水(DIW)喷嘴。㈣這種方200918685 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION [0 0 0 2] The present invention relates to surface wetting of wafers for use in electrochemical or chemical deposition of metal layers, and more particularly to pre-wetting wafer surfaces. [0004] Advanced interconnect structures in ultra-large-scale integrated (ULSI) circuits are partially fabricated by electrochemical or chemical (also known as "electr〇lessly") deposition methods from one or more Electrolysis = A metal material, usually copper, is deposited on the surface of the wafer. In the deposition process, a dry wafer is first immersed in an electrolyte solution, or an electrolyte is sprayed onto a dry wafer. However, several problems may be encountered: one of the serious problems is the wafer surface. Incompletely immersed / V by the electrolyte cannot deposit a metal layer where the electrolyte is exposed for a long time. The infiltration-related defects caused by the two mechanisms are usually manifested by the absence of deposited films and the presence of large pores and unfilled knives in 诵$, m+, and grooves. The device is scrapped. Matter: 05] Incomplete wetting between the electrolyte and the wafer is a type of surface and may be caused by a number of factors affecting the surface properties of the electrolyte and the wafer. For example, the compatibility between the surface of the wafer and the electrolyte containing various types: one, the % of the wafer touched by the electric ore or chemical bell yak 2, the aging of the electrolyte, in the process flow The waiting time between the current = step and the previous 1 step, the previous y can be a thin metal layer or ground to make the metal and electricity part of the 200918685 medium exposed. This waiting time is especially important' because the oxidation of the wafer surface during this time can dramatically change the surface properties of the wafer. A method of improving the surface impregnation of a copper-deposited wafer is to perform a pre-wetting step on an electro-chemical deposition apparatus as disclosed in the Japanese Patent Application No. WO 04/9644, and US Pat. According to this method, the wafer is first pre-soaked in a spin-wet-dry (SRD) module using deionized water (DIW). A combination of rotational rate (RPM) and deionized water (DIW) flow fans is used to increase water coverage on the wafer surface. After pre-wetting, the surface of the wafer should carry a thin layer of water when it is immersed in the electrolyte. The addition of a pre-wetting cavity to a metal film deposition apparatus increases its overall size and requires more space to install the corresponding device. [〇m] Another way to achieve the pre-wetting layer is to use a built-in deionized water (DIW) nozzle located in the electric ore processing module (4). (4) such a party

L 法’當晶片被固定在旋轉晶片+盤裝£中並面對著所述電 解液的時候’ DH被喷射到晶片表面。離心力使得diw: 直處於旋轉晶片的表面上而不會掉入電解液中。美國專利 申請案2006/71 46994揭示了這樣一種方法。種 k榷方法不 而要額外的空間,因而整個設備的規 人,恐而,種 方法的穩定性不好,如* DIW喷嘴有微小的 速有所降低時就會導致DIW被注入電解液中。s曰曰 [ 0 0 0 8 ]這兩種方法都有三個固有的問題: 4"立曰 、丄)^固 生I的工廠中’每個晶片帶入電解液中的水層 致電鍍溶液的整體稀釋,進而改變、、’、 曰Η胜 好的藝條件。(2) 曰曰片帶人電解液中的水層導致晶片表面區域的電解液局 200918685 部稀釋’尤其是被D丨w 充斥的將要沈積金屬層的通孔隙和 溝槽°電解液的局部稀釋 充的結構n 成在電鑛後形成空洞和未填 ()l長整個工藝流程的時間,很好理 解的疋-請處理會在晶片表面 無法被甩離,因爲一榮展向aa ^ 丁予〕水層 r ^ ^ _ 4層内的水流的粘性阻力太大(與盆 旱又的二次方成反比)。 、/、 少;铁而,产4 + 曰的与度此藉由瘵發而減 f :。“要增加更多的處理時間,整套設備的生 =因而會受到影響。而且對每個晶片進行恒定的蒸發 、 ’ 口烏在一半導體生產設備中機 的運動以及上升’下降的優先性對蒸發的條件和時 産生影響。 1 s [〇_]另-種方法是藉由濕潤增強劑,—般是— 面活性劑或一組活性劑,用以降低電解液的表面張力,如 :國專利申請帛20 04/6776 893所揭示的。另一種預處理 明片表面的方法疋在將晶片放置在電鑛電解液中之前使 用含有這些濕潤增強劑的液體在一個單獨的模組裏來預 處理晶片表面,如美國專利案6,875, 260所揭示的。這種 方法增強了處理的複雜度且極大地增加了處理及監控的 成本。隨著晶片表面結構尺寸持續減小,如上述三種方法 所描述的’在奈米級的溝槽内用粘稠的液體來置換的氣體 從而預浸潤各種晶片表面的方法都面臨著極大的挑戰。 【發明内容】 曰曰 [0011]本發明是在進行金屬沈積工藝前藉由在整個 200918685 片的前表面附加一液體吸附層從而提高電解液和晶片表 面在相互接觸時的浸潤。該預設置的液體吸附層藉由將處 於(相對於晶片)提升的溫度下的液體分子從蒸汽相中凝 結到晶片的表面而形成。 [0 012 ]預浸潤是經由下述過程完成:不斷産生蒸汽的 源提供氣相的蒸汽,輸送氣相的液體分子到晶片表面之後 進行凝結,而不是利用有粘性的液體來替換充斥晶片正面 的氣體。The L method 'DH is ejected onto the wafer surface when the wafer is fixed in the rotating wafer + disk and facing the electrolyte. The centrifugal force causes the diw: to be directly on the surface of the rotating wafer without falling into the electrolyte. Such a method is disclosed in U.S. Patent Application Serial No. 2006/71,46,994. The k榷 method does not require extra space, so the regulation of the whole device, fear, the stability of the method is not good, such as *DIW nozzle has a slight speed to decrease, it will cause DIW to be injected into the electrolyte. . s曰曰[ 0 0 0 8 ] These two methods have three inherent problems: 4"立曰,丄)^Financial I's factory in which each wafer is brought into the electrolyte to cause a plating solution The overall dilution, and then change, ', 曰Η win good art conditions. (2) The water layer in the enamel-coated electrolyte causes the electrolyte in the surface area of the wafer to be diluted by the 200918685 portion, especially the localized dilution of the through-holes and trenches of the metal layer to be deposited by D丨w. The structure of the filling n is formed into a cavity after the electric ore and is not filled () l long process time, well understood 请 - please handle the surface of the wafer can not be separated, because a Rong exhibition to aa ^ Ding Yu The viscous resistance of the water flow in the water layer r ^ ^ _ 4 layer is too large (in inverse proportion to the square of the basin). , /, less; iron, the production of 4 + 曰 and the degree by the burst of minus f :. “To increase the processing time, the whole set of equipment will be affected. It will also have a constant evaporation of each wafer, 'the movement of the machine in a semiconductor production equipment and the priority of the rise' drop to evaporation. The condition and time have an effect. 1 s [〇_] Another method is to reduce the surface tension of the electrolyte by means of a wetting enhancer, generally a surfactant or a group of active agents, such as: Application 帛 20 04/6776 893. Another method of pretreating the surface of the wafer is to pretreat the liquid containing the wetting enhancer in a separate module before placing the wafer in the electromineral electrolyte. The wafer surface is disclosed in U.S. Patent No. 6,875, 260. This method enhances the processing complexity and greatly increases the cost of processing and monitoring. As the surface size of the wafer continues to decrease, as described in the three methods above. The method of pre-wetting the surface of various wafers by replacing the gas with a viscous liquid in the nano-scale trenches is extremely challenging. [Summary of the Invention] [0011] The present invention is to increase the infiltration of the electrolyte and the surface of the wafer in contact with each other by adding a liquid adsorption layer on the front surface of the entire 200918685 sheet before performing the metal deposition process. The pre-set liquid adsorption layer is Liquid molecules at elevated temperatures (relative to the wafer) condense from the vapor phase to the surface of the wafer. [0 012] Pre-wetting is accomplished by a process in which steam is continuously produced to provide vapor in the gas phase, Instead of using a viscous liquid to replace the gas that floods the front side of the wafer, the liquid molecules in the gas phase condense after they reach the surface of the wafer.

[001 3 ]蒸汽由一靜止的或對相對晶片運動的噴嘴傳輸 到晶片表面。所述蒸汽是在受控制的壓力下加熱一管道内 的液體而産生。 [0014]蒸汽化的液體分子藉由蒸汽對流和擴散滲透入 小的結構中,與受到表面浸潤行爲影響的液體滲透相比, 這種方法非常快’而且還不受到固體表面屬性的影響;因 此在不同晶片表面完全覆蓋蒸汽所需要的時間是相同的〔[001 3] The vapor is transferred to the wafer surface by a nozzle that is stationary or moving relative to the wafer. The steam is produced by heating a liquid in a pipe under controlled pressure. [0014] Vaporized liquid molecules penetrate into small structures by vapor convection and diffusion, which is very fast compared to liquid permeation affected by surface infiltration behavior and is not affected by solid surface properties; The time required to completely cover the steam on different wafer surfaces is the same [

【實施方式】 [0020]圖la示出用於金屬岸 旬嘈/尤積的晶片表面預浸潤 的處理過程。一種液體,例如X M 1 t 去離子水,用於形成所述液 體吸附層。這種液體將被加埶 猫^ “ β ώ / …、到一預定的溫度(如步驟 1 0 2所示)。在一實施例中,所 W述液體溫度將升到至35»c —1 7 0 C之間。當升高到預定、、w由 頂夂溫度之後,所述液體被蒸汽 化(如步驟104所示)。液體的蒗、 版07备π化可用蒸汽激發(nash evaporation)或把載體氣體沖 (flushing)所述液體 200918685 來完成。當蒸汽化液體的時候,蒸汽的壓力被控制在一定 範圍(如步驟1 0 6所示)。蒸汽化液體的氣相分壓被一感 測器所監測。在液體分子被傳遞到晶片表面之前,含有液 體分子的蒸汽將與一載體氣體介質混合,例如:空氣、氮 氣(N2)、氦氣(He)和氬氣(Ar)°(如步驟108所示)。在混 合氣相液體分子和載體氣體介質的時候,所得到的混合物 的溫度一直維持在預定的範圍中(如步驟11 0所示),所 以在升高的溫度下所形成的液體吸附層比在室溫下形成 的液體吸附層的表面張力小。在下一個步驟中,汽化了的 液體分子將被輸送到晶片表面,然後凝結形成一薄層液 體。根據圖1,在步驟11 2中,液體蒸汽化的分子和載體 氣體的混合物被傳送到在晶片表面附近的環境内。且在步 驟11 4中,晶片表面的環境中的大量空氣被液體蒸汽化的 分子和載體氣體替換。在步驟11 6中,液體蒸汽化的分子 從蒸汽環境中被輸送到晶片表面的圖形化結構中。在一實 施例中,把液體蒸汽化的分子輸送到晶片表面的通孔、溝 槽和雙嵌入結構中是藉由氣相對流和擴散的組合來達成 的。然後,在步驟11 8中,藉由從蒸汽中吸附多層蒸汽化 的液體分子而在整個晶片的前表面形成一預浸潤的液體 層。在一實施例中,當晶片表面具有不同表面自由能的分 佈的時候,能有選擇性地進行蒸汽化液體分子的凝結。在 較高表面自由能的表面上形成的液體吸附層在接下來的 金屬層沈積工藝中能觸發選擇性成核。預形成的液體吸附 層的厚度一般有幾奈米,其厚度小於傳統技術中藉由沖洗 9 200918685 和旋轉中的流體動力學作用所形成的預浸 層,傳統技術中的液體預吸附層的厚声 /液體吸附 實施例中,藉由晶片表面上基汽 ^的十微米。在一 的液體吸附層的厚度受到數個因素控制,a附而形成 周圍環境令蒸汽化的液體分子的含量^•晶片表面 的溫度差、表面能、以及吸附熱。在—實=晶片之間 汽和晶片表面之間的溫度差不是非常大的時當在蒸 厚度能被BET多層吸附等溫線大致地類、液體層的 面周圍環境中蒸汽化的液體分子的含量可^盧晶片表 中的液體分子蒸汽分堡進行調整。最後—個㈣虞^物 120所示,晶片声而& 如步驟 片表面所承載的吸附液體層將與 接觸。在一實施你丨Φ 錢電解液 隹貝苑例中,如可選步驟119所示 化學電鍍處理,在盥t解 果使用電 au 牡^電解液接觸之前一偏置電壓可^^ + 晶片表面,那麼在步驟120之前就應用施=加在 選步驟11 9,石目,丨. 他加偏置電麗的可 否則,该步驟11 g可被省略。由 層非常薄,备雷、产& 田於液體吸附 田電解液接觸晶片表面的時候, 吸附層所引起的整體電 。種溥液體 卜、η,> 3 / 鑛電解液的稀釋’即使是高產量的[Embodiment] [0020] FIG. 1a shows a process for pre-wetting the surface of a wafer for metal rafts. A liquid, such as X M 1 t deionized water, is used to form the liquid adsorbing layer. This liquid will be twisted with cats "β ώ / ... to a predetermined temperature (as shown in step 1200). In one embodiment, the temperature of the liquid will rise to 35»c-1 Between 7 0 C. When raised to a predetermined temperature, w is vaporized (as shown in step 104). The liquid 蒗, version 07 can be π-activated with steam (nash evaporation) Or the carrier gas is flushed to the liquid 200918685. When the liquid is vaporized, the pressure of the vapor is controlled within a certain range (as shown in step 106). The vapor partial pressure of the vaporized liquid is Monitored by the sensor. The vapor containing liquid molecules will be mixed with a carrier gas medium before the liquid molecules are transferred to the wafer surface, such as: air, nitrogen (N2), helium (He), and argon (Ar). (as shown in step 108). When mixing the gas phase liquid molecules with the carrier gas medium, the temperature of the resulting mixture is maintained within a predetermined range (as shown in step 10 0), so at elevated temperatures The formed liquid adsorption layer is formed at room temperature The surface tension of the liquid adsorption layer is small. In the next step, the vaporized liquid molecules will be transported to the surface of the wafer and then condensed to form a thin layer of liquid. According to Figure 1, in step 112, the liquid vaporized molecules and The mixture of carrier gases is delivered to the environment near the surface of the wafer, and in step 114, a large amount of air in the environment of the wafer surface is replaced by liquid vaporized molecules and carrier gas. In step 116, liquid vaporization The molecules are transported from the vapor environment to the patterned structure on the surface of the wafer. In one embodiment, the liquid vaporized molecules are transported to the vias, trenches, and double-embedded structures on the wafer surface by gas relative flow. And a combination of diffusion is achieved. Then, in step 117, a pre-wetting liquid layer is formed on the front surface of the entire wafer by adsorbing the plurality of vaporized liquid molecules from the vapor. In an embodiment, When the surface of the wafer has a distribution of different surface free energies, it is possible to selectively condense vaporized liquid molecules. Surfaces with higher surface free energy The formed liquid adsorption layer can trigger selective nucleation in the subsequent metal layer deposition process. The thickness of the preformed liquid adsorption layer is generally several nanometers, and the thickness thereof is smaller than that in the conventional art by flushing 9 200918685 and rotating The prepreg layer formed by the hydrodynamic action, in the thick sound/liquid adsorption embodiment of the liquid pre-adsorption layer in the conventional art, is 10 μm by the base vapor on the surface of the wafer. The thickness of the liquid adsorption layer in one is subjected to Several factors control, a is the content of liquid molecules that form the surrounding environment to vaporize ^• temperature difference, surface energy, and heat of adsorption on the surface of the wafer. The temperature difference between the vapor and the wafer surface between the wafers When it is not very large, the content of liquid molecules vaporized in the environment around the surface of the surface of the liquid layer by the BET multilayer adsorption isotherm can be adjusted by the liquid molecular vapor depot in the wafer table. Finally, as shown in (4) 虞^ object 120, the sound of the wafer will be in contact with the layer of adsorbed liquid carried on the surface of the step. In an implementation of your 丨Φ money electrolyte 隹贝苑, as shown in optional step 119, the electroplating treatment, before the 盥t solution using the electric au ^ electrolyte contact before a bias voltage can ^ ^ + wafer surface Then, before step 120, the application step is added to the selection step 11, and the stone head, 丨. He adds the bias to the battery. Otherwise, the step 11g can be omitted. The overall electricity caused by the adsorption layer is very thin when the layer is very thin, and the liquid is adsorbed on the surface of the wafer when the liquid electrolyte contacts the surface of the wafer. Liquid 卜, η, > 3 / dilution of mineral electrolytes' even high yield

月/ 也疋微乎其微的。例如,2太乎户的R 的整體稀釋百分M 及附液體層 [〇〇 =微未厂子的液體層小5000倍。 過程,其使用^用於預浸潤/曰曰片表面的另一種處理 中,一液體 丨同的方法來療汽化液體。在步驟132 丨,列如去離子水被加熱。然後,在步% n4 + 一载體氣體,例如Μ…⑷ 任,驟134中’ 被沖人(心)::、)、氣氣㈤和氯調, 讣)加熱過的液體中,然後液體的蒸汽與載 10 200918685Month / also very small. For example, the overall dilution percentage of R of 2 too households and the liquid layer with a liquid layer [〇〇 = micro-no plant is 5000 times smaller. In the process, which uses another process for pre-wetting/squeezing the surface of the batt, a liquid is used to treat the vaporized liquid. At step 132, the column is heated as deionized water. Then, in step % n4 + a carrier gas, such as Μ... (4) 任, in step 134 'being (heart)::,), gas (five) and chlorine, 讣) heated liquid, then liquid Steam with load 10 200918685

體乳體混合形成蒸汽混合物。在步驟1 3 6中,控制載體氣 體的流速從而調整混合氣體中液體蒸汽分子的含量。控制 蒸汽混合物的壓力(如步驟138所示)。步驟14〇 —15〇與 上述步驟11 〇 -1 2 〇相同。那就是說,在步驟丨4 〇中,保持 混合物的溫度。在步驟142中,蒸汽化的液體分子被傳送 到晶片表面附近的環境中。在步驟i 44中,晶片表面周圍 大量的空氣被蒸汽化的液體分子替換。在步驟1 46中,把 条π化的液體分子從蒸汽環境中傳遞到晶片表面且傳輸 到圖形化結構中。在步驟i 48中’把蒸汽環境中的蒸汽凝 結到晶片表面形成一液體吸附層。在步驟1 50中,晶片表 面所承載的液體吸附層與電鍍電解液接觸。提供一可選步 驟1 4 9使用當電化學電鍍處理的時候,施加偏置電壓。 在另貝施例中,蒸汽化液體的步驟可被其他方法來完 成,例如蒸汽激發(flash evap〇rati〇n)。 [0 0 22 ]該預浸潤處理可被用於半導體器件互連結構或 製造,觸點中預浸潤將要在電解液溶液中進行金屬層沈 」、片表面,所述電觸點包括觸塊(bump )和用於封裝 半導體。“牛@穿透矽通孔結構ϋ象不@金屬I沈積步驟 中包含在電解液中不同的金屬元素,例如電解液可含有銅 (CU)至(AU)、銀(Ag)、鎳(Ni)、釕(Ru)和鈷(Co)元素用 於半導體器件互遠纟士搂 „ • 1午互連、,.°構’以及可含有銅(Cu)、金(An)、鎳 ()錫(Sn)、翻(Pt)和銀(Α§)元素用於封裝半導體器 件斤述液體可疋不同的材料。在日曰日片表面的預先形成的 液體吸附層應可被電解液浸潤和混合。 200918685 [0 0 2 3 ]圖2示出一種用於實施上述的預浸潤處理的裝 置。該裝置200包括:基材固持設備202用於固持其上有 一或多個圖案的基材。已形成的金屬層還覆蓋基材2〇4的 部分表面。在一實施例中,馬達2 〇 3使基材固持設備2 〇 2 旋轉。洛汽輸送設備2 0 6噴射含有至少一種將被冷凝在基 材表面的一薄的液體吸附層的分子的蒸汽。如圖2所示,The body milk is mixed to form a vapor mixture. In step 136, the flow rate of the carrier gas is controlled to adjust the content of liquid vapor molecules in the mixed gas. The pressure of the steam mixture is controlled (as shown in step 138). Step 14〇15〇 is the same as step 11 〇 -1 2 上述 above. That is to say, in step 丨4 ,, the temperature of the mixture is maintained. In step 142, the vaporized liquid molecules are delivered to the environment near the surface of the wafer. In step i44, a large amount of air around the surface of the wafer is replaced by vaporized liquid molecules. In step 146, the π-formed liquid molecules are transferred from the vapor environment to the wafer surface and transferred to the patterned structure. In step i48, the vapor in the vapor environment is condensed to the surface of the wafer to form a liquid adsorbing layer. In step 150, the liquid adsorbing layer carried on the surface of the wafer is in contact with the plating electrolyte. An optional step is provided for the use of a bias voltage when electrochemical plating is used. In another embodiment, the step of vaporizing the liquid can be accomplished by other methods, such as steam excitation (flash evap〇rati〇n). [0 0 22 ] The pre-wetting treatment can be used for semiconductor device interconnection structures or fabrication, in which pre-wetting in the contacts is to be performed in the electrolyte solution, the surface of the sheet, the electrical contacts including the contact blocks ( Fluorescent and used to encapsulate semiconductors. "Niu @ penetration 矽 through-hole structure 不 不 @ metal I deposition step contains different metal elements in the electrolyte, for example, the electrolyte may contain copper (CU) to (AU), silver (Ag), nickel (Ni ), ruthenium (Ru) and cobalt (Co) elements are used in semiconductor devices. • • • • • • • • • • • • • • • • • • • • • • • • 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及The (Sn), flip (Pt), and silver (Α§) elements are used to encapsulate semiconductor devices. The preformed liquid adsorbing layer on the surface of the corona sheet should be wetted and mixed by the electrolyte. 200918685 [0 0 2 3 ] Figure 2 shows an apparatus for carrying out the pre-wetting treatment described above. The apparatus 200 includes a substrate holding device 202 for holding a substrate having one or more patterns thereon. The formed metal layer also covers a portion of the surface of the substrate 2〇4. In one embodiment, the motor 2 〇 3 causes the substrate holding device 2 〇 2 to rotate. The vapor transport unit 206 sprays steam containing at least one molecule of a thin liquid adsorbing layer to be condensed on the surface of the substrate. as shown in picture 2,

所述蒸汽輸送設備2 0 6包括:—噴嘴或一組喷嘴2 6 〇、管 道2 6 2、定位器264、壓力調節器2 6 6,隔離牆268和過 濾益269。過濾器269被提供在壓力調節器266之前,且 使用隔離牆268隔離。還提供機械系統21〇,所述機械系 統210由驅動器212和連接臂211組成’它們控制蒸汽輸 送設備20 6和基材204之間的相對運動。噴嘴26〇位於接 近基材204表面的區域,喷嘴26〇可被容納在獨立的處理 模組中或結合在已有的工藝模組中,例如所述電鑛模組 (例如放電板261)。如果把噴嘴26Q結合到晶片傳輸機械 臂上’該-薄層預先形成的液體吸附層還能在的晶片傳輸 的過程中形成。在一實施例中,噴嘴26〇可以是靜止的或 者藉由驅動益對基材作相對運叙 丁延動。繼續看圖2,所述裝置 200進一步包括蒸汽產生設備2〇R ^ ^ A v . ^ ^ _ ’其把部分液體轉換成 蒸汽。如圖2所示,蒸汽產4 μ扯 …,飞座生叹備208包括:導管280、 液體入口 281、出口 282、壓六铿社 ι力釋放閥283、節流閥284、 加熱盗2 8 5、壓力溫度控制回敗9 Q β Μ路286、載體氣體入口 287、 液體流出端288和氣體出口 2sq . °在受控制的壓力下加熱 在導管2 8 0内的液體以產生墓、、与 I α ° —乾燥氣體,例如:空 12 200918685 • 氣、氮氣(N2)、、氦氣(He)、或者氬氣(Ar)是攜帶蒸汽化 液體分子的載體。一乾燥氣體源29 1産生乾燥氣體。乾燥 • 氣體流入導管内的液體中並從出口處流出,同時攜帶蒸汽 • 化液體分子在抵達喷嘴前通過一壓力調節器。在一實施例 中,所述壓力釋放閥283設置在1-7巴(bar)之間,而所 述壓力溫度控制回路溫度設置在3 5 ° C - 1 7 0 ° C之間。從 蒸汽產生器到噴嘴的蒸汽輸送線路是隔熱的。在蒸汽輸送 設備2 0 6上的蒸汽出口可具有多種方向和尺寸。 f k [ 0024 ]上述元件:一組喷嘴2 6 0、管道2 62和定位器 2 6 4能建立在一現有的工藝模組上,例如結合在一金屬層 沈積模組中,直接位於如圖2所示的含有電解液2 9 0的金 屬沈積腔上方。 【圖式簡單說明】 [0 0 1 6 ]圖1 a是根據本發明的一實施例的晶片表面預 浸潤處理的流程圖; ί ; 〇 [ 0 0 1 7 ]圖1 b根據本發明的另一實施例的晶片表面預 浸潤處理的流程圖; [0 0 1 8 ]圖2是根據本發明的一實施例的晶片表面預浸 潤裝置的示意圖。 【主要元件符號說明】 200.預浸潤處理裝置 20.固持設備 ^ 203.馬達 204.基材 13 200918685 . 2 0 6.蒸汽輸送設備 2 10.機械系統 * 2 1 2.驅動器 - 2 6 1.放電板 2 6 4.定位器 268.隔離牆 280.導管 282.出口 r : k 284_節流閥 2 8 6 ·壓力溫度控制回路 2 8 8.液體流出端 290.電解液 208.蒸氣產生裝置 211.連接臂 2 6 0.喷嘴 262.管道 2 6 6 ·壓力調節器 269.過濾器 281.液體入口 2 8 3 .壓力釋放閥 2 8 5 .加熱器 287.載體氣體入口 289.氣體出口 291.乾燥氣體源The steam delivery device 206 includes: a nozzle or a set of nozzles 2 6 〇, a pipe 2 6 2, a positioner 264, a pressure regulator 26, a partition 268, and a filter 269. A filter 269 is provided in front of the pressure regulator 266 and isolated using a dividing wall 268. A mechanical system 21 is also provided, which consists of a drive 212 and a connecting arm 211 'which control the relative movement between the vapor transport device 206 and the substrate 204. The nozzle 26 is located adjacent the surface of the substrate 204, and the nozzle 26 can be housed in a separate processing module or incorporated into an existing process module, such as the electromine module (e.g., discharge plate 261). If the nozzle 26Q is bonded to the wafer transfer robot arm, the pre-formed liquid adsorption layer of the thin layer can also be formed during wafer transfer. In one embodiment, the nozzle 26(R) may be stationary or may be relatively retarded by the drive. Continuing with Figure 2, the apparatus 200 further includes a steam generating device 2 〇R ^ ^ A v . ^ ^ _ ' which converts a portion of the liquid into steam. As shown in Fig. 2, the steam production 4 μ pull..., the flying seat sigh 208 includes: a conduit 280, a liquid inlet 281, an outlet 282, a pressure 铿 force release valve 283, a throttle valve 284, a heating thief 2 8 5. Pressure temperature control returns 9 Q β Μ 286, carrier gas inlet 287, liquid outflow end 288, and gas outlet 2sq. ° Heat the liquid in the conduit 2 80 under controlled pressure to create a tomb, and I α ° —drying gas, for example: empty 12 200918685 • Gas, nitrogen (N2), helium (He), or argon (Ar) is a carrier carrying vaporized liquid molecules. A dry gas source 29 1 produces a dry gas. Drying • The gas flows into the liquid in the conduit and out of the outlet while carrying the vaporized liquid molecules through a pressure regulator before reaching the nozzle. In one embodiment, the pressure relief valve 283 is disposed between 1 and 7 bar, and the pressure temperature control loop temperature is set between 35 ° C and 170 ° C. The steam delivery line from the steam generator to the nozzle is insulated. The steam outlets on the steam delivery unit 206 can have a variety of orientations and sizes. Fk [0024] The above components: a set of nozzles 260, a pipe 2 62 and a locator 2 6 4 can be built on an existing process module, for example in a metal layer deposition module, directly located in FIG. 2 Shown above the metal deposition chamber containing electrolyte 2000. BRIEF DESCRIPTION OF THE DRAWINGS [0 0 1 6 ] FIG. 1 a is a flow chart of wafer surface pre-wetting treatment according to an embodiment of the present invention; ; ; 〇 [ 0 0 1 7 ] FIG. 1 b according to another aspect of the present invention A flow chart of wafer surface pre-wetting treatment of an embodiment; [0 0 18] FIG. 2 is a schematic view of a wafer surface pre-wetting apparatus according to an embodiment of the present invention. [Main component symbol description] 200. Pre-wetting treatment device 20. Holding device ^ 203. Motor 204. Substrate 13 200918685 . 2 0 6. Steam conveying device 2 10. Mechanical system * 2 1 2. Driver - 2 6 1. Discharge plate 2 6 4. Positioner 268. Isolation wall 280. Conduit 282. Outlet r: k 284_Throttle valve 2 8 6 · Pressure temperature control circuit 2 8 8. Liquid outflow end 290. Electrolyte 208. Vapor generating device 211. Connecting arm 2 6 0. Nozzle 262. Pipe 2 6 6 · Pressure regulator 269. Filter 281. Liquid inlet 2 8 3. Pressure relief valve 2 8 5 . Heater 287. Carrier gas inlet 289. Gas outlet 291 Dry gas source

1414

Claims (1)

200918685 十、申請專利範圍: 1 · 一種預浸潤晶片表面的方法,包括: ' 蒸汽化一液體; 把蒸汽化的液體分子輸送到晶片表面附近環境中; 用蒸汽化液體分子置換在晶片表面附近環境中的大量 空氣,並把它們輸送到晶片表面並進入到圖形化結構中; 從所述蒸汽環境中凝結液體吸附層於包括圖形化結構 的晶片表面上; r , 1 用電解液接觸承載吸附液體層的晶片表面。 2 ·如申請專利範圍第1項所述的方法,其中在晶片表 面上形成液體吸附層的液體可被電解液浸潤。 3 ·如申請專利範圍第1項所述的方法,其中在晶片表 面上形成液體吸附層的液體可被電解液混合。 4 ·如申請專利範圍第1項所述的方法,其中藉由蒸汽 激發來蒸汽化液體。 5 ·如申請專利範圍第1項所述的方法,其中將載體氣 體沖入液體來蒸汽化液體。 6 ·如申請專利範圍第1項所述的方法,其中從下述一 組氣體中選出載體氣體: 15 200918685 空氣、氮氣(N2)、氦氣(He)、和氬氣(Ar)。 7 ·如申請專利範圍第1項所述的方法,其中藉由氣相 擴散和對流地結合把蒸汽化的液體分子輸送到晶片表面 的通孔、溝槽和雙欲入結構的圖形化結構中。 8 ·申請專利範圍第1項所述的方法,其中所述液體吸 附層是奈米厚度,並且由在晶片表面對蒸汽化分子的多層 吸附而形成。 9 .如申請專利範圍第1項所述的方法,其中晶片表面 周圍環境中的蒸汽化液體分子的含量由混合物中的液體 蒸汽分壓所調節。 I 0 ·如申請專利範圍第1項所述的方法,其中所述液 體吸附層的厚度由晶片表面周圍環境中的蒸汽化液體分 子的含量控制。 II ·如申請專利範圍第1項所述的方法,其中在晶片 表面上的液體吸附層的厚度由蒸汽和晶片表面之間的溫 度差控制。 1 2 .如申請專利範圍第1項所述的方法,其中在升高 的溫度下所形成的液體吸附層的表面張力比室溫下所形 16 200918685 成的液體層的表面張力小。 U .如申請專利範圍第1項所 ^ ^ ^ ^ η λλ 貝所述的方法,其中當晶片 ^ -s ^ ^ 邱的時候,蒸汽化液體分子 被選擇性地凝結。 广:申請專利範圍第13項所述的方法,其中所述液 選擇性成核。 在接下來的金屬化處理中的 法Γ二:Γ利範圍第1項所述的方法,其中所述方 法用於丰V體器件互連結構中 行金屬層沈積的晶片表面。--在電解液溶液中進 中二專利範圍第15項所述的方法,”電解液 甲的金屬離子從 疋下述一組金屬鹽中 (Au)'銀一叫一金 理=二::::圍。…所述的方法,其中所述處 浸潤在電解液溶液中::::二導線和焊點的過程中預 K丁盘屬層沈積的晶片表面。 中範圍第17項所述的方法,…解液 工’雕于選自下一 这的、.且至屬鹽:銅(CU)、金(Au)、 17 200918685 . 鎳(Ni)、鍚(Sn)、鉑(Pt)以及銀(Ag)。 • 1 9 .如申請專利範圍第1項所述的方法,其 . 理用於封裝半導體器件形成基材通孔的過程中 電解液溶液中進行金屬層沈積的晶片表面。 20.如申請專利範圍第19項所述的方法,其 中的金屬離子選自下述的一組金屬鹽:銅(Cu)、 f ' 鎳(Ni)、錫(Sn)、銷(Pt)以及銀(Ag)。 2 i •—種用於預浸潤晶片表面的裝置,包括 基材固持設備’固持其上形成有具有一或多 基材’且-已形成的金屬層至少覆蓋基材表面 域; 蒸汽輸运设備’噴射含有至少一種將在基材 成一薄層液體吸附層的分子的蒸汽; G 蒸汽產生设備,將部分的液體轉化成蒸汽; 機械系統,控制蒸汽輸送設備和基材之間的才 22 .如申請專利範圍第21項所述的裝置,其 材固持設備、瘵汽輪送設備和機械系統是在一個 理模組中° * 23 .如申請專利範圍第2 1項所述的裝置,其 中所述處 預浸潤在 中電解液 金(Au)、 個圖案的 的部分區 表面凝結 對運動。 中所述基 封閉的處 中所述蒸 18 200918685 汽輸送設傷和機插糸 械糸統破結合到-金屬沈積模組中。 2[如申請專利範圍第2 蒸 汽輸送設備安裝在— 、的裝置'、 曰日片傳輸機械臂上。 2 5 .如申請專利銘 ~ 圍弟21項所述的穿置,立中所述蒸 汽傳輸設備包括:Μ ^裝4其中 濾器。 道、疋位器、壓力調節器和過 2 6 .如申請專利範圍第9 汽傳輸設備藉由—驅動器進的裝置,…述蒸 2 7 ·如申請專利範圍 材固持設備藉由一 $逵、#,、所述的裝置,其中所述基 田馬達進行旋轉運叙η 28 .如申請專利範 汽產生設備包括:導管弟液:::述的裝置’ ”所述蒸 截流閥Η、加熱器、Μ力溫度 1 °、壓力釋放閥、 液體流出口和氣體出口。 。路載體氣體進口、 29 ·如申請專利範圍第28項所述、 力釋放閥被設置在卜7巴U的裝置’其中所述壓 、Dar)之間。 30 .如申請專利範圍第28項 所逑的 裝置’其中在壓力 19 200918685 在 3 5 ° C - 1 7 0 ° C 之間。 溫度控制回路内的温度被設置 C 20200918685 X. Patent application scope: 1 · A method for pre-wetting the surface of a wafer, comprising: 'steaming a liquid; delivering vaporized liquid molecules to the environment near the surface of the wafer; replacing the environment near the surface of the wafer with vaporized liquid molecules a large amount of air and transport them to the surface of the wafer and into the patterned structure; from the vapor environment, the liquid adsorption layer is condensed on the surface of the wafer including the patterned structure; r, 1 is contacted with the electrolyte to carry the adsorbed liquid The wafer surface of the layer. 2. The method of claim 1, wherein the liquid forming the liquid adsorption layer on the surface of the wafer is wettable by the electrolyte. 3. The method of claim 1, wherein the liquid forming the liquid adsorption layer on the surface of the wafer is mixed by the electrolyte. 4. The method of claim 1, wherein the liquid is vaporized by steam excitation. 5. The method of claim 1, wherein the carrier gas is flushed into the liquid to vaporize the liquid. 6. The method of claim 1, wherein the carrier gas is selected from the group consisting of: 15 200918685 air, nitrogen (N2), helium (He), and argon (Ar). 7. The method of claim 1, wherein the vaporized liquid molecules are transported to the through-holes, trenches, and patterned structures of the wafer surface by vapor phase diffusion and convection bonding. . The method of claim 1, wherein the liquid adsorbing layer is of a nanometer thickness and is formed by multi-layer adsorption of vaporized molecules on the surface of the wafer. 9. The method of claim 1, wherein the content of vaporized liquid molecules in the environment surrounding the surface of the wafer is adjusted by the partial pressure of liquid vapor in the mixture. The method of claim 1, wherein the thickness of the liquid adsorbing layer is controlled by the content of vaporized liquid molecules in the environment around the surface of the wafer. The method of claim 1, wherein the thickness of the liquid adsorbing layer on the surface of the wafer is controlled by a temperature difference between the vapor and the surface of the wafer. The method of claim 1, wherein the surface tension of the liquid adsorbing layer formed at an elevated temperature is smaller than the surface tension of the liquid layer formed at room temperature of 16 200918685. U. The method of claim 1, wherein the vaporized liquid molecules are selectively condensed when the wafer is ^ -s ^ ^ 邱. The method of claim 13, wherein the liquid selectively nucleates. In the following metallization process, the method of claim 1, wherein the method is applied to a wafer surface deposited by a metal layer in a V-body device interconnection structure. - In the electrolyte solution, the method described in item 15 of the second patent range, "the metal ion of the electrolyte A is from the following group of metal salts (Au) 'silver one called one gold = two:: The method of the invention, wherein the surface is infiltrated in the electrolyte solution:::: the surface of the wafer deposited by the pre-K-disc layer during the process of two wires and solder joints. The method, ... the liquid eliminator 'carved in the next one, and to the salt: copper (CU), gold (Au), 17 200918685. Nickel (Ni), strontium (Sn), platinum (Pt) And silver (Ag). The method of claim 1, wherein the method is used to encapsulate a surface of a wafer on which a metal layer is deposited in an electrolyte solution during formation of a through hole of a semiconductor device. 20. The method of claim 19, wherein the metal ion is selected from the group consisting of copper (Cu), f' nickel (Ni), tin (Sn), pin (Pt), and Silver (Ag) 2 i • A device for pre-wetting the surface of a wafer, comprising a substrate holding device 'holding thereon having one or more substrates' - the formed metal layer covers at least the surface area of the substrate; the vapor transport device 'sprays steam containing at least one molecule which will form a thin layer of liquid adsorption layer on the substrate; G steam generating device converts part of the liquid into Steam; mechanical system, controlling the relationship between the steam delivery device and the substrate. 22. The device of claim 21, the material holding device, the steaming device and the mechanical system are in a rational module. The device of claim 2, wherein the pre-wetting is in the middle of the electrolyte (Au), and the surface of the partial portion of the pattern is condensed against the movement. The steaming 18 200918685 steam conveying injury and the mechanical plugging system are combined into the metal deposition module. 2 [If the patent application scope 2 steam conveying device is installed in the device, the 曰 传输 transmission machinery On the arm. 2 5. As described in the application for the patent ~ the preparation of the 21st generation, the steam transmission equipment of Lizhong includes: Μ ^ installed 4 of the filter. Road, clamp, pressure regulator and over 2 6 . Patent Application No. 9 for a vapor transmission device by means of a drive-in device, such as steaming 2 7 · as claimed in the patented material holding device by means of a device, wherein the device is performed by the Kedama motor Rotational operation η 28 . Such as the patent application of the steam generating equipment includes: conduit brother fluid ::: described device ' ” the steam shut-off valve Η, heater, pressure temperature 1 °, pressure relief valve, liquid outflow and Gas outlet. . The road carrier gas inlet, 29, as described in claim 28, the force release valve is disposed between the devices (where the pressure, Dar). 30. The device as claimed in item 28 of the patent application' is at a pressure of 19 200918685 between 3 5 ° C and 170 ° C. The temperature in the temperature control loop is set C 20
TW096141054A 2007-10-31 2007-10-31 Method and apparatus to prewet wafer surface for metallization from electrolyte solutions TWI366610B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096141054A TWI366610B (en) 2007-10-31 2007-10-31 Method and apparatus to prewet wafer surface for metallization from electrolyte solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096141054A TWI366610B (en) 2007-10-31 2007-10-31 Method and apparatus to prewet wafer surface for metallization from electrolyte solutions

Publications (2)

Publication Number Publication Date
TW200918685A true TW200918685A (en) 2009-05-01
TWI366610B TWI366610B (en) 2012-06-21

Family

ID=44726789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096141054A TWI366610B (en) 2007-10-31 2007-10-31 Method and apparatus to prewet wafer surface for metallization from electrolyte solutions

Country Status (1)

Country Link
TW (1) TWI366610B (en)

Also Published As

Publication number Publication date
TWI366610B (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP6998945B2 (en) Dope selective metal cap to improve copper electromigration with ruthenium liner
TWI443224B (en) Method of forming a metal layer over a patterned dielectric by wet chemical deposition including an electroless and a powered phase
TW200526812A (en) Method and apparatus for selectively changing thin film composition during electroless deposition in a single chamber
TWI234814B (en) Method of manufacturing a semiconductor device
JP4850337B2 (en) Method for forming copper metal wiring of semiconductor element
TW200947558A (en) Method for integrating selective low-temperature ruthenium deposition into copper metallization of a semiconductor device
US20110083965A1 (en) Electrolyte Concentration Control System for High Rate Electroplating
TW200302295A (en) Electroless deposition apparatus
US20080124924A1 (en) Scheme for copper filling in vias and trenches
KR100873504B1 (en) Deposition Method and Deposition Apparatus and Storage Media
JP2001073157A (en) Electroless plating method and device therefor
TW200422421A (en) Method of forming a metal layer over a patterned dielectric by electroless deposition using a catalyst
US20090107846A1 (en) Method and apparatus to prewet wafer surface for metallization from electrolyte solutions
JP5917297B2 (en) Plating treatment method, plating treatment apparatus, and storage medium
CN101459050A (en) Method and apparatus for metallic layer front wafer surface presoaking for electrochemical or chemical deposition
TW200918685A (en) Method and apparatus to prewet wafer surface for metallization from electrolyte solutions
US10903081B2 (en) Substrate processing method
US9295167B2 (en) Method to prewet wafer surface
US20170167029A1 (en) Substrate processing apparatus, substrate processing method and recording medium
JP5214092B2 (en) Method for forming a metal layer on an insulator patterned by electroless plating using a catalyst
TW201739946A (en) Ruthenium metal deposition method for electrical connections
KR102052131B1 (en) Plating device, plating method, and storage medium
WO2021039432A1 (en) Substrate liquid-treatment method, substrate liquid-treatment device, and computer-readable recording medium
Yamada et al. Low temperature copper-copper quasi-direct bonding with ultrathin platinum intermediate layer using atomic layer deposition
US20080233705A1 (en) Method for selectively forming electric conductor and method for manufacturing semiconductor device