TW200918226A - Patterning of conducting dielectrics by using low power visible laser - Google Patents

Patterning of conducting dielectrics by using low power visible laser Download PDF

Info

Publication number
TW200918226A
TW200918226A TW96140050A TW96140050A TW200918226A TW 200918226 A TW200918226 A TW 200918226A TW 96140050 A TW96140050 A TW 96140050A TW 96140050 A TW96140050 A TW 96140050A TW 200918226 A TW200918226 A TW 200918226A
Authority
TW
Taiwan
Prior art keywords
low power
laser
present
visible light
conductive film
Prior art date
Application number
TW96140050A
Other languages
Chinese (zh)
Inventor
Ji-Yen Cheng
Meng-Hua Yen
Wen-Chi Hsu
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to TW96140050A priority Critical patent/TW200918226A/en
Publication of TW200918226A publication Critical patent/TW200918226A/en

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

The ITO patterning method is invented and then applied for fabricating a transparent gas flow meter. Laser induced backside wet etching using a low power green laser (visible-LIBWE) was used for direct-write ITO patterning.

Description

200918226 九、發明說明: 【發明所屬之技術領域】 本發明為一種導電薄膜之微電極加工方法,特別是一 種運用低功率可見光雷射於導電薄膜之微電極加工方法。 【先前技術】 經搜尋相關專利前案,經分析結果如下所述: 美國專利編號第7057687號.·本案適用於紫外光雷射 (wavelength shorter than visible light),由於可見光 的調校比起紫外光的調校更為容易,且可見光的光學元件 之成本更為經濟許多,本發明較優於此案。 美國專利編號第6838038號:本案運用波長介於193 nm至351 nm的紫外光,而本發明使用可見光即可工作。 美國專利編號第5824374號:本案所能蝕刻的材質, 必須能夠吸收雷射光,因此對於透明的材料,無法進行蝕 刻,而本發明則無此限制。 美國專利編號第4931323號:本案僅能利用於銅薄 膜,並不適用於其他材質,也不適用於透明導電材料。 故為產業上之利用,。 【發明内容】 本發明為一種運用低功率可見光雷射於導電薄膜之 微電極加工方法。 本發明運用低功率的綠光雷射(可見光),以背面濕蝕 5 200918226 刻的方式,直接在丨το上刻出所需圖樣,不需使用光罩, 並可進一步利用於透明氣體流量計。 故而,關於本發明之優點與精神可以藉由以下發明詳 述及所附圖式得到進一步的瞭解。 【實施方式】 本發明將由以下實施例之說明而得充分瞭解,亦使熟 習本技藝之人士可據以完成之,惟本發明之實施並非由下 列實施案例而所限制其實施型態。 本發明為一種運用低功率可見光雷射於導電薄膜之 微電極加工方法,亦即一種進行ΙΤΟ導電薄膜的蝕刻方法。 如第1圖所示為本發明之實施方式,本發明一種運用 低功率可見光雷射於導電薄膜之微電極加工方法: 如第1圖所示,首先提供一低功率可見光雷射蝕刻裝 置。 如第1圖所示之本發明較佳實施例。本發明使用一導 電薄膜表面微型模樣(Surface Micropatterning)於一 ΙΤΟ 導電薄膜表面上。 如第1圖所示,激發該低功率可見光雷射蝕刻裝置之 一雷射脈衝(Laser Pu 1 se)於該導電薄膜表面上以進行微 電極加工。 如第2圖所示亦為本發明之較佳實施例。 故經實驗後,得第3圖至第8圖所示為本發明之實驗 結果 本發明利用低功率的綠光雷射(可見光)以背面濕蝕 6 200918226 刻的方法,直接在ITO上刻出所需圖樣,不需使用光單, 並可進一步利用在透明氣體流4計的建構上。 本發明與雷射正面餘刻的結果比較,可明顯看出餘刻 部份表面更光滑且有較少的傷害痕跡殘留。 ,本發明經利用掃描式電子_微鏡(SEM)、能量散佈光 譜儀(EDS)與化學分析I错儀(ESCA)等方法對餘刻表面 進行分析,並與UV雷射以及丨R雷射#刻的結果加以比較。 本發明可應用於丨TO微型電阻及微電極製作,再利用 萬用電表監控其上的電阻變化即可得知氣體的流量變化, 因此可作為氣體流量計使用,而流量計的檢測極限是 0.24ml/min,其反應時間是2 6秒。 以上所述僅為本發明之較佳實施例❿已,並非用以限 定本發明之中請專㈣圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。 【圖式簡單說明】 第1圖所示為本發明之較佳實施例 第2圖所示為本發明之較佳實 第3圖所示為本發明之實驗結 第4圖所示為本發明之實驗結果 第5圖所示為本發明之實驗姅 第6圖所示為本發明之實驗纟士 第7圖所示為本發明之實驗二 第8圖所示為本發明之實驗=果 7 200918226 【主要元件符號說明】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microelectrode processing method for a conductive film, and more particularly to a microelectrode processing method using a low power visible light laser to a conductive film. [Prior Art] After searching for related patents, the results of the analysis are as follows: US Patent No. 7057687. This case applies to wavelength shorter than visible light, because the adjustment of visible light is higher than that of ultraviolet light. The adjustment is easier, and the cost of visible optical components is much more economical, and the present invention is superior to this case. U.S. Patent No. 6,380,038: This application utilizes ultraviolet light having a wavelength between 193 nm and 351 nm, and the present invention operates using visible light. U.S. Patent No. 5,824,374: The material that can be etched in this case must be capable of absorbing laser light, so that the transparent material cannot be etched, and the present invention is not limited thereto. U.S. Patent No. 4,931,323: This case can only be used for copper films, and is not suitable for other materials, nor for transparent conductive materials. Therefore, it is used in industry. SUMMARY OF THE INVENTION The present invention is a microelectrode processing method using a low power visible light laser on a conductive film. The invention uses a low-power green laser (visible light) to directly engrave the desired pattern on the 丨το in a manner of back wet etching 5 200918226, without using a reticle, and can be further utilized in a transparent gas flow meter. . Therefore, the advantages and spirit of the present invention can be further understood from the following detailed description of the invention and the accompanying drawings. The present invention will be fully understood from the following description of the embodiments of the present invention, and the embodiments of the present invention are not limited by the following examples. The present invention is a microelectrode processing method using a low power visible light laser on a conductive film, that is, an etching method for conducting a tantalum conductive film. As shown in Fig. 1, an embodiment of the present invention, a microelectrode processing method using a low power visible light laser on a conductive film: As shown in Fig. 1, a low power visible light laser etching apparatus is first provided. A preferred embodiment of the invention is shown in Figure 1. The present invention uses a surface micropatterning of a conductive film on a surface of a conductive film. As shown in Fig. 1, a laser pulse of the low power visible light laser etching apparatus is excited on the surface of the conductive film for microelectrode processing. Also shown in Figure 2 is a preferred embodiment of the present invention. Therefore, after the experiment, the experimental results of the present invention are shown in Figures 3 to 8. The present invention uses a low-power green laser (visible light) to etch the surface directly on the ITO by the method of backside wet etching 6 200918226. The required pattern does not require the use of a light sheet and can be further utilized in the construction of a transparent gas stream. Compared with the results of the laser frontal engraving, the present invention clearly shows that the remaining portion of the surface is smoother and has fewer residual marks. The present invention analyzes the surface of the residual surface by means of scanning electron micromirror (SEM), energy dispersive spectrometer (EDS) and chemical analysis I-error (ESCA), and is combined with UV laser and 丨R laser. The results of the engraving are compared. The invention can be applied to the fabrication of the 丨TO micro-resistor and the micro-electrode, and then the multi-meter electric meter is used to monitor the change of the resistance thereon to know the flow change of the gas, so that it can be used as a gas flow meter, and the detection limit of the flow meter is 0.24 ml/min, the reaction time was 26 seconds. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any other equivalent changes or modifications which are not departing from the spirit of the present invention should be It is included in the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a preferred embodiment of the present invention. FIG. 2 is a view showing a preferred embodiment of the present invention. FIG. The experimental results are shown in Fig. 5, which is an experimental experiment of the present invention. Fig. 6 is a view of the experimental gentleman of the present invention. Fig. 7 is a second experiment of the second embodiment of the present invention. 200918226 [Key component symbol description]

Claims (1)

200918226 十、申謗專利範蔺·· 可見光雷射於導電薄膜之微電極加工 提供-低功率可見光雷射蝕刻裝置· 使用-導電薄膜表面微型 Mlcropatt⑽㈣於—導電 激發該低功率可見光雷射 (Laser Pui se)於該導電薄膜矣^裝置之一雷射脈衝 9如由面上以進行微電極加工。 2·如申明專心圍幻項所述之運用低 導電薄膜之微電極加工方法,t 兄九田射於 丨TO導電薄膜。 丨Μ導電薄膜至少包含200918226 X. Shen Wei Patent Fan Wei·· Visible Light Laser Electrode Processing for Conductive Films Provided - Low Power Visible Light Laser Etching Device · Use - Conductive Film Surface Micro Mlcropatt (10) (4) Conductively Excite the Low Power Visible Light Laser (Laser Pui Se) Laser pulse 9 of one of the conductive thin film devices is fabricated on the surface for microelectrode processing. 2. If the microelectrode processing method using a low-conductivity film as described in the Dedicated Encyclopedia is used, the t-brother is shot on the TO conductive film.丨Μ conductive film contains at least
TW96140050A 2007-10-25 2007-10-25 Patterning of conducting dielectrics by using low power visible laser TW200918226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96140050A TW200918226A (en) 2007-10-25 2007-10-25 Patterning of conducting dielectrics by using low power visible laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96140050A TW200918226A (en) 2007-10-25 2007-10-25 Patterning of conducting dielectrics by using low power visible laser

Publications (1)

Publication Number Publication Date
TW200918226A true TW200918226A (en) 2009-05-01

Family

ID=44726656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140050A TW200918226A (en) 2007-10-25 2007-10-25 Patterning of conducting dielectrics by using low power visible laser

Country Status (1)

Country Link
TW (1) TW200918226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014963A (en) * 2019-12-26 2020-04-17 吉林大学 Three-dimensional micromachining method for hard and brittle material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014963A (en) * 2019-12-26 2020-04-17 吉林大学 Three-dimensional micromachining method for hard and brittle material
CN111014963B (en) * 2019-12-26 2021-06-18 吉林大学 Three-dimensional micromachining method for hard and brittle material

Similar Documents

Publication Publication Date Title
JP5506401B2 (en) Substrate plasma processing using magnetic mask devices
TWI677942B (en) Cmos-based semiconductor device on micro-hotplate and method of fabrication
Jeong et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching
US8497499B2 (en) Method to modify the conductivity of graphene
JP2003073862A5 (en) Substrate surface treatment method
Lim et al. Assembly of foldable 3D microstructures using graphene hinges
TW201003769A (en) Method for processing a substrate, method for manufacturing a semiconductor chip, and method for manufacturing a semiconductor chip having a resin adhesive
EP1686421A3 (en) Method for plasma etching a chromium layer suitable for photomask fabrication
TW200509740A (en) Process for removing an organic layer during fabrication of an organic electronic device and the organic electronic device formed by the process
JP2008166676A (en) Development of low driving voltage fine scratch driving actuator by super low resistance silicon wafer
CN108139823B (en) Thin film touch sensor and manufacturing method thereof
TW200743140A (en) Method for fabricating fine pattern in semiconductor device
TW200918226A (en) Patterning of conducting dielectrics by using low power visible laser
JP2019512033A (en) Peeling force increase by selective plasma pretreatment
TW201250830A (en) Prevention of line bending and tilting for etch with tri-layer mask
Talukder et al. Advanced nanopatterning using scanning probe technology
WO2017150574A1 (en) Bipolar electrostatic chuck module and production method therefor
KR102163115B1 (en) Bridge Type Micro Gas Sensor and Manufacturing Method Thereof
WO2004025726A3 (en) Method for selectively covering a micro machined surface
KR20130107081A (en) Nano-patterning apparatus, system having the same and control method thereof
JP5846524B2 (en) Method for forming conductive pattern and substrate device
CN106325003A (en) Patterning method for organic conductive film
JP2012243992A5 (en)
Stöhr et al. Multilayer photoresist stamps for selective plasma treatment in micrometer scales
JP6059875B2 (en) Method for manufacturing piezoelectric element