TW200918336A - Ink pressure regulator with improved liquid retention in regulator channel - Google Patents

Ink pressure regulator with improved liquid retention in regulator channel Download PDF

Info

Publication number
TW200918336A
TW200918336A TW097102203A TW97102203A TW200918336A TW 200918336 A TW200918336 A TW 200918336A TW 097102203 A TW097102203 A TW 097102203A TW 97102203 A TW97102203 A TW 97102203A TW 200918336 A TW200918336 A TW 200918336A
Authority
TW
Taiwan
Prior art keywords
ink
chamber
liquid
pressure
wet
Prior art date
Application number
TW097102203A
Other languages
Chinese (zh)
Other versions
TWI430893B (en
Inventor
John Douglas Peter Morgan
Miao Wang
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Publication of TW200918336A publication Critical patent/TW200918336A/en
Application granted granted Critical
Publication of TWI430893B publication Critical patent/TWI430893B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17556Means for regulating the pressure in the cartridge

Landscapes

  • Ink Jet (AREA)

Abstract

There is provided an ink pressure regulator for regulating a hydrostatic pressure of ink supplied to an inkjet printhead. The regulator comprises: an ink chamber having an ink outlet for fluid communication with the printhead via an ink line; an air inlet; a regulator channel having a first end communicating with the air inlet and a second end communicating with a headspace of the chamber, the second end defining a bubble outlet; and a wetting system for maintaining at least some liquid in the regulator channel, thereby ensuring that air entering the headspace first passes through the liquid. The wetting system comprises a first wetting chamber connected to the first end, a second wetting chamber connected to the second end, and a liquid-retaining structure positioned in the second wetting chamber. The regulator channel, the first wetting chamber, the second wetting chamber and the liquid-retaining structure are all in fluid communication with each other. The regulator channel is dimensioned to control a Laplace pressure of air bubbles drawn from the bubble outlet as result of supplying ink to the printhead, thereby regulating a hydrostatic pressure of the ink.

Description

200918336 九、發明說明 【發明所屬之技術領域】 本發明關於一種用於噴墨印表機的壓力規制器,其主 要發展用於在墨水供給系統中產生負流體靜力學壓力,以 將墨水供給至列印頭噴嘴。 【先前技術】 上述交互參考文件中所述的噴墨列印頭通常包括陣列 噴嘴’每一噴嘴具有結合的墨水噴射致動器,用於從噴嘴 開口噴射墨水,該噴嘴開口界定在噴嘴腔室的頂部中。來 自墨水匣或其他儲存庫的墨水被饋給至腔室,噴射致動器 在該等腔室迫使墨水液滴經過墨水開口以列印。墨水匣通 常是在噴墨印表機內可更換可消耗。 藉由每滴噴射後的吸力和藉由具有親水性表面(例如 二氧化矽表面)之墨水供給通道的毛細作用,墨水可被拉 入每一噴嘴腔室。在非作用期間,固定(pin)在每一噴 嘴開口之整個邊緣的彎月面之表面張力,墨水被保留在噴 嘴腔室內。如果不控制墨水壓力,則可能因爲墨水的熱膨 脹、或因爲傾斜或翻倒印表機致墨水升高至噴嘴的位準之 上,而使墨水壓力變成相對於外部大氣壓力爲正壓力。此 情況中的墨水會溢至列印頭表面上。再者,在列印作用期 間,供給經過墨水供給通道的墨水具有動量,該動量足以 在停止列印時,使墨水湧出噴嘴並氾濫列印頭面。在任何 情景都不想要列印頭面氾濫。 -5- 200918336 爲了解決此問題’許多列印頭墨水供給系統的設計是 使墨水的流體靜力學壓力小於大氣壓力。此造成噴嘴開口 的整隔彎月面呈凹面或被向內拉。在非作用期間,彎月面 被固定在噴嘴開口,且墨水不能自由地流出噴嘴。再者, 使墨水湧出所致的面氾濫降到最少。 腔室內負壓力的量被二因素所限制。負壓力不能大到 足以使腔室反向供給(de-prime ;亦即從腔室吸出墨水且 向匣回流)。但是如果負壓太小,則噴嘴會洩漏墨水至列 印頭面,尤其是如果列印頭被搖動的話。除了需要一些形 式矯正(例如列印頭維護或再注入)的此二災難事件外, 次佳的流體靜力學墨水壓力通常會在列印期間造成陣列影 像瑕疵,該瑕疵具有看得到的列印品質喪失。因此,噴墨 印表機可具有流體靜力學墨水壓力之相對狹窄的視窗,其 必須藉由墨水供給系統中之壓力規制器而達成。 通常將墨水匣設計成合倂一些裝置,以規制從墨水匣 供給之墨水的流體靜力學壓力。爲了建立負壓力,一些匣 使用可撓袋設計。匣的一部分具有可撓袋或壁區段,其被 偏壓朝向增加墨水儲存容積。USSN 1 1/0 1 4764 (我們的檔 案:RRB 001US ) m USSN 1 1/〇 1 4 7 6 9 (我們的檔案:RRC 00 1US)(列在上文交叉參考文件中)是此類型匣的例子 。這些匣可提供負壓力,但是傾向依賴可撓袋中內部板彈 簧的優良製造公差。再者’可撓袋中之內部偏壓裝置的要 求,產生重要的製造難題。 圖24顯示藉由墨水E產生負墨水壓力的另一裝置。 -6- 200918336 一片發泡或多孔材料2設於匣1內之出口 3的上面’發泡 2具有吸飽墨水的區段4、和被墨水沾濕但未吸飽墨水的 區段5。匣1的頂部經由空氣曲徑7排氣至大氣。毛細作 用(以箭頭6代表)從吸飽區段4汲取墨水進入未吸飽區 段5,此作用持續到被增加之流體靜力學壓力的重量平衡 爲止、或被毛細作用6向上汲取之墨水“頭部”的重量平衡 爲止。因爲毛細作用進入未吸飽區段5,所以在吸飽區段 4頂部的流體靜力學壓力小於大氣壓力。流體靜力學壓力 從此處向出口 3的壓力遞增,且如果連接至列印頭(未示 ),流體靜力學壓力持續增加到向下至噴嘴開口爲止(假 設噴嘴開口是列印頭中最低點)。藉由設定吸飽發泡對未 吸飽發泡的比例,使得在噴嘴處之墨水流體靜力學壓力小 於大氣壓力,所以墨水彎月面會呈向內的形狀。 但是包含發泡插入件的墨水匣通常不適於使用申請人 之頁寬列印頭的高速列印(例如每1 - 2秒一頁的列印速率 ),該頁寬列印頭以1 6 〇 〇 d p i以下的速率列印。在此高速 印表機中,有大數目的噴嘴,其具有比傳統掃描印表機更 高的發射率(firing rate )。因此,來自匣的墨水流率比 掃描列印頭大很多。由發泡插入件所造成的流體阻力會使 墨水來不及供給噴嘴,且會減慢腔是再塡注率。孔愈多的 多孔發泡具有較小的流體阻力’但是也大幅地降低毛細作 用力。再者,精確的壓力控制需要對內部空洞尺寸做等量 地精確控制,此難以藉由隨機地形成大多發泡材料之空洞 構造而達成。因此,多孔發泡不被考慮做爲控制高墨水流 -7- 200918336 率之墨水壓力的可行裝置。 做爲具有整合壓力規制器之墨水匣的另一實施例(或 附加)’墨水供給系統可包含在列印頭和墨水儲存庫間之 墨水管線內的壓力規制器。本案申請人先前申請了美國第 US 11/293806 (代理人案號 RRD 011US,2005 年 12 月 5 日申請)和US 11/293842 (代理人案號RRD 008US,2005 年12月5日申請)申請號專利案,茲將該等內容倂入於 此做參考。該二案描述沿線的壓力規制器,其包含膜片和 偏壓結構此機構裝置用於在列印頭產生負流體靜力學墨水 壓力。但是此類型的機構壓力規制器具有對彈簧要求極度 精密製造公差的缺點,該彈簧依據膜面上游和下游之墨水 壓力的變動而反應打開或封閉膜片。實務上,此壓力控制 的機構系統,使得墨水供給系統難以將恆定負流體靜力學 墨水壓力維持在相對狹窄的壓力範圍內。 因此希望提供的壓力規制器,其適於將流體靜力學壓 力維持在相對狹窄之壓力範圍內。且進一步希望提供的壓 力規制器,其適於在相對高的墨水流率使用。也希望提供 的壓力規制器,其結構簡單且不須過多高精度公差製造的 運動零件。此外,希望提供的壓力規制器’其不會因爲溫 度循環期間的壓力變動而洩漏墨水。 【發明內容】 在第—方面,提供一種墨水壓力規制器’用於規制供 給至噴墨列印頭之墨水的流體靜力學壓力’該規制器包含 -8- 200918336 墨水腔室,具有用於經由墨水管線而流體連通於該列 印頭的墨水出口; 空氣入口; 規制器通道,具有連通於該空氣入口的第一端和連通 於該腔室之頭部空間的第二端,該第二端界定氣泡出口; 濕系統,用於維持至少一些液體在該規制器通道內, 藉此確保進入該頭部空間的空氣首先通過該液體;該濕系 統包含= 第一濕腔室,連接至該第一端; 第二濕腔室,連接至該第二端;和 液體保持構造,設置在該等濕腔室至少其中之一內, 使得該規制器通道、該第一濕腔室、該第二濕腔室、和該 液體保持構造,全部呈彼此流體連通; 其中設計該規制器通道的尺寸,以控制因供給墨水至 該列印頭而從該氣泡出口汲取之氣泡的拉普拉斯壓力,藉 此規制該墨水的流體靜力學壓力。 本發明使用氣泡點壓力規制,有利地提供對流體靜力 學墨水壓力的優良規制。流體靜力學墨水壓力可被控制爲 小於大氣壓力至少1 〇 mm H2 〇、小於大氣壓力至少2 5 mm H20、小於大氣壓力至少50 mm H20、或小於大氣壓力至 少1 00 mm H20。藉由設計規制器通道(和相關的氣泡出 口)的尺寸而達成壓力規制。例如規制器通道可具有小於 200微米、小於150微米、小於100微米、或小於75微米 200918336 的關鍵深度尺寸,以在列印期間獲得要求的流體靜力學墨 水壓力。 本發明特殊的優點在於:在壓力規制器的整個壽命期 間,規制器通道保持潮濕。藉由濕系統來達成此優點,該 濕系統包含第一濕腔室、第二濕腔室、和液體保持構造。 該液體通常是供給至列印頭之相同類型的墨水。 選擇性地,在使用期間,被濕系統保持的液體和墨水 腔室內所含的儲存庫墨水相隔離。 液體保持構造通常設置在第二濕腔室內。 選擇性地,建構該液體保持構造使得來自爆裂氣泡的 液體被該液體保持構造所擷取。因此,來自爆裂氣泡的液 體被保持在濕系統內,且不會經由頭部空間逃離進入墨水 本體。 選擇性地,該第二濕腔室是長形的,且該液體保持構 造沿著該第二濕腔室的長度延伸。此結構有利地促使氣泡 在第二濕腔室內爆裂,且藉由以體保持構造來保持氣泡內 的液體。 選擇性地,該液體保持構造和該頭部空間連通。選擇 性地,液體保持構造直接連通進入頭部空間。此配置有利 地促進藉由液體保持構造將飽和的墨水蒸汽侷限在頭部空 間內。再者,在運輸期間或當壓力規制器(其可爲墨水匣 )傾斜或翻倒時’墨水預備被傳輸至液體保持構造。此提 供有用的機構’濕系統可藉由此機構以墨水再補充。 選擇性地,該液體保持構造藉由毛細作用保持該液體 -10- 200918336 。可使用具有合適曲率之任何構造,以藉由毛細作用保持 液體。 選擇性地,該液體保持構造由界定在該第二濕腔室之 壁內的一或更多個液體保持洞所界定,該等液體保持洞連 通進入該頭部空間。 選擇性地,該液體保持構造由界定在該第二濕腔室之 壁內的複數槽所界定。該等槽可大致沿著第二濕腔室之整 個長度延伸,且連通進入頭部空間。 選擇性地,該液體保持構造是海綿。同樣地,海綿可 爲長形的且大致沿著第二濕腔室之整個長度延伸。海綿連 通進入頭部空間並在運輸期間或當壓力規制器傾斜或翻倒 時吸收墨水。 選擇性地,該液體保持構造包含界定在該第二濕腔室 之壁內的一或更多液體保持表面特徵。 選擇性地,該液體保持構造包含界定在該第二濕腔室 之壁內的複數溝。 選擇性地,該第一濕腔室經由該空氣入口連通至大氣 〇 選擇性地,該第二濕腔室具有連通進入該頭部空間的 孔。 選擇性地,該等濕腔室、該規制器通道、和該液體保 持構造,一起保持實質恆定量的液體。 選擇性地,建構每一濕腔室,使得液體被固定進入該 等濕腔室的邊緣區域,該等邊緣區域被連接至該規制器通 -11 - 200918336 道。 選擇性地’每一濕腔室被大致切成斜面,使得該等邊 緣區域包含以銳角相接的至少二腔室壁。 選擇性地,在閒置期間,正向加壓的頭部空間迫使液 體從該第二濕腔室傳輸至該第一濕腔室。 選擇性地,在該頭部空間內之正向加壓的空氣,首先 通過該液體,經由該空氣入口逃離。 選擇性地,該空氣入口、該規制器通道、和該濕系統 ,設置在該墨水腔室的頂部。此配置使得濕系統能保持的 液體量最大化,且也有利於將壓力規制器(其通常爲可更 換的墨水匣)安裝在印表機內。 選擇性地,該壓力規制器界定用於噴墨印表機的墨水 匣。 【實施方式】 具有圓形氣泡出口的壓力規制器 圖1顯示本發明最單純的形式,用以解釋壓力規制器 的作業原理。在圖1中所顯示的壓力規制器100,包含具 有墨水出口 102的墨水腔室101、和墨水入口 103。除此 以外,墨水腔室1 〇 1被密封。墨水出口 1 0 2用於將墨水 1 04經由墨水管線1 〇6供給至列印頭1 05。氣泡出口 1 07 經由空氣通道108連接至空氣入口 103。 當列印頭1 〇 5從墨水腔室1 01汲取墨水1 〇 4時,被移 位的墨水容積必須以等量的空氣來平衡,該空氣經由空氣 -12- 200918336 入口 103被汲入腔室內。位在墨水位準下面的氣泡出口 107,確保空氣以氣泡的形式進入腔室101內。氣泡出口 107的尺寸決定進入腔室101之氣泡109的尺寸。 如圖2所示,空氣通道1 0 8採取單純圓筒狀通道的形 式,所以氣泡出口 1 07被圓筒狀通道之一端的圓形開口所 界定。因此,任何通過通道的空氣必須在一些點被曲率半 徑不大於通道內徑之液體表面所限制。 在列印期間,列印頭1 05的噴嘴有效地當作泵,其以 每一滴噴射從墨水腔室1 〇 1汲取墨水。如果墨水腔室以空 氣開口自由地開放至大氣(如一些習知技藝的墨水匣中的 開口),則供給至列印頭之墨水的流體靜力學墨水壓力, 將單純地由墨水儲存庫在列印頭之上或之下的高度決定。 但是在墨水腔室101中,每次從腔室1 0 1汲取微小量的墨 水,必須克服形成在氣泡出口 1 0 7之氣泡1 0 9內側的壓力 。一旦噴嘴的泵吸效應產生足以和形成在氣泡出口 1 0 7之 氣泡1 09內側的壓力相匹敵的壓力,則氣泡可脫離而進入 墨水1 04的儲存庫內,且墨水可從腔室1 〇丨流經墨水出口 102 〇 因此’形成在氣泡出口 1 0 7之氣泡1 〇 9提供對抗列印 頭噴嘴之泵吸效應的背壓。換言之,氣泡出口 107的效應 是在墨水供給系統中產生負的流體靜力學墨水壓力。 球狀氣泡109內側的壓力由熟知的拉普拉斯(Laplace )方程式所決定: -13- 200918336 其中’· △ p是氣泡內側和墨水的壓力差; r是氣泡的內徑;和 T是墨水和空氣之介面的表面張力。 藉由改變氣泡出口 107的尺寸,可改變氣 寸。因此,氣泡出口 107的尺寸提供用於建立 頭105之墨水的預定負流體靜力學壓力之裝置 泡出口尺寸,藉由產生具有較高拉普拉斯壓力 ,而提供較大的負流體靜力學墨水壓力。 在上述壓力規制器1 0 〇內,空氣通道是小 (例如皮下注射針頭),其具有界定氣泡出口 開口。但是此設計的重要問題在於:圓形氣泡 有非常小的面積(具有約0.02平方毫米的等 易被墨水中的污物堵塞。因此希望增加氣泡出 積,以使其更堅固耐用,即使墨水內有污物。 具有槽狀氣泡出口的壓力規制器 如圖3 A所示,已改良設計的氣泡出口 110,其相對於圓形開口。槽具有長度尺寸L W。存在槽的氣泡109通常具有延伸整個槽長 端部(front )。如下文的說明,存在槽之氣泡 和氣泡的拉普拉斯壓力,主要是由寬度尺寸所 就非球狀氣泡而言,拉普拉斯壓力由下式 Δ P = 7 /ri + ϊ Ιχ2 泡1 0 9的尺 供給至列印 。較小的氣 的較小氣泡 孔徑的圓筒 1 〇 7的圓形 出口 107具 級),且容 口 107的面 107使用槽 和寬度尺寸 度的圓柱形 1 09的曲率 決定。 給定: -14- 200918336 其中·’ △ P是氣泡內側和墨水的壓力差; r i是氣泡的寬度尺寸; r2是氣泡的長度尺寸;和 r是墨水和空氣之介面的表面張力。 實務上,槽的長度比寬度大很多(Γ2 > > ri ),且存 在具有圓柱端部之槽的氣泡的拉普拉斯壓力變成: △ p 二 r /1^或 /w (因爲 w=2n) 因此可瞭解槽π 0的寬度是控制存在槽之氣泡1 09的 拉普拉斯壓力的唯一關鍵尺寸。 圖3 B顯示假設的情況,其中一片碎片1 1 1卡住槽 1 1 0。但是不像圓形開口的情況,槽1 1 0仍然可控制存在 槽之氣泡的關鍵曲率。具有圓柱形端部氣泡109仍然可存 在槽1 1 〇,如圖3 B所示。因此槽1 1 0仍然維持對流體靜 力學墨水壓力的優良控制,同時提供氣泡出口 1 0 7更堅固 耐用的設計。 至此所討論的實施例中,空氣通道1 〇 8的尺寸鏡射氣 泡出口 1 07的尺寸。此並非規制器的基本特徵,且事實上 可不利地影響規制器的功效,特別是在高流率的場合。空 氣固有的黏性會造成在空氣流道內的大幅流動阻抗或水利 學阻力。依據(Pouiseille’s )方程式,流率和管半徑r具 有r4的關係。因此,在具有非常小半徑的通道內,流動阻 抗的問題更嚴重。 在本發明中,氣泡出口 1 07的關鍵尺寸是選擇性地小 -15- 200918336 於約20 0微米、或選擇性地小於約150微米、選擇性地小 於約1 0 0微米、選擇性地小於約7 5微米、選擇性地小於 約50微米。氣泡出口的關鍵尺寸可選擇性地在10至50 微米、或15至40微米的範圍內。“關鍵尺寸”意指決定曲 率之氣泡出口的尺寸、和氣泡的拉普拉斯壓力。 此等尺寸需要提供所欲的負流體靜力學墨水壓力。就 相片尺寸的列印頭而言’該壓力選擇性地至少爲1 0 m m h2o、或選擇性地至少爲30 mm H2〇、或選擇性地至少爲 50 mm H20。就A4尺寸的列印頭而言’所欲的負流體靜 力學墨水壓力選擇性地至少爲1 0 0 m m H 2 0、或選擇性地 至少爲200 mm H20、或選擇性地至少爲3 00 mm H20。負 流體靜力學壓力可選擇性地在100至500 mmH2〇、或150 至450 mm H20的範圍內。 具有小於200微米寬度之空氣通道108,使進入通道 的空氣產生重要的流動阻抗。如果空氣不能以和墨水供給 至列印頭1 05相同的流率通過通道1 0 8,則在高列印速率 時會列印頭產生災難性的反向供給(de-prime )。 因此,希望建構空氣通道108,使得空氣通道的每一 橫截面大於氣泡出口 107的關鍵尺寸。所以就圖3A所示 的槽狀氣泡出口 107而言’空氣通道1〇8應該選擇性地使 每一橫截面尺寸大於槽110的寬度W。 但是重要的是’空氣通道108的容積不會太大。當列 印頭1 0 5閒置(i d 1 e )時’墨水藉由毛細作用在空氣通道 108上升。在氣泡109被拉進墨水腔室ι〇1之前,此墨水 -16- 200918336 容積必須被列印頭拉經空氣通道1 〇 8,且達到供列印的最 佳流體靜力學墨水壓力。因此’在閒置期間被毛細作用拉 進空氣通道108的墨水容積會被浪費,因爲其不能以最佳 列印品質列印。 墨水的毛細容積隨著空氣通道的半徑而增加。因此, 墨水通道1 〇 8的橫截面尺寸(例如半徑)不應選擇性地太 大’使得最大的毛細谷積超過約〇 · 1毫升的墨水’其爲有 效的墨水無益容積(dead volume)。選擇性地,空氣通道 內最大的墨水毛細容積小於約〇.〇8毫升、或選擇性地小 於0.0 5毫升、或選擇性地小於〇 · 〇 3毫升。 圖4顯示具有上述考慮之氣泡出口 207和空氣通道 208的墨水壓力規制器的另一實施例。壓力規制器200包 含具有墨水出口 202的墨水腔室201。墨水腔室201的一 側壁,由層狀空氣引入板2 1 0所界定,該板2 1 0包含第一 平面層211和第二平面層212。第一平面層211和第二平 面層212分別具有第一面211和第二面212。該第一面 211和第二面212共同界定空氣入口 203、空氣通道208、 和氣泡出口 207。空氣入口 203可選擇性地包含空氣過濾 器(未示),用以過濾被吸入墨水腔室2 Ο 1內的微粒。 墨水腔室20 1也包含單向壓力釋放閥219;在壓力規 制器200作業期間,單向壓力釋放閥2 1 9通常關閉。建構 閥2 1 9,以釋放墨水1 〇 4上方之頭部空間24 0內的任何正 壓力,該正壓力可例如起因於在典型的日/夜溫度變化期 間被侷限在頭部空間內之空氣量的熱膨脹。因爲該正壓力 -17- 200918336 迫使墨水在空氣通道208內上升且流出空氣出口’導致從 腔室20 1損失相當可觀的墨水’所以在頭部空間240內的 正壓力是不想要的。 參考圖6,空氣引入板210的第一層211具有貫穿界 定的空氣入口開口 213、和以槽的形式界定在第一面221 內的長形凹部2 1 4。長形凹部2 1 4從空氣入口開口 2 1 3延 伸至凹陷的終點區域,該凹陷的終點區域包含圓形凹部 2 1 6。相對於常形凹部2 1 4,該圓形凹部2 1 6具有相對淺的 深度。仍然參考圖6,第二層212具有貫穿界定的氣泡孔 開口 2 1 7。如從圖4、6所瞭解者,當第一面22 1和第二面 222層積在一起時,凹部和開口共同界定空氣入口 203、 空氣通道208、和氣泡出口 207。 圖5詳細地顯示空氣引入板210的氣泡出口區域220 。比長形凹部214還淺的圓形凹部216,在空氣通道216 內界定了限縮部218。藉由第一面22 1內之圓形凹部216 的深度所界定的限縮部218,界定了供氣泡出口 207用的 關鍵寬度尺寸。因此氣泡出口 207採取環形槽(slot)的 形式’且由第二層212之氣泡孔開口 217的圓周界定槽的 長度。 具有環形槽的優點是其使槽的長度最大化,藉以改善 氣泡出口 207對微粒污染的應付能力。具有相對深之長形 凹部2 1 4的優點是其使空氣通道1 08內的流動阻抗最小化 ’該空氣通道108由凹部214和第二面222共同界定。長 形凹部214通常具有0.2至1毫米或0.2至〇_5毫米範圍 -18- 200918336 內的深度、及〇·5至2毫米或ο.7至κ3毫米範圍內的寬 度。 仍然參考圖5,可看到氣泡孔開口 2 1 7的內面23 1傾 斜,以使氣泡脫離氣泡出口 207最佳化。 參考圖7,空氣引入板21〇之桌—層211可具有界疋 在第一層211內的壕溝230。壕溝230圍繞被界定在第一 層211內的構造特徵’且重要地保護長形凹部214和圓形 凹部216免受層積過程之黏劑的影響。在弟一面221和第 二面222之間任何過量黏劑的燈芯或毛細作用(wicking )都會被壕溝230擷取’因爲毛細作用只能將液體傳輸$ 入曾經減少尺寸的構造’而穿過壕溝的任何路徑包括增加 尺寸的區域。此防止空氣入口通道208或氣泡孔開口 207 的阻塞,空氣入口通道208和氣泡孔開口 207使由層積兩 層而界定。因此,壕溝230是有利於製造空氣引入板210 的構造特徵。 當然,應瞭解空氣引入板可採取許多不同的形式,且 可例如由超過二層狀層共同界定。圖8顯示由三層共同界 定的空氣引入開口 250。第一層251具有貫穿界定的空氣 入口開口 252;第二層25 3貫穿界定的氣泡孔開口 254; 且第三薄膜層255被夾在第一層和第二層之間。薄膜層 255具有貫穿界定的空氣通道開口 256,所以當三層被層 積在一起時,從空氣入口至氣泡出口界定有流體路徑。薄 膜層255的厚度界定空氣通道的深度、和在空氣通道終點 處之氣泡出口的關鍵尺寸。 -19- 200918336 下文之表1至表4顯示量測圖4至圖6所示之壓力規 制器200的流體靜力學墨水壓力。四個壓力規制器被建構 成具有不同之氣泡出口 207的關鍵尺寸。在各種流率進行 動態壓力量測,且藉由停止墨水流動而進行靜態壓力量測 。動態壓力損失是動派規制壓力和靜態規制壓力之間的 差。 表1-35微米氣泡出口 流率 (毫升/秒) 動態規制壓力 (mm H20) 靜態規制壓力 (mm H2O) 動態壓力損失 (mm H2O) 0.05 -203 -1 78 -25 0.04 -196 -175 -21 0.03 -194 -178 -16 0.02 -189 -173 -16 0.0 1 -1 85 -175 -1 0 0.005 -172 -1 65 -7 -1 74(平均) 表2-70微米氣泡出口 流率 (毫升/秒) 動態規制壓力 (mm H2〇) 靜態規制壓力 (mm H2O) 動態壓力損失 (mm H2 〇) 0.05 -11 〇 -84 -26 0.04 -104 -79 -25 0.03 -100 -84 -16 0.02 -9 1 -79 -1 2 0.0 1 -84 -83 -1 0.005 -80 -76 -4 -81 (平均) -20- 200918336 表3-105微米氣泡出口 流率 (毫升/秒) 動態規制壓力 (mm H2〇) 靜態規制壓力 (mm H2〇) 動態壓力損失 (mm H2O) 0.05 -65 -38 -27 0.04 -65 -44 -2 1 0.03 -56 -40 -1 6 0.02 -5 1 -38 -1 3 0.0 1 -43 -38 -5 0.005 -3 8 -36 -2 -39 (平均) 表4-140微米氣泡出口 流率 (毫升/秒) 動態規制壓力 (mm H2 〇) 靜態規制壓力 (mm H2O) 動態壓力損失 (mm H20) 0.05 -60 -32 -28 0.04 -56 -34 -22 0.03 -54 -36 -18 0.02 -5 1 -37 -1 4 0.01 -38 -34 -4 0.005 -34 -3 1 -3 -34 (平均) 單純藉由改變氣泡出口的尺寸,便可獲得優良的墨水 壓力控制。 再者,壓力量測確認了氣泡依據拉普拉斯方程式產生 。且發現平均靜態規制壓力遵循下列方程式: P = -0.0067/W +18.3 其中: P是以毫米水柱(mm H20 )表示的平均靜態規制壓力 -21 - 200918336 W以微米表示之氣泡出口的寬度;和 18.3是由於腔室內墨水位準產生的偏移壓力 代入拉普拉斯方程式第一項,計算墨水的表 爲3 3 . 5 mN/m。墨水的獨立表面張力量測和此經 字很密切地相關。 包含壓力規制器的墨水匣 如圖4所示,壓力規制器200包含墨水腔室 界定供列印頭用的墨水儲存庫。由於壓力規制器 易性和低成本製造,所以其可建構成供噴射印表 置換的墨水匣。因此,每次更換墨水匣時,也更 規制器。此設計的優點是避免了壓力規制器200 髒或阻塞,因爲在印表機的壽命期間,週期性地 規制器2 0 0。 連接至壓力規制器之可置換的墨水匣 在取代性的實施例中,壓力規制器可爲印表 性組件。在此取代性的實施例中,建構壓力規制 接可置換的墨水匣。因此在圖9所示的實施例中 制器200藉由一對連接器連接制可置換的墨水匣 水連接器2 8 1將墨水匣2 8 0的墨水供給埠2 8 2連 腔室2 0 1的墨水入口埠2 8 3。墨水供給部2 8 2和 水入口部283,分別設置在墨水匣280和墨水腔 底部附近,以使儲存在匣內之墨水104的使用最: 面張力r 計算的數 201,其 200的簡 機用之可 換了壓力 的長期弄 更換壓力 機的永久 器用於連 ,壓力規 2 8 0 ° 墨 接於墨水 對應的墨 室20 1的 大化。 -22- 200918336 設置等壓連接器2 8 5,使墨水腔室2 0 1之頭部空間 240和墨水匣280之頭部空間241內的壓力相等。對應的 等壓部2 8 6和2 8 7,分別設置在墨水腔室2 0 1和墨水匣 2 8 0的頂部附近。 當墨水匣280是空的時候,從墨水連接器281和等壓 連接器258拆除墨水匣280,並移離印表機。然後藉由相 反的過程,可將墨水匣安裝在印表機內。雖然只示意地顯 示在圖9內,但是可容易瞭解墨水匣280可具有合適的連 接埠282、2 8 7,建構連接埠2 82、2 8 7以在墨水匣安裝於 印表機內時,分別密封嚙合墨水連接器2 8 1和等壓連接器 2 8 5。適於此密封嚙合之連接埠,爲習知技藝所熟知。 如圖9所示,墨水入口埠283和等壓埠286被界定在 墨水腔室2 0 1的側壁中,該側壁和空氣引入板2 1 0相對。 但是,埠283和286當然也可被界定在空氣引入板210內 ,以簡化壓力規制器200的結構。 位在頭部空間內且具有墨水毛細供給的氣泡出口 在圖4所述的壓力規制器中,設置氣泡出口 207使氣 泡209進入墨水腔室201中所含的墨水104本體內。氣泡 出口 207通常設置在趨近腔室201底部,以使在最佳流體 靜力學壓力的墨水使用最大化,且空氣入口 20 3設置在趨 近腔室的頂部。此配置的問題在於:在閒置期間由於溫度 變化,藉此加熱頭部空間240內的空氣而增加頭部空間的 壓力,並迫使墨水沿著空氣通道20 8向上及從空氣入口 -23- 200918336 203出去,所以腔室201內所含的墨水l〇4可輕易地沿空 氣通道208向上並從空氣入口 20 3逃離。此溫度變化是不 可避免的,且會導致大量的墨水浪費。 如上所述,解決此問題的一種手段是將壓力釋放閥 2 1 9倂入墨水腔室2 0 1。建構此閥2 1 9以釋放頭部空間2 4 0 內的任何正壓力。但是此類型的閥大幅增加成本和壓力規 至器的複雜性。因此壓力釋放閥219使得壓力規制器200 較不易倂入拋棄式的墨水匣。 因此希望提供一種墨水壓力規制器,其在溫度變動期 間不會浪費墨水量,且不需壓力釋放閥,因此該墨水壓力 規制器較容易倂入拋棄式墨水匣。 圖1 0顯示墨水壓力規制器3 00,其滿足上述的準則。 墨水壓力規制器在設計上類似於圖4所示者,且仍然依賴 控制進入墨水腔室內之氣泡的拉普拉斯壓力。但是不像進 入腔室中所含墨水本體內的氣泡’此圖的氣泡是墨水本體 上方的頭部空間進入腔室內。,如下文將詳細說明的,此 設計使得閒置期間之頭部空間內任何過量的壓力,能夠從 空氣入口排出。 參考圖10 ’墨水壓力規制器3 00包含具有墨水出口 3 0 2的墨水腔室3 0 1。墨水腔室3 0 1的—側壁由層積的空 氣引入板310所界定;空氣引入板31〇包含第—平面層 311和第二平面層312;該第—平面層311和第二平面層 312共同界定空氣入口 303、氣泡出口 307、氣泡孔305、 空氣(或規制器)通道308、毛細通道315、和毛細入口 -24- 200918336 316。氣泡出口 307和氣泡孔305設置在腔室301內墨水 位準上方,所以氣泡3 0 9經由氣泡孔進入腔室的頭部空間 340。氣泡出口 307經由空氣通道308連接至空氣入口 303 。氣泡出口 307通常呈槽狀,且設計其關鍵尺寸以在墨水 被從墨水入口 3 02汲取時控制氣泡3 09的拉普拉斯壓力。 但是對照先前的實施例,氣泡3 0 9是藉由空氣穿過固 定在整個氣泡出口 307且鄰接氣泡孔305之墨水彎月面而 形成,如圖11所更清楚顯示者。從氣泡出口 307冒出之 如此形成的氣泡3 0 9,從氣泡孔3 0 5逃離並進入墨水腔室 301的頭部空間340。因爲空氣必須閬過墨水彎月面,所 以氣泡309由被侷限在一薄層墨水內側之空氣凹穴所界定 ,而不是被整個墨水本體所界定。儘管如此,仍然可獲得 如上所述的相同拉普拉斯壓力控制。 毛細入口 316提供腔室301內墨水104本體和毛細通 道3 1 5之間的流體連通,毛細通道3 1 5被界定在二層3 1 1 和3 1 2之間。建構毛細通道3 1 5以提供足夠的毛細壓力, 使得墨水柱3 04沿著通道上升到至少和氣泡出口 3 07 —樣 高,藉此確保藉由空氣闖經墨水彎月面而形成氣泡3 09。 毛細壓力足夠高,以在每一氣泡3 0 9排氣進入頭部空間 3 4 0以後,再於整個氣泡出口 3 0 7和氣泡孔3 0 5形成彎月 面。 如圖1 1、12所示,設計氣泡孔3 05的尺寸,使得墨 水柱304具有彎月面,該彎月面被表面張力固定在整個孔 。但是氣泡孔3 05不能太小’否則容易被微粒阻塞。已發 -25- 200918336 現直徑約1毫米等級的氣泡孔3 0 5較合適。 實務上’在閒至期間,當墨水腔室3 01隻頭部空間 3 40內沒有重要壓力時,墨水柱3 04上升至墨水出口 307 上方,且通常固定在空氣通道308的整個入口,如圖12 所示。 本實施例的重要優點示範在圖1 3。圖1 3顯示在閒置 期間,頭部空間340內建立正壓力的情況。增壓的空氣迫 使任何墨水離開空氣通道308,且空氣經由空氣入口 303 逃離腔室301。因此,當頭部空間340因溫度上升而增壓 時,只有微小量的墨水逃離腔室3 0 1。 本實施例的另一優點是:空氣通道308相對地短,藉 此使空氣通道內的任何流動阻抗最小化,且以最佳的壓力 控制允許來自腔室3 0 1的墨水高流率。因此避免了任何流 動阻抗問題(例如關於圖4實施例所述的問題)。 排氣進入頭部空間且和墨水本體隔離的氣泡出口 在關於圖1〇至14的上述實施例中,氣泡出口 307和 氣泡孔305設置在壓力歸志氣300的頭部空間340內。如 圖1 3所示,此配置有助於使因頭部空間之壓力變化而經 由空氣入口 3 0 3洩漏的墨水最小化。 但是即使壓力規制器3 00以此方式建構,仍然有結構 允許腔室3 0 1內的墨水藉由該結構而脫離。既然毛細通道 3 1 5提供空氣入口 3 03和墨水1 04本體之間的流體連通, 則墨水可能被正頭部空間壓力沿著毛細通道向上泵吸。如 -26- 200918336 果墨水被沿著毛細通道3 1 5向上泵吸,則將使圖1 3所示 的排氣結構無效,並且仍然產生大量的墨水損失。因此希 望提供墨水壓力規制器,藉此使因頭部空間內之溫度/壓 力變化而造成的墨水損失進一步最小化。 圖1 5至1 9顯示墨水壓力規制器4 0 0,其解決了經由 空氣入口產生墨水損失的問題。壓力規制器包含墨水腔室 40 1,其含有墨水1 04的儲存庫、和用於供給墨水至列印 頭的墨水出口 402。獲得類似上述實施例的壓力規制。因 此,具有預定拉普拉斯壓力的的氣泡,藉由闖經墨水的彎 月面而從氣泡出口離開,且排氣進入頭部空間4 4 0。但是 不像圖1 〇所示的實施例,在正常使用期間,氣泡出口和 空氣入口與腔室401內所含的墨水104本體相隔離。此確 保當壓力規制器400被使用在印表機內時,墨水損失最小 。在安裝於印表機之前(例如在運輸期間),可塞住腔室 40 1內的所有入口和出口埠,以防止墨水洩漏。 參考圖1 5,墨水腔室4 0 1的側壁由層積的空氣引入板 410所界定,該空氣引入板410包含第一和第二平面層 411、412。這些平面層共同界定第一和第二濕腔室450、 460。第一和第二濕腔室450、460藉由規制器通道互聯。 規制器通道415的一端界定氣泡出口 407,且因此設計關 鍵尺寸以控制從氣泡出口離開之氣泡的拉普拉斯壓力。 第一濕腔室450經由空氣入口 403連通大氣,而第二 濕腔室4 6 0經由孔4 0 5連通墨水腔室4 0 1的頭部空間4 4 0 -27- 200918336 第一和第二濕腔室45 0、460 —起保持恆定的液體( 通常是墨水)容積,且用於確保規制器通道415總是保持 潮濕° (在上述實施例中,此功能是由毛細通道3〗5執行 ° )當然’重要的是當規制器被要求進行列印作業時,規 制器通道4 1 5和氣泡出口 4 0 7從未乾掉,否則空氣可簡單 地流入頭部空間440內,且壓力規制器失效了。 墨水可經由規制器通道415在第一和第二濕腔室45 0 、460之間傳輸。因此,保持在第一和第二濕腔室45 0、 460中每一者內的墨水量,可依氣泡規制器400是否在列 印期間供給墨水至被連接的列印頭、或氣泡規制器是否閒 置而變化。 現在參考圖16,其顯示在閒置期間之規制器通道415 、第一濕腔室450、和第二濕腔室460的放大視圖。每一 濕腔室具有傾斜壁451、461。在第一濕腔室450內’壁 451朝向空氣入口 403傾斜;在第二濕腔室460中,壁 461朝向孔405傾斜。此傾斜(或切成斜面chamfering ) 確保墨水被保持在每一腔室內。墨水藉由表面張力而固疋 進入每一腔室的邊緣區域內,並在每一腔室的周圍形成墨 水環。保留在第一濕腔室450內的墨水第一環4 52 ’藉由 規制器通道4 1 5而與保留在第二濕腔室460內的墨水第二 環462呈流體連通。因此當第一環452的量減少時’第二 環4 62的量會對應地增加;反之亦然。如下文將更詳細地 說明,此第一和第二濕腔室45 0、460之間的墨水傳輸’ 使壓力規制器能達成壓力規制,而墨水浅漏最小彳匕° -28- 200918336 參考圖1 7,其顯示列印期間之規制器通道4 1 5和濕腔 室的放大視圖。連接至墨水出口 402之列印頭(未示)的 泵吸動作汲取空氣進入空氣入口 403。空氣將墨水從第一 濕腔室45 0向下推至規制器通道415並進入第二濕腔室 460。因此第二環462相對於第一環452的容積增加了。 在規制器通道415和第二濕腔室350交接處的氣泡出口 407處,形成氣泡409且氣泡409進入墨水的第二環462 。此氣泡藉由闖過第二環的彎月面,而逃離第二環462並 進入頭部空間4 4 0。氣泡4 0 9的曲率由規制器通道4 1 5的 尺寸決定,且因此藉由上述相同的結構來達成壓力規制。 參考圖18,顯示由於溫度上升導致頭部空間440被正 向加壓的情況。在此情況中,來自頭部空間4 4 0的空氣, 將第二濕腔室460的墨水向上推制規制器通道,並進入第 —濕腔室45 0。結果,被第一濕腔室45〇保持之墨水的第 一環452容積增加了。但是,第一濕腔室450大得足以容 納此增加的墨水容積,所以墨水不會從空氣入口 4 0 3逃離 。再者,藉由形成氣泡穿過墨水的第一環452,來自頭部 空間440的加壓空氣從空氣入口 4〇3排掉。以此方式,因 曰夜溫差或其他溫度波動所產生的墨水損失最小化或沒有 〇 蒸發代表一種結構(mechanism) ’其中被第一和第 二濕腔室保持的液體會喪失。但是因爲頭部空間440處於 墨水104本體和被保持在該等濕腔室內墨水兩者呈平衡的 狀態,所以經由蒸發而喪失的水’會藉由頭部空間內的水 -29- 200918336 汽而相對快速地回復。如果墨水腔室40 1不是空的話,則 頭部空間440總是具有趨近1 00%的濕度。 如果第一和第二濕腔室45 0、460能使用表面張力保 持一些量的液體,則第一和第二濕腔室450、460可具有 任何適合的結構。參考圖1 9,在平面視圖可看到,第一濕 腔室450爲大致圓形(即大致截頭圓錐),且第二濕腔室 460爲大致矩形(即大致截頭角錐)。經實驗發現,大致 截頭角錐形的第二濕腔室460特別有利於避免墨水損失。 上述的墨水壓力規制器400已界定用於噴墨列印頭的 墨水匣。在另一實施例中,包含有第一濕腔室450、規制 器通道415、和第二濕腔室460的壓力規制裝置,可分離 製造,然後適當地裝配至墨水匣。 應認知壓力規制器400的優點特徵構造是:壓力規制 組件和包含在墨水匣內之墨水儲存庫是流體學地隔離。 改良氣泡出口排氣進入頭部空間的強健性 上述壓力規制器400顯示良好的壓力規制性。再者, 濕腔室45 0、460確保規制器通道415保持潮濕且預備供 使用,即使在典型的日夜溫度循環之後也如此。但是重要 的是:壓力規制器在其整個使用壽命(可爲數個月)中維 持壓力規制。當受到嚴苛的溫度循環和墨水供給測試,仍 然看得到從濕腔室450、460損失一些液體。雖然這些填 失很小,但是如果壓力規制器使用太久而沒有更換,則壓 力規制器仍然可能故障。 -30- 200918336 經由空氣入口 403的蒸發,是液體損失的潛在原因。 液體損失的另一潛在原因來自在第二濕腔室460內爆裂的 氣泡。每當氣泡爆裂(在從墨水出口 4 0 2供給墨水期間) ,就從濕腔室移除顯微量的液體,如果該液體沒有被擷取 或回收進入濕腔室的話。 因此’本案的發明人已尋找對策,該對策解決這些議 題,以改善壓力規制器的整個壽命和強健性(robustness )。在已改善的壓力規制器中,第二濕腔室合倂有液體保 持構造。設置液體保持構造的優點有兩方面。第一優點是 該構造增加了被保持在該等濕腔室內的全部液體經。相較 於壓力規制器400,該液體容積可增加達至少5倍、1 〇倍 、或2 0倍’且系統內可能發生的任何液體損失因此不會 導致壓力規制的快速失效。第二個優點是:通常建構液體 保持構造以確保在第二濕腔室內氣泡爆裂所產生的任何液 體,會被擷取並回收進入濕系統。 液體保持構造通常藉由毛細作用來保持液體,且可採 取被界定在第二濕腔室之壁內的孔(例如槽)或表面構造 (例如溝)的形式。在另一實施例中,液體保持構造可採 取海綿的形式。 現在參考圖2〇 ’其顯示合倂有意體保持構造5 70之壓 力規制器5 00的特定實施例。壓力規制器包含墨水腔室 5 〇 1 (其含有墨水1 04的儲存庫)、和用於供給墨水至列 印頭(未示)的墨水出口 5 02。獲得和上述壓力規制器 4〇0相同的壓力規制。因此藉由闖經墨水的彎月面,具有 -31 - 200918336 預定拉普拉斯壓力的氣泡從氣泡出口 507離開,並排氣進 入頭部空間540。在正常的使用中,被濕系統(呈第一和 第二濕腔室5 5 0、5 60的形式)和規制器通道515保持的 墨水,會和腔室501內所含的墨水104本體相隔離。在安 裝在印表機內之前(例如在運輸期間),可塞住腔室501 內的全部入口和出口埠,以防止墨水洩漏。 如圖20所示,墨水腔室501的頂部由層積空氣引入 板51〇所界定,該空氣引入板510包含第一和第二平面層 511、512。在上述的壓力規制器400中,層積空氣引入板 5 10界定了墨水腔室501的側壁。但是,由於空氣引入板 5 1 0界定了墨水腔室5 0 1的頂部,所以濕腔室的容積會被 最大化1而不會影響能被儲存在墨水腔室內之墨水104的 量。界定頂部的空氣引入板5 1 〇也有利於在印表機內的安 裝。 空氣引入板510的平面層511和512共同界定第一和 第二濕腔室550和560。第一和第二濕腔室550和560藉 由規制器通道5 1 5戶連。規制器通道5 I 5的一端界定氣泡 出口 5 07,因此設計其關鍵尺寸以控制離開氣泡出口之氣 泡的拉普拉斯壓力。 第一濕腔室5 5 0經由空氣入口 5 03連通於大氣,而第 二濕腔室560經由孔505連通進入墨水腔室501的頭部空 間 4 4 0。 第一和第二濕腔室5 5 0、5 6 0 —起保持恆定的液體( 通常是墨水)容積,且用於確保規制器通道5 1 5總是保持 -32- 200918336 潮濕。當然,重要的是當規制器被要求進行列印作 規制器通道5 1 5和氣泡出口 5 07從未乾掉’否則空 單地流入頭部空間540內’且壓力規制器失效了。 墨水可經由規制器通道5 1 5在第一和第二濕腔 、560之間傳輸。因此,保持在第一和第二濕腔室 560中每一者內的墨水量,可依氣泡規制器500是 印期間供給墨水至被連接的列印頭、或氣泡規制器 置而變化。 因爲類似於壓力規制器400,所以可瞭解壓力 5 00以完全相同的方式達成壓力規制。再者,在 5 5 0和5 6 0之間的墨水傳輸,也類似地發生。關於 生此墨水傳輸的詳細說明,則參考上述圖1 6至18 應描述。 雖然壓力規制器400只依賴濕腔室450、460 側壁來將液體保持在其內,但是壓力規制器500具 第二濕腔室560,該長形第二濕腔室5 60合倂有液 構造5 70。液體保持構造5 70和規制器通道515內 呈流體連通,且因此提供用於補充因經由空氣入口 例如)蒸發而由規制器通道喪失之任何液體的儲存 者,當經由墨水出口 5 02供給墨水時,期待離開氣 5 07的氣泡在第二濕腔室5 60內爆裂。氣泡爆裂所 顯微量墨水,被液體保持構造570所接收,該液體 造570延伸第二濕腔腔室560的長度。因此,此墨 取並回收,以確保規制器通道5 1 5不會乾掉。 業時, 氣可簡 室550 55 0、 否在列 是否閒 規制器 濕腔室 如何發 和其對 的傾斜 有長形 體保持 的液體 5 03 ( 庫。再 泡出口 產生的 保持構 水被擷 -33- 200918336 如果液體保持構造5 7 0執行提供液體儲存庫和規制器 通道515流體連通的功能,則液體保持構造57〇可採用許 多不同的形式。液體保持構造5 7 0通常藉由毛細作用保持 液體。 圖21至23是層512的上視圖,每一圖顯不液體保持 構造570的一種不同的形式。 在圖21中,液體保持構造570包含穿過層512的複 數洞871,該等洞571連通進入墨水腔室5 04的頭部空間 540(見圖20)。每一洞571呈長形槽’其具有足以藉由 毛細作用來保持液體的小寬度尺寸。被侷限在此等槽5 7 1 內的液體和規制器通道5 1 5相連通。 在圖22中,液體保持構造5 70包含複數凹穴或溝572 ,其界定在層512的表面內。每一溝572藉由毛細作用保 持液體,且和規制器通道5 1 5相連通。 在圖23中,液體保持構造570包含海綿5 73,其藉由 毛細作用保持液體。海綿可設置在層5 1 2之互補的凹部內 。在另一實施例中’海綿5 73可被支撐在接定於層512內 之互補槽中,所以海綿5 73的其中一表面接觸頭部空間 5 4 0。該後者之配置的優點是海綿5 7 3可將飽和的墨水蒸 汽侷限在頭部空間5 40內,且因此使海綿乾掉的可能性最 小化。當腔室5 0 1傾斜或翻倒時(例如在運輸期間發生) ,海綿5 73也可吸收墨水。同樣地,連通進入頭部空間 540之上述的槽571,執行相同的功能。 熟悉技藝人士可想像到藉由毛細作用保持液體之其他 -34- 200918336 形式的液體保持構造。基本上,具有弧形特徵的任何構造 都適合。 由於壓力規制器5 0 0的簡易性和低成本製造,所以其 建構成用於噴墨印表機之可置換的墨水匣。因此每次更換 匣時,也更換了壓力規制器。此設計的優點是:因爲在印 表機的使用壽命期間,週期性地更換壓力規制器5 00,所 以避免壓力規制器5 00長期沾污或阻塞。 當然,可瞭解到本發明純粹以例子的方式做描述,且 可在發明的範圍內做細節修飾。該發明的範圍是由所附的 請求項所界定。 【圖式簡單說明】 參考附圖描述本發明選擇性的實施例(僅以例子的方 式)。其中: 圖1是本發明具有針狀氣泡出口之壓力規制器的示意 側剖視圖; 圖2是圖1所示之氣泡出口的放大視圖; 圖3A是槽狀氣泡出口的示意透視圖; 圖3B圖3A的氣泡出口被碎片局部阻塞; 圖4是本發明具有槽狀氣泡出口之壓力規制器的示意 側剖視圖; 圖5是圖4所示之氣泡出口的放大視圖; 圖6是圖4所示空氣引入板的分解透視圖; 圖7是具有保護壕溝之另一實施例空氣引入板的透視 -35- 200918336 圖; 圖8是另一實施例三層空氣引入板的分解透視圖; 圖9是圖4所示之壓力規制器連接至分離的墨水匣之 示意側剖視圖; 圖1 〇是具有氣泡出口之壓力規制器的示意側剖視圖 ,設置該氣泡出口使氣泡闖入頭部空間,且毛細供給墨水 至氣泡出口; 圖11是圖1 0所示之氣泡出口在列印期間的放大視圖 * 圖1 2是圖1 0所示之氣泡出口在閒置期間的放大視圖 » 圖13是圖10所示之氣泡出口在頭部空間已被正向加 壓後排氣瞬間的放大視圖: 圖14是圖10所示空氣引入板的分解透視圖; 圖15是具有規制器通道用之流體學地隔離濕系統的 壓力規制器的示意側剖視圖; 圖1 6是圖1 5所示之規制器通道在閒置期間的放大視 圖; 圖1 7是圖1 5所示之規制器通道在列印期間的放大視 圖, 圖1 8是圖1 5所示之規制器通道在頭部空間被正向加 壓時的放大視圖; 圖1 9是圖1 5所示之壓力規制器的切除透視圖; 圖2 0疋/、有濕系統之壓力規制器的示意側剖視圖, -36- 200918336 該濕系統合倂有液體保持構造; 圖2 1是液體保持構造的頂視圖; 圖22是液體保持構造另一實施例的頂視圖; 圖23是液體保持構造又一實施例的頂視圖;和 圖24是習知墨水匣的示意側剖視圖,該習知墨水匣 合併有發泡插入件。 【主要元件符號說明】 1 :匣 2 :發泡 3 :出口 4 :吸飽區段 5 :未吸飽區段 6 :箭頭(毛細作用) 7 :空氣曲徑 100 :壓力規制器 1 0 1 :墨水腔室 1 0 2 :墨水出口 1 03 :空氣入口 1 0 4 :墨水 105 :列印頭 1 0 6 :墨水管線 1 0 7 :氣泡出口 1 08 :空氣通道 -37- 200918336 1 〇 9 :氣泡 1 1 0 :槽 1 1 1 :碎片 200 :壓力規制器 2 0 1 :墨水腔室 2 0 2 :墨水出口 203 :空氣入口 2 0 7 :氣泡出口 208 :空氣通道 2 0 9 :氣泡 210 :空氣引入板 21 1 :第一(平面)層 212 :第二(平面)層 2 1 3 :空氣入口開口 2 1 4 :長形凹部 2 1 6 :圓形凹部 2 1 7 :氣泡孔開口 2 1 8 :限縮部 2 1 9 :壓力釋放閥 220:氣泡出口區域 2 2 1 :第一面 222 :第二面 2 3 0 :壕溝 23 1 :內面 -38- 200918336 240 :(墨水腔室之)頭部空間 241 :(墨水匣之)頭部空間 2 50 :空氣引入板 25 1 :第一層 252:空氣入口開口 2 5 3 :第二層 2 5 4 :氣泡出口開口 2 5 6 :空氣通道開口 2 8 0 :墨水匣 2 8 1 :墨水連接器 2 8 2 :墨水供給埠 2 8 3 :墨水入口埠 2 8 5 :等壓連接器 2 8 6 :等壓埠 2 8 7 :等壓埠 3 0 0 :壓力規制器 3 0 1 :墨水腔室 3 0 2 :墨水出口 3 03 :空氣入口 3 0 4 :墨水柱 3 0 5 :氣泡孔 3 0 7 :氣泡出口 3 08 :空氣通道 3 0 9 :氣泡 -39- 200918336 3 1 0 :空氣引入板 311 :第一(平面)層 312 :第二(平面)層 3 1 5 :毛細通道 3 1 6 :毛細入口 4 0 0 :壓力規制器 4 0 1 :墨水腔室 4 0 2 :墨水出口 40 3 :空氣入口 4 0 5 :氣泡孔 4 0 7 :氣泡出口 409 :氣泡 4 1 0 :空氣引入板 411:第一(平面)層 412 :第二(平面)層 4 1 5 :規制器通道 4 4 0 :頭部空間 4 5 0 :第一濕腔室 4 5 1 :傾斜壁 452 :第一環 460 :第二濕腔室 4 6 1 :傾斜壁 462 :第二環 463 :彎月面 -40 200918336 5 00 : 501 : 5 02 : 5 03 : 5 05 : 5 07 : 5 10·· 5 11: 5 12: 5 15: 540 : 5 5 0 : 5 60 : 5 70 : 5 7 1: 5 72 : 5 73 : 壓力規制器 墨水腔室 墨水出口 空氣入口 孔 氣泡出口 空氣引入板 第一(平面)層 第二(平面)層 規制器通道 頭部空間 第一濕腔室 第二濕腔室 液體保持構造 洞 溝 海綿 L :長度尺寸 W :寬度尺寸200918336 IX. INSTRUCTIONS OF THE INVENTION [Technical Field] The present invention relates to a pressure regulator for an ink jet printer that is mainly developed for generating a negative hydrostatic pressure in an ink supply system to supply ink to Print head nozzle. [Prior Art] The inkjet printhead described in the above cross-referenced document generally includes an array of nozzles 'each nozzle having a combined ink ejection actuator for ejecting ink from a nozzle opening, the nozzle opening being defined in the nozzle chamber In the top. Ink from the ink cartridge or other reservoir is fed to the chamber where the ejection actuator forces ink droplets through the ink opening for printing. Ink cartridges are typically replaceable and consumable in inkjet printers. The ink can be drawn into each of the nozzle chambers by the suction force after each drop and by the capillary action of the ink supply passage having a hydrophilic surface such as a ceria surface. During the inactive period, the surface tension of the meniscus at the entire edge of each nozzle opening is pinned, and the ink is retained in the nozzle chamber. If the ink pressure is not controlled, the ink pressure may become a positive pressure with respect to the external atmospheric pressure because of the thermal expansion of the ink or because the ink is raised to the level of the nozzle by tilting or tipping the printer. The ink in this case will spill over the surface of the print head. Further, during the printing operation, the ink supplied through the ink supply path has a momentum sufficient to cause the ink to flow out of the nozzle and flood the printing head surface when the printing is stopped. In any situation, you don't want to print the head. -5- 200918336 To solve this problem, many printhead ink supply systems are designed to make the hydrostatic pressure of the ink less than atmospheric pressure. This causes the entire meniscus of the nozzle opening to be concave or pulled inward. During the inactive period, the meniscus is fixed to the nozzle opening, and the ink does not flow freely out of the nozzle. Moreover, the surface flooding caused by the ink rushing is minimized. The amount of negative pressure in the chamber is limited by two factors. The negative pressure should not be large enough to reverse the chamber (de-prime; that is, the ink is sucked from the chamber and returned to the crucible). However, if the negative pressure is too small, the nozzle will leak ink to the print head face, especially if the print head is shaken. In addition to these two catastrophic events that require some form of correction (such as printhead maintenance or refilling), the second best hydrostatic ink pressure typically causes an array image defect during printing, which has a visible print quality. Lost. Thus, an ink jet printer can have a relatively narrow window of hydrostatic ink pressure that must be achieved by a pressure gauge in the ink supply system. Ink cartridges are typically designed to incorporate some means to regulate the hydrostatic pressure of the ink supplied from the ink cartridge. In order to create a negative pressure, some 匣 use a flexible bag design. A portion of the crucible has a flexible pocket or wall section that is biased toward increasing the ink storage volume. USSN 1 1/0 1 4764 (Our file: RRB 001US) m USSN 1 1/〇1 4 7 6 9 (our file: RRC 00 1US) (listed in the cross-reference document above) is of this type example. These weirs provide negative pressure but tend to rely on the excellent manufacturing tolerances of the inner panel springs in the flexible bag. Furthermore, the requirements of internal biasing devices in flexible bags create important manufacturing challenges. Figure 24 shows another device for generating a negative ink pressure by ink E. -6- 200918336 A piece of foamed or porous material 2 is provided on the upper side of the outlet 3 in the crucible 1 'foaming 2' has a section 4 in which the ink is saturated, and a section 5 which is wetted by the ink but does not absorb the ink. The top of the crucible 1 is vented to the atmosphere via the air meandering 7. Capillary action (represented by arrow 6) draws ink from the saturating section 4 into the non-sucking section 5, which continues until the weight balance of the increased hydrostatic pressure, or the ink drawn up by the capillary action 6 The weight of the head is balanced. Since the capillary action enters the unsaturated section 5, the hydrostatic pressure at the top of the saturated section 4 is less than atmospheric pressure. The hydrostatic pressure is increased from here to the pressure at the outlet 3, and if connected to a print head (not shown), the hydrostatic pressure continues to increase down to the nozzle opening (assuming the nozzle opening is the lowest point in the print head) . By setting the ratio of the full foaming to the unfilled foaming, the ink hydrostatic pressure at the nozzle is less than the atmospheric pressure, so the ink meniscus will have an inward shape. However, ink cartridges containing foamed inserts are generally not suitable for high speed printing using the applicant's page wide print head (e.g., print rate per 1 - 2 second page), which is 1 6 inch wide. Print at a rate below 〇dpi. In this high speed printer, there are a large number of nozzles that have a higher firing rate than conventional scanning printers. Therefore, the ink flow rate from the crucible is much larger than that of the scanning print head. The fluid resistance caused by the foamed insert will make the ink less accessible to the nozzle and slow down the chamber. The more porous the pores have less fluid resistance, but the capillary action is also greatly reduced. Furthermore, precise pressure control requires an equal amount of precise control of the internal void size, which is difficult to achieve by randomly forming a void structure of most foamed materials. Therefore, porous foaming is not considered as a viable device for controlling the ink pressure of high ink flow rates. Another embodiment (or additional) as an ink cartridge having an integrated pressure gauge' can provide a pressure gauge within the ink line between the printhead and the ink reservoir. The applicant of the case has previously applied for US No. 11/293806 (Attorney Docket No. RRD 011US, Application on December 5, 2005) and US 11/293842 (Attorney Case No. RRD 008US, Application on December 5, 2005) Patent No., the contents of which are incorporated herein by reference. The second case describes a pressure gauge along the line that includes a diaphragm and a biasing mechanism for generating a negative hydrostatic ink pressure at the printhead. However, this type of mechanical pressure regulator has the disadvantage of requiring extremely precise manufacturing tolerances on the spring that react to open or close the diaphragm depending on variations in ink pressure upstream and downstream of the membrane surface. In practice, this pressure controlled mechanism system makes it difficult for the ink supply system to maintain a constant negative hydrostatic ink pressure within a relatively narrow pressure range. It is therefore desirable to provide a pressure regulator that is adapted to maintain hydrostatic pressure within a relatively narrow pressure range. It is further desirable to provide a pressure regulator that is suitable for use at relatively high ink flow rates. It is also desirable to provide a pressure gauge that is simple in construction and does not require excessively high precision tolerances for the manufacture of moving parts. Furthermore, it is desirable to provide a pressure regulator that does not leak ink due to pressure variations during temperature cycling. SUMMARY OF THE INVENTION In a first aspect, an ink pressure regulator is provided for regulating hydrostatic pressure of ink supplied to an inkjet printhead. The controller comprises an ink chamber of -8-200918336, for An ink line in fluid communication with the ink outlet of the printhead; an air inlet; a regulator passage having a first end connected to the air inlet and a second end communicating with a head space of the chamber, the second end Defining a bubble outlet; a wet system for maintaining at least some of the liquid within the gauge passage, thereby ensuring that air entering the head space first passes through the liquid; the wet system includes = a first wet chamber connected to the first a second wet chamber connected to the second end; and a liquid retaining structure disposed in at least one of the wet chambers such that the gauge passage, the first wet chamber, the second a wet chamber, and the liquid retaining structure, all in fluid communication with each other; wherein the gauge channel is sized to control bubbles drawn from the bubble outlet by supplying ink to the printhead Laplace pressure, by this regulation of the ink hydrostatic pressure. The present invention advantageously uses a bubble point pressure gauge to provide excellent regulation of hydrostatic ink pressure. The hydrostatic ink pressure can be controlled to be less than atmospheric pressure of at least 1 〇 mm H2 〇, less than atmospheric pressure of at least 2 5 mm H20, less than atmospheric pressure of at least 50 mm H20, or less than atmospheric pressure of at least 100 mm H20. Pressure regulation is achieved by designing the dimensions of the regulator channels (and associated bubble outlets). For example, the gauge channel can have a critical depth dimension of less than 200 microns, less than 150 microns, less than 100 microns, or less than 75 microns 200918336 to achieve the desired hydrostatic ink pressure during printing. A particular advantage of the present invention is that the gauge passage remains wet throughout the life of the pressure regulator. This advantage is achieved by a wet system comprising a first wet chamber, a second wet chamber, and a liquid retaining configuration. The liquid is typically the same type of ink supplied to the printhead. Optionally, during use, the liquid held by the wet system is isolated from the reservoir ink contained within the ink chamber. The liquid retaining configuration is typically disposed within the second wet chamber. Optionally, the liquid retaining configuration is constructed such that liquid from the bursting bubble is drawn by the liquid retaining structure. Therefore, the liquid from the bursting bubble is held in the wet system and does not escape into the ink body via the head space. Optionally, the second wet chamber is elongate and the liquid retaining structure extends along the length of the second wet chamber. This configuration advantageously causes the bubble to burst within the second wet chamber and maintain the liquid within the bubble by the body holding configuration. Optionally, the liquid retaining structure is in spatial communication with the head. Optionally, the liquid retaining structure is in direct communication into the head space. This configuration advantageously facilitates the confinement of saturated ink vapor within the head space by the liquid retention configuration. Again, the ink preparation is transferred to the liquid holding configuration during transport or when the pressure regulator (which may be an ink cartridge) is tilted or tipped over. This provides a useful mechanism by which the wet system can be replenished with ink. Optionally, the liquid retaining structure retains the liquid by capillary action -10-200918336. Any configuration having a suitable curvature can be used to maintain the liquid by capillary action. Optionally, the liquid retaining formation is defined by one or more liquid retaining cavities defined within the wall of the second wet chamber, the liquid retaining holes communicating into the head space. Optionally, the liquid retaining formation is defined by a plurality of grooves defined in the wall of the second wet chamber. The slots may extend substantially the entire length of the second wet chamber and communicate into the head space. Optionally, the liquid retaining construction is a sponge. Likewise, the sponge can be elongate and extend generally along the entire length of the second wet chamber. The sponge communicates into the head space and absorbs ink during transport or when the pressure gauge is tilted or tipped over. Optionally, the liquid retaining formation comprises one or more liquid retaining surface features defined within the wall of the second wet chamber. Optionally, the liquid retaining formation comprises a plurality of grooves defined within the wall of the second wet chamber. Optionally, the first wet chamber is selectively connected to the atmosphere via the air inlet, the second wet chamber having a bore that communicates into the head space. Optionally, the wet chambers, the gauge passages, and the liquid holding configuration together maintain a substantially constant amount of liquid. Optionally, each wet chamber is constructed such that liquid is secured into the edge regions of the wet chambers that are connected to the gauge passages -11 - 200918336. Optionally, each of the wet chambers is substantially beveled such that the edge regions comprise at least two chamber walls that meet at an acute angle. Optionally, during idle periods, the positively pressurized head space forces liquid to be transferred from the second wet chamber to the first wet chamber. Optionally, positively pressurized air within the head space is first passed through the liquid and escapes through the air inlet. Optionally, the air inlet, the gauge passage, and the wet system are disposed on top of the ink chamber. This configuration maximizes the amount of liquid the wet system can hold and also facilitates the installation of a pressure regulator (which is typically a replaceable ink cartridge) in the printer. Optionally, the pressure regulator defines an ink cartridge for an ink jet printer. [Embodiment] Pressure Regulator with Circular Bubble Exit Figure 1 shows the simplest form of the invention for explaining the working principle of the pressure regulator. The pressure gauge 100 shown in Fig. 1 includes an ink chamber 101 having an ink outlet 102, and an ink inlet 103. In addition to this, the ink chamber 1 〇 1 is sealed. The ink outlet 1 0 2 is used to supply the ink 104 to the print head 105 via the ink line 1 〇6. The bubble outlet 1 07 is connected to the air inlet 103 via an air passage 108. When the print head 1 〇 5 draws ink 1 〇 4 from the ink chamber 101, the displaced ink volume must be equilibrated with an equal amount of air that is forced into the chamber via the air -12-200918336 inlet 103. . The bubble outlet 107, located below the ink level, ensures that air enters the chamber 101 in the form of bubbles. The size of the bubble outlet 107 determines the size of the bubble 109 entering the chamber 101. As shown in Fig. 2, the air passage 108 is in the form of a simple cylindrical passage, so that the bubble outlet 107 is defined by a circular opening at one end of the cylindrical passage. Therefore, any air passing through the passage must be limited at some point by the surface of the liquid having a radius of curvature no greater than the inner diameter of the passage. During printing, the nozzle of print head 105 effectively acts as a pump that draws ink from ink chamber 1 〇 1 with each drop of ink. If the ink chamber is freely open to the atmosphere with an air opening (such as an opening in some conventional ink cartridges), the hydrostatic ink pressure of the ink supplied to the print head will simply be in the ink reservoir. The height above or below the print head is determined. However, in the ink chamber 101, each time a small amount of ink is drawn from the chamber 1 0 1 , the pressure formed inside the bubble 1 0 9 of the bubble outlet 107 must be overcome. Once the pumping effect of the nozzle produces a pressure sufficient to match the pressure formed inside the bubble 109 of the bubble outlet 107, the bubble can escape and enter the reservoir of ink 104, and the ink can be emptied from the chamber 1 The helium flows through the ink outlet 102, so the bubble 1 〇9 formed at the bubble outlet 107 provides a back pressure against the pumping effect of the print head nozzle. In other words, the effect of the bubble outlet 107 is to create a negative hydrostatic ink pressure in the ink supply system. The pressure inside the spherical bubble 109 is determined by the well-known Laplace equation: -13- 200918336 where '· Δ p is the pressure difference between the inside of the bubble and the ink; r is the inner diameter of the bubble; and T is the ink Surface tension with the interface of air. The air volume can be changed by changing the size of the bubble outlet 107. Thus, the size of the bubble outlet 107 provides a device bubble exit size for establishing a predetermined negative hydrostatic pressure of the ink of the head 105, which provides a larger negative hydrostatic ink by creating a higher Laplace pressure. pressure. In the pressure regulator 10 〇 described above, the air passage is small (e.g., a hypodermic needle) having a bubble outlet opening defined therein. But the important problem with this design is that the circular bubble has a very small area (having about 0. 02 square millimeters are easily blocked by dirt in the ink. It is therefore desirable to increase the bubble buildup to make it more robust and durable, even if there is dirt inside the ink. Pressure Regulator with Grooved Bubble Outlet As shown in Figure 3A, the bubble outlet 110 has been modified to open with respect to the circular opening. The slot has a length dimension L W . The bubbles 109 in which the grooves are present typically have a length that extends the entire length of the trough. As explained below, there is a Laplace pressure of the bubble and the bubble of the groove, mainly from the non-spherical bubble of the width dimension, and the Laplace pressure is obtained by the following formula Δ P = 7 / ri + ϊ Ιχ 2 The 1 0 9 ruler is supplied to the print. Smaller bubbles of smaller gas The diameter of the cylinder 1 〇 7 has a circular outlet of 107 (step), and the face 107 of the port 107 is determined by the curvature of the groove and the width of the cylindrical 1 09. Given: -14- 200918336 where ·' △ P is the pressure difference between the inside of the bubble and the ink; r i is the width dimension of the bubble; r2 is the length dimension of the bubble; and r is the surface tension of the interface between the ink and the air. In practice, the length of the groove is much larger than the width (Γ2 >> ri ), and the Laplace pressure of the bubble with the groove at the end of the cylinder becomes: Δ p 2 r /1^ or /w (because w = 2n) It is therefore known that the width of the groove π 0 is the only critical dimension that controls the Laplace pressure of the bubble 109 in the presence of the groove. Figure 3B shows a hypothetical situation in which a piece of debris 1 1 1 catches the slot 1 1 0. However, unlike the case of a circular opening, the groove 110 can still control the critical curvature of the bubble in which the groove is present. The bubble 109 having the cylindrical end portion can still exist in the groove 1 1 〇 as shown in Fig. 3B. Therefore, the tank 110 maintains excellent control of the hydrostatic ink pressure while providing a more robust design of the bubble outlet 107. In the embodiment discussed so far, the size of the air passage 1 〇 8 mirrors the size of the bubble outlet 107. This is not an essential feature of the regulator and can in fact adversely affect the efficacy of the regulator, especially at high flow rates. The inherent viscosity of air can cause large flow impedance or hydraulic resistance in the air flow path. According to the (Pouiseille’s) equation, the flow rate and the tube radius r have a relationship of r4. Therefore, the problem of flow resistance is more serious in channels with very small radii. In the present invention, the critical dimension of the bubble outlet 107 is selectively small -15-200918336 to about 20 microns, or alternatively less than about 150 microns, selectively less than about 1000 microns, selectively less than About 75 microns, alternatively less than about 50 microns. The critical dimension of the bubble outlet can be selectively in the range of 10 to 50 microns, or 15 to 40 microns. "Key size" means the size of the bubble outlet that determines the curvature, and the Laplace pressure of the bubble. These dimensions need to provide the desired negative hydrostatic ink pressure. The pressure is selectively at least 10 m m h2o, or alternatively at least 30 mm H2 〇, or alternatively at least 50 mm H20, for a print-size print head. For an A4-size printhead, the desired negative hydrostatic ink pressure is selectively at least 100 mm H 2 0 , or alternatively at least 200 mm H20, or alternatively at least 300. Mm H20. The negative hydrostatic pressure can optionally be in the range of 100 to 500 mm H2 〇, or 150 to 450 mm H20. An air passage 108 having a width of less than 200 microns creates an important flow resistance to the air entering the passage. If air cannot pass through channel 1 0 8 at the same flow rate as the ink supply to print head 105, the print head will produce a catastrophic de-prime at high print rates. Therefore, it is desirable to construct the air passage 108 such that each cross section of the air passage is larger than the critical dimension of the bubble outlet 107. Therefore, with respect to the trough-like bubble outlet 107 shown in Fig. 3A, the 'air passages 1'8 should selectively make each cross-sectional dimension larger than the width W of the troughs 110. However, it is important that the volume of the 'air passage 108 is not too large. When the print head 1 0 5 is idle (i d 1 e ), the ink rises in the air passage 108 by capillary action. Before the bubble 109 is drawn into the ink chamber ι〇1, the volume of this ink -16- 200918336 must be pulled by the print head through the air passage 1 〇 8 and reach the optimum hydrostatic ink pressure for printing. Therefore, the ink volume that is pulled into the air passage 108 by capillary action during idle time is wasted because it cannot be printed with the optimum print quality. The capillary volume of the ink increases with the radius of the air passage. Therefore, the cross-sectional dimension (e.g., radius) of the ink channel 1 〇 8 should not be selectively too large 'so that the maximum capillary grain product exceeds about 〇 1 ml of ink' which is an effective ink dead volume. Optionally, the largest ink capillary volume in the air channel is less than about 〇. 〇 8 ml, or alternatively less than 0. 0 5 ml, or alternatively less than 〇 · 〇 3 ml. Figure 4 shows another embodiment of an ink pressure gauge having the bubble outlet 207 and air passage 208 contemplated above. The pressure regulator 200 includes an ink chamber 201 having an ink outlet 202. A side wall of the ink chamber 201 is defined by a layered air introduction plate 210, which includes a first planar layer 211 and a second planar layer 212. The first planar layer 211 and the second planar layer 212 have a first face 211 and a second face 212, respectively. The first face 211 and the second face 212 collectively define an air inlet 203, an air passage 208, and a bubble outlet 207. The air inlet 203 can optionally include an air filter (not shown) for filtering particles that are drawn into the ink chamber 2 Ο 1 . The ink chamber 20 1 also includes a one-way pressure relief valve 219; during operation of the pressure regulator 200, the one-way pressure relief valve 2 19 is normally closed. Valve 2 1 9 is constructed to release any positive pressure within the head space 240 above the ink 1 〇 4, which may be due, for example, to air confined within the head space during typical day/night temperature changes The amount of thermal expansion. Because the positive pressure -17-200918336 forces the ink to rise within the air passage 208 and the outflow air outlet 'causes considerable loss of ink from the chamber 20 1 ', a positive pressure within the head space 240 is undesirable. Referring to Fig. 6, the first layer 211 of the air introduction plate 210 has a through-defined air inlet opening 213, and an elongated recess 2 1 4 defined in the first surface 221 in the form of a groove. The elongated recess 2 1 4 extends from the air inlet opening 2 1 3 to the end region of the recess, the end region of the recess comprising a circular recess 2 16 . The circular recess 2 16 has a relatively shallow depth with respect to the normal recess 2 1 4 . Still referring to Figure 6, the second layer 212 has a cell aperture opening 21 17 that extends therethrough. As is understood from Figures 4 and 6, when the first face 22 1 and the second face 222 are laminated together, the recess and the opening collectively define an air inlet 203, an air passage 208, and a bubble outlet 207. FIG. 5 shows the bubble exit region 220 of the air introduction plate 210 in detail. A circular recess 216 that is shallower than the elongated recess 214 defines a constriction 218 within the air passage 216. The critical width dimension for the bubble exit 207 is defined by the constriction 218 defined by the depth of the circular recess 216 in the first face 22 1 . Therefore, the bubble outlet 207 takes the form of an annular groove and the length of the groove is defined by the circumference of the bubble opening 217 of the second layer 212. The advantage of having an annular groove is that it maximizes the length of the groove, thereby improving the ability of the bubble outlet 207 to cope with particulate contamination. The advantage of having a relatively deep elongate recess 2 1 4 is that it minimizes the flow impedance within the air passage 108. The air passage 108 is defined by the recess 214 and the second face 222 in common. The elongated recess 214 typically has a length of zero. 2 to 1 mm or 0. 2 to 〇_5 mm range -18- 200918336 depth, and 〇·5 to 2 mm or ο. Width in the range of 7 to κ 3 mm. Still referring to Fig. 5, it can be seen that the inner face 23 1 of the bubble opening 21 17 is inclined to optimize the bubble out of the bubble outlet 207. Referring to Fig. 7, the table 211 of the air introduction plate 21 may have a sulcus 230 bounded by the first layer 211. The gutter 230 surrounds the structural features defined within the first layer 211 and substantially protects the elongate recess 214 and the circular recess 216 from the adhesive of the lamination process. Any excess wicking wicking or wicking between the younger side 221 and the second side 222 will be captured by the sulcus 230 'because the capillary action can only transfer the liquid into the once reduced size structure' through the sulcus Any path includes an area of increased size. This prevents clogging of the air inlet passage 208 or the bubble opening 207, which is defined by the accumulation of two layers. Therefore, the sulcus 230 is a structural feature that facilitates the manufacture of the air introduction plate 210. Of course, it should be understood that the air introduction plate can take many different forms and can be defined, for example, by more than two layer layers. Figure 8 shows an air introduction opening 250 defined by three layers. The first layer 251 has a defined air inlet opening 252; the second layer 253 extends through the defined bubble opening 254; and the third film layer 255 is sandwiched between the first layer and the second layer. The film layer 255 has a defined air passage opening 256 so that when the three layers are stacked together, a fluid path is defined from the air inlet to the bubble outlet. The thickness of the film layer 255 defines the depth of the air passage and the critical dimension of the bubble outlet at the end of the air passage. -19- 200918336 Tables 1 to 4 below show the hydrostatic ink pressures of the pressure regulator 200 shown in Figs. 4 to 6. The four pressure gauges are constructed to have critical dimensions with different bubble outlets 207. Dynamic pressure measurement is performed at various flow rates and static pressure measurement is performed by stopping the flow of ink. Dynamic pressure loss is the difference between the dynamic regulation pressure and the static regulation pressure. Table 1-35 Microbubble Outlet Flow Rate (ml/sec) Dynamic Regulating Pressure (mm H20) Static Regulating Pressure (mm H2O) Dynamic Pressure Loss (mm H2O) 0. 05 -203 -1 78 -25 0. 04 -196 -175 -21 0. 03 -194 -178 -16 0. 02 -189 -173 -16 0. 0 1 -1 85 -175 -1 0 0. 005 -172 -1 65 -7 -1 74 (average) Table 2-70 micron bubble outlet flow rate (ml/sec) Dynamic regulation pressure (mm H2〇) Static regulation pressure (mm H2O) Dynamic pressure loss (mm H2 〇 0. 05 -11 〇 -84 -26 0. 04 -104 -79 -25 0. 03 -100 -84 -16 0. 02 -9 1 -79 -1 2 0. 0 1 -84 -83 -1 0. 005 -80 -76 -4 -81 (average) -20- 200918336 Table 3-105 Microbubble Outlet Flow Rate (ml/s) Dynamic Regulating Pressure (mm H2〇) Static Regulating Pressure (mm H2〇) Dynamic Pressure Loss ( Mm H2O) 0. 05 -65 -38 -27 0. 04 -65 -44 -2 1 0. 03 -56 -40 -1 6 0. 02 -5 1 -38 -1 3 0. 0 1 -43 -38 -5 0. 005 -3 8 -36 -2 -39 (Average) Table 4-140 μm bubble outlet flow rate (ml/s) Dynamic regulation pressure (mm H2 〇) Static regulation pressure (mm H2O) Dynamic pressure loss (mm H20) 0 . 05 -60 -32 -28 0. 04 -56 -34 -22 0. 03 -54 -36 -18 0. 02 -5 1 -37 -1 4 0. 01 -38 -34 -4 0. 005 -34 -3 1 -3 -34 (Average) Excellent ink pressure control can be achieved simply by changing the size of the bubble outlet. Furthermore, the pressure measurement confirms that the bubble is generated according to the Laplace equation. And found that the average static regulation pressure follows the following equation: P = -0. 0067/W +18. 3 where: P is the average static gauge pressure expressed in millimeters of water (mm H20 ) -21 - 200918336 W is the width of the bubble outlet in microns; and 18. 3 is because the offset pressure generated by the ink level in the chamber is substituted into the first item of the Laplace equation, and the calculated ink is 3 3 .  5 mN/m. The independent surface tension measurement of the ink is closely related to this script. Ink Cartridge Containing Pressure Regulator As shown in Figure 4, the pressure gauge 200 includes an ink reservoir defining an ink reservoir for the printhead. Due to the ease of pressure regulation and low cost manufacturing, it can be constructed to constitute an ink cartridge for displacement of the jet printer. Therefore, the regulator is also changed each time the ink cartridge is replaced. The advantage of this design is that the pressure gauge 200 is prevented from being dirty or clogged because the gauge 200 is periodically periodically during the life of the printer. Displaceable Ink 连接 Connected to a Pressure Regulator In an alternative embodiment, the pressure regulator can be a printed component. In this alternative embodiment, the pressure gauge is constructed to replace the replaceable ink cartridge. Therefore, in the embodiment shown in FIG. 9, the maker 200 is connected to the replaceable ink sluice connector 2 8 1 by a pair of connectors to supply the ink of the ink cartridge 208 to the chamber 2 0 2 . 1 ink inlet 埠 2 8 3. The ink supply portion 282 and the water inlet portion 283 are respectively disposed near the ink cartridge 280 and the bottom of the ink chamber so that the ink 104 stored in the crucible is used most: the number 201 calculated by the surface tension r, and the simpleness of 200 The permanent device for replacing the press with a long-term changeable pressure is used for connection, and the pressure gauge 2 80 ° ink is connected to the ink chamber 20 1 corresponding to the ink. -22- 200918336 The equal pressure connector 2 8 5 is provided to equalize the pressure in the head space 240 of the ink chamber 210 and the head space 241 of the ink cartridge 280. Corresponding equal pressure portions 2 8 6 and 2 8 7 are respectively disposed near the tops of the ink chambers 20 1 and the ink cartridges 28 0 0 . When the ink cartridge 280 is empty, the ink cartridge 280 is removed from the ink connector 281 and the isobaric connector 258 and moved away from the printer. The ink cartridge can then be installed in the printer by the reverse process. Although only shown schematically in FIG. 9, it will be readily appreciated that the ink cartridge 280 can have suitable ports 282, 287, and ligatures 822 82, 287 to be used when the ink cartridge is mounted in the printer. The meshing ink connector 281 and the equal pressure connector 285 are sealed, respectively. Ports suitable for this sealing engagement are well known in the art. As shown in Fig. 9, the ink inlet port 283 and the isostatic pressure 286 are defined in the side walls of the ink chamber 210, which are opposed to the air introduction plate 210. However, the turns 283 and 286 can of course also be defined within the air introduction plate 210 to simplify the structure of the pressure regulator 200. The bubble outlet located in the head space and having the capillary supply of ink. In the pressure gauge described in Fig. 4, the bubble outlet 207 is provided to allow the bubble 209 to enter the body of the ink 104 contained in the ink chamber 201. The bubble outlet 207 is typically disposed near the bottom of the chamber 201 to maximize ink usage at the optimum hydrostatic pressure and the air inlet 203 is disposed near the top of the chamber. The problem with this configuration is that the air in the head space 240 is heated during idle periods to increase the pressure in the head space and force the ink up and down the air passage 20 8 from the air inlet -23- 200918336 203 Going out, the ink 〇4 contained in the chamber 201 can easily escape upward along the air passage 208 and escape from the air inlet 203. This temperature change is unavoidable and can result in a large amount of ink wasted. As described above, one means of solving this problem is to pry the pressure relief valve 2 1 9 into the ink chamber 2 0 1 . This valve 2 1 9 is constructed to relieve any positive pressure within the headspace 2400. However, this type of valve adds significantly to the cost and complexity of the pressure gauge. Therefore, the pressure relief valve 219 makes it easier for the pressure gauge 200 to break into the disposable ink cartridge. It is therefore desirable to provide an ink pressure regulator that does not waste ink during temperature fluctuations and does not require a pressure relief valve, so that the ink pressure gauge is more susceptible to break into the disposable ink cartridge. Figure 10 shows an ink pressure gauge 3 00 that satisfies the above criteria. The ink pressure regulator is similar in design to that shown in Figure 4 and still relies on controlling the Laplace pressure of the bubbles entering the ink chamber. However, unlike the bubble inside the ink contained in the chamber, the bubble in this figure is the head space above the ink body entering the chamber. As will be explained in more detail below, this design allows any excess pressure in the headspace during idle periods to be expelled from the air inlet. Referring to Figure 10, the ink pressure gauge 3 00 includes an ink chamber 301 having an ink outlet 300. The sidewall of the ink chamber 310 is defined by the laminated air introduction plate 310; the air introduction plate 31 includes a first planar layer 311 and a second planar layer 312; the first planar layer 311 and the second planar layer 312 Air inlet 303, bubble outlet 307, bubble aperture 305, air (or gauge) channel 308, capillary channel 315, and capillary inlet-24-200918336 316 are collectively defined. The bubble outlet 307 and the bubble aperture 305 are disposed above the ink level in the chamber 301, so the bubble 309 enters the head space 340 of the chamber via the bubble aperture. The bubble outlet 307 is connected to the air inlet 303 via an air passage 308. The bubble outlet 307 is generally slotted and is dimensioned to control the Laplace pressure of the bubble 3 09 as it is drawn from the ink inlet 302. However, in contrast to the previous embodiment, the bubble 3 0 9 is formed by air passing through the ink meniscus fixed to the entire bubble outlet 307 and adjacent to the bubble opening 305, as more clearly shown in FIG. The bubble 3 0 9, which is formed from the bubble outlet 307, escapes from the bubble hole 305 and enters the head space 340 of the ink chamber 301. Since the air must pass through the ink meniscus, the bubble 309 is defined by an air pocket that is confined to the inside of a thin layer of ink, rather than being defined by the entire ink body. Nevertheless, the same Laplace pressure control as described above can still be obtained. The capillary inlet 316 provides fluid communication between the body of the ink 104 within the chamber 301 and the capillary channel 315, and the capillary channel 315 is defined between the two layers 3 1 1 and 3 1 2 . The capillary channel 3 1 5 is constructed to provide sufficient capillary pressure to cause the ink column 304 to rise along the channel to at least as high as the bubble outlet 3 07, thereby ensuring that bubbles are formed by the air passing through the ink meniscus. . The capillary pressure is sufficiently high to form a meniscus at the entire bubble outlet 3 0 7 and the bubble hole 305 after each of the bubbles 390 enters the head space 340. As shown in Figs. 1 and 12, the size of the bubble hole 305 is designed such that the ink column 304 has a meniscus which is fixed to the entire hole by surface tension. However, the bubble holes 305 cannot be too small 'otherwise it is easily blocked by the particles. It has been issued -25- 200918336. The bubble hole of the diameter of about 1 mm is suitable. In practice, during the idle period, when there is no significant pressure in the head chamber 3 40 of the ink chamber, the ink column 34 rises above the ink outlet 307 and is usually fixed to the entire inlet of the air passage 308, as shown in the figure. 12 is shown. An important advantage of this embodiment is illustrated in Figure 13. Figure 13 shows the situation in which positive pressure is established within the headspace 340 during periods of inactivity. The pressurized air forces any ink to exit the air passage 308 and the air escapes the chamber 301 via the air inlet 303. Therefore, when the head space 340 is pressurized due to an increase in temperature, only a small amount of ink escapes from the chamber 3 0 1 . Another advantage of this embodiment is that the air passage 308 is relatively short, thereby minimizing any flow impedance within the air passage and allowing for high flow rates of ink from the chamber 310 with optimal pressure control. Therefore, any flow impedance problem (e.g., the problems described with respect to the embodiment of Fig. 4) is avoided. The bubble outlet into which the exhaust gas enters the head space and is isolated from the ink body. In the above embodiment with respect to Figs. 1A to 14, the bubble outlet 307 and the bubble hole 305 are disposed in the head space 340 of the pressure source 300. As shown in Figure 13, this configuration helps to minimize ink leakage through the air inlet 330 due to pressure changes in the head space. However, even if the pressure gauge 300 is constructed in this manner, there is still a structure that allows the ink in the chamber 310 to be detached by the structure. Since the capillary channel 3 15 provides fluid communication between the air inlet 3 03 and the body of the ink 104, the ink may be pumped up by the positive head space pressure along the capillary channel. For example, -26- 200918336 If the ink is pumped up along the capillary channel 3 1 5, the exhaust structure shown in Figure 13 will be rendered ineffective and still cause a large amount of ink loss. It is therefore desirable to provide an ink pressure regulator whereby the ink loss due to temperature/pressure changes in the head space is further minimized. Figures 15 through 19 show an ink pressure regulator 400 which solves the problem of ink loss via the air inlet. The pressure regulator includes an ink chamber 40 1 that contains a reservoir of ink 104 and an ink outlet 402 for supplying ink to the print head. Pressure regulation similar to the above embodiment was obtained. Therefore, the bubble having the predetermined Laplace pressure is separated from the bubble outlet by the meniscus passing through the ink, and the exhaust gas enters the head space 4500. However, unlike the embodiment shown in Fig. 1, the bubble outlet and air inlet are isolated from the body of ink 104 contained within chamber 401 during normal use. This ensures that ink loss is minimal when the pressure regulator 400 is used in a printer. Prior to installation in the printer (e.g., during shipping), all of the inlet and outlet ports within chamber 40 1 can be plugged to prevent ink leakage. Referring to FIG. 15, the side walls of the ink chamber 401 are defined by a laminated air introduction plate 410 that includes first and second planar layers 411, 412. These planar layers collectively define first and second wet chambers 450, 460. The first and second wet chambers 450, 460 are interconnected by a gauge channel. One end of the gauge passage 415 defines a bubble outlet 407 and is therefore designed to be critical in size to control the Laplace pressure of the bubble exiting the bubble outlet. The first wet chamber 450 is connected to the atmosphere via the air inlet 403, and the second wet chamber 410 is connected to the head space of the ink chamber 410 via the hole 4 0 5 4 0 -27- 200918336 first and second The wet chambers 45 0, 460 together maintain a constant liquid (usually ink) volume and are used to ensure that the gauge passage 415 is always kept moist (in the above embodiment, this function is performed by the capillary channel 3) ° ) Of course, it is important that when the controller is required to perform the printing operation, the regulator passage 4 1 5 and the bubble outlet 4 0 7 are never dried, otherwise the air can simply flow into the head space 440 and the pressure gauge failed. Ink can be transported between the first and second wet chambers 45 0 , 460 via the gauge passage 415 . Therefore, the amount of ink held in each of the first and second wet chambers 45 0, 460 can be supplied to the connected print head, or bubble regulator, depending on whether the bubble regulator 400 is printing during printing. Whether it is idle or change. Referring now to Figure 16, an enlarged view of the gauge passage 415, the first wet chamber 450, and the second wet chamber 460 during idle periods is shown. Each wet chamber has inclined walls 451, 461. In the first wet chamber 450, the wall 451 is inclined toward the air inlet 403; in the second wet chamber 460, the wall 461 is inclined toward the hole 405. This tilt (or chamfering) ensures that the ink is held in each chamber. The ink is solidified into the edge region of each chamber by surface tension and forms an ink ring around each chamber. The ink first ring 4 52 ' retained in the first wet chamber 450 is in fluid communication with the ink second ring 462 remaining in the second wet chamber 460 by the gauge passage 4 15 . Thus the amount of second ring 4 62 will increase correspondingly as the amount of first ring 452 decreases; vice versa. As will be explained in more detail below, the ink transfer between the first and second wet chambers 45 0, 460 enables the pressure gauge to achieve pressure regulation with minimal ink leakage 彳匕 -28 - 200918336 17. It shows an enlarged view of the regulator channel 4 15 and the wet chamber during printing. The pumping action of the print head (not shown) connected to the ink outlet 402 draws air into the air inlet 403. Air pushes the ink from the first wet chamber 45 0 down to the gauge passage 415 and into the second wet chamber 460. Thus the volume of the second ring 462 relative to the first ring 452 is increased. At the bubble exit 407 where the gauge channel 415 and the second wet chamber 350 meet, a bubble 409 is formed and the bubble 409 enters the second ring 462 of ink. This bubble escapes the second ring 462 and enters the head space 4 4 0 by licking the meniscus of the second ring. The curvature of the bubble 409 is determined by the size of the regulator channel 415, and thus the pressure regulation is achieved by the same structure as described above. Referring to Fig. 18, the case where the head space 440 is pressurized in the forward direction due to the temperature rise is shown. In this case, air from the head space 404 pushes the ink of the second wet chamber 460 up into the gauge passage and into the first wet chamber 45 0 . As a result, the volume of the first ring 452 of the ink held by the first wet chamber 45 is increased. However, the first wet chamber 450 is large enough to accommodate this increased ink volume so that the ink does not escape from the air inlet 410. Further, pressurized air from the head space 440 is discharged from the air inlet 4〇3 by forming a bubble through the first ring 452 of the ink. In this way, ink loss due to day or night temperature differences or other temperature fluctuations is minimized or no 蒸发 evaporation represents a mechanism where liquid held by the first and second wet chambers is lost. However, since the head space 440 is in a state in which the ink of the ink 104 and the ink held in the wet chambers are balanced, the water lost by evaporation will be caused by the water in the head space -29-200918336 Reply relatively quickly. If the ink chamber 40 1 is not empty, the head space 440 always has a humidity approaching 100%. The first and second wet chambers 450, 460 can have any suitable configuration if the first and second wet chambers 45 0, 460 can maintain a certain amount of liquid using surface tension. Referring to Figure 1, it can be seen in plan view that the first wet chamber 450 is generally circular (i.e., generally frustoconical) and the second wet chamber 460 is generally rectangular (i.e., generally frustoconical). It has been found experimentally that the substantially frustoconical second wet chamber 460 is particularly advantageous for avoiding ink loss. The ink pressure gauge 400 described above has defined an ink cartridge for an ink jet print head. In another embodiment, a pressure regulation device including a first wet chamber 450, a gauge passage 415, and a second wet chamber 460 can be separately fabricated and then properly assembled to the ink cartridge. It is appreciated that the advantageous feature of the pressure regulator 400 is that the pressure regulation assembly and the ink reservoir contained within the ink cartridge are fluidically isolated. Improving the robustness of the bubble outlet exhaust into the head space The pressure regulator 400 described above exhibits good pressure regulation. Again, the wet chambers 45 0, 460 ensure that the gauge passage 415 remains wet and ready for use, even after a typical day and night temperature cycle. But it is important that the pressure regulator maintains pressure regulation throughout its useful life (which can be several months). When subjected to severe temperature cycling and ink supply testing, it is still apparent that some liquid is lost from the wet chambers 450, 460. Although these losses are small, if the pressure regulator is used for too long without replacement, the pressure regulator may still malfunction. -30- 200918336 Evaporation via air inlet 403 is a potential cause of liquid loss. Another potential cause of liquid loss comes from bubbles that burst in the second wet chamber 460. Whenever the bubble bursts (during the supply of ink from the ink outlet 4 0 2), the microscopic amount of liquid is removed from the wet chamber if the liquid is not drawn or recycled into the wet chamber. Therefore, the inventors of the present case have sought countermeasures that solve these problems to improve the overall life and robustness of the pressure regulator. In the improved pressure regulator, the second wet chamber is combined with a liquid retaining configuration. There are two advantages to setting the liquid retention configuration. A first advantage is that the configuration increases the total liquid passage that is held within the wet chambers. The liquid volume can be increased by at least 5 times, 1 〇, or 20 times as compared to the pressure regulator 400 and any liquid loss that may occur within the system does not result in rapid failure of the pressure regulation. A second advantage is that a liquid retaining configuration is typically constructed to ensure that any liquid generated by bubble bursts in the second wet chamber is captured and recovered into the wet system. The liquid retaining configuration typically retains liquid by capillary action and may take the form of a hole (e.g., a groove) or a surface configuration (e.g., a groove) defined within the wall of the second wet chamber. In another embodiment, the liquid retaining configuration can take the form of a sponge. Referring now to Figure 2A', there is shown a particular embodiment of a pressure regulator 500 that incorporates a kinetic retention structure 570. The pressure regulator includes an ink chamber 5 〇 1 (which contains a reservoir of ink 104), and an ink outlet 5 02 for supplying ink to a print head (not shown). The same pressure regulation as the pressure regulator 4〇0 described above is obtained. Therefore, by the meniscus passing through the ink, the bubble having the predetermined Laplace pressure of -31 - 200918336 is separated from the bubble outlet 507, and the exhaust gas enters the head space 540. In normal use, the ink held by the wet system (in the form of the first and second wet chambers 505, 560) and the gauge channel 515 will interact with the bulk of the ink 104 contained within the chamber 501. isolation. Prior to installation in the printer (e.g., during shipping), all of the inlet and outlet ports within chamber 501 can be plugged to prevent ink leakage. As shown in Fig. 20, the top of the ink chamber 501 is defined by a laminated air introduction plate 51, which includes first and second planar layers 511, 512. In the pressure regulator 400 described above, the laminated air introduction plate 5 10 defines the side wall of the ink chamber 501. However, since the air introduction plate 510 defines the top of the ink chamber 510, the volume of the wet chamber is maximized by 1 without affecting the amount of ink 104 that can be stored in the ink chamber. The air inlet plate 5 1 界定 defining the top also facilitates installation in the printer. The planar layers 511 and 512 of the air introduction plate 510 collectively define first and second wet chambers 550 and 560. The first and second wet chambers 550 and 560 are connected by a regulator passage 51. One end of the regulator passage 5 I 5 defines a bubble outlet 5 07, so its critical dimension is designed to control the Laplace pressure of the bubble exiting the bubble outlet. The first wet chamber 505 is connected to the atmosphere via the air inlet 503, while the second wet chamber 560 is communicated via the aperture 505 into the head space 404 of the ink chamber 501. The first and second wet chambers 5 5 0, 5 6 0 together maintain a constant volume of liquid (usually ink) and are used to ensure that the regulator passage 5 15 always keeps -32 - 200918336 wet. Of course, it is important that when the controller is required to print as the regulator channel 5 1 5 and the bubble outlet 5 07 has never dried up - otherwise it flows into the head space 540 empty and the pressure regulator fails. Ink can be transported between the first and second wet chambers 560 via the gauge passage 5 15 . Thus, the amount of ink held in each of the first and second wet chambers 560 can vary depending on whether the bubble gauge 500 supplies ink to the connected printhead, or bubble regulation device during printing. Because it is similar to the pressure regulator 400, it can be appreciated that the pressure 500 achieves pressure regulation in exactly the same way. Furthermore, ink transfer between 550 and 560 also occurs similarly. For a detailed description of the transmission of this ink, reference should be made to Figures 16 to 18 above. Although the pressure gauge 400 relies only on the side walls of the wet chambers 450, 460 to hold the liquid therein, the pressure gauge 500 has a second wet chamber 560 that has a liquid configuration 5 70. The liquid retaining formation 5 70 is in fluid communication with the inside of the gauge passage 515 and thus provides a reservoir for replenishing any liquid lost by the regulator passage due to, for example, evaporation via an air inlet, when the ink is supplied via the ink outlet 502 It is expected that the bubble leaving the gas 5 07 bursts in the second wet chamber 5 60 . The bubble bursts the microscopic amount of ink that is received by the liquid holding structure 570 which extends the length of the second wet chamber 560. Therefore, this ink is taken and recovered to ensure that the regulator channel 5 15 does not dry out. In the industry, the gas can be easily opened in the room 550 55 0, whether in the column or not, how to make the wet chamber and the opposite of the inclined body with the long body to maintain the liquid 5 03 (Library. Re-bubble outlet to produce the water-contained bedding - 33- 200918336 If the liquid retention configuration 570 performs the function of providing fluid communication between the liquid reservoir and the regulator channel 515, the liquid retention configuration 57 can take many different forms. The liquid retention configuration 570 is typically maintained by capillary action. Figures 21 through 23 are top views of layer 512, each of which shows a different form of liquid retaining formation 570. In Figure 21, liquid retaining formation 570 includes a plurality of holes 871 through layer 512, the holes 571 communicates into the head space 540 of the ink chamber 504 (see Fig. 20). Each of the holes 571 is an elongated slot 'having a small width dimension sufficient to retain liquid by capillary action. Limited to such slots 5 The liquid within 7 1 is in communication with the regulator passage 5 15 . In Figure 22, the liquid retaining formation 5 70 includes a plurality of pockets or grooves 572 defined in the surface of the layer 512. Each groove 572 is acted upon by capillary action Keep liquid, and The regulator passages 5 15 are in communication. In Figure 23, the liquid retaining formation 570 includes a sponge 5 73 that retains liquid by capillary action. The sponge can be disposed within a complementary recess of the layer 51. In another embodiment The 'sponge 5 73 can be supported in a complementary groove defined in the layer 512, so one of the surfaces of the sponge 5 73 contacts the head space 504. The advantage of this latter configuration is that the sponge 5 7 3 can be saturated The ink vapor is confined within the headspace 540 and thus minimizes the likelihood of the sponge to dry out. When the chamber 510 is tilted or tipped over (e.g., during transport), the sponge 573 can also absorb ink. Similarly, the above-described slot 571 that communicates into the head space 540 performs the same function. A person skilled in the art can envision a liquid retaining configuration in the form of another -34-200918336 that retains liquid by capillary action. Basically, has an arc shape Any configuration of the features is suitable. Due to the simplicity and low cost manufacturing of the pressure regulator 500, it is constructed as a replaceable ink cartridge for an inkjet printer, so it is replaced every time the crucible is replaced. Pressure Force regulation. The advantage of this design is that since the pressure regulator 500 is periodically replaced during the life of the printer, the pressure regulator 500 is prevented from being contaminated or blocked for a long time. Of course, the invention can be understood. The description is made purely by way of example and may be modified within the scope of the invention. The scope of the invention is defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic side cross-sectional view of a pressure gauge having a needle-shaped bubble outlet of the present invention; Fig. 2 is an enlarged view of the bubble outlet shown in Fig. 1; Figure 3B is a schematic side cross-sectional view of the bubble outlet of the present invention having a grooved bubble outlet; Figure 5 is an enlarged side elevational view of the bubble outlet of Figure 4; Figure 6 is an exploded perspective view of the air introduction plate of Figure 4; Figure 7 is a perspective view of the air introduction plate of another embodiment having a protective gutter -35-200918336; Figure 8 is another embodiment three 9 is a schematic side cross-sectional view of the pressure gauge shown in FIG. 4 connected to a separate ink cartridge; FIG. 1 is a schematic side cross-sectional view of a pressure gauge having a bubble outlet, the bubble outlet is provided The bubble is trapped into the head space, and the capillary supplies ink to the bubble outlet; Fig. 11 is an enlarged view of the bubble outlet shown in Fig. 10 during printing. Fig. 12 is the bubble outlet shown in Fig. 10 during idle period. Amplified view» Fig. 13 is an enlarged view of the bubble outlet shown in Fig. 10 after the head space has been positively pressurized; Fig. 14 is an exploded perspective view of the air introduction plate shown in Fig. 10; A schematic side cross-sectional view of a pressure gauge for fluidly isolating the wet system for the gauge passage; Figure 16 is an enlarged view of the gauge passage shown in Figure 15 during idle; Figure 17 is a view of Figure 15. An enlarged view of the gauge channel during printing, Figure 18 is an enlarged view of the gauge channel shown in Figure 15 when the head space is positively pressurized; Figure 19 is the pressure regulation shown in Figure 15. Cutaway perspective view; Figure 2 0 /, a schematic side cross-sectional view of a pressure gauge having a wet system, -36-200918336 The wet system incorporates a liquid retaining configuration; Figure 21 is a top view of the liquid retaining configuration; Figure 22 is another embodiment of a liquid retaining configuration Figure 23 is a top plan view of yet another embodiment of a liquid retaining structure; and Figure 24 is a schematic side cross-sectional view of a conventional ink cartridge incorporating a foamed insert. [Main component symbol description] 1 : 匣 2 : Foam 3 : Exit 4 : Suction section 5 : Not saturated section 6 : Arrow (capillary action) 7 : Air meandering 100 : Pressure gauge 1 0 1 : Ink chamber 1 0 2 : Ink outlet 1 03 : Air inlet 1 0 4 : Ink 105 : Print head 1 0 6 : Ink line 1 0 7 : Bubble outlet 1 08 : Air passage -37- 200918336 1 〇9 : Air bubble 1 1 0 : tank 1 1 1 : chip 200 : pressure regulator 2 0 1 : ink chamber 2 0 2 : ink outlet 203 : air inlet 2 0 7 : bubble outlet 208 : air passage 2 0 9 : bubble 210 : air Introducing plate 21 1 : first (planar) layer 212 : second (planar) layer 2 1 3 : air inlet opening 2 1 4 : elongated recess 2 1 6 : circular recess 2 1 7 : bubble opening 2 1 8 : Restriction portion 2 1 9 : Pressure relief valve 220: Bubble outlet region 2 2 1 : First surface 222 : Second surface 2 3 0 : Groove 23 1 : Inner surface - 38 - 200918336 240 : (Ink chamber) Head space 241: (ink cartridge) head space 2 50: air introduction plate 25 1 : first layer 252: air inlet opening 2 5 3 : second layer 2 5 4 : bubble outlet opening 2 5 6 : air passage Opening 2 8 0 : Ink cartridge 2 8 1 : Ink connector 2 8 2 : Ink supply 埠 2 8 3 : Ink inlet 埠 2 8 5 : Isobaric connector 2 8 6 : Isobaric 埠 2 8 7 : Isobaric 埠 3 0 0 : Pressure regulator 3 0 1 : ink chamber 3 0 2 : ink outlet 3 03 : air inlet 3 0 4 : ink column 3 0 5 : bubble hole 3 0 7 : bubble outlet 3 08 : air passage 3 0 9 : bubble - 39- 200918336 3 1 0 : Air introduction plate 311 : First (planar) layer 312 : Second (planar) layer 3 1 5 : Capillary channel 3 1 6 : Capillary inlet 4 0 0 : Pressure regulator 4 0 1 : Ink Chamber 4 0 2 : ink outlet 40 3 : air inlet 4 0 5 : bubble hole 4 0 7 : bubble outlet 409 : bubble 4 1 0 : air introduction plate 411 : first (planar) layer 412 : second (planar) Layer 4 1 5 : Regulator passage 4 4 0 : head space 4 5 0 : first wet chamber 4 5 1 : inclined wall 452 : first ring 460 : second wet chamber 4 6 1 : inclined wall 462 : Second Ring 463: Meniscus -40 200918336 5 00 : 501 : 5 02 : 5 03 : 5 05 : 5 07 : 5 10·· 5 11: 5 12: 5 15: 540 : 5 5 0 : 5 60 : 5 70 : 5 7 1: 5 72 : 5 73 : Pressure gauge ink chamber Ink outlet air inlet hole bubble outlet air inlet plate first (planar) layer second (planar) layer gauge channel head space first wet chamber second wet chamber liquid retention structure cavity ditch sponge L: length dimension W: Width size

Claims (1)

200918336 十、申請專利範圍 1. 一種墨水壓力規制器,用於規制供給至噴墨列印 頭之墨水的流體靜力學壓力,該規制器包含: 墨水腔室,具有用於經由墨水管線而流體連通於該列 印頭的墨水出口; 空氣入口; 規制器通道,具有連通於該空氣入口的第一端和連通 於該腔室之頭部空間的第二端,該第二端界定氣泡出口; 濕系統,用於維持至少一些液體在該規制器通道內, 藉此確保進入該頭部空間的空氣首先通過該液體;該濕系 統包含: 第一濕腔室,連接至該第一端; 第二濕腔室,連接至該第二端;和 液體保持構造,設置在該等濕腔室至少其中之一 內,使得該規制器通道、該第一濕腔室、該第二濕腔室、 和該液體保持構造,全部呈彼此流體連通; 其中設計該規制器通道的尺寸,以控制因供給墨水至 該列印頭而從該氣泡出口汲取之氣泡的拉普拉斯壓力,藉 此規制該墨水的流體靜力學壓力。 2 .如申請專利範圍第1項所述的墨水壓力規制器, 其中建構該液體保持構造使得來自爆裂氣泡的液體被該液 體保持構造所擷取。 3-如申請專利範圍第2項所述的墨水壓力規制器, 其中該第二濕腔室是長形的,且該液體保持構造沿著該第 -42- 200918336 二濕腔室的長度延伸。 4. 如申請專利範圍第1項所述的墨水壓力規制器, 其中該液體保持構造和該頭部空間連通。 5. 如申請專利範圍第1項所述的墨水壓力規制器, 其中該液體保持構造藉由毛細作用保持該液體。 6. 如申請專利範圍第4項所述的墨水壓力規制器, 其中該液體保持構造由界定在該第二濕腔室之壁內的一或 更多個液體保持洞所界定,該等液體保持洞連通進入該頭 部空間。 7. 如申請專利範圍第5項所述的墨水壓力規制器, 其中該液體保持構造由界定在該第二濕腔室之壁內的複數 槽所界定。 8 .如申請專利範圍第5項所述的墨水壓力規制器, 其中該液體保持構造是海綿。 9.如申請專利範圍第5項所述的墨水壓力規制器, 其中該液體保持構造包含界定在該第二濕腔室之壁內的一 或更多液體保持表面特徵。 1 0 .如申請專利範圍第7項所述的墨水壓力規制器, 其中該液體保持構造包含界定在該第二濕腔室之壁內的複 數溝。 11.如申請專利範圍第1項所述的墨水壓力規制器, 其中該第一濕腔室經由該空氣入口連通至大氣。 1 2 .如申請專利範圍第1項所述的墨水壓力規制器, 其中該第二濕腔室具有連通進入該頭部空間的孔。 -43- 200918336 1 3 .如申請專利範圍第1項所述的墨水壓力規制器, 其中該等濕腔室、該規制器通道、和該液體保持構造,一 起保持實質恆定量的液體。 1 4 ·如申請專利範圍第1項所述的墨水壓力規制器, 其中建構每一濕腔室’使得液體被固定進入該等濕腔室的 邊緣區域,該等邊緣區域被連接至該規制器通道。 1 5 ·如申請專利範圍第1 4項所述的墨水壓力規制器 ’其中每一濕腔室被大致切成斜面,使得該等邊緣區域包 含以銳角相接的至少二腔室壁。 1 6 .如申請專利範圍第1項所述的墨水壓力規制器, 其中在閒置期間,正向加壓的頭部空間迫使液體從該第二 濕腔室傳輸至該第一濕腔室。 1 7 ·如申請專利範圍第1 5項所述的墨水壓力規制器 ,其中在該頭部空間內之正向加壓的空氣,首先通過該液 體,經由該空氣入口逃離。 1 8 ·如申請專利範圍第1項所述的墨水壓力規制器, 其中該液體是墨水。 1 9 .如申請專利範圍第1項所述的墨水壓力規制器, 其中該空氣入口、該規制器通道、和該濕系統,設置在該 墨水腔室的頂部。 20.如申請專利範圍第1項所述的墨水壓力規制器, 其中該壓力規制器界定用於噴墨印表機的墨水匣。 -44-200918336 X. Patent Application 1. An ink pressure regulator for regulating the hydrostatic pressure of ink supplied to an inkjet print head, the controller comprising: an ink chamber having fluid communication via an ink line An ink outlet of the print head; an air inlet; a regulator passage having a first end connected to the air inlet and a second end communicating with a head space of the chamber, the second end defining a bubble outlet; a system for maintaining at least some of the liquid within the gauge passage, thereby ensuring that air entering the head space first passes through the liquid; the wet system comprising: a first wet chamber coupled to the first end; a wet chamber coupled to the second end; and a liquid retaining formation disposed in at least one of the wet chambers such that the gauge passage, the first wet chamber, the second wet chamber, and The liquid retaining formations are all in fluid communication with one another; wherein the gauge passage is dimensioned to control the extraction of bubbles from the bubble outlet due to the supply of ink to the printhead Las pressure, by this regulation of the ink hydrostatic pressure. 2. The ink pressure regulator of claim 1, wherein the liquid retaining structure is constructed such that liquid from the bursting bubble is drawn by the liquid retaining structure. The ink pressure regulator of claim 2, wherein the second wet chamber is elongate, and the liquid retaining structure extends along a length of the wet chamber of the first to fourth. 4. The ink pressure regulator of claim 1, wherein the liquid retaining structure is in spatial communication with the head. 5. The ink pressure regulator of claim 1, wherein the liquid retaining structure retains the liquid by capillary action. 6. The ink pressure regulator of claim 4, wherein the liquid retention structure is defined by one or more liquid retention holes defined in the wall of the second wet chamber, the liquid retention The hole communicates into the head space. 7. The ink pressure regulator of claim 5, wherein the liquid retaining formation is defined by a plurality of grooves defined in the wall of the second wet chamber. 8. The ink pressure regulator of claim 5, wherein the liquid retaining structure is a sponge. 9. The ink pressure gauge of claim 5, wherein the liquid retaining formation comprises one or more liquid retaining surface features defined within a wall of the second wet chamber. The ink pressure gauge of claim 7, wherein the liquid retaining structure comprises a plurality of grooves defined in a wall of the second wet chamber. 11. The ink pressure regulator of claim 1, wherein the first wet chamber is connected to the atmosphere via the air inlet. The ink pressure regulator of claim 1, wherein the second wet chamber has a hole that communicates into the head space. The ink pressure gauge of claim 1, wherein the wet chamber, the gauge passage, and the liquid retaining configuration together maintain a substantially constant amount of liquid. The ink pressure regulator of claim 1, wherein each wet chamber is constructed such that liquid is fixed into an edge region of the wet chamber, the edge regions being connected to the gauge aisle. 1 5 The ink pressure gauge of the invention of claim 14 wherein each of the wet chambers is substantially beveled such that the edge regions comprise at least two chamber walls that meet at an acute angle. The ink pressure gauge of claim 1, wherein the forward pressurized head space forces liquid to be transferred from the second wet chamber to the first wet chamber during idle periods. The ink pressure regulator of claim 15, wherein the positively pressurized air in the head space first passes through the liquid and escapes through the air inlet. The ink pressure regulator of claim 1, wherein the liquid is ink. The ink pressure regulator of claim 1, wherein the air inlet, the gauge passage, and the wet system are disposed at the top of the ink chamber. 20. The ink pressure regulator of claim 1, wherein the pressure gauge defines an ink cartridge for an inkjet printer. -44-
TW097102203A 2007-10-16 2008-01-21 Ink pressure regulator with improved liquid retention in regulator channel TWI430893B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2007/001557 WO2009049347A1 (en) 2007-10-16 2007-10-16 Ink pressure regulator with improved liquid retention in regulator channel

Publications (2)

Publication Number Publication Date
TW200918336A true TW200918336A (en) 2009-05-01
TWI430893B TWI430893B (en) 2014-03-21

Family

ID=40566906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097102203A TWI430893B (en) 2007-10-16 2008-01-21 Ink pressure regulator with improved liquid retention in regulator channel

Country Status (3)

Country Link
EP (1) EP2200833B1 (en)
TW (1) TWI430893B (en)
WO (1) WO2009049347A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016647A (en) * 2011-01-07 2018-02-14 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Fluid container having plurality of chambers
US8998393B2 (en) 2011-01-07 2015-04-07 Hewlett-Packard Development Company, L.P. Integrated multifunctional valve device
US9315030B2 (en) 2011-01-07 2016-04-19 Hewlett-Packard Development Company, L.P. Fluid container having plurality of chambers and valves
CN106573471B (en) * 2014-07-25 2018-12-07 惠普发展公司,有限责任合伙企业 Regulator parts

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412232A (en) * 1982-04-15 1983-10-25 Ncr Corporation Ink jet printer
US4968998A (en) * 1989-07-26 1990-11-06 Hewlett-Packard Company Refillable ink jet print system
US5526030A (en) * 1992-10-05 1996-06-11 Hewlett-Packard Company Pressure control apparatus for an ink pen
JP3269268B2 (en) * 1993-07-20 2002-03-25 富士ゼロックス株式会社 Ink supply device, ink jet printer, ink supply method
US5657065A (en) * 1994-01-03 1997-08-12 Xerox Corporation Porous medium for ink delivery systems
US6547377B2 (en) * 1998-03-09 2003-04-15 Hewlett-Packard Company Printhead air management using unsaturated ink
GB2424621B (en) * 2005-03-31 2007-02-14 Monitek Electronics Ltd Ink cartridge
US7506971B2 (en) * 2005-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Fluid delivery system for printing device
US20070103520A1 (en) * 2005-11-04 2007-05-10 U Colour International Co., Ltd. Interior pressure self-adjustable ink supply cartridge structure
US7431443B2 (en) 2005-12-05 2008-10-07 Silverbrook Research Pty Ltd Ink reservoir with pressure regulating valve
US7513603B2 (en) 2005-12-05 2009-04-07 Silverbrook Research Pty Ltd Printhead assembly with ink inlet valve

Also Published As

Publication number Publication date
WO2009049347A1 (en) 2009-04-23
EP2200833A1 (en) 2010-06-30
EP2200833B1 (en) 2012-10-10
TWI430893B (en) 2014-03-21
EP2200833A4 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
US8075079B2 (en) Ink cartridge with bubble point pressure regulator defined in laminated wall
KR100723563B1 (en) Liquid supply system, ink tank, ink supply system, and inkjet recording apparatus
US6854836B2 (en) Liquid container, liquid supply system, liquid using apparatus, ink tank, ink supply system, inkjet print head and print apparatus
US7703901B2 (en) Printhead ink supply system comprising ink pressure regulator
EP2043868B1 (en) Ink pressure regulator with bubble point pressure regulation
US8500257B2 (en) Ink pressure regulator with liquid-retaining structure
US8029112B2 (en) Inkjet printer with pressure regulator
TW200918336A (en) Ink pressure regulator with improved liquid retention in regulator channel
US7784925B2 (en) Ink cartridge with pressure regulation
US7857441B2 (en) Ink pressure regulator
US7703900B2 (en) Ink pressure regulator using air bubbles drawn into ink
KR102560001B1 (en) Ink Reservoir with Back Pressure System
US7794068B2 (en) Method of regulating ink pressure
JP2004306394A (en) Liquid container
EP2094494B1 (en) Ink pressure regulator
TW200413177A (en) Inkjet cartridge with air management system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees